JP4523731B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP4523731B2
JP4523731B2 JP2001102305A JP2001102305A JP4523731B2 JP 4523731 B2 JP4523731 B2 JP 4523731B2 JP 2001102305 A JP2001102305 A JP 2001102305A JP 2001102305 A JP2001102305 A JP 2001102305A JP 4523731 B2 JP4523731 B2 JP 4523731B2
Authority
JP
Japan
Prior art keywords
mixing tank
organic polymer
polymer flocculant
flocculant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001102305A
Other languages
Japanese (ja)
Other versions
JP2002292207A (en
JP2002292207A5 (en
Inventor
邦雄 海老江
友明 宮ノ下
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2001102305A priority Critical patent/JP4523731B2/en
Publication of JP2002292207A publication Critical patent/JP2002292207A/en
Publication of JP2002292207A5 publication Critical patent/JP2002292207A5/ja
Application granted granted Critical
Publication of JP4523731B2 publication Critical patent/JP4523731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、無機凝集剤と有機高分子凝集剤(以下ポリマーという)を使用して凝集処理を行う水処理装置に関する。
【0002】
【従来の技術】
従来より、上下水処理、各種排水処理において、懸濁質、溶存有機物を除去するために凝集処理が広く行われている。この凝集処理において、その凝集剤として硫酸アルミ、PAC(ポリ塩化アルミニウム)、塩化第二鉄などのアルミ系・鉄系の無機金属塩凝集剤が通常利用されている。
【0003】
しかし、処理する原水の水質によっては、これらの無機凝集剤だけでは、十分大きなフロックが形成されず、その後の沈殿工程、ろ過工程における固液分離速度が遅く良好な処理水水質が得られない場合がある。
【0004】
一方、排水・汚泥処理分野では、従来よりポリアクリルアミド等のポリマーがフロック形成・沈降分離を促進するために広く利用されている。上水分野では、ポリマー中に有害な不純物(アクリルアミドモノマー等)が含まれる可能性もあるため、これまで使用が認められていなかった。しかし、これら不純物濃度を十分低く抑えることは可能であり、日本においては不純物濃度を基準値以下に抑える条件で平成12年度から使用が認められるようになった。
【0005】
無機凝集剤およびポリマーを併用する凝集処理は、まず無機混和槽において無機凝集剤の注入混和を行い、その直後のポリマー混和槽でポリマーを注入混和する。このポリマー混和槽での撹拌は、無機凝集剤と原水中の懸濁物質との結合でできた微小なフロックにポリマーがさらに結合するよう急速撹拌による混和が行われる。さらに、その後段で、緩速撹拌を行い、フロックを成長させる。緩速撹拌は、通常1〜4段の一連の槽で行われ、後段に行くほど撹拌強度を小さくし、フロックを破壊させず大きく成長させるような撹拌条件としている。
【0006】
【発明が解決しようとする課題】
ここで、従来の排水処理などにおいては、フロックを大きくし、フロックの沈降速度を高め、沈殿槽を縮小することを主目的としてポリマーを使用しており、処理水水質の目標あるいは基準が緩やかであった。そこで、ポリマー注入を行う場合、その添加量の制御を行うが、撹拌強度などの他の条件については、一定の値を採用していた。
【0007】
ところが、浄水処理のように、凝集沈殿だけでなくろ過まで行い、ろ過水として濁度0.1度以下といった厳しい水質が要求される場合がでてきた。本発明者らは、各種の実験を行った結果、ポリマー混和槽における撹拌強度が、要求水質の達成の可否に大きく影響することを発見した。
【0008】
特に、ポリマー溶解液は粘度が高く水中での分散性がよくないため、注入率が高いほど、強い強度で撹拌し、より分散を図らないと、フロックの成長性に斑が生じたり、微小粒子を除去しきれない場合がある。凝集沈殿処理水をろ過に通水する場合にも、処理水水質が悪化する場合がある。逆に、注入率が低い場合には、高注入率の場合と同様の撹拌強度で撹拌すると、成長し始めたフロックが破壊されるなどして、フロックが十分に成長せず、沈殿処理への効果が減小することがある。
【0009】
また、水温によっても水・ポリマー溶解液の粘度が変わり、注入混和時の分散の様子が変わり、処理効果も変わる。とくに、低水温時には、水・ポリマーの粘度は高くなるため、分散しにくい。
【0010】
また、原水水質が比較的良好で、無機凝集剤の注入だけでフロック形成・沈降性がよく、沈殿処理水水質・ろ過水水質が良好かつ安定している場合には、ポリマーの注入は、必ずしも必要とされない。ポリマーを注入せず、無機凝集剤のみで処理を行う場合、無機凝集剤注入・短時間の急速撹拌を行い、その後、緩速撹拌を行うことが必要となる。したがって、ポリマーを注入しない場合、ポリマー混和槽における撹拌強度をポリマーを注入する場合と同様に行うと、急速撹拌時間が長くなりすぎ、フロックが十分大きくならない。その場合、バイパスラインを設けておいて、ポリマー混和槽を使用しないという選択もあるが、装置が複雑となり、バルブの切り替え操作も必要となる。また、その間、ポリマー混和槽の一部を遊ばせておくことのみならず、維持管理・再起動の煩雑さも生じる。
【0011】
本発明は、上記課題に鑑みなされたものであり、良好な凝集処理を行うことができる水処理装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、無機凝集剤を混和する無機凝集剤混和槽と、この無機凝集剤混和槽からの流出水に、有機高分子凝集剤を混和する有機高分子凝集剤混和槽と、を有し、無機凝集剤と有機高分子凝集剤を使用して凝集処理を行う水処理装置において、前記有機高分子凝集剤混和槽における撹拌強度を前段の無機凝集剤混和槽の撹拌強度よりも大きな値とするとともに、この有機高分子凝集剤混和槽での撹拌強度を有機高分子凝集剤注入率が大きいほど大きく、かつ水温が高いほど小さくなるように変化させることを特徴とする。
【0013】
このように、本発明によれば、有機高分子凝集剤混和槽での撹拌強度を、有機高分子凝集剤注入率および水温に応じて変化させる。そこで、撹拌強度を適切なものに維持することができ、効果的な凝集処理が行え、良好な処理水を得ることができる。
【0014】
また、本発明は、無機凝集剤を混和する無機凝集剤混和槽と、この無機凝集剤混和槽からの流出水に、有機高分子凝集剤を混和する有機高分子凝集剤混和槽とを有し、無機凝集剤と有機高分子凝集剤の両方を使用して凝集処理を行うことができるとともに、有機高分子凝集剤混和槽に添加する有機高分子凝集時の添加量を実質的に0にすることができる水処理装置において、前記有機高分子凝集剤混和槽に有機高分子凝集剤を添加するときは、この有機高分子凝集剤混和槽での撹拌強度を前段の無機凝集剤混和槽の撹拌強度よりも大きな値とするとともに、この有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、この有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値にする特徴とする。
【0015】
このように、本発明では、有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、この有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値にする。従って、有機高分子凝集剤を添加しない場合には、有機高分子凝集剤混和槽を後段のフロック形成槽の一部として利用することができる。そこで、バイパス管などが不要となり、好適な凝集処理を行うことができる。
【0016】
また、さらに、前記有機高分子凝集剤混和槽の流出水を緩速撹拌してフロック形成を助長するフロック形成槽を有し、前記有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、前記有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値であって、前記フロック形成槽における撹拌強度以上の値とすることが好適である。これによって、好適なフロック形成を行うことができる。
【0017】
また、前記有機高分子凝集剤混和槽での撹拌強度を、有機高分子凝集剤注入率が大きいほど大きく、かつ水温が高いほど小さくなるように変化させることが好適である。
【0018】
また、有機高分子凝集剤はアクリルアミドモノマーを原料とするアニオン性またはノニオン性のものであり、分子量が1,000,000〜3,000,000ダルトンであることが好適である。このような有機高分子凝集剤により、無機凝集剤添加後のフロックの形成を好適に行うことができる。また、あらかじめイオン性状、分子量の異なる複数種類の凝集剤を用意しておき、原水水質に応じて最も効果の高い種類を使用することが好ましい。
【0019】
【発明の実施の形態】
以下、本発明の実施形態について、図面に基づいて説明する。
【0020】
図1は、実施形態の水処理装置の構成を示す図である。河川水、湖沼水等の表流水からなる原水は、無機混和槽10に導入される。この無機混和槽10には、撹拌翼12aと、これを回転させるモータ12bとからなる撹拌機12が配置されている。また、この無機混和槽10には、無機凝集剤タンク14内の無機凝集剤がポンプ16によって供給される。無機凝集剤としては、例えばPAC(ポリ塩化アルミニウム:Al10%含有)が利用される。なお、この無機混和槽10の急速撹拌強度は通常300(S−1)未満、滞留時間は5分未満であるが、これに限定されない。
【0021】
次に、無機凝集剤が混合された水は、ポリマー混和槽18に導入される。このポリマー混和槽18には、撹拌翼20aと、これを回転させるモータ20bとからなる撹拌機20が配置されており、また高分子凝集剤タンク22内の高分子凝集剤がポンプ24によって供給される。高分子凝集剤としては、例えばノニオン性アクリルアミドポリマーが利用される。また、アニオン性アクリルアミドポリマーが好適な場合もあるが、これらに限定されるものではない。また、あらかじめイオン性状、分子量の異なる複数種類の凝集剤を用意しておき、原水水質に応じて最も効果の高い種類を使用することが好ましい。このポリマー混和槽18の急速撹拌強度は300(S−1)以上、滞留時間1〜10分程度に設定されている。
【0022】
ポリマー混和槽18からの無機凝集剤および高分子凝集剤が混合された水は、フロック形成槽28に導入される。このフロック形成槽28は、3槽からなり、それぞれに横軸パドル式の緩速撹拌機26が設けられている。この緩速撹拌機26は、各槽毎に撹拌強度を設定することが可能であり、通常、撹拌強度は徐々に弱くなるように設定されている。そして、このフロック形成槽28において緩速撹拌することによってフロックの粗大化が図られる。このフロック形成槽28における撹拌強度は、例えば、入り口側の槽から100−60−40(S−1)のように徐々に小さくなるように設定される。
【0023】
そして、無機凝集剤および高分子凝集剤によりフロック形成された水が沈殿槽30に導入され、ここで固形物が沈殿する。この沈殿槽30で沈殿した固形物は汚泥として系外に排除され、上澄み水は、砂ろ過器32に供給される。この砂ろ過器32は、内部にろ材層を有し、このろ材層によって残留する浮遊性固形物をろ過分離する。これによって、水道水として配水できる水質のろ過処理水が安定して得られる。なお、ろ材層は、例えば、アンスラサイト、ケイ砂の二層アンスラサイト、ケイ砂、ガーネットの三層等で形成される。
【0024】
ろ過処理水は、処理水タンク34に貯留され、消毒された後配水される。また、処理水タンク34内の処理水は、逆洗ポンプ36によって、砂ろ過器32の底部に供給できるようになっており、これによって砂ろ過器32を逆洗できる。また、砂ろ過器32の底部にはブロア38からの空気も供給することができるようになっており、これによって空気逆洗も行われる。
【0025】
そして、原水の無機混和槽10への流入経路には温度計40が設けられており、原水水温が測定される。なお、この温度は、各槽において余り変化がないため、無機混和槽10、ポリマー混和槽18、フロック形成槽28などのいずれの槽に設けてもよい。特に、ポリマー混和槽18内の水温は重要であり、このポリマー混和槽18に温度計を設けることが好適である。
【0026】
この温度計40の検出結果は、コントローラ42に供給される。このコントローラ42には、高分子凝集剤を添加するポンプ24の流量についての信号も供給されている。そして、このコントローラ42が水温高分子凝集剤の添加量に基づいて、モータ20bの回転を制御して、撹拌機20の撹拌強度を制御する。
【0027】
なお、無機凝集剤の注入率、高分子凝集剤の注入率、高分子凝集剤の種類などは、原水についてのジャーテストなどによって、最適条件を決定し、原水濁度などによって変更するようになっている。
【0028】
なお、本実施形態では、無機凝集剤にPACを用いているが、硫酸バンド、塩化第二鉄、硫酸第二鉄、ポリ硫酸アルミニウム・鉄等の鉄やアルミニウムを原料とするものであれば、特に限定する必要はない。また凝集助剤として、硫酸、塩酸、炭酸、水酸化ナトリウム、消石灰等を加えることも好ましい。
【0029】
次に、ポリマー混和槽18における撹拌機20の撹拌強度の設定について説明する。
【0030】
本実施形態では、ポリマー注入率が0.01mg/L以上の場合、ポリマー混和槽18での撹拌強度を、ポリマー注入率と水温に応じて変化させる。すなわち、温度、ポリマー注入率に応じて適切なG値を算出し、撹拌機20におけるG値または撹拌機20の回転数を制御する。なお、このポリマー混和槽18における撹拌強度G2は前段の無機混和槽10の撹拌強度G1よりも大きな値とし、G1値が300S−1未満の場合G2値をG値で300(S−1)以上とする。
【0031】
一方、ポリマー注入率が0mg/Lの場合、ポリマー混和槽18の撹拌強度G2を前段の無機混和槽10の撹拌強度G1よりも小さくし、緩速撹拌槽の一つとして機能させる。これによって、ポリマー混和槽18において、無機フロックの粗大化が促進される。
【0032】
まず、撹拌強度G2値については、ポリマー注入濃度が高くなるほど、大きくする。また使用するポリマー原液の濃度が高くなるほど、大きくすることが好適である。
例えば、G2を注入率に比例させた制御を行う場合、
【数1】
G2(S−1)= Ga×d+Gb ・・・ (1)
ここで、d:ポリマー注入率(mg/L)、Ga、Gbは定数であり、Ga、Gbは、予め実験機を用いた実験またはジャーテストで決定しておく。
【0033】
また、水温が低いとポリマーが混合しにくくなる。そこで、温度が低くなるに従って、撹拌強度を大きくする。
【数2】
G2(S−1)= Ga×d+Gb+Gc(T0−T)・・・ (2)
ここで、Gcは、所定の定数、T0は標準温度、Tはそのときの水温である。この式(2)により、水温T0の時には水温についての左辺第3項は、ゼロであるが、水温TがT0より高くなると所定値マイナス、低くなると所定値プラスされる。従って、この式(2)により、ポリマー注入量だけでなく、そのときの水温を考慮して、撹拌強度G2を決定することができる。ここで、定数Gcも各種温度におけるジャーテストによって決定する。なお、この式(2)は、水温TがT0を下回ったときのみに適用してもよい。
【0034】
原水水質に応じて、高分子凝集剤の種類を最も効果の高いものに切り換える場合、あらかじめ各種類について、上記数式の定数Ga,Gb,Gcを決定しておき切り換えた時点で使用する凝集剤の定数および注入率水温の条件から撹拌強度を算出することが好ましい。
【0035】
このように、本実施形態によれば、ポリマー混和槽18での撹拌強度をポリマー注入率と水温に応じて適正な値に変化させる。これによって、ポリマーの凝集効果が効果的に発揮され、良好な処理水水質が得られる。
【0036】
一方、条件によっては、無機凝集剤による凝集だけで、十分な処理水水質が得られる場合もある。このような場合には、ポリマーを添加する必要はない。ところがポリマー添加をやめた場合、ポリマー混和槽18で強い撹拌を行うと、フロックが細かくなってしまい処理水水質を十分なものにできない。従って、バイパス配管を設け、ポリマー混和槽18をバイパスしてフロック形成槽28に導入することが考えられる。ところが、このようなバイパス配管を設ける場合、その切り換え制御のための装置を設けなければならず、さらにポリマーの添加を再開する際に、問題が生じる。
【0037】
本実施形態では、ポリマーを使用しない場合も、撹拌強度を変えるだけでフロックの形成を阻害することがないだけではなく、より形成を促進することができる。すなわち、例えば、ポリマー混和槽18における撹拌強度を100(S−1)程度と、フロック形成槽28の第1槽における撹拌強度と同等の値にする。これによって、ポリマー混和槽18をバイパスさせて使用しない場合より、良い処理水水質が得られる。また、撹拌強度を変更するだけであるため、装置が簡素化され運転管理も容易になるという効果も得られる。
【0038】
従って、本実施形態では、ポリマー添加量が0.1mg/L以上の場合は、上述の式(2)に基づいて、撹拌機20を制御し、ポリマー添加量が0.1mg/L以下である実質的に0mg/Lと見なせる場合には、撹拌強度をフロック形成槽28の撹拌強度(特に第1槽の撹拌強度)と同等の値にする。これによって、常に良好な処理水が得られるような処理を行うことができる。
【0039】
【実施例】
本発明の効果を確認するため、ある湖沼の水を原水として下記実験装置にて処理実験を6ヶ月間行った。
【0040】
1.実験条件
(1)比較例の凝集沈殿ろ過装置
・原水流量:1,000m/時
・無機混和槽:滞留時間3分、撹拌強度200(S−1
・ポリマー混和槽:滞留時間5分 撹拌強度400(S−1
・フロック形成槽:横軸パドル3段式、滞留時間30分
G値・滞留時間、1段目100(S−1)・10分、2段目60(S−1)・10分、3段目40(S−1)・10分
(なお、無機混和槽とフロック形成槽の間にはポリマー混和槽をバイパスできる配管およびそれに付随するバルブなどを有する。)
・沈殿槽:上向流式傾斜板付き沈殿槽、滞留時間40分、上昇速度3m/時
・砂ろ過器:アンスラサイト400mm 有効径1.0mm 均等係数1.4、ケイ砂400mm 有効径0.5mm 均等係数1.3、ろ過速度200m/日、48時間に一度逆流洗浄
・無機凝集剤:PAC(ポリ塩化アルミニウム)、注入率 40〜60mg/l・ポリマー:ノニオン性ポリアクリルアミド、溶解液濃度1000mg/L
【0041】
(2)本発明の凝集沈殿ろ過装置本発明の装置では、(i)ポリマー混和槽の撹拌強度が自動制御されること、(ii)ポリマー混和槽をバイパスする管を有せず、その分簡素な装置であること、が比較例の装置と異なるが、その他の点では、比較例の装置構成・処理条件同じである。
【0042】
撹拌強度の自動制御についての詳細は以下のとおりである。
・撹拌装置は、フラッシュミキサー方式で回転数が可変である。撹拌強度はG値で制御し、そのG値に対応した回転数に自動で変更する。
・撹拌強度は、ポリマー注入率に合わせG値を一次比例させる。
G値決定条件式は、
【数3】
G(S−1)= 500×d+350 ・・・ (3)
である。ここで、d:ポリマー注入率(mg/L)であり、この式は上述の式(1)に対応し、定数であるGa=500、Gb=350である。この条件は、事前に行ったジャーテストの結果をもとに決定した。
【0043】
また、6ヶ月目以降水温15度未満では、水温が1度下がる毎にG値を(3)式の値に5(S−1)加えた値とした。なお、この式(4)は、水温が15度を下回ったときにのみ適用した。
すなわち、
【数4】
G(S−1)=500×d+350+5×(15−T)・・・ (4)
とする。この式(4)は、上述の式(2)に対応し、定数であるGc=5、T0=15である。この条件は、事前に行ったジャーテストの結果をもとに決定した。
【0044】
さらに、ポリマーの注入を行わない場合は、G値100(S−1)とした。
【0045】
この実験では、ポリマーを添加しないか、添加する場合には、添加量0.1mg/L以上とた。
【0046】
2.実験原水
・実験開始1ヶ月:濁度平均20度程度で、藻類が2000個/mL程度発生した。水温は20〜25度であった。
実験開始2ヶ月〜3ヶ月:濁度平均30度で、藻類が1万〜2万個/mLと大繁殖した。水温は25〜30度であった。
・実験開始3ヶ月〜4ヶ月目:濁度10度程度で、藻類数は大幅に減少し500個/mL程度であった。また、水温は25〜20度であった。
・実験開始5ヶ月目:再び濁度は20度に上昇した。水温は20〜15度であった。また、藻類数500個/mL程度であった。
・実験開始6ヶ月目:濁度20度程度で、水温15〜10度であった。
【0047】
3.実験結果
・実験開始から1ヶ月:ポリマーを0.1mg/L注入した処理を行った。比較装置・本発明装置とも撹拌強度はG値400(S−1)と同じ値とした。処理結果は、両装置とも同等で、沈殿処理水濁度0.3〜0.4度、ろ過水濁度0.03度で推移した。
【0048】
・2〜3ヶ月目:原水中に凝集性の悪い藻類(藍藻)が増殖し、ポリマー注入率0.1mg/Lでは沈殿処理水濁度・ろ過水濁度ともに十分な水質が得られず、特にろ過水濁度は処理目標の0.1度を安定して達成できない。
【0049】
このため、注入率を0.3mg/Lに上げた。それに伴って、本発明の装置は、ポリマー混和槽の撹拌強度を条件式(4)に従い、自動的にG値500(S−1)に上昇させた。比較装置の撹拌強度は400(S−1)のままである。沈殿処理水濁度は比較装置の方が0.4〜0.7度でやや不安定に推移したのに対し、本発明装置の方は0.3〜0.4度で安定して推移した。また、ろ過水濁度は、比較装置の方が0.04度で推移したのに対し、本発明装置の方は0.03度であり、最初の1ヶ月と同等の処理効果が得られた。
【0050】
・4ヶ月目:原水中の藻類の発生はおさまり、原水濁度も低下し、比較的処理のしやすい水となったので、ポリマーの注入を停止することにした。沈殿処理水濁度は、注入を行う場合よりもやや高くなるが、ろ過では十分な処理が行い得るとの判断からポリマーの注入を停止した。
【0051】
本発明装置では、自動的にポリマー混和槽の撹拌G値を100(S−1)に下げ、フロック形成槽の1槽とした。比較装置は、ポリマー混和槽には通水せず、バイパス管にて無機混和槽からフロック形成槽に直接通水した。沈殿処理水濁度は、比較装置が0.9〜1.1度で推移したのに対し、本発明装置の方が0.8〜1.0度で推移した。本発明装置の方が、凝集が長く行われることで、沈殿処理水濁度は若干良好であった。ろ過水濁度は、比較装置が0.04〜0.05度、本発明装置は0.04度で比較装置よりも良好であった。
【0052】
・5ヶ月目:再び原水濁度の上昇が見られたため、ポリマーを0.1mg/L注入することにした。本発明装置では、注入開始後、ポリマー混和槽の撹拌G値を上げるだけで、沈殿処理水濁度は1.0度→0.4度へ徐々に良好になっていった。それに対し、比較装置では、約1ヶ月使われていなかったポリマー混和槽に通水しての凝集沈殿処理は、混和槽に滞留していた水の影響で、沈殿処理水濁度は一時的に1.2度まで上がるなど不安定となり、安定するまでに約4時間を要した。
【0053】
6ヶ月目:原水水温が15度を下回ったため、水温補正を加えた条件式(3)に従って撹拌強度を自動調整するような機構とした。ポリマー注入率は0.1mg/Lである。水温が20度→15度に下がった期間、本装置のG値は400→425(S−1)に変化した。一方比較装置のG値は、400(S−1)のままである。この期間、沈殿処理水濁度は、本発明装置0.5〜0.6度で安定して推移したのに対し、比較装置0.5〜0.7度で推移し、本発明装置の方が良好であった。
【0054】
これら実験結果を総合すると、
(i)ポリマー注入率に合わせポリマー混和槽の撹拌強度を自動的に変える本発明装置の処理水水質は、比較装置よりも絶えず良好かつ安定であった。
(ii)ポリマーを注入しない処理の場合も、ポリマー混和槽を凝集槽の1槽とする本装置の方が、処理水水質も良く、かつ、ポリマー注入処理への移行が容易であった。
(iii)水温に応じても撹拌強度を変える本発明装置の処理水水質は、比較装置よりも良好であったといえる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、有機高分子凝集剤混和槽での撹拌強度を、有機高分子凝集剤注入率および水温に応じて変化させる。そこで、撹拌強度を適切なものに維持することができ、効果的な凝集処理が行え、良好な処理水を得ることができる。
【0056】
また、本発明では、有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、この有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値にする。従って、有機高分子凝集剤を添加しない場合には、有機高分子凝集剤混和槽を後段のフロック形成槽の一部として利用することができる。そこで、バイパス管などを不要として、好適な凝集処理を行うことができる。
【図面の簡単な説明】
【図1】 実施形態の水処理装置の全体構成を示す図である。
【符号の説明】
10 無機混和槽、18 ポリマー混和槽、20 撹拌装置、28 フロック形成槽、30 沈殿槽、32 砂ろ過器、40 温度計、42 コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment apparatus that performs an aggregation treatment using an inorganic flocculant and an organic polymer flocculant (hereinafter referred to as a polymer).
[0002]
[Prior art]
Conventionally, in water and sewage treatment and various wastewater treatment, agglomeration treatment has been widely performed in order to remove suspended solids and dissolved organic matter. In this aggregating treatment, aluminum-based and iron-based inorganic metal salt aggregating agents such as aluminum sulfate, PAC (polyaluminum chloride), and ferric chloride are usually used as the aggregating agent.
[0003]
However, depending on the quality of the raw water to be treated, these inorganic flocculants alone do not form sufficiently large flocs, and the solid-liquid separation rate in the subsequent precipitation and filtration processes is slow, so that good treated water quality cannot be obtained. There is.
[0004]
On the other hand, in the field of wastewater and sludge treatment, polymers such as polyacrylamide have been widely used to promote floc formation and sedimentation separation. In the field of water supply, since there is a possibility that harmful impurities (such as acrylamide monomer) are contained in the polymer, the use has not been approved so far. However, it is possible to keep these impurity concentrations sufficiently low, and in Japan, use has been approved since 2000 under conditions that keep the impurity concentrations below the reference value.
[0005]
In the coagulation treatment using the inorganic coagulant and the polymer in combination, first, the inorganic coagulant is injected and mixed in the inorganic mixing tank, and then the polymer is injected and mixed in the polymer mixing tank immediately thereafter. Stirring in this polymer mixing tank is performed by rapid stirring so that the polymer further binds to the fine flocs formed by the combination of the inorganic flocculant and the suspended substance in the raw water. Further, in the subsequent stage, the floc is grown by slow stirring. Slow agitation is usually performed in a series of 1 to 4 tanks, and the agitation conditions are such that the intensity of agitation is reduced toward the subsequent stage and the flocs are grown without breaking.
[0006]
[Problems to be solved by the invention]
Here, in conventional wastewater treatment, etc., polymers are used mainly for the purpose of enlarging flocs, increasing floc sedimentation speed, and reducing sedimentation tanks, and the target or standard of treated water quality is moderate. there were. Therefore, when polymer injection is performed, the amount added is controlled, but a constant value has been adopted for other conditions such as stirring intensity.
[0007]
However, as in the case of water purification treatment, not only coagulation sedimentation but also filtration is performed, and severe water quality such as turbidity of 0.1 degrees or less has been required as filtered water. As a result of various experiments, the present inventors have found that the stirring strength in the polymer mixing tank has a great influence on whether or not the required water quality can be achieved.
[0008]
In particular, the polymer solution has high viscosity and poor dispersibility in water. Therefore, the higher the injection rate, the stronger the stirring, and the more dispersible, the flocs grow and the fine particles grow. May not be removed. Even when the coagulated sediment treated water is passed through filtration, the quality of the treated water may be deteriorated. Conversely, if the injection rate is low, stirring with the same stirring intensity as in the case of a high injection rate will destroy the floc that has started to grow, and the floc will not grow sufficiently, leading to precipitation treatment. The effect may be reduced.
[0009]
Also, the viscosity of the water / polymer solution changes depending on the water temperature, the state of dispersion during injection and mixing, and the treatment effect also changes. In particular, when the water temperature is low, the viscosity of the water / polymer is high, so that it is difficult to disperse.
[0010]
In addition, if the raw water quality is relatively good, floc formation / sedimentation is good just by injecting the inorganic flocculant, and if the quality of the precipitated treated water / filtered water is good and stable, the polymer injection is not necessarily Not needed. When the treatment is performed only with the inorganic flocculant without injecting the polymer, it is necessary to inject the inorganic flocculant, perform rapid stirring for a short time, and then perform slow stirring. Therefore, when the polymer is not injected, if the stirring intensity in the polymer mixing tank is the same as when the polymer is injected, the rapid stirring time becomes too long and the floc does not become sufficiently large. In that case, there is a choice that a bypass line is provided and the polymer mixing tank is not used, but the apparatus becomes complicated and a valve switching operation is also required. Further, during that time, not only a part of the polymer mixing tank is allowed to play, but also the maintenance and restart are complicated.
[0011]
This invention is made | formed in view of the said subject, and it aims at providing the water treatment apparatus which can perform favorable aggregation process.
[0012]
[Means for Solving the Problems]
The present invention has an inorganic flocculant mixing tank for mixing an inorganic flocculant, and an organic polymer flocculant mixing tank for mixing an organic polymer flocculant in the outflow water from the inorganic flocculant mixing tank, In a water treatment apparatus that performs an agglomeration treatment using an inorganic flocculant and an organic polymer flocculant, the stirring strength in the organic polymer flocculant mixing tank is set to a value larger than the stirring strength of the preceding inorganic flocculant mixing tank. In addition, the stirring strength in the organic polymer flocculant mixing tank is changed so as to increase as the injection rate of the organic polymer flocculant increases and to decrease as the water temperature increases .
[0013]
Thus, according to the present invention, the stirring strength in the organic polymer flocculant mixing tank is changed according to the injection rate of the organic polymer flocculant and the water temperature. Therefore, the stirring strength can be maintained at an appropriate level, effective agglomeration treatment can be performed, and good treated water can be obtained.
[0014]
The present invention also includes an inorganic flocculant mixing tank for mixing the inorganic flocculant, and an organic polymer flocculant mixing tank for mixing the organic polymer flocculant with the outflow water from the inorganic flocculant mixing tank. , together with the aggregation treatment using both inorganic coagulant and an organic polymer flocculant can row Ukoto, the amount of time the organic polymer flocculant to be added to the organic polymer flocculant mixing tank substantially 0 When adding an organic polymer flocculant to the organic polymer flocculant mixing tank in the water treatment apparatus capable of performing the same , the stirring strength in the organic polymer flocculant mixing tank is set to When the value is larger than the stirring strength and the addition amount of the organic polymer flocculant in the organic polymer flocculant mixing tank is substantially 0, the stirring strength of the organic polymer flocculant mixing tank is set to the inorganic strength. Use a value smaller than the mixing strength of the mixing tank And butterflies.
[0015]
Thus, in the present invention, when the addition amount of the organic polymer flocculant in the organic polymer flocculant mixing tank is substantially 0, the stirring strength of the organic polymer flocculant mixing tank is set to Set to a value smaller than the stirring intensity. Therefore, when the organic polymer flocculant is not added, the organic polymer flocculant mixing tank can be used as a part of the subsequent flock forming tank. Therefore, a bypass pipe or the like is not necessary, and a suitable aggregation process can be performed.
[0016]
Further, the organic polymer flocculant mixing tank has a flock formation tank that gently stirs the effluent of the organic polymer flocculant mixing tank to promote flock formation, and the addition amount of the organic polymer flocculant in the organic polymer flocculant mixing tank Is substantially 0, the stirring strength of the organic polymer flocculant mixing tank is preferably smaller than the stirring strength of the inorganic mixing tank and greater than the stirring strength of the floc-forming tank. It is. Thereby, suitable floc formation can be performed.
[0017]
In addition, it is preferable to change the stirring strength in the organic polymer flocculant mixing tank so as to increase as the organic polymer flocculant injection rate increases and to decrease as the water temperature increases .
[0018]
The organic polymer flocculant is an anionic or nonionic one using acrylamide monomer as a raw material, and preferably has a molecular weight of 1,000,000 to 3,000,000 daltons. With such an organic polymer flocculant, floc formation after the addition of the inorganic flocculant can be suitably performed. In addition, it is preferable to prepare a plurality of types of flocculants having different ionic properties and molecular weights in advance and use the most effective type according to the raw water quality.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
Drawing 1 is a figure showing the composition of the water treatment equipment of an embodiment. Raw water composed of surface water such as river water and lake water is introduced into the inorganic mixing tank 10. In the inorganic mixing tank 10, a stirrer 12 including a stirring blade 12a and a motor 12b for rotating the stirring blade 12a is disposed. In addition, an inorganic flocculant in the inorganic flocculant tank 14 is supplied to the inorganic mixing tank 10 by a pump 16. As the inorganic flocculant, for example, PAC (polyaluminum chloride: containing Al 2 O 3 10%) is used. In addition, although the rapid stirring intensity | strength of this inorganic mixing tank 10 is usually less than 300 (S <-1> ) and a residence time is less than 5 minutes, it is not limited to this.
[0021]
Next, the water mixed with the inorganic flocculant is introduced into the polymer mixing tank 18. The polymer mixing tank 18 is provided with a stirrer 20 including a stirring blade 20a and a motor 20b for rotating the stirring blade 20a. The polymer flocculant in the polymer flocculant tank 22 is supplied by a pump 24. The As the polymer flocculant, for example, a nonionic acrylamide polymer is used. Moreover, although an anionic acrylamide polymer may be suitable, it is not limited to these. In addition, it is preferable to prepare a plurality of types of flocculants having different ionic properties and molecular weights in advance and use the most effective type according to the raw water quality. The rapid stirring strength of the polymer mixing tank 18 is set to 300 (S −1 ) or more and a residence time of about 1 to 10 minutes.
[0022]
Water mixed with the inorganic flocculant and the polymer flocculant from the polymer mixing tank 18 is introduced into the floc forming tank 28. The floc forming tank 28 is composed of three tanks, each of which is provided with a horizontal axis paddle type slow agitator 26. The slow stirrer 26 can set the stirring strength for each tank, and the stirring strength is usually set so as to gradually decrease. Then, the flocs are coarsened by gently stirring in the floc forming tank 28. The stirring strength in the floc forming tank 28 is set so as to gradually decrease from the tank on the entrance side, for example, 100-60-40 (S −1 ).
[0023]
Then, water flocked with the inorganic flocculant and the polymer flocculant is introduced into the precipitation tank 30, where the solid matter is precipitated. Solid matter precipitated in the settling tank 30 is excluded from the system as sludge, and the supernatant water is supplied to the sand filter 32. The sand filter 32 has a filter medium layer inside, and the floating solids remaining by the filter medium layer are separated by filtration. As a result, water-treated filtered water that can be distributed as tap water is stably obtained. The filter medium layer is formed of, for example, three layers of anthracite, two-layer anthracite of silica sand, silica sand, and garnet.
[0024]
The filtered treated water is stored in the treated water tank 34 and distributed after being disinfected. Further, the treated water in the treated water tank 34 can be supplied to the bottom of the sand filter 32 by the backwash pump 36, whereby the sand filter 32 can be backwashed. In addition, air from the blower 38 can be supplied to the bottom of the sand filter 32, whereby air backwashing is also performed.
[0025]
And the thermometer 40 is provided in the inflow path | route to the inorganic mixing tank 10 of raw | natural water, and raw | natural water water temperature is measured. In addition, since this temperature does not change so much in each tank, you may provide in any tanks, such as the inorganic mixing tank 10, the polymer mixing tank 18, and the flock formation tank 28. FIG. In particular, the water temperature in the polymer mixing tank 18 is important, and it is preferable to provide a thermometer in the polymer mixing tank 18.
[0026]
The detection result of the thermometer 40 is supplied to the controller 42. The controller 42 is also supplied with a signal regarding the flow rate of the pump 24 for adding the polymer flocculant. And this controller 42 controls rotation of the motor 20b based on water temperature and the addition amount of a polymer flocculant, and controls the stirring intensity | strength of the stirrer 20. FIG.
[0027]
The injection rate of inorganic flocculant, the injection rate of polymer flocculant, the type of polymer flocculant, etc. are determined by the jar test for raw water, etc., and the optimum conditions are determined and changed according to the raw water turbidity etc. ing.
[0028]
In this embodiment, PAC is used as the inorganic flocculant. However, if the raw material is iron or aluminum such as sulfate band, ferric chloride, ferric sulfate, polyaluminum sulfate / iron, There is no particular limitation. It is also preferable to add sulfuric acid, hydrochloric acid, carbonic acid, sodium hydroxide, slaked lime, etc. as an agglomeration aid.
[0029]
Next, the setting of the stirring intensity of the stirrer 20 in the polymer mixing tank 18 will be described.
[0030]
In the present embodiment, when the polymer injection rate is 0.01 mg / L or more, the stirring strength in the polymer mixing tank 18 is changed according to the polymer injection rate and the water temperature. That is, an appropriate G value is calculated according to the temperature and the polymer injection rate, and the G value in the stirrer 20 or the rotation speed of the stirrer 20 is controlled. The stirring strength G2 in the polymer mixing tank 18 is larger than the stirring strength G1 of the preceding inorganic mixing tank 10, and when the G1 value is less than 300S- 1 , the G2 value is 300 (S- 1 ) or more in terms of G value. And
[0031]
On the other hand, when the polymer injection rate is 0 mg / L, the stirring strength G2 of the polymer mixing tank 18 is made smaller than the stirring strength G1 of the inorganic mixing tank 10 in the preceding stage and functions as one of the slow stirring tanks. Thereby, in the polymer mixing tank 18, the coarsening of the inorganic floc is promoted.
[0032]
First, the stirring intensity G2 value is increased as the polymer injection concentration is increased. Further, it is preferable to increase the concentration of the polymer stock solution to be used.
For example, when performing control in which G2 is proportional to the injection rate,
[Expression 1]
G2 (S −1 ) = Ga × d + Gb (1)
Here, d: polymer injection rate (mg / L), Ga and Gb are constants, and Ga and Gb are determined in advance by an experiment using an experimental machine or a jar test.
[0033]
Further, when the water temperature is low, the polymer is difficult to mix. Therefore, the stirring intensity is increased as the temperature is lowered.
[Expression 2]
G2 (S −1 ) = Ga × d + Gb + Gc (T0−T) (2)
Here, Gc is a predetermined constant, T0 is a standard temperature, and T is a water temperature at that time. According to this equation (2), the third term on the left side of the water temperature is zero when the water temperature is T0, but when the water temperature T is higher than T0, the predetermined value is negative, and when the water temperature T is lower, the predetermined value is positive. Therefore, the stirring intensity G2 can be determined by this equation (2) in consideration of not only the polymer injection amount but also the water temperature at that time. Here, the constant Gc is also determined by a jar test at various temperatures. Note that this equation (2) may be applied only when the water temperature T falls below T0.
[0034]
When switching the type of polymer flocculant to the most effective type according to the raw water quality, the constants Ga, Gb, Gc of the above formulas are determined in advance for each type, and the flocculant used at the time of switching is determined. It is preferable to calculate the stirring intensity from the conditions of the constant and the injection rate water temperature.
[0035]
Thus, according to the present embodiment, the stirring intensity in the polymer mixing tank 18 is changed to an appropriate value according to the polymer injection rate and the water temperature. As a result, the polymer agglomeration effect is effectively exhibited, and a good treated water quality is obtained.
[0036]
On the other hand, depending on conditions, sufficient treated water quality may be obtained only by agglomeration with an inorganic aggregating agent. In such a case, it is not necessary to add a polymer. However, when the addition of the polymer is stopped, if strong stirring is performed in the polymer mixing tank 18, the floc becomes fine and the quality of the treated water cannot be made sufficient. Therefore, it can be considered that a bypass pipe is provided and the polymer mixing tank 18 is bypassed and introduced into the flock forming tank 28. However, when such a bypass pipe is provided, a device for controlling the switching must be provided, and a problem occurs when the addition of the polymer is resumed.
[0037]
In the present embodiment, even when no polymer is used, not only does the flock formation not be inhibited by merely changing the stirring strength, but also the formation can be promoted. That is, for example, the stirring strength in the polymer mixing tank 18 is set to about 100 (S −1 ), which is equivalent to the stirring strength in the first tank of the flock formation tank 28. As a result, better treated water quality can be obtained than when the polymer mixing tank 18 is bypassed and not used. Further, since only the agitation intensity is changed, the effect of simplifying the apparatus and facilitating operation management can be obtained.
[0038]
Therefore, in this embodiment, when the polymer addition amount is 0.1 mg / L or more, the stirrer 20 is controlled based on the above formula (2), and the polymer addition amount is 0.1 mg / L or less. When it can be regarded as substantially 0 mg / L, the stirring strength is set to a value equivalent to the stirring strength of the floc forming tank 28 (particularly, the stirring strength of the first tank). As a result, it is possible to perform a treatment that always provides good treated water.
[0039]
【Example】
In order to confirm the effect of the present invention, a treatment experiment was conducted for 6 months by using the water of a certain lake as raw water in the following experimental apparatus.
[0040]
1. Experimental conditions (1) Coagulation sedimentation filtration apparatus of comparative example / Raw water flow rate: 1,000 m 3 / hour / Inorganic mixing tank: Residence time 3 minutes, stirring strength 200 (S −1 )
-Polymer mixing tank: Residence time 5 minutes, stirring strength 400 (S -1 )
・ Flock formation tank: Horizontal axis paddle 3-stage type, Residence time 30 minutes G value ・ Retention time 1st stage 100 (S −1 ) 10 minutes 2nd stage 60 (S −1 ) 10 minutes 3 stages 40 (S −1 ) · 10 minutes (In addition, a pipe capable of bypassing the polymer mixing tank and a valve associated therewith are provided between the inorganic mixing tank and the floc-forming tank).
・ Sedimentation tank: Precipitation tank with upward flow type inclined plate, residence time 40 minutes, ascending speed 3 m / hour ・ Sand filter: Anthracite 400 mm Effective diameter 1.0 mm Uniformity factor 1.4, Silica sand 400 mm Effective diameter 0. 5mm uniformity coefficient 1.3, filtration rate 200m / day, backwash once every 48 hours · Inorganic flocculant: PAC (polyaluminum chloride), injection rate 40-60mg / l · Polymer: nonionic polyacrylamide, solution concentration 1000mg / L
[0041]
(2) Coagulation / precipitation filtration apparatus of the present invention In the apparatus of the present invention, (i) the stirring intensity of the polymer mixing tank is automatically controlled, and (ii) there is no pipe bypassing the polymer mixing tank, which is simple it is Do apparatus, but differs from the device of the comparative example, in other respects, it is the same as the apparatus configuration and processing conditions of Comparative example.
[0042]
Details of the automatic control of the stirring intensity are as follows.
-The stirrer is a flash mixer system with variable rotation speed. The stirring intensity is controlled by the G value, and automatically changed to the number of rotations corresponding to the G value.
-Stir strength makes the G value linearly proportional to the polymer injection rate.
The G value determination conditional expression is
[Equation 3]
G (S −1 ) = 500 × d + 350 (3)
It is. Here, d is the polymer injection rate (mg / L), and this equation corresponds to the above-described equation (1), and constants Ga = 500 and Gb = 350. This condition was determined based on the results of jar tests conducted in advance.
[0043]
In addition, when the water temperature is less than 15 degrees after the sixth month, the G value is set to a value obtained by adding 5 (S −1 ) to the value of the expression (3) every time the water temperature decreases by 1 degree. This formula (4) was applied only when the water temperature was below 15 degrees.
That is,
[Expression 4]
G (S −1 ) = 500 × d + 350 + 5 × (15−T) (4)
And This equation (4) corresponds to the above equation (2), and constants Gc = 5 and T0 = 15. This condition was determined based on the results of jar tests conducted in advance.
[0044]
Further, when the polymer was not injected, the G value was set to 100 (S −1 ).
[0045]
In this experiment, either without added polymer, when added, it was added amount 0.1 mg / L or more.
[0046]
2. Experimental raw water, 1 month from start of experiment: The average turbidity was about 20 degrees, and about 2000 algae were generated. The water temperature was 20-25 degrees.
2 months to 3 months from the start of the experiment: Algae bred as large as 10,000 to 20,000 cells / mL with an average turbidity of 30 degrees. The water temperature was 25-30 degrees.
-From 3 months to 4 months from the start of the experiment: The turbidity was about 10 degrees, and the number of algae was greatly reduced to about 500 / mL. The water temperature was 25 to 20 degrees.
-5 months after the start of the experiment: The turbidity increased to 20 degrees again. The water temperature was 20-15 degrees. The number of algae was about 500 / mL.
-Six months after the start of the experiment: The turbidity was about 20 degrees and the water temperature was 15 to 10 degrees.
[0047]
3. Experimental results-1 month from the start of the experiment: A treatment with 0.1 mg / L of polymer injected was performed. The stirring intensity was set to the same value as the G value 400 (S −1 ) for both the comparative device and the device of the present invention. The treatment results were the same in both apparatuses, and the precipitation treatment water turbidity was 0.3 to 0.4 degree and the filtered water turbidity was 0.03 degree.
[0048]
・ 2nd to 3rd months: Algae with poor cohesion grows in raw water, and when the polymer injection rate is 0.1 mg / L, sufficient water quality cannot be obtained for both the turbidity of the precipitated treated water and the filtered water. In particular, the filtered water turbidity cannot stably achieve the treatment target of 0.1 degree.
[0049]
For this reason, the injection rate was raised to 0.3 mg / L. Accordingly, the apparatus of the present invention automatically raised the stirring intensity of the polymer mixing tank to a G value of 500 (S −1 ) according to the conditional expression (4). The stirring intensity of the comparison device remains at 400 (S −1 ). Precipitation water turbidity was slightly unstable at 0.4 to 0.7 degrees in the comparison device, whereas the apparatus of the present invention was stable at 0.3 to 0.4 degrees. . In addition, the turbidity of the filtered water was 0.04 degrees in the comparative apparatus, whereas it was 0.03 degrees in the apparatus of the present invention, and the same treatment effect as the first month was obtained. .
[0050]
・ 4th month: The generation of algae in the raw water has stopped, the turbidity of the raw water has decreased, and the water has become relatively easy to treat, so the polymer injection was stopped. The precipitation water turbidity was slightly higher than when the injection was performed, but the polymer injection was stopped from the judgment that sufficient treatment could be performed by filtration.
[0051]
In the apparatus of the present invention, the stirring G value of the polymer mixing tank was automatically lowered to 100 (S −1 ), thereby forming one tank for the flock formation tank. The comparative apparatus did not pass water through the polymer mixing tank, but directly passed water from the inorganic mixing tank to the floc-forming tank through a bypass pipe. The turbidity of the precipitation-treated water changed from 0.9 to 1.1 degrees in the comparison device, whereas it changed from 0.8 to 1.0 degrees in the device of the present invention. In the apparatus of the present invention, the agglomeration was carried out for a longer time, so that the precipitation treatment water turbidity was slightly better. The filtered water turbidity was 0.04 to 0.05 degree for the comparison device, and 0.04 degree for the device of the present invention, which was better than the comparison device.
[0052]
-5th month: Since the raw water turbidity increased again, it was decided to inject 0.1 mg / L of polymer. In the apparatus of the present invention, the precipitation-treated water turbidity gradually improved from 1.0 degree to 0.4 degree simply by increasing the stirring G value of the polymer mixing tank after the start of injection. On the other hand, in the comparison device, the coagulation sedimentation treatment by passing water through the polymer mixing tank that has not been used for about one month is temporarily affected by the water remaining in the mixing tank. It became unstable such as rising to 1.2 degrees, and it took about 4 hours to stabilize.
[0053]
6th month: Since the raw water temperature was below 15 ° C., the mechanism was such that the stirring intensity was automatically adjusted according to conditional expression (3) with water temperature correction. The polymer injection rate is 0.1 mg / L. During the period when the water temperature decreased from 20 degrees to 15 degrees, the G value of the present apparatus changed from 400 to 425 (S −1 ). On the other hand, the G value of the comparison device remains 400 (S −1 ). During this period, the turbidity of the precipitation-treated water changed stably at 0.5 to 0.6 degrees of the apparatus of the present invention, whereas it changed at 0.5 to 0.7 degrees of the comparison apparatus. Was good.
[0054]
Summing up these experimental results,
(I) The treated water quality of the apparatus of the present invention that automatically changes the stirring strength of the polymer mixing tank in accordance with the polymer injection rate was constantly better and more stable than the comparative apparatus.
(Ii) In the case of the treatment without injecting the polymer, this apparatus using the polymer mixing tank as one tank of the agglomeration tank has a better quality of the treated water, and the shift to the polymer injection process is easier.
(Iii) It can be said that the quality of the treated water of the device of the present invention that changes the stirring intensity depending on the water temperature was better than that of the comparative device.
[0055]
【The invention's effect】
As described above, according to the present invention, the stirring strength in the organic polymer flocculant mixing tank is changed according to the injection rate of the organic polymer flocculant and the water temperature. Therefore, the stirring strength can be maintained at an appropriate level, effective agglomeration treatment can be performed, and good treated water can be obtained.
[0056]
In the present invention, when the addition amount of the organic polymer flocculant in the organic polymer flocculant mixing tank is substantially 0, the stirring strength of the organic polymer flocculant mixing tank is set to the stirring strength of the inorganic mixing tank. Set to a smaller value. Therefore, when the organic polymer flocculant is not added, the organic polymer flocculant mixing tank can be used as a part of the subsequent flock forming tank. Therefore, a suitable aggregation process can be performed without using a bypass pipe or the like.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a water treatment apparatus according to an embodiment.
[Explanation of symbols]
10 Inorganic mixing tank, 18 Polymer mixing tank, 20 Stirrer, 28 Flock forming tank, 30 Precipitation tank, 32 Sand filter, 40 Thermometer, 42 Controller.

Claims (5)

無機凝集剤を混和する無機凝集剤混和槽と、この無機凝集剤混和槽からの流出水に、有機高分子凝集剤を混和する有機高分子凝集剤混和槽と、を有し、無機凝集剤と有機高分子凝集剤を使用して凝集処理を行う水処理装置において、
前記有機高分子凝集剤混和槽における撹拌強度を前段の無機凝集剤混和槽の撹拌強度よりも大きな値とするとともに、この有機高分子凝集剤混和槽での撹拌強度を有機高分子凝集剤注入率が大きいほど大きく、かつ水温が高いほど小さくなるように変化させる水処理装置。
An inorganic flocculant mixing tank for mixing the inorganic flocculant, and an organic polymer flocculant mixing tank for mixing the organic polymer flocculant with the outflow water from the inorganic flocculant mixing tank. In a water treatment device that uses an organic polymer flocculant for agglomeration treatment,
The stirring strength in the organic polymer flocculant mixing tank is set to a value larger than the stirring strength of the preceding inorganic flocculant mixing tank, and the stirring strength in the organic polymer flocculant mixing tank is set to the injection rate of the organic polymer flocculant. Water treatment device that changes so that the larger the water is, the smaller the water temperature is .
無機凝集剤を混和する無機凝集剤混和槽と、この無機凝集剤混和槽からの流出水に、有機高分子凝集剤を混和する有機高分子凝集剤混和槽とを有し、無機凝集剤と有機高分子凝集剤の両方を使用して凝集処理を行うことができるとともに、有機高分子凝集剤混和槽に添加する有機高分子凝集時の添加量を実質的に0にすることができる水処理装置において、
前記有機高分子凝集剤混和槽に有機高分子凝集剤を添加するときは、この有機高分子凝集剤混和槽での撹拌強度を前段の無機凝集剤混和槽の撹拌強度よりも大きな値とするとともに、この有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、この有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値にする水処理装置。
An inorganic flocculant mixing tank for mixing the inorganic flocculant and an organic polymer flocculant mixing tank for mixing the organic polymer flocculant in the effluent water from the inorganic flocculant mixing tank. with aggregation process using both of the polymeric flocculant can row Ukoto, water treatment capable of substantially zero the amount of time the organic polymer flocculant to be added to the organic polymer flocculant mixing tank In the device
When an organic polymer flocculant is added to the organic polymer flocculant mixing tank , the stirring strength in the organic polymer flocculant mixing tank is set to a value larger than the stirring strength of the preceding inorganic flocculant mixing tank. When the addition amount of the organic polymer flocculant in the organic polymer flocculant mixing tank is substantially 0, the stirring strength of the organic polymer flocculant mixing tank is set to a value smaller than the stirring strength of the inorganic mixing tank. Water treatment equipment.
請求項2に記載の装置において、
さらに、前記有機高分子凝集剤混和槽の流出水を緩速撹拌してフロック形成を助長するフロック形成槽を有し、前記有機高分子凝集剤混和槽における有機高分子凝集剤の添加量が実質的に0であるときには、前記有機高分子凝集剤混和槽の撹拌強度を前記無機混和槽の撹拌強度より小さい値であって、前記フロック形成槽における撹拌強度以上の値とする水処理装置。
The apparatus of claim 2.
Further, the organic polymer flocculant mixing tank has a floc forming tank that gently stirs the effluent water to promote flock formation, and the amount of organic polymer flocculant added to the organic polymer flocculant mixing tank is substantially In particular, when the organic polymer flocculant mixing tank is 0, the stirring intensity of the organic polymer flocculant mixing tank is smaller than the stirring intensity of the inorganic mixing tank and is equal to or higher than the stirring intensity of the floc-forming tank.
請求項2または3に記載の装置において、
前記有機高分子凝集剤混和槽での撹拌強度を、有機高分子凝集剤注入率が大きいほど大きく、かつ水温が高いほど小さくなるように変化させる水処理装置。
The apparatus according to claim 2 or 3,
The water treatment apparatus which changes the stirring intensity | strength in the said organic polymer flocculant mixing tank so that it may become so large that the organic polymer flocculant injection rate is large and water temperature is high .
請求項1〜4のいずれか1つに記載の装置において、
有機高分子凝集剤はアクリルアミドモノマーを原料とするアニオン性またはノニオン性のものである水処理装置。
In the device according to any one of claims 1 to 4,
Organic polymer flocculating agent is one of the anionic or nonionic which the acrylamide monomer as a raw material water treatment device.
JP2001102305A 2001-03-30 2001-03-30 Water treatment equipment Expired - Fee Related JP4523731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102305A JP4523731B2 (en) 2001-03-30 2001-03-30 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102305A JP4523731B2 (en) 2001-03-30 2001-03-30 Water treatment equipment

Publications (3)

Publication Number Publication Date
JP2002292207A JP2002292207A (en) 2002-10-08
JP2002292207A5 JP2002292207A5 (en) 2007-12-20
JP4523731B2 true JP4523731B2 (en) 2010-08-11

Family

ID=18955521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102305A Expired - Fee Related JP4523731B2 (en) 2001-03-30 2001-03-30 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP4523731B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111880B2 (en) * 2003-06-30 2008-07-02 オルガノ株式会社 Aggregation precipitation apparatus and control method thereof
JP2006043626A (en) * 2004-08-06 2006-02-16 Hara Giken Kogyo:Kk Water treatment apparatus
JP5512068B2 (en) * 2006-03-24 2014-06-04 三菱レイヨン株式会社 Water treatment method
JP5318389B2 (en) 2007-09-28 2013-10-16 株式会社日立製作所 Coagulation equipment
US8356894B2 (en) 2007-10-16 2013-01-22 Seiko Epson Corporation Recording apparatus and liquid ejecting apparatus
JP2010194520A (en) * 2009-02-27 2010-09-09 Tosoh Corp Salt water refining method
JP5711692B2 (en) * 2012-05-11 2015-05-07 株式会社ヤマト Water treatment method by stirring control
JP5431559B2 (en) * 2012-10-23 2014-03-05 株式会社日立製作所 Polluted water purification system and ship
JP6770949B2 (en) * 2015-03-31 2020-10-21 株式会社クボタ Control method of rapid stirrer and rapid stirrer
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
JP6511425B2 (en) * 2016-11-02 2019-05-15 共立機巧株式会社 Controller for operation of reciprocating pump
JP6965025B2 (en) * 2017-05-22 2021-11-10 オルガノ株式会社 Membrane filtration device and membrane filtration method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317215A (en) * 1999-05-12 2000-11-21 Japan Organo Co Ltd Flocculating and settling device and water treatment using the same
JP2002052302A (en) * 2000-08-09 2002-02-19 Japan Organo Co Ltd Liquid processing device
JP2002066209A (en) * 2000-09-04 2002-03-05 Japan Organo Co Ltd Method for controlling injection of flocculant in water treatment
JP2002066207A (en) * 2000-09-04 2002-03-05 Japan Organo Co Ltd Device for injecting chemical liquid
JP2002066568A (en) * 2000-08-28 2002-03-05 Japan Organo Co Ltd Water treating method and apparatus
JP2002253904A (en) * 2001-02-28 2002-09-10 Japan Organo Co Ltd Method for deciding flocculating condition and jar tester
JP2002263660A (en) * 2001-03-08 2002-09-17 Japan Organo Co Ltd Facility for purifying water

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161605A (en) * 1984-08-31 1986-03-29 Ebara Infilco Co Ltd Operation of flocculator
JPS6344992A (en) * 1986-08-13 1988-02-25 Ichikawa Keori Kk Treatment of waste water
JPH01266813A (en) * 1988-04-15 1989-10-24 Hitachi Ltd Device for controlling injector of flocculant
JPH02290205A (en) * 1989-02-23 1990-11-30 Kurita Water Ind Ltd Coagulating apparatus
JPH08294603A (en) * 1995-04-26 1996-11-12 Kurita Water Ind Ltd Coagulation treating apparatus
JP3374637B2 (en) * 1996-02-23 2003-02-10 栗田工業株式会社 Emulsion wastewater treatment equipment containing orinoco oil
JPH1071304A (en) * 1996-07-01 1998-03-17 Nisshinbo Ind Inc Flocculating state monitoring apparatus
JP3787970B2 (en) * 1997-08-08 2006-06-21 栗田工業株式会社 Sludge dewatering method
JP3409322B2 (en) * 1997-10-06 2003-05-26 栗田工業株式会社 Pure water production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317215A (en) * 1999-05-12 2000-11-21 Japan Organo Co Ltd Flocculating and settling device and water treatment using the same
JP2002052302A (en) * 2000-08-09 2002-02-19 Japan Organo Co Ltd Liquid processing device
JP2002066568A (en) * 2000-08-28 2002-03-05 Japan Organo Co Ltd Water treating method and apparatus
JP2002066209A (en) * 2000-09-04 2002-03-05 Japan Organo Co Ltd Method for controlling injection of flocculant in water treatment
JP2002066207A (en) * 2000-09-04 2002-03-05 Japan Organo Co Ltd Device for injecting chemical liquid
JP2002253904A (en) * 2001-02-28 2002-09-10 Japan Organo Co Ltd Method for deciding flocculating condition and jar tester
JP2002263660A (en) * 2001-03-08 2002-09-17 Japan Organo Co Ltd Facility for purifying water

Also Published As

Publication number Publication date
JP2002292207A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
JP5037002B2 (en) Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water
JP4523731B2 (en) Water treatment equipment
JP5900576B1 (en) Water treatment method and water treatment apparatus
JP2008534258A (en) Method and system for using activated sludge in a stabilized flocculation process to remove BOD and suspended solids
JP2009066508A (en) Coagulation method for organic matter-containing water
JP5173538B2 (en) Water treatment method
JP4945461B2 (en) Flocculant injection method during water purification treatment
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP5753702B2 (en) Formation method of initial mother floc in high speed coagulation sedimentation basin
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
JP3559822B2 (en) Water treatment method and apparatus
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP4185348B2 (en) Water quality management method
JP2019198806A (en) Water treatment method, and water treatment device
JP5218082B2 (en) Method and apparatus for coagulating sedimentation of low organic matter concentration wastewater
JP4114869B2 (en) Flocculant preparation method and water treatment method using the same
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP7142540B2 (en) Water purification method and water purification device
JP3854471B2 (en) Water purification equipment
JP2002066568A (en) Water treating method and apparatus
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP2002066209A (en) Method for controlling injection of flocculant in water treatment
JP4522534B2 (en) Water purification method
JP2005007250A (en) Sludge treatment apparatus and sludge treatment method
US20230406741A1 (en) System and method for auto-flocculation of wastewater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees