JP2002066209A - Method for controlling injection of flocculant in water treatment - Google Patents

Method for controlling injection of flocculant in water treatment

Info

Publication number
JP2002066209A
JP2002066209A JP2000266718A JP2000266718A JP2002066209A JP 2002066209 A JP2002066209 A JP 2002066209A JP 2000266718 A JP2000266718 A JP 2000266718A JP 2000266718 A JP2000266718 A JP 2000266718A JP 2002066209 A JP2002066209 A JP 2002066209A
Authority
JP
Japan
Prior art keywords
raw water
turbidity
injection rate
flocculant
calculation formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266718A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000266718A priority Critical patent/JP2002066209A/en
Publication of JP2002066209A publication Critical patent/JP2002066209A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the variation in the quality of treated water, while the quality is kept surely within a target level, by optimizing the injection ratio of a polymer flocculant on the premise of the existence of an upper limit in the injection ratio of the polymer flocculant and in consideration of a large variation in the turbidity of raw water. SOLUTION: In water treatment in which suspended substances in the raw water are flocculated by injecting an inorganic flocculant and the polymer flocculant, a formula for calculating the injection ratio of the polymer flocculant to the turbidity of the raw water, is set based on the following two calculation formula, i.e., a calculation formula A in which the injection ratio of the polymer flocculant is made proportional to the injection ratio of the inorganic flocculant and in which a predetermined upper limit injection ratio reaches the ceiling and a calculation formula B in which the injection ratio of the polymer flocculant is made proportional to the injection ratio of the inorganic flocculant so that the injection ratio of the polymer flocculant is the above upper limit injection ratio when the injection ratio of the inorganic flocculant is the maximum injection ratio, and correspondingly to the size of the variation in the turbidity of the raw water and the present turbidity of the raw water, one of the two calculation formulas is selected, and the injection ratio of the polymer flocculant is controlled on the basis of the selected calculation formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水、湖沼水等
の表流水を原水とする浄水処理あるいは工業用水や排水
の固液分離処理等の水処理において好適な凝集剤の注入
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the injection of a flocculant suitable for water treatment such as surface water such as river water or lake water as raw water or solid-liquid separation of industrial water or waste water. .

【0002】[0002]

【従来の技術】浄水処理や排水処理においては、原水中
の懸濁物質を除去し、所定の濁度以下の処理水にまで処
理する必要があり、水処理方法としては凝集沈澱処理を
行うことが多い。凝集沈澱処理を行う場合には、通常、
無機凝集剤と高分子凝集剤(とくに有機高分子凝集剤)
を用いて凝集沈澱処理を行う。
2. Description of the Related Art In water purification treatment and wastewater treatment, it is necessary to remove suspended substances in raw water and treat the treated water to a treatment water having a predetermined turbidity or less. There are many. When performing coagulation sedimentation treatment, usually,
Inorganic flocculants and polymer flocculants (especially organic polymer flocculants)
Is used to carry out the coagulation precipitation treatment.

【0003】通常は、初めに無機凝集剤を原水に添加
し、攪拌機等により混和を十分に行って微小フロックを
形成させた後、有機高分子凝集剤を添加し、粗大フロッ
クの形成を行うようにしている。粗大化したフロック
は、沈澱池にて沈降分離され、残留する微小なフロック
は、濾過池や濾過器にて濾過分離され、最終的に所定濁
度以下の処理水を得るようにしている。
Usually, an inorganic flocculant is first added to raw water, mixed sufficiently with a stirrer or the like to form fine flocs, and then an organic polymer flocculant is added to form coarse flocs. I have to. The coarse floc is settled and separated in a sedimentation basin, and the remaining fine floc is separated by filtration in a filter pond or a filter to finally obtain treated water having a predetermined turbidity or less.

【0004】また、凝集剤の注入率は、次のように決め
られている。無機凝集剤の注入率は、原水濁度に比例し
た値にて注入したり、容器やビーカ等を用いたジャーテ
スト等の結果から、人為的に制御するようにしている。
一方、有機高分子凝集剤については、一定の注入率とし
たり、原水濁度に比例あるいはジャーテスト等の結果か
ら人為的に制御するようにしている。
[0004] The injection rate of the flocculant is determined as follows. The injection rate of the inorganic coagulant is artificially controlled based on the result of injection at a value proportional to the turbidity of the raw water or a jar test using a container or a beaker.
On the other hand, the organic polymer flocculant is set at a constant injection rate or is artificially controlled in proportion to the raw water turbidity or based on the results of a jar test or the like.

【0005】[0005]

【発明が解決しようとする課題】高分子凝集剤として、
たとえばアクリルアミド系の有機高分子凝集剤を浄水処
理に用いる場合、変異原性物質であるアクリルアミドモ
ノマーの存在が問題となる。そのため、アクリルアミド
系の有機高分子凝集剤の注入率が制限されている。たと
えば日本では、水道法により1mg/Lが最大注入率と
規定されている。したがって、ジャーテスト等により得
られた最適な有機高分子凝集剤注入率が、1mg/L以
上であったとしても、ある注入率以上(つまり、上限注
入率以上)注入することはできない。通常は、原水濁度
の変化に比例して無機凝集剤の最適な注入率は増減し、
さらに有機高分子凝集剤の最適な注入率も増減する。そ
れに応じて無機凝集剤については、原水濁度の変動に応
じて注入率を変化させればよいが、有機高分子凝集剤に
ついては、原水水質によっては最適注入率よりも少なく
して処理を行わなければならない事態が生じることにな
る。
SUMMARY OF THE INVENTION As a polymer flocculant,
For example, when an acrylamide-based organic polymer flocculant is used for water purification treatment, the presence of an acrylamide monomer that is a mutagenic substance poses a problem. Therefore, the injection rate of the acrylamide-based organic polymer flocculant is limited. For example, in Japan, 1 mg / L is specified as the maximum injection rate by the Water Supply Law. Therefore, even if the optimal organic polymer flocculant injection rate obtained by a jar test or the like is 1 mg / L or more, injection cannot be performed at a certain injection rate or more (that is, at an upper limit injection rate or more). Usually, the optimal injection rate of the inorganic coagulant increases or decreases in proportion to the change in raw water turbidity,
Further, the optimal injection rate of the organic polymer flocculant also increases or decreases. Accordingly, for the inorganic flocculant, the injection rate may be changed according to the fluctuation of the raw water turbidity, but for the organic polymer flocculant, depending on the raw water quality, the treatment is performed with the injection rate lower than the optimum injection rate. That would have to happen.

【0006】そのため、原水濁度や無機凝集剤注入率に
比例させて、有機高分子凝集剤注入率を制御しようとす
る場合、無機凝集剤の注入率が比較的低い段階で、有機
高分子凝集剤の注入率が頭打ちとなることが考えられ
る。つまり、無機凝集剤のある注入率以上の範囲におい
ては、有機高分子凝集剤を無機凝集剤に対し比例させて
注入することができない領域が生じる。上述の如く、日
本の水道法では有機高分子凝集剤、とくにアクリルアミ
ド系の有機高分子凝集剤の上限注入率が1mg/Lであ
るので、これ以上の領域では、有機高分子凝集剤の注入
率は事実上一定値(上限値)に制御せざるを得ない。
Therefore, when controlling the injection rate of the organic polymer flocculant in proportion to the turbidity of the raw water and the injection rate of the inorganic flocculant, when the injection rate of the inorganic flocculant is relatively low, It is considered that the injection rate of the agent peaks out. That is, when the injection rate of the inorganic coagulant is not less than a certain injection rate, there is a region where the organic polymer coagulant cannot be injected in proportion to the inorganic coagulant. As described above, the upper limit injection rate of an organic polymer flocculant, particularly an acrylamide-based organic polymer flocculant, is 1 mg / L in the Japanese water supply law. Has to be controlled to a practically constant value (upper limit).

【0007】ところが、このように高分子凝集剤の注入
率に頭打ちの上限値を設け、その特性にしたがって現実
に高分子凝集剤の注入率を制御すると、次のような問題
が生じる。仮に無機凝集剤の注入率が最大注入率(な
お、この最大注入率は、予め定めた原水濁度の最大値に
基づいて決められる。)の66%のところで、有機高分
子凝集剤が上限注入率となった場合、無機凝集剤の残り
の34%の注入率調整範囲に対しては、有機高分子凝集
剤の調整範囲がないため、無機凝集剤の注入率の変化に
対応させて変化させることのできない、不安定な条件と
なってしまう。つまり、この範囲では、原水の濁度が上
昇しても、その上昇に応じ高分子凝集剤注入率を増加さ
せて処理水濁度の上昇を抑えるという操作ができないこ
とになる。そのため、処理水濁度の絶対値としては、あ
る目標レベル以内に入っていたとしても、原水濁度の上
昇に伴って、それまで低く抑えられていた処理水の濁度
が急に上昇し始める領域が生じ、この領域では、あたか
も、所定の処理、つまり、最終処理水の濁度を所定値以
内に納めるための処理が不十分であったかのような印象
を与えてしまう。一般に、このような印象の付与は、水
処理部署にはきらわれる。また、それまで安定していた
処理水水質が、比較的急激に悪化し始めるので、そのよ
うな急激な変動は、処理水を利用する各種工程にとって
も好ましいものではない。
However, if the upper limit of the injection rate of the polymer flocculant is set at the upper limit and the injection rate of the polymer flocculant is actually controlled in accordance with the characteristic, the following problem occurs. If the injection rate of the inorganic coagulant is 66% of the maximum injection rate (this maximum injection rate is determined based on a predetermined maximum value of the raw water turbidity), the upper limit of the organic polymer coagulant is injected. In the case of the ratio, there is no adjustment range of the organic polymer coagulant with respect to the remaining 34% injection ratio adjustment range of the inorganic coagulant, so that it is changed corresponding to the change of the injection ratio of the inorganic coagulant. Unstable conditions cannot be achieved. In other words, in this range, even if the turbidity of the raw water increases, the operation of increasing the polymer coagulant injection rate in response to the increase and suppressing the increase in the turbidity of the treated water cannot be performed. Therefore, even if the absolute value of the treated water turbidity is within a certain target level, the turbidity of the treated water, which has been kept low until then, starts to increase suddenly with the rise of the raw water turbidity. An area is generated, giving an impression as if the predetermined processing, that is, the processing for reducing the turbidity of the final treated water within a predetermined value, was insufficient. In general, such an impression is given to a water treatment department. In addition, since the quality of the treated water that has been stable until then starts to deteriorate relatively rapidly, such a rapid change is not preferable for various processes using the treated water.

【0008】そこで本発明の課題は、高分子凝集剤の注
入率に上限値が存在することを前提にし、かつ、原水の
濁度が大きく変動することもあることを考慮し、とくに
高分子凝集剤の注入率をより最適に制御することによ
り、処理水の水質を確実に目標レベル以内に維持しつ
つ、処理水水質の変動を抑えることにある。
[0008] Therefore, an object of the present invention is to presuppose that an upper limit exists for the injection rate of a polymer flocculant and to take into account that the turbidity of raw water may fluctuate greatly. By controlling the injection rate of the agent more optimally, it is possible to suppress the fluctuation of the quality of the treated water while keeping the quality of the treated water within the target level.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る水処理における凝集剤の注入制御方法
は、原水中の懸濁物質を無機凝集剤と高分子凝集剤を注
入して凝集させる水処理において、原水濁度に対する高
分子凝集剤の注入率を算出する式を、高分子凝集剤の注
入率を無機凝集剤の注入率に比例させるとともに予め定
めた上限注入率で頭打ちとする算出式Aと、無機凝集剤
の注入率が最大注入率のときに高分子凝集剤の注入率が
前記上限注入率となるように高分子凝集剤の注入率を無
機凝集剤の注入率に比例させる算出式Bの2つの算出式
として設定し、原水濁度の変動の大きさと現在の原水濁
度とに応じて、前記2つの算出式のいずれかを選択し、
選択した算出式に基づいて高分子凝集剤の注入率を制御
することを特徴とする方法からなる。
In order to solve the above-mentioned problems, a method for controlling the injection of a flocculant in water treatment according to the present invention is characterized in that a suspended substance in raw water is injected with an inorganic flocculant and a polymer flocculant. In the water treatment for coagulation, the formula for calculating the injection rate of the polymer flocculant with respect to the raw water turbidity, the injection rate of the polymer flocculant is proportional to the injection rate of the inorganic coagulant, and the upper limit is set at a predetermined upper limit injection rate. Formula A, and the injection rate of the inorganic flocculant is set such that the injection rate of the polymer flocculant becomes the upper limit injection rate when the injection rate of the inorganic flocculant is the maximum injection rate. It is set as two calculation formulas of the calculation formula B proportional to, and according to the magnitude of the fluctuation of the raw water turbidity and the current raw water turbidity, one of the two calculation formulas is selected,
The method comprises controlling the injection rate of the polymer flocculant based on the selected calculation formula.

【0010】この方法においては、実際に原水濁度の変
動の大きさを把握して上記のように制御することも可能
であり、あるいは、原水濁度の変動の大きさを予測して
その予測値に基づいて上記のように制御することも可能
である。後者の場合には、たとえば原水濁度の変化の速
度から原水濁度の変動の大きさを予測し、予測した変動
内の最大値が前記算出式Aにおける上限注入率の頭打ち
開始点に相当する原水濁度以下である場合には、前記算
出式Aを選択し、予測した変動内の最大値が前記算出式
Aにおける上限注入率の頭打ち開始点に相当する原水濁
度を越える場合には、該頭打ち開始点に相当する原水濁
度よりも低い原水濁度に上昇したときに、前記算出式A
から前記算出式Bに切り替えるようにすることができ
る。
In this method, it is also possible to actually grasp the magnitude of the fluctuation of the raw water turbidity and control it as described above, or to predict the magnitude of the fluctuation of the raw water turbidity and predict the fluctuation. It is also possible to control as described above based on the value. In the latter case, for example, the magnitude of the fluctuation of the raw water turbidity is predicted from the rate of change of the raw water turbidity, and the maximum value within the predicted fluctuation corresponds to the peak start point of the upper limit injection rate in the calculation formula A. If less than the raw water turbidity, select the calculation formula A, if the maximum value within the predicted fluctuation exceeds the raw water turbidity corresponding to the peak start point of the upper limit injection rate in the calculation formula A, When the raw water turbidity rises to a level lower than the raw water turbidity corresponding to the peaking start point, the calculation formula A
From the calculation formula B.

【0011】また、上記算出式A、Bの選択、切替をど
のような状態のときに行うかは、適宜自由に決定でき
る。たとえば、原水濁度が、原水の平均濁度に対し予め
定めた所定倍率以下の濁度の場合には前記算出式Aを選
択し、それを越えた場合には前記算出式Bを選択するよ
うにすることができる。予め定める所定倍率としては、
たとえば原水平均濁度の2〜10倍の範囲から決定でき
る。
In addition, in what state the selection and switching of the calculation formulas A and B are performed can be freely determined as appropriate. For example, if the raw water turbidity is equal to or less than a predetermined magnification relative to the average turbidity of the raw water, the calculation formula A is selected, and if the turbidity exceeds the turbidity, the calculation formula B is selected. Can be As the predetermined predetermined magnification,
For example, it can be determined from the range of 2 to 10 times the average turbidity of raw water.

【0012】高分子凝集剤の上限注入率としては、たと
えば0.2〜2.0mg/Lの範囲内に設定される。ア
クリルアミド系の有機高分子凝集剤を浄水処理に用いる
場合、日本では、上限注入率として1.0mg/Lを設
定すればよい。
The upper limit injection rate of the polymer flocculant is set, for example, in the range of 0.2 to 2.0 mg / L. When using an acrylamide-based organic polymer flocculant for water purification treatment, in Japan, the upper limit injection rate may be set to 1.0 mg / L.

【0013】無機凝集剤の注入率としては、従来方法同
様、原水濁度に比例させた注入率とすればよい。ただ
し、この比例注入率には、原水濁度の特性軸に対し、変
曲点をもたせてもよい。
The injection rate of the inorganic coagulant may be an injection rate proportional to the raw water turbidity as in the conventional method. However, the proportional injection rate may have an inflection point with respect to the characteristic axis of the raw water turbidity.

【0014】上記のような本発明に係る水処理における
凝集剤の注入制御方法においては、算出式Aと算出式B
とを設定し、原水濁度の変動の大きさと現在の原水濁度
とに応じて、そのときの原水状態によって最適な特性
(算出式)を選択することにより、従来の、原水濁度が
上昇しても高分子凝集剤注入率が頭打ちの上限注入率一
定に抑えられる領域での制御をやめることができる。し
たがってこの従来の制御領域で生じていた、比較的急激
な処理水濁度の変動は生じないことになり、変動の少な
い安定した処理水水質が得られることになる。
In the method for controlling coagulant injection in water treatment according to the present invention as described above, the calculation formula A and the calculation formula B are used.
By setting the optimum characteristics (calculation formula) according to the raw water condition at that time according to the magnitude of the fluctuation of the raw water turbidity and the current raw water turbidity, the conventional raw water turbidity increases Even in this case, control in a region where the injection rate of the polymer flocculant is suppressed to a constant upper limit injection rate of the plateau can be stopped. Therefore, relatively rapid fluctuation of the treated water turbidity, which has occurred in the conventional control region, does not occur, and stable treated water quality with little fluctuation can be obtained.

【0015】また、算出式Aによる制御特性から算出式
Bによる制御特性に移行することにより、算出式Aに基
づいて制御していた場合に比べ、処理水の水質は若干悪
化するかも知れないが、最終的に目標とするレベル以内
の水質が得られれば、別段問題は生じない。この水質の
若干の悪化による不利益よりも、上述の変動のない安定
した処理水水質が得られる利点の方がはるかに大きく、
安定した処理水水質により、処理水を利用する各工程へ
の悪影響も除去されることになる。
By shifting from the control characteristic based on the calculation formula A to the control characteristic based on the calculation formula B, the quality of the treated water may be slightly deteriorated as compared with the case where the control is performed based on the calculation formula A. If water quality within the target level is finally obtained, no particular problem will occur. The advantage of obtaining a stable treated water quality without fluctuation described above is much greater than the disadvantage due to this slight deterioration of water quality,
The stable quality of the treated water also eliminates the adverse effects on each process utilizing the treated water.

【0016】[0016]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態について、図面を参照して説明する。図1は、本発
明の一実施態様に係る水処理における凝集剤の注入制御
方法を適用するための水処理装置を示している。図1に
おいて、原水1は、まず濁度計2で濁度が測定され、無
機凝集剤混和槽3に送られ、混和槽3内に、無機凝集剤
4がポンプ5を介して注入される。混和槽3内では、原
水1と注入された無機凝集剤4が、モータ6によって駆
動される攪拌機7によって攪拌され、原水1中の懸濁物
質が無機凝集剤4との結合により微小フロックの形態に
凝集される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a water treatment apparatus for applying a coagulant injection control method in water treatment according to one embodiment of the present invention. In FIG. 1, the turbidity of a raw water 1 is measured by a turbidity meter 2 and sent to an inorganic coagulant mixing tank 3, and an inorganic coagulant 4 is injected into the mixing tank 3 via a pump 5. In the mixing tank 3, the raw water 1 and the injected inorganic flocculant 4 are stirred by a stirrer 7 driven by a motor 6, and the suspended substance in the raw water 1 is combined with the inorganic flocculant 4 to form fine flocs. Agglomerated.

【0017】微小フロックが形成された混和槽2内の原
水は、高分子凝集剤混和槽8に送られ、混和槽8内に、
高分子凝集剤9がポンプ10を介して注入される。混和
槽8内では、高分子凝集剤9が注入された状態で、モー
タ11によって駆動される攪拌機12によって攪拌さ
れ、原水中の、無機凝集剤と懸濁物質との結合により形
成されていた微小フロックが、高分子凝集剤9によって
粗大フロックへと成長される。
The raw water in the mixing tank 2 in which the fine flocs are formed is sent to the polymer flocculant mixing tank 8, where the raw water is mixed.
A polymer flocculant 9 is injected via a pump 10. In the mixing tank 8, the polymer flocculant 9 is injected and stirred by the stirrer 12 driven by the motor 11, and the fine particles formed in the raw water by the bond between the inorganic flocculant and the suspended substance are formed. The flocs are grown into coarse flocs by the polymer flocculant 9.

【0018】濁度計2によって測定された原水濁度の信
号は、シーケンサ13に送られ、シーケンサ13では、
たとえば図2に示すような特性の算出式に基づいて、無
機凝集剤4の注入率と高分子凝集剤9の注入率が算出さ
れる。算出された各注入率に基づいて、ポンプ5、ポン
プ10が制御され、無機凝集剤と高分子凝集剤の実際の
注入率が制御される。図2に示す特性については後述す
る。
The raw water turbidity signal measured by the turbidity meter 2 is sent to a sequencer 13 where
For example, the injection rate of the inorganic coagulant 4 and the injection rate of the polymer coagulant 9 are calculated based on the calculation formula of the characteristics as shown in FIG. The pumps 5 and 10 are controlled based on the calculated injection rates, and the actual injection rates of the inorganic coagulant and the polymer coagulant are controlled. The characteristics shown in FIG. 2 will be described later.

【0019】さらに本実施態様では、高分子凝集剤混和
槽8からの被処理水は、順次被処理水が移送される3槽
のフロック形成池14に送られ、各槽に設けられた横軸
パドル方式の攪拌機15による攪拌によって、前述した
一連のフロック形成がさらに進められる。
Further, in this embodiment, the water to be treated from the polymer flocculant mixing tank 8 is sent to the three floc forming ponds 14 to which the water to be treated is sequentially transferred, and the horizontal axis provided in each tank. By the stirring by the paddle-type stirrer 15, the series of flocs described above is further advanced.

【0020】フロック形成池14からの被処理水は、沈
澱池16に送られ、前記粗大化されたフロックが沈降分
離される。本実施態様では、沈澱池16内部の隔壁17
の前後で下降流から上向流に反転され、沈降分離が促進
されるようになっている。上向流あるいは下降流が生じ
ている部位に、傾斜板等を設けてさらに分離を促進する
こともできる。
The water to be treated from the floc forming pond 14 is sent to a sedimentation pond 16, where the coarsened floc is settled and separated. In this embodiment, the partition wall 17 inside the settling basin 16 is used.
Before and after, a downward flow is reversed to an upward flow, and sedimentation separation is promoted. An inclined plate or the like may be provided at a portion where an upward flow or a downward flow is generated to further promote separation.

【0021】沈澱池16からの沈澱処理水は、濾過装置
18に送られ、その濾層19を通過させることによって
濾過処理される。濾層19は、濾材によって形成でき、
たとえば、アンスラサイトおよび/またはケイ砂等を使
用して、単床あるいは複床の形態に形成できる。
Precipitated water from the sedimentation basin 16 is sent to a filtration device 18 and filtered by passing through a filtration layer 19. The filter layer 19 can be formed by a filter medium,
For example, it can be formed into a single bed or a double bed using anthracite and / or silica sand.

【0022】濾過装置18からの処理水は浄水20とし
て取り出される。本実施態様では、取り出された浄水2
0は一旦浄水タンク21に貯留され、該タンク21内の
浄水が最終処理水22として次工程等に送られるように
なっている。浄水タンク21の底部からは、浄水タンク
21内の浄水の一部を濾過装置18の逆洗水として、ポ
ンプ23により濾過装置18に供給できるようになって
いる。
The treated water from the filtration device 18 is taken out as purified water 20. In this embodiment, the extracted purified water 2
0 is temporarily stored in the purified water tank 21, and the purified water in the tank 21 is sent to the next step or the like as the final treated water 22. From the bottom of the water purification tank 21, part of the purified water in the water purification tank 21 can be supplied to the filtration device 18 by the pump 23 as backwash water for the filtration device 18.

【0023】このように構成された水処理装置におい
て、無機凝集剤4および高分子凝集剤9の各注入率は、
図2に示すような特性に基づいて制御される。図2に示
す例では、原水濁度が最大300度まで変動する場合を
想定している。無機凝集剤4(たとえば、ポリ塩化アル
ミニウム(PAC))の注入率(mg/L)は、原水濁
度に実質的に比例する注入率とされている。図2に示し
た例では、 原水濁度0〜70度の場合: 無機凝集剤注入率=原水濁度×1.0〔mg/L〕 原水濁度70〜300度の場合: 無機凝集剤注入率=原水濁度×0.7+21〔mg/
L〕 (最大注入率=231mg/L) となっている。
In the water treatment apparatus thus configured, the respective injection rates of the inorganic coagulant 4 and the polymer coagulant 9 are as follows:
It is controlled based on the characteristics as shown in FIG. In the example shown in FIG. 2, it is assumed that the raw water turbidity fluctuates up to 300 degrees. The injection rate (mg / L) of the inorganic flocculant 4 (for example, polyaluminum chloride (PAC)) is set to an injection rate substantially proportional to raw water turbidity. In the example shown in FIG. 2, when the raw water turbidity is 0 to 70 degrees: Inorganic coagulant injection rate = raw water turbidity × 1.0 [mg / L] When the raw water turbidity is 70 to 300 degrees: inorganic coagulant injection Rate = raw water turbidity × 0.7 + 21 [mg /
L] (maximum injection rate = 231 mg / L).

【0024】高分子凝集剤9(たとえば、アニオン系高
分子凝集剤)の注入率(mg/L)は、原水濁度に対
し、次のような算出式A、算出式Bによって算出され
る。算出式Aは、高分子凝集剤の注入率を無機凝集剤の
注入率に比例させるとともに、その比例部分が予め定め
た上限注入率に達したとき以上は、その上限注入率で頭
打ちとする算出式に設定される。つまり、 A=(無機凝集剤注入率×0.006)〔mg/L〕、
原水濁度213度以上で上限注入率(1mg/L)の頭
打ち
The injection rate (mg / L) of the polymer flocculant 9 (for example, anionic polymer flocculant) is calculated by the following calculation formulas A and B with respect to the raw water turbidity. The calculation formula A calculates the injection rate of the polymer coagulant in proportion to the injection rate of the inorganic coagulant, and when the proportional portion reaches a predetermined upper limit injection rate, the upper limit injection rate is reached. Set to expression. That is, A = (inorganic coagulant injection rate × 0.006) [mg / L],
Raw water turbidity of 213 degrees or higher reaches the upper limit of injection rate (1 mg / L)

【0025】また、算出式Bは、無機凝集剤の注入率が
最大注入率(上記231mg/L)のとき高分子凝集剤
の注入率が上記上限注入率(1mg/L)となるように
高分子凝集剤の注入率を無機凝集剤の注入率に比例させ
る算出式に設定される。つまり、 B=(無機凝集剤注入率÷231)〔mg/L〕、原水
濁度300度で1mg/L
The calculation formula B is set so that the injection rate of the polymer flocculant becomes the upper limit injection rate (1 mg / L) when the injection rate of the inorganic flocculant is the maximum injection rate (231 mg / L). The injection rate of the molecular coagulant is set in a calculation formula that is proportional to the injection rate of the inorganic coagulant. That is, B = (inorganic coagulant injection rate ÷ 231) [mg / L], 1 mg / L at 300 ° C.

【0026】上記のように設定された算出式A、算出式
Bのいずれの算出式にしたがって制御を行うかは、原水
濁度の変動の大きさと現在の原水濁度とに応じて選択さ
れ、選択された算出式に基づいて高分子凝集剤の注入率
が制御される。
The control to be performed in accordance with the calculation formula A or the calculation formula B set as described above is selected according to the magnitude of the fluctuation of the raw water turbidity and the current raw water turbidity. The injection rate of the polymer flocculant is controlled based on the selected calculation formula.

【0027】たとえば、原水濁度の変動幅が、確実に2
13度以内に納まると想定される場合には、算出式Aの
みを選択してもよい。この場合、原水濁度213度以上
の、高分子凝集剤の注入率が頭打ちになる領域では制御
されないから、前述したような処理水の濁度の急激な変
動は生じない。
For example, when the fluctuation range of the raw water turbidity is 2
If it is assumed that the angle falls within 13 degrees, only the calculation formula A may be selected. In this case, since the injection rate of the polymer flocculant is not controlled in the region where the turbidity of the raw water is 213 degrees or more, the turbidity of the treated water does not suddenly change as described above.

【0028】図2に示したように、原水濁度が最大30
0度まで変動すると想定される場合には、たとえば、原
水濁度が低い場合には、算出式Aに基づいて制御し、原
水濁度がある所定値以上になった場合、算出式Bに基づ
く制御に切り替える。この切替タイミング時の原水濁度
は、たとえば、原水の平均濁度に対し所定倍率(たとえ
ば2〜10倍の範囲から決定される倍率)の濁度に設定
される。この切替時においては、原水濁度が未だ比較的
低いので、図2に示すように算出式Aと算出式Bとの差
は僅かであり、短時間で切り替えても処理水の濁度の変
化は小さく抑えられる。このときの処理水の濁度の変化
をより小さく抑えるためには、たとえば、原水濁度の変
化に対して注入率を一定時間保持し漸進的に切り替える
ようにすることにより、処理水水質への影響をより小さ
く抑えることができる。
As shown in FIG. 2, the raw water turbidity is up to 30.
When it is assumed that the turbidity fluctuates to 0 degrees, for example, when the raw water turbidity is low, control is performed based on the calculation formula A, and when the raw water turbidity exceeds a predetermined value, the control is performed based on the calculation formula B. Switch to control. The raw water turbidity at the switching timing is set to, for example, a turbidity of a predetermined magnification (for example, a magnification determined from a range of 2 to 10 times) with respect to the average turbidity of the raw water. At the time of this switching, the turbidity of the raw water is still relatively low, so the difference between the calculation formulas A and B is small as shown in FIG. Can be kept small. In order to suppress the change in the turbidity of the treated water at this time, for example, the injection rate is kept for a certain period of time with respect to the change in the turbidity of the raw water, and is gradually changed, thereby reducing the quality of the treated water. The influence can be suppressed to a smaller extent.

【0029】制御が算出式Bに移行された状態では、算
出式Aに比べ高分子凝集剤注入率が低く抑えられるた
め、処理水の水質(濁度)は、絶対値的には、算出式A
に基づいて制御する場合に比べ若干悪化するかも知れな
い。しかし、処理水水質としては、目標レベル以内(た
とえば、濁度0.1度以内)に納めることが目的である
から、目標レベル以内を達成できる限り、別段問題は生
じない。
In the state where the control is shifted to the calculation formula B, the injection rate of the polymer flocculant is suppressed to be lower than that of the calculation formula A, so that the water quality (turbidity) of the treated water is calculated in absolute value. A
May be slightly worse than in the case of control based on However, since the purpose of the treated water quality is to be within the target level (for example, turbidity is within 0.1 degree), no particular problem occurs as long as the target water level can be achieved.

【0030】算出式Bに基づく高分子凝集剤注入率制御
においては、注入率に頭打ち部分がないので、原水濁度
が高くなっても、高分子凝集剤注入率は単に緩やかに比
例的に変化される。その結果、処理水の水質は、急激な
変動が生じることなく、目標レベル以内の値に安定して
維持されることになる。つまり、高分子凝集剤注入率に
頭打ち領域が存在する場合のような、処理水水質の急激
な変動や、処理水水質が原水濁度があるレベル以上にな
ると急激に悪化し始めるといった不都合の発生が回避さ
れる。
In the control of the polymer coagulant injection rate based on the calculation formula B, since the injection rate has no peak, even if the raw water turbidity increases, the polymer coagulant injection rate simply and slowly changes in proportion. Is done. As a result, the quality of the treated water is stably maintained at a value within the target level without a sudden change. In other words, such inconveniences as sudden fluctuations in treated water quality, such as when a polymer coagulant injection rate has a plateau region, and a sudden deterioration of treated water quality when raw water turbidity exceeds a certain level. Is avoided.

【0031】したがって、本発明に係る方法では、原水
濁度の変動の大きさや、そのときの原水の濁度に応じ
て、最適な算出式が選択され、高分子凝集剤を最適な注
入率で注入して、目標とする水質の処理水を安定して得
ることができるようになる。
Therefore, in the method according to the present invention, an optimal calculation formula is selected in accordance with the magnitude of the turbidity of the raw water and the turbidity of the raw water at that time, and the polymer coagulant is added at the optimal injection rate. By injecting, it becomes possible to stably obtain treated water having a target water quality.

【0032】なお、本発明で使用する無機凝集剤として
は、たとえばポリ塩化アルミニウム(PAC)、硫酸バ
ンド、塩化第二鉄、硫酸第二鉄を使用でき、高分子凝集
剤としては、たとえばノニオン性、アニオン性あるいは
両性の高分子凝集剤を用いることができる。アニオン性
の高分子凝集剤としては、たとえば、アクリル酸または
その塩の重合物、アクリル酸またはその塩とアクリルア
ミドとの共重合物、アクリルアミドと2−アクリルアミ
ド−2メチルプロパンスルホン酸塩の共重合物、アクリ
ル酸またはその塩とアクリルアミドと2−アクリルアミ
ド−2−メチルプロパンスルホン酸塩の3元共重合物、
ポリアクリルアミドの部分加水分解物などが挙げられる
が、特にこれらに限定されるものではない。ノニオン性
の高分子凝集剤としては、代表的なものとしてポリアク
リルアミドが挙げられるが、特にこれに限定されるもの
ではない。両性の高分子凝集剤としては、たとえば、ジ
メチルアミノエチル(メタ)アクリレートの3級塩およ
び4級塩(塩化メチル塩等)等の少なくとも1種のカチ
オン性単量体と、アクリル酸およびその塩(ナトリウ
ム、カルシウム等の塩類)、2−アクリルアミド−2−
メチルプロパンスルホン酸塩(ナトリウム、カルシウム
等の塩類)等の少なくとも1種のアニオン性単量体の共
重合物、あるいは、上記の少なくとも1種のカチオン性
単量体および上記の少なくとも1種のアニオン性単量体
とアクリルアミド等の少なくとも1種のノニオン性単量
体との三元もしくは四元以上の共重合物等が挙げられる
が、特にこれらに限定されるものではない。高分子凝集
剤の分子量の範囲は特に限定されないが、500万〜2
000万の範囲が好ましい。これらの高分子凝集剤は、
単独で又は混合物として用いることができる。
As the inorganic flocculant used in the present invention, for example, polyaluminum chloride (PAC), sulfate band, ferric chloride and ferric sulfate can be used. Anionic or amphoteric polymer flocculants can be used. Examples of the anionic polymer coagulant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, and a copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonic acid salt A terpolymer of acrylic acid or a salt thereof, acrylamide and 2-acrylamido-2-methylpropanesulfonic acid salt,
Examples thereof include partial hydrolysates of polyacrylamide, but are not particularly limited thereto. A typical nonionic polymer flocculant includes polyacrylamide, but is not particularly limited thereto. Examples of the amphoteric polymer flocculant include at least one cationic monomer such as a tertiary salt and a quaternary salt of dimethylaminoethyl (meth) acrylate (eg, a methyl chloride salt), acrylic acid and a salt thereof. (Salts such as sodium and calcium), 2-acrylamide-2-
A copolymer of at least one anionic monomer such as methylpropane sulfonate (salts such as sodium and calcium), or at least one cationic monomer and at least one anion And tertiary or quaternary copolymers of a nonionic monomer such as an acrylamide with an ionic monomer, but are not particularly limited thereto. Although the range of the molecular weight of the polymer flocculant is not particularly limited,
A range of 10 million is preferred. These polymeric flocculants are:
It can be used alone or as a mixture.

【0033】さらに本発明においては、原水の濁度の変
動幅が予め把握できない場合、その変動の大きさを予測
して、上記と同様、算出式A、Bの選択、切替制御を行
うことが可能である。原水1の濁度は濁度計2で連続的
に測定可能であるから、その濁度変化の速度から、原水
濁度の変動の大きさを、予め設定した比較データと比較
することにより予測することが可能である。すなわち、
濁度変化速度が速い場合には、過去の実績データ等の比
較データとの比較から、比較的大きな濁度変動まで生じ
得ると予測され、濁度変化速度が遅い場合には、比較的
小さな濁度変動しか生じないと予測される。
Further, in the present invention, when the fluctuation range of the turbidity of the raw water cannot be grasped in advance, it is possible to predict the magnitude of the fluctuation and perform the selection and switching control of the calculation formulas A and B in the same manner as described above. It is possible. Since the turbidity of the raw water 1 can be continuously measured by the turbidity meter 2, the magnitude of the fluctuation of the raw water turbidity is predicted from the speed of the turbidity change by comparing the magnitude of the fluctuation of the raw water turbidity with comparative data set in advance. It is possible. That is,
When the turbidity change rate is high, it is predicted that relatively large turbidity fluctuations may occur based on comparisons with comparative data such as past actual data. It is expected that only a degree change will occur.

【0034】このように予測した濁度変動を用いて、前
述したように、予測した変動内の最大値が算出式Aにお
ける上限注入率の頭打ち開始点に相当する原水濁度以下
である場合には、算出式Aを選択し、予測した変動内の
最大値が算出式Aにおける上限注入率の頭打ち開始点に
相当する原水濁度を越える場合には、該頭打ち開始点に
相当する原水濁度よりも低い原水濁度(予め定めた切替
濁度値)に上昇したときに、算出式Aから算出式Bに切
り替えるようにすればよい。この制御により、実質的に
前記実施態様同様の制御が可能となる。
Using the turbidity fluctuation predicted in this way, as described above, when the maximum value within the predicted fluctuation is equal to or less than the raw water turbidity corresponding to the peak start point of the upper limit injection rate in the calculation formula A, Is selected, when the maximum value within the predicted fluctuation exceeds the raw water turbidity corresponding to the peaking start point of the upper limit injection rate in the calculation formula A, the raw water turbidity corresponding to the peaking start point When the raw water turbidity rises to a lower value (a predetermined switching turbidity value), the calculation formula A may be switched to the calculation formula B. By this control, control substantially similar to the above embodiment can be performed.

【0035】[0035]

〔実験条件〕[Experiment conditions]

・原水流量:200m3 /日 ・無機凝集剤混和槽:有効容量555L(滞留時間4分)、攪拌機付き ・高分子凝集剤混和槽:有効容量555L(滞留時間4分)、攪拌機付き ・フロック形成池:横軸パドル方式×3槽(3槽の合計滞留時間30分) ・沈澱池:滞留時間40分、表面負荷率10mm/分 ・濾過器:塔径1200mm、通水速度150m/日、 濾層構成:アンスラサイト(高さ:400mm)+ケイ砂(高さ:4 00mm) ・原水濁度:4〜300度(平均濁度8.0度) ・原水pH:7.2〜7.5 ・無機凝集剤:PAC(原水濁度に比例注入)(PAC:ポリ塩化アルミニウム) ・有機高分子凝集剤:アニオン系高分子凝集剤 0.1〜1.0mg/L ・有機高分子凝集剤注入式:平均原水濁度の5倍未満、5倍以上で切り替え・ Raw water flow rate: 200m 3 / day ・ Inorganic flocculant mixing tank: 555L effective capacity (residence time 4 minutes), with stirrer ・ Polymer flocculant mixing tank: 555L effective capacity (residence time 4min), with stirrer ・ Flocculation Pond: Horizontal paddle system x 3 tanks (total residence time of 3 tanks: 30 minutes)-Sedimentation basin: Residence time: 40 minutes, surface load factor: 10 mm / min-Filter: tower diameter: 1200 mm, water flow rate: 150 m / day, filtration Layer composition: anthracite (height: 400 mm) + silica sand (height: 400 mm)-Raw water turbidity: 4 to 300 degrees (average turbidity: 8.0 degrees)-Raw water pH: 7.2 to 7.5 -Inorganic flocculant: PAC (injection proportional to raw water turbidity) (PAC: polyaluminum chloride)-Organic polymer flocculant: Anionic polymer flocculant 0.1-1.0 mg / L-Organic polymer flocculant Formula: Less than 5 times and more than 5 times the average raw water turbidity Toggles

【0036】平均原水濁度8.0度に対し、原水濁度が
4〜300度で変動し、有機高分子凝集剤の上限注入率
が1mg/Lの場合の例について述べる。図2に原水濁
度に対する無機凝集剤PACとアニオン系有機高分子凝
集剤の注入率を示した。無機凝集剤PACは、 原水濁度0〜70度 :PAC=濁度×1.0mg/L 原水濁度70〜300度:PAC=濁度×0.7+21mg/L、 最大231mg/L とし、有機高分子凝集剤の算出式A、算出式Bは、 A=(PAC×0.006)mg/L、原水濁度213
度以上で1mg/L B=(PAC÷231)mg/L、原水濁度300度で
1mg/L とした。平均原水濁度の5倍未満、5倍以上で切り替え
るので、原水濁度4〜40度未満まではA式、40〜3
00度はB式となる。
An example in which the raw water turbidity varies from 4 to 300 degrees with respect to the average raw water turbidity of 8.0 degrees and the upper limit injection rate of the organic polymer flocculant is 1 mg / L will be described. FIG. 2 shows the injection rate of the inorganic flocculant PAC and the anionic organic polymer flocculant with respect to the raw water turbidity. Inorganic coagulant PAC: Raw water turbidity 0-70 degrees: PAC = turbidity × 1.0 mg / L Raw water turbidity 70-300 degrees: PAC = turbidity × 0.7 + 21 mg / L, maximum 231 mg / L; The calculation formulas A and B of the polymer flocculant are as follows: A = (PAC × 0.006) mg / L, turbidity of raw water 213
1 mg / L B = (PAC ÷ 231) mg / L at a temperature of 30 ° C. or higher, and 1 mg / L at a raw water turbidity of 300 ° C. Since switching is performed at less than 5 times and at least 5 times the average raw water turbidity, the formula A, 40-3
00 degrees is represented by the formula B

【0037】算出式Aに基づく制御のみの場合は、原水
濁度213度以上で有機高分子凝集剤注入率が1mg/
Lとなるため、それ以上の原水濁度に対しては、追従性
がない。つまり高い原水濁度の範囲において、フロック
形成槽で形成されるフロックの状態が大きく変化し、ひ
いては沈澱処理水質も変化する。
In the case of only the control based on the calculation formula A, when the raw water turbidity is 213 degrees or more and the organic polymer flocculant injection rate is 1 mg /
Since it is L, there is no follow-up property for raw water turbidity higher than L. That is, in the range of high raw water turbidity, the state of flocs formed in the floc forming tank changes greatly, and the quality of the sedimentation water also changes.

【0038】逆に算出式Bに基づく制御の場合、原水濁
度に対する追従性はあるが、全体的に最適注入率に対し
少ない注入率となる。つまり、必ずしも最適な有機高分
子注入率ではないが、原水濁度の変化に対し、フロック
の形成状態及び沈澱処理水は安定しているため運転管理
上都合がよい。
Conversely, in the case of the control based on the calculation formula B, although there is a followability to the raw water turbidity, the injection rate is smaller than the optimum injection rate as a whole. That is, although the injection rate of the organic polymer is not always the optimum, the floc formation state and the sedimentation treated water are stable with respect to the change in the turbidity of the raw water, which is convenient for operation management.

【0039】原水濁度は通常10度以下であるため、ほ
とんどの場合は算出式Aによる最適な凝集条件での運転
となる。高濁度となった場合には、算出式Bによる制御
に切り替わり、処理水質はやや悪くなるが、濁度の変化
に対する処理水濁度の変化も小さく維持管理が行いやす
い。また、原水中の懸濁物質と無機凝集剤と有機高分子
凝集剤の関係がほぼ一定の関係となり、汚泥処理への影
響も少ない。
Since the raw water turbidity is usually 10 degrees or less, in most cases, the operation is performed under the optimal coagulation conditions according to the calculation formula A. When the turbidity becomes high, the control is switched to the control by the calculation formula B, and the quality of the treated water is slightly deteriorated. Further, the relationship between the suspended substance in the raw water, the inorganic flocculant, and the organic polymer flocculant is almost constant, and the influence on the sludge treatment is small.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係る水処
理における凝集剤の注入制御方法によれば、原水の濁度
の変動やそのときの原水濁度に応じて、算出式Aと算出
式Bとを適切に切り替えて選択し、選択した算出式に基
づいて高分子凝集剤の注入率を制御することにより、最
適な高分子凝集剤注入率に制御することができ、目標レ
ベル以内の水質の処理水を確実に得ることができるとと
もに、安定した処理水水質を達成できる。
As described above, according to the method for controlling the injection of a coagulant in water treatment according to the present invention, the calculation formula A and the calculation formula A are calculated in accordance with the turbidity of raw water and the raw water turbidity at that time. By appropriately switching and selecting Formula B, and controlling the injection rate of the polymer flocculant based on the selected calculation formula, it is possible to control the polymer flocculant injection rate to the optimum, and to maintain the polymer flocculant injection rate within the target level. It is possible to reliably obtain treated water of the same quality and to achieve stable treated water quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る水処理における凝集
剤の注入制御方法を適用する水処理装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a water treatment apparatus to which a coagulant injection control method in water treatment according to an embodiment of the present invention is applied.

【図2】図1の装置における原水濁度に対する凝集剤の
注入率の制御のための特性図である。
FIG. 2 is a characteristic diagram for controlling the injection rate of a flocculant with respect to raw water turbidity in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 原水 2 濁度計 3 無機凝集剤混和槽 4 無機凝集剤 5 ポンプ 6 モータ 7 攪拌機 8 高分子凝集剤混和槽 9 高分子凝集剤 10 ポンプ 11 モータ 12 攪拌機 13 シーケンサ 14 フロック形成池 15 パドル式攪拌機 16 沈澱池 17 隔壁 18 濾過装置 19 濾層 20 浄水 21 浄水タンク 22 最終処理水 23 ポンプ DESCRIPTION OF SYMBOLS 1 Raw water 2 Turbidity meter 3 Inorganic flocculant mixing tank 4 Inorganic flocculant 5 Pump 6 Motor 7 Stirrer 8 Polymer flocculant mixing tank 9 Polymer flocculant 10 Pump 11 Motor 12 Stirrer 13 Sequencer 14 Flock forming pond 15 Paddle stirrer 16 Sedimentation pond 17 Partition wall 18 Filtration device 19 Filtration layer 20 Purified water 21 Purified water tank 22 Final treated water 23 Pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原水中の懸濁物質を無機凝集剤と高分子
凝集剤を注入して凝集させる水処理において、原水濁度
に対する高分子凝集剤の注入率を算出する式を、高分子
凝集剤の注入率を無機凝集剤の注入率に比例させるとと
もに予め定めた上限注入率で頭打ちとする算出式Aと、
無機凝集剤の注入率が最大注入率のときに高分子凝集剤
の注入率が前記上限注入率となるように高分子凝集剤の
注入率を無機凝集剤の注入率に比例させる算出式Bの2
つの算出式として設定し、原水濁度の変動の大きさと現
在の原水濁度とに応じて、前記2つの算出式のいずれか
を選択し、選択した算出式に基づいて高分子凝集剤の注
入率を制御することを特徴とする、水処理における凝集
剤の注入制御方法。
In a water treatment in which a suspended substance in raw water is coagulated by injecting an inorganic coagulant and a polymer coagulant, an equation for calculating an injection rate of the polymer coagulant with respect to raw water turbidity is calculated by polymer coagulation. Formula A in which the injection rate of the agent is proportional to the injection rate of the inorganic coagulant and reaches a plateau at a predetermined upper limit injection rate,
Formula B in which the injection rate of the polymer flocculant is proportional to the injection rate of the inorganic flocculant so that the injection rate of the polymer flocculant becomes the upper limit injection rate when the injection rate of the inorganic flocculant is the maximum injection rate. 2
One of the two formulas is set according to the magnitude of the fluctuation of the raw water turbidity and the current raw water turbidity, and the injection of the polymer flocculant is performed based on the selected calculation formula. A method for controlling the injection of a flocculant in water treatment, comprising controlling a rate.
【請求項2】 原水濁度の変化の速度から原水濁度の変
動の大きさを予測し、予測した変動内の最大値が前記算
出式Aにおける上限注入率の頭打ち開始点に相当する原
水濁度以下である場合には、前記算出式Aを選択し、予
測した変動内の最大値が前記算出式Aにおける上限注入
率の頭打ち開始点に相当する原水濁度を越える場合に
は、該頭打ち開始点に相当する原水濁度よりも低い原水
濁度に上昇したときに、前記算出式Aから前記算出式B
に切り替える、請求項1の水処理における凝集剤の注入
制御方法。
2. The magnitude of the fluctuation of the raw water turbidity is predicted from the rate of change of the raw water turbidity, and the maximum value within the predicted fluctuation is the raw water turbidity corresponding to the plateau start point of the upper limit injection rate in the calculation formula A. If the maximum value within the predicted fluctuation exceeds the raw water turbidity corresponding to the peak start point of the upper limit injection rate in the calculation formula A, the peak value is selected. When the raw water turbidity rises to a level lower than the raw water turbidity corresponding to the starting point, the calculation formula B
The method for controlling the injection of a coagulant in the water treatment according to claim 1, wherein the method is switched to:
【請求項3】 原水濁度が、原水の平均濁度に対し予め
定めた所定倍率以下の濁度の場合には前記算出式Aを選
択し、それを越えた場合には前記算出式Bを選択する、
請求項1または2の水処理における凝集剤の注入制御方
法。
3. When the raw water turbidity is equal to or less than a predetermined predetermined magnification with respect to the average turbidity of the raw water, the calculation formula A is selected. select,
The method for controlling the injection of a coagulant in the water treatment according to claim 1 or 2.
【請求項4】 高分子凝集剤の上限注入率を0.2〜
2.0mg/Lの範囲内に設定する、請求項1ないし3
のいずれかに記載の水処理における凝集剤の注入制御方
法。
4. An upper limit injection rate of the polymer flocculant of 0.2 to 0.2.
4. The amount is set within a range of 2.0 mg / L.
The method for controlling injection of a flocculant in water treatment according to any one of the above.
【請求項5】 無機凝集剤の注入率を原水濁度に比例さ
せる、請求項1ないし4のいずれかに記載の水処理にお
ける凝集剤の注入制御方法。
5. The method according to claim 1, wherein the injection rate of the inorganic coagulant is proportional to the turbidity of the raw water.
JP2000266718A 2000-09-04 2000-09-04 Method for controlling injection of flocculant in water treatment Pending JP2002066209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266718A JP2002066209A (en) 2000-09-04 2000-09-04 Method for controlling injection of flocculant in water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266718A JP2002066209A (en) 2000-09-04 2000-09-04 Method for controlling injection of flocculant in water treatment

Publications (1)

Publication Number Publication Date
JP2002066209A true JP2002066209A (en) 2002-03-05

Family

ID=18753758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266718A Pending JP2002066209A (en) 2000-09-04 2000-09-04 Method for controlling injection of flocculant in water treatment

Country Status (1)

Country Link
JP (1) JP2002066209A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292207A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Apparatus for treating water
JP2004025109A (en) * 2002-06-27 2004-01-29 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2007253111A (en) * 2006-03-24 2007-10-04 Daiyanitorikkusu Kk Water treatment process
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
JP2013034987A (en) * 2011-07-12 2013-02-21 Takasago Thermal Eng Co Ltd Method for treatment of flushing waste liquid discharged from piping system of facility with piped galvanized steel pipe
JP2013043139A (en) * 2011-08-25 2013-03-04 Nippon Rensui Co Ltd Flocculating/filtering method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292207A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Apparatus for treating water
JP4523731B2 (en) * 2001-03-30 2010-08-11 オルガノ株式会社 Water treatment equipment
JP2004025109A (en) * 2002-06-27 2004-01-29 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2007253111A (en) * 2006-03-24 2007-10-04 Daiyanitorikkusu Kk Water treatment process
US8614173B2 (en) 2006-03-24 2013-12-24 Dia-Nitrix Co., Ltd. Water treatment method
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
JP2013034987A (en) * 2011-07-12 2013-02-21 Takasago Thermal Eng Co Ltd Method for treatment of flushing waste liquid discharged from piping system of facility with piped galvanized steel pipe
JP2016193435A (en) * 2011-07-12 2016-11-17 高砂熱学工業株式会社 Flushing wastewater treatment method
JP2013043139A (en) * 2011-08-25 2013-03-04 Nippon Rensui Co Ltd Flocculating/filtering method

Similar Documents

Publication Publication Date Title
JP5900576B1 (en) Water treatment method and water treatment apparatus
JP2003508221A (en) Anionic and nonionic dispersed polymers for purification and dehydration
JPH1057967A (en) Treatment of discharge water by coagulation settling method
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
US3493501A (en) Method for the removal of suspended matter in waste water treatment
JP4523731B2 (en) Water treatment equipment
JP2002066209A (en) Method for controlling injection of flocculant in water treatment
KR101930250B1 (en) Automatic Control System of Coagulation and Flocculation
JP2003340208A (en) Water cleaning method and apparatus therefor
KR100891023B1 (en) The coagulating and dehydration method of sludge and apparatus thereof
JP4945461B2 (en) Flocculant injection method during water purification treatment
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP3862888B2 (en) Continuous sludge aggregation method
JP3168608B2 (en) Sludge treatment equipment
JP7173908B2 (en) Method and apparatus for treating calcium-containing wastewater
JP2002058907A (en) Flocculating sedimentation system
JP2005270752A (en) Coagulation method and apparatus
JP2002079004A (en) Aggregation method
JP3482973B2 (en) Sewage coagulation method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP4522534B2 (en) Water purification method
JP3939970B2 (en) Coal storage wastewater treatment method
JPS5832629B2 (en) Suspension flocculation treatment method
JPH1177062A (en) Flocculation-separation
WO2023127347A1 (en) Wastewater treatment method and wastewater treatment system