JP6965025B2 - Membrane filtration device and membrane filtration method - Google Patents

Membrane filtration device and membrane filtration method Download PDF

Info

Publication number
JP6965025B2
JP6965025B2 JP2017100875A JP2017100875A JP6965025B2 JP 6965025 B2 JP6965025 B2 JP 6965025B2 JP 2017100875 A JP2017100875 A JP 2017100875A JP 2017100875 A JP2017100875 A JP 2017100875A JP 6965025 B2 JP6965025 B2 JP 6965025B2
Authority
JP
Japan
Prior art keywords
membrane filtration
water
coagulant
membrane
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100875A
Other languages
Japanese (ja)
Other versions
JP2018192453A (en
Inventor
佳介 瀧口
俊朗 國東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2017100875A priority Critical patent/JP6965025B2/en
Publication of JP2018192453A publication Critical patent/JP2018192453A/en
Application granted granted Critical
Publication of JP6965025B2 publication Critical patent/JP6965025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過装置および膜ろ過方法に関する。 The present invention relates to a membrane filtration apparatus and a membrane filtration method in which a flocculant is added to water to be treated to perform membrane filtration treatment.

膜ろ過では、ろ過対象物質等がろ過膜の表面や細孔内に付着、堆積する膜閉塞(ファウリング)を軽減するために凝集剤を添加することがある(例えば、特許文献1参照)。 In membrane filtration, a flocculant may be added in order to reduce membrane clogging (fouling) in which substances to be filtered adhere to and accumulate on the surface or pores of the filtration membrane (see, for example, Patent Document 1).

このような凝集膜ろ過法において、凝集剤を添加し、凝集条件を最適化しても膜閉塞は発生する。また、通常、凝集剤の添加、混和は混和槽を設けて行われているが、混和槽を設けて凝集剤の添加、混和を行うと、膜ろ過装置の設置面積やコストが増大する上、混和槽で圧力が開放されるため、水頭差を利用して被処理水をろ過装置へ供給する膜ろ過ができない。 In such an agglutinating membrane filtration method, membrane clogging occurs even if an agglutinating agent is added and the agglutination conditions are optimized. Normally, the coagulant is added and mixed by providing a mixing tank, but if the coagulant is added and mixed by providing a mixing tank, the installation area and cost of the membrane filtration device increase, and the cost is increased. Since the pressure is released in the mixing tank, it is not possible to perform membrane filtration that supplies the water to be treated to the filtration device using the difference in head.

特許第4517165号公報Japanese Patent No. 4517165

本発明の目的は、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法において、混和槽を設けなくても、膜閉塞の発生を抑制し、良好な処理水質の処理水が得られる膜ろ過装置および膜ろ過方法を提供することにある。 An object of the present invention is a membrane filtration method in which a flocculant is added to water to be treated to perform membrane filtration treatment, in which the occurrence of membrane blockage is suppressed and treated water having good treated water quality can be obtained without providing a mixing tank. It is an object of the present invention to provide a membrane filtration apparatus and a membrane filtration method.

本発明は、被処理水に凝集剤を添加する凝集剤添加手段と、前記凝集剤を添加した凝集剤添加水を、精密ろ過膜または限外ろ過膜の少なくとも1つを用いて膜ろ過処理する膜ろ過手段と、前記凝集剤添加手段と前記膜ろ過手段との間に設けられ、前記凝集剤添加水が流通する流路、および、前記流路内に設けられ、動力により回転する撹拌翼を有し、前記凝集剤添加水の撹拌を行う撹拌装置と、を備え、前記撹拌装置は、インラインミキサであり、前記撹拌装置における撹拌強度G値が、5001900/sの範囲である、膜ろ過装置である。 In the present invention, the coagulant-adding means for adding a coagulant to the water to be treated and the coagulant-added water to which the coagulant is added are subjected to membrane filtration treatment using at least one of a microfiltration membrane or an ultrafiltration membrane. A flow path provided between the membrane filtration means, the flocculant addition means and the membrane filtration means through which the flocculant-added water flows, and a stirring blade provided in the flow path and rotated by power are provided. The membrane is provided with a stirring device for stirring the coagulant-added water, the stirring device is an in-line mixer, and the stirring intensity G value in the stirring device is in the range of 500 to 1900 / s. It is a filtration device.

前記膜ろ過装置において、前記撹拌装置は、前記撹拌翼の回転数を制御する回転数制御装置をさらに備えることが好ましい。 In the membrane filtration device, it is preferable that the stirring device further includes a rotation speed control device for controlling the rotation speed of the stirring blade.

前記膜ろ過装置において、前記凝集剤添加手段の前段に、前記被処理水に無機系の凝集助剤を添加する凝集助剤添加手段を備えることが好ましい。前記膜ろ過装置において、前記インラインミキサにおける前記動力は、モータであることが好ましい。前記膜ろ過装置において、前記撹拌強度G値は、下記の式で表されることが好ましい。
G=[ρCΣ (a )/2μV] 1/2
ρ:水の密度(kg/m 、20℃)
C:撹拌翼の抵抗係数
:撹拌翼iの運動方向に直角な面積(m
:撹拌翼iの平均速度(m/s)
μ:水の粘性係数(kg/m・s、20℃)
V:撹拌装置の容量(m
In the membrane filtration apparatus, it is preferable to provide a coagulation aid adding means for adding an inorganic coagulation aid to the water to be treated in front of the coagulant adding means. In the membrane filtration apparatus, the power in the in-line mixer is preferably a motor. In the membrane filtration device, the stirring intensity G value is preferably expressed by the following formula.
G = [ρCΣ i (a i v i 3 ) / 2 μV] 1/2
ρ: Water density (kg / m 3 , 20 ° C)
C: Drag coefficient of stirring blade
a i : Area perpendicular to the direction of movement of the stirring blade i (m 2 )
v i : Average speed of stirring blade i (m / s)
μ: Viscosity coefficient of water (kg / m · s, 20 ° C)
V: Capacity of stirrer (m 3 )

また、本発明は、被処理水に凝集剤を添加する凝集剤添加工程と、前記凝集剤を添加した凝集剤添加水を、精密ろ過膜または限外ろ過膜の少なくとも1つを用いて膜ろ過処理する膜ろ過工程と、を含み、前記凝集剤添加工程と前記膜ろ過工程との間で、前記凝集剤添加水が流通する流路、および、前記流路内に設けられ、動力により回転する撹拌翼を有する撹拌装置によって前記凝集剤添加水の撹拌を行い、前記撹拌装置は、インラインミキサであり、前記撹拌装置における撹拌強度G値が、5001900/sの範囲である、膜ろ過方法である。 Further, in the present invention, the coagulant addition step of adding a coagulant to the water to be treated and the coagulant-added water to which the coagulant is added are membrane-filtered using at least one of a microfiltration membrane or an ultrafiltration membrane. A flow path through which the coagulant-added water flows and a flow path provided in the flow path between the coagulant addition step and the membrane filtration step, including a membrane filtration step to be treated, and rotated by power. A membrane filtration method in which the aggregating agent-added water is agitated by a agitator having a agitation blade, the agitator is an in-line mixer, and the agitation intensity G value in the agitator is in the range of 500 to 1900 / s. Is.

前記膜ろ過方法において、前記撹拌装置は、前記撹拌翼の回転数を制御する回転数制御装置をさらに備えることが好ましい。 In the membrane filtration method, it is preferable that the stirring device further includes a rotation speed control device for controlling the rotation speed of the stirring blade.

前記膜ろ過方法において、前記凝集剤添加工程の前段に、前記被処理水に無機系の凝集助剤を添加する凝集助剤添加工程を含むことが好ましい。前記膜ろ過方法において、前記インラインミキサにおける前記動力は、モータであることが好ましい。前記膜ろ過方法において、前記撹拌強度G値は、下記の式で表されることが好ましい。
G=[ρCΣ (a )/2μV] 1/2
ρ:水の密度(kg/m 、20℃)
C:撹拌翼の抵抗係数
:撹拌翼iの運動方向に直角な面積(m
:撹拌翼iの平均速度(m/s)
μ:水の粘性係数(kg/m・s、20℃)
V:撹拌装置の容量(m
In the membrane filtration method, it is preferable to include a coagulation aid addition step of adding an inorganic coagulation aid to the water to be treated before the coagulant addition step. In the membrane filtration method, the power in the in-line mixer is preferably a motor. In the membrane filtration method, the stirring intensity G value is preferably expressed by the following formula.
G = [ρCΣ i (a i v i 3 ) / 2 μV] 1/2
ρ: Water density (kg / m 3 , 20 ° C)
C: Drag coefficient of stirring blade
a i : Area perpendicular to the direction of movement of the stirring blade i (m 2 )
v i : Average speed of stirring blade i (m / s)
μ: Viscosity coefficient of water (kg / m · s, 20 ° C)
V: Capacity of stirrer (m 3 )

本発明では、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法において、混和槽を設けなくても、膜閉塞の発生を抑制し、良好な処理水質の処理水が得られる膜ろ過装置および膜ろ過方法を提供することができる。 In the present invention, in the membrane filtration method in which a flocculant is added to the water to be treated and the membrane filtration treatment is performed, the occurrence of membrane clogging can be suppressed and treated water having good treated water quality can be obtained without providing a mixing tank. Filtration equipment and membrane filtration methods can be provided.

本発明の実施形態に係る膜ろ過装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the membrane filtration apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る膜ろ過装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the membrane filtration apparatus which concerns on embodiment of this invention. 比較例で用いた膜ろ過装置を示す概略構成図である。It is a schematic block diagram which shows the membrane filtration apparatus used in the comparative example. 実施例および比較例における、撹拌強度G値(/s)と膜間の差圧上昇速度(kPa/d)との関係を示す図である。It is a figure which shows the relationship between the stirring intensity G value (/ s) and the differential pressure rise rate (kPa / d) between membranes in an Example and a comparative example. 実施例および比較例における、撹拌強度G値(/s)と処理水の色度(度)およびTOC(mg/L)との関係を示す図である。It is a figure which shows the relationship between the stirring intensity G value (/ s), the chromaticity (degree) of treated water, and TOC (mg / L) in an Example and a comparative example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る膜ろ過装置の一例の概略を図1に示し、その構成について説明する。膜ろ過装置1は、撹拌装置として、凝集剤添加水が流通する流路(混合室)34、動力としてのモータ18、および、流路34内に設けられ、モータ18により回転する撹拌翼20を有するインラインミキサ12と、膜ろ過手段として、精密ろ過膜または限外ろ過膜の少なくとも1つのろ過膜を有するろ過装置14とを備える。膜ろ過装置1は、被処理水槽10を備えてもよい。 An outline of an example of the membrane filtration device according to the embodiment of the present invention is shown in FIG. 1, and its configuration will be described. The membrane filtration device 1 includes, as a stirring device, a flow path (mixing chamber) 34 through which the coagulant-added water flows, a motor 18 as a power source, and a stirring blade 20 provided in the flow path 34 and rotated by the motor 18. The in-line mixer 12 is provided, and as a membrane filtration means, a filtration device 14 having at least one microfiltration membrane or an ultrafiltration membrane is provided. The membrane filtration device 1 may include a water tank 10 to be treated.

図1の膜ろ過装置1において、被処理水槽10の入口には被処理水配管22が接続され、被処理水槽10の出口とインラインミキサ12の流路34の入口とは、ポンプ16を介して被処理水供給配管24により接続されている。インラインミキサ12の流路34の出口とろ過装置14の入口とは、凝集剤添加水配管26により接続されている。ろ過装置14の出口には処理水配管28が接続されている。被処理水供給配管24におけるポンプ16とインラインミキサ12の流路34の入口との間には、凝集剤添加手段として、凝集剤添加配管30が接続されている。すなわち、凝集剤添加配管30とろ過装置14との間に動力付きのインラインミキサ12が設けられている。 In the membrane filtration device 1 of FIG. 1, a water pipe 22 to be treated is connected to the inlet of the water tank 10 to be treated, and the outlet of the water tank 10 to be treated and the inlet of the flow path 34 of the in-line mixer 12 are connected via a pump 16. It is connected by the water supply pipe 24 to be treated. The outlet of the flow path 34 of the in-line mixer 12 and the inlet of the filtration device 14 are connected by a coagulant-added water pipe 26. A treated water pipe 28 is connected to the outlet of the filtration device 14. A coagulant addition pipe 30 is connected as a coagulant addition means between the pump 16 in the water supply pipe 24 to be treated and the inlet of the flow path 34 of the in-line mixer 12. That is, a powered in-line mixer 12 is provided between the flocculant addition pipe 30 and the filtration device 14.

本実施形態に係る膜ろ過方法および膜ろ過装置1の動作について説明する。 The membrane filtration method and the operation of the membrane filtration device 1 according to the present embodiment will be described.

被処理水は、被処理水配管22を通して必要に応じて被処理水槽10に貯留された後、ポンプ16により被処理水供給配管24を通してインラインミキサ12に送液される。ここで、被処理水供給配管24におけるポンプ16とインラインミキサ12の流路34の入口との間において、凝集剤添加配管30を通して凝集剤が添加される(凝集剤添加工程)。凝集剤添加水は、インラインミキサ12の流路34において、動力のモータ18で回転駆動される撹拌翼20により、撹拌、混和されて凝集処理が行われる。凝集剤とともに、図示しないpH調整剤添加配管を通してpH調整剤が添加されてもよい(pH調整剤添加工程)。その後、凝集剤添加水は、凝集剤添加水配管26を通してろ過装置14に送液される。凝集剤添加水は、ろ過装置14において精密ろ過膜または限外ろ過膜の少なくとも1つを用いて膜ろ過処理される(膜ろ過工程)。膜ろ過処理された処理水は、処理水配管28を通して排出される。 The water to be treated is stored in the water tank 10 to be treated as needed through the water pipe 22 to be treated, and then sent to the in-line mixer 12 through the water supply pipe 24 to be treated by the pump 16. Here, the coagulant is added through the coagulant addition pipe 30 between the pump 16 in the water supply pipe 24 to be treated and the inlet of the flow path 34 of the in-line mixer 12 (coagulant addition step). The coagulant-added water is agitated and mixed by the stirring blade 20 rotationally driven by the powered motor 18 in the flow path 34 of the in-line mixer 12 to perform the coagulation treatment. A pH adjuster may be added together with the flocculant through a pH adjuster addition pipe (not shown) (pH adjuster addition step). After that, the coagulant-added water is sent to the filtration device 14 through the coagulant-added water pipe 26. The coagulant-added water is subjected to membrane filtration treatment using at least one of a microfiltration membrane or an ultrafiltration membrane in the filtration device 14 (membrane filtration step). The treated water that has been membrane-filtered is discharged through the treated water pipe 28.

本実施形態に係る膜ろ過方法は、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法において、凝集剤の注入点とろ過装置14をつなぐ配管の間に動力付のインラインミキサ12を設け、インラインミキサ12によって凝集剤と被処理水との混和を行い、膜ろ過処理を行う方法である。これにより、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法において、混和槽を設けなくても、膜閉塞の発生が抑制され、良好な処理水質の処理水が得られる。また、膜ろ過装置の設置面積やコストを低減することができる。 The membrane filtration method according to the present embodiment is a membrane filtration method in which a flocculant is added to water to be treated to perform a membrane filtration treatment. This is a method in which a flocculant and water to be treated are mixed with an in-line mixer 12 to perform a membrane filtration treatment. As a result, in the membrane filtration method in which a flocculant is added to the water to be treated and the membrane filtration treatment is performed, the occurrence of membrane clogging is suppressed even if a mixing tank is not provided, and treated water having good treated water quality can be obtained. In addition, the installation area and cost of the membrane filtration device can be reduced.

所定の時間、膜ろ過工程が行われた後、処理水または別途逆洗水を用いて、ろ過膜の逆洗を行ってもよいし、空気清浄を行ってもよい。これにより、膜閉塞の発生が抑制され、膜間差圧が回復し、膜の安定運転に寄与する。 After the membrane filtration step has been performed for a predetermined time, the filtration membrane may be backwashed or air-cleaned using treated water or separately backwashed water. As a result, the occurrence of membrane obstruction is suppressed, the differential pressure between membranes is restored, and it contributes to stable operation of the membrane.

膜ろ過装置1において、被処理水は、被処理水槽10から水頭差を利用してインラインミキサ12へ送液されてもよい。これにより、ポンプ16を設けなくてもよく、ポンプの動力を低減することができる。 In the membrane filtration device 1, the water to be treated may be sent from the water tank 10 to be treated to the in-line mixer 12 by utilizing the head difference. As a result, it is not necessary to provide the pump 16, and the power of the pump can be reduced.

凝集剤および必要な場合のpH調整剤の添加は、インラインミキサ12の手前の被処理水供給配管24において行われてもよいし、またはインラインミキサ12の流路34において行われてもよい。 The coagulant and, if necessary, the pH adjuster may be added in the water supply pipe 24 in front of the in-line mixer 12 or in the flow path 34 of the in-line mixer 12.

インラインミキサ12は、例えば、凝集剤添加水が流通する筒状等の流路(混合室)34を有し、動力としてモータ18と、撹拌手段として、流路(混合室)34内に設置され、モータ18で回転駆動される撹拌翼20とを有する。 The in-line mixer 12 has, for example, a tubular flow path (mixing chamber) 34 through which the coagulant-added water flows, is installed in the motor 18 as power and in the flow path (mixing chamber) 34 as stirring means. The stirring blade 20 is rotationally driven by the motor 18.

インラインミキサ12が備える動力は、撹拌手段を駆動するものであればよく、特に制限はないが、例えば、モータである。 The power provided by the in-line mixer 12 may be any as long as it drives the stirring means, and is not particularly limited, but is, for example, a motor.

フロック形成における撹拌条件の指標の一つとして撹拌強度(G値)がある。G値は、一般に、下記の式で表される。混和槽における凝集剤によるフロック形成において、撹拌強度(G値)が小さ過ぎるとフロックの成長が遅くなり、大き過ぎるとせん断力によりフロックが破壊されてしまうことから、通常は、混和槽における撹拌強度を100〜300/s程度にする。しかし、本発明者らはインラインミキサを用いて撹拌強度をより大きくすることで、膜ろ過装置の差圧上昇速度を抑えることができることを見出した。また、インラインミキサによる撹拌強度が混和槽における撹拌速度と同等以下であっても、膜ろ過装置の差圧上昇速度を抑えることができることを見出した。インラインミキサ12における撹拌強度が0〜2300/sの範囲とすることが好ましく、160〜2300/sの範囲とすることがより好ましく、500〜1900/sの範囲とすることがさらに好ましく、500〜1300/sの範囲とすることが特に好ましい。インラインミキサ12における撹拌強度をこれらの範囲にすることによって、膜閉塞の発生がより抑制され、より良好な処理水質の処理水が得られる。
G=[ρCΣ(a )/2μV]1/2
ρ:水の密度(例えば、1.0×10kg/m、20℃)
C:撹拌翼の抵抗係数(=1.5)
:撹拌翼iの運動方向に直角な面積(m
:撹拌翼iの平均速度(m/s)
μ:水の粘性係数(例えば、1.0×10−3kg/m・s、20℃)
V:ミキサの容量(m
なお、上式において、水流が共回り運動を起こさないものとする。
Stirring intensity (G value) is one of the indexes of stirring conditions in flock formation. The G value is generally expressed by the following formula. In the formation of flocs by a flocculant in a mixing tank, if the stirring strength (G value) is too small, the growth of flocs slows down, and if it is too large, the flocs are destroyed by shearing force. To about 100 to 300 / s. However, the present inventors have found that the rate of increase in differential pressure of the membrane filtration apparatus can be suppressed by increasing the stirring intensity using an in-line mixer. It was also found that the differential pressure increase rate of the membrane filtration device can be suppressed even when the stirring intensity by the in-line mixer is equal to or less than the stirring speed in the mixing tank. The stirring intensity of the in-line mixer 12 is preferably in the range of 0 to 2300 / s, more preferably in the range of 160 to 2300 / s, further preferably in the range of 500 to 1900 / s, and further preferably in the range of 500 to 1900 / s. The range of 1300 / s is particularly preferable. By setting the stirring intensity in the in-line mixer 12 to these ranges, the occurrence of membrane blockage is further suppressed, and treated water having better treated water quality can be obtained.
G = [ρCΣ i (a i v i 3 ) / 2 μV] 1/2
ρ: Water density (eg 1.0 × 10 3 kg / m 3 , 20 ° C)
C: Drag coefficient of stirring blade (= 1.5)
a i : Area perpendicular to the direction of movement of the stirring blade i (m 2 )
v i : Average speed of stirring blade i (m / s)
μ: Viscosity coefficient of water (for example, 1.0 × 10 -3 kg / m · s, 20 ° C.)
V: Mixer capacity (m 3 )
In the above equation, it is assumed that the water flow does not cause a co-rotational motion.

凝集剤としては、ポリ塩化アルミニウム(PAC)、塩化第二鉄、ポリシリカ鉄(PSI)等の無機系凝集剤、ポリアクリルアミド等の有機系凝集剤が挙げられ、膜閉塞等の点から、ポリ塩化アルミニウム、塩化第二鉄およびポリシリカ鉄のうちの少なくとも1つを含む無機系凝集剤が好ましい。 Examples of the flocculant include inorganic flocculants such as polyaluminum chloride (PAC), ferric chloride and polysilica iron (PSI), and organic flocculants such as polyacrylamide. Inorganic flocculants containing at least one of aluminum, ferric chloride and polysilica iron are preferred.

pH調整剤としては、塩酸、硫酸等の酸や、水酸化ナトリウム等のアルカリが挙げられる。 Examples of the pH adjuster include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide.

凝集処理における凝集剤添加水のpHは、凝集剤の金属イオンが水酸化物を生成するpHの範囲であることが好ましい。例えば凝集剤がポリ塩化アルミニウムの場合は、5〜8の範囲であることが好ましく、塩化第二鉄の場合は、3〜11の範囲であることが好ましい。凝集剤添加水のpHが前記pHの範囲から逸脱すると、凝集剤に含まれるアルミニウムや鉄がろ過膜の処理水にリークする場合がある。 The pH of the agglutinating agent-added water in the agglutination treatment is preferably in the range of the pH at which the metal ions of the agglutinating agent form a hydroxide. For example, when the flocculant is polyaluminum chloride, it is preferably in the range of 5 to 8, and when it is ferric chloride, it is preferably in the range of 3 to 11. If the pH of the coagulant-added water deviates from the pH range, aluminum or iron contained in the coagulant may leak into the treated water of the filtration membrane.

ろ過膜は、限外ろ過(UF)膜および精密ろ過(MF)膜のうち少なくとも1つである。ろ過膜としては、セラミック膜等の無機膜、PVDF(ポリフッ化ビニリデン)、PES(ポリエーテルスルホン)、PS(ポリスルホン)、PTFE(ポリテトラフルオロエチレン)等の有機膜のいずれでもよい。また、ろ過膜は、外圧式、内圧式のいずれでもよい。空気清浄を行うことができる外圧式の有機膜が好ましい。 The filtration membrane is at least one of an ultrafiltration (UF) membrane and a microfiltration (MF) membrane. The filtration membrane may be an inorganic membrane such as a ceramic membrane or an organic membrane such as PVDF (polyvinylidene fluoride), PES (polyethersulfone), PS (polysulfone), or PTFE (polytetrafluoroethylene). Further, the filtration membrane may be either an external pressure type or an internal pressure type. An external pressure type organic membrane capable of purifying air is preferable.

凝集剤添加配管30の前段に、被処理水に無機系の凝集助剤を添加する凝集助剤添加手段として例えば凝集助剤添加配管または凝集助剤添加槽等を設けて、凝集剤の添加の前に無機系の凝集助剤が添加されてもよい(凝集助剤添加工程)。凝集剤が添加される前に無機系の凝集助剤が添加されることによって膜閉塞の発生が抑制され、膜の安定運転に寄与する。通常、凝集助剤は、凝集剤により生成した微細フロックを吸着架橋作用により、大きなフロックにして沈降分離を促進させるために使用され、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法においては、一般的に高分子凝集剤が使用される。無機系の凝集助剤はろ過抵抗の要因となるので、通常は無機系の凝集助剤を添加することは行われなかったが、本発明者は、被処理水に凝集剤が添加される前に無機系の凝集助剤を添加することにより、予想外に膜閉塞の発生が抑制されることを見出した。これは、膜閉塞の主要因となる懸濁物質、TOC成分、凝集剤の金属イオン等が凝集助剤に吸着され、荷電的にろ過膜に付着しにくくなると考えられる。また、凝集助剤によってフロックが大きくなることによって、逆洗や空気洗浄等のときにろ過膜面に付着したフロックが洗浄水や洗浄空気等から受ける抵抗が大きくなり、ろ過膜面からはがれやすくなったためと考えられる。 In front of the coagulant-adding pipe 30, for example, a coagulation aid-adding pipe or a coagulation aid-adding tank is provided as a coagulation aid-adding means for adding an inorganic coagulation aid to the water to be treated, and the coagulant is added. An inorganic coagulation aid may be added prior (step of adding the coagulation aid). By adding an inorganic coagulation aid before the coagulant is added, the occurrence of membrane blockage is suppressed, which contributes to stable operation of the membrane. Usually, the coagulation aid is used to make fine flocs generated by the flocculant into large flocs by adsorption and cross-linking action to promote sedimentation separation, and membrane filtration is performed by adding the flocculant to the water to be treated. In the method, a polymer flocculant is generally used. Since the inorganic coagulation aid causes filtration resistance, normally, the inorganic coagulation aid was not added, but the present inventor made it before the coagulant was added to the water to be treated. It was found that the occurrence of membrane occlusion was unexpectedly suppressed by adding an inorganic coagulation aid to the water. It is considered that this is because suspended solids, TOC components, metal ions of the flocculant, etc., which are the main causes of membrane blockage, are adsorbed by the flocculation aid and are less likely to adhere to the filtration membrane in a charged manner. In addition, since the flocs are increased by the coagulation aid, the resistance of the flocs adhering to the filtration membrane surface during backwashing or air cleaning is increased from the cleaning water or the cleaning air, and the flocs are easily peeled off from the filtration membrane surface. It is thought that it was a result.

無機系の凝集助剤としては、ベントナイト、カオリン、活性ケイ酸、活性炭等の無機鉱物系の凝集助剤が挙げられ、ベントナイト、カオリン、活性ケイ酸および活性炭のうちの少なくとも1つを含むものであることが好ましい。凝集助剤としては、高分子ポリマー系のものも考えられるが、高分子ポリマー系では、上記のような膜閉塞発生の抑制効果はほとんど発揮されない。 Examples of the inorganic agglutinating aid include inorganic mineral agglutinating aids such as bentonite, kaolin, activated silicic acid, and activated carbon, and those containing at least one of bentonite, kaolin, activated silicic acid, and activated carbon. Is preferable. As the aggregating aid, a polymer polymer type may be considered, but the polymer polymer type hardly exerts the above-mentioned effect of suppressing the occurrence of membrane occlusion.

凝集助剤の体積平均粒径は、1〜50μmの範囲であることが好ましく、5〜20μmの範囲であることが好ましい。凝集助剤の体積平均粒径が1μm未満であると、凝集助剤が膜閉塞の原因になる場合があり、50μmを超えると、凝集不良を改善する効果が小さくなる場合がある。凝集助剤の体積平均粒径は、レーザー回折式粒度分布測定法で測定することができ、例えば、島津サイエンス製SALD−200V ERを用いて測定することができる。 The volume average particle size of the aggregating aid is preferably in the range of 1 to 50 μm, and preferably in the range of 5 to 20 μm. If the volume average particle size of the agglutination aid is less than 1 μm, the agglutination aid may cause membrane blockage, and if it exceeds 50 μm, the effect of improving poor aggregation may be reduced. The volume average particle size of the aggregating aid can be measured by a laser diffraction type particle size distribution measuring method, and can be measured, for example, by using SALD-200VER manufactured by Shimadzu Science.

凝集助剤の添加量は、ビーカーテスト、設備の試運転のときや実運転のときにおけるデータ採取等により適宜決定、調整されればよいが、5〜50mg/Lの範囲であることが好ましく、原水中の懸濁物質量との和が20〜100mg/Lの範囲となるように添加することが好ましい。凝集助剤の添加量が5mg/L未満であると、膜閉塞発生の抑制効果が小さくなる場合があり、50mg/Lを超えると、凝集助剤が濾過抵抗を生じ、安定運転を阻害する場合がある。 The amount of the aggregating aid added may be appropriately determined and adjusted by beaker test, data collection during test run of equipment, actual operation, etc., but is preferably in the range of 5 to 50 mg / L. It is preferable to add the mixture so that the sum with the amount of suspended solids in water is in the range of 20 to 100 mg / L. If the amount of the aggregating aid added is less than 5 mg / L, the effect of suppressing the occurrence of membrane occlusion may be reduced, and if it exceeds 50 mg / L, the aggregating aid may cause filtration resistance and hinder stable operation. There is.

凝集助剤の添加は、ろ過装置14におけるろ過膜の膜間差圧に基づき行われてもよい。例えば、ろ過膜の膜間差圧をモニタしながら、所定の膜間差圧の上限値に達したときに、凝集助剤の添加を行い、所定の膜間差圧の下限値にまで低下したときに、凝集助剤の添加を停止すればよい。また、凝集助剤の添加は、所定の時間間隔で所定の時間行ってもよい。例えば、凝集助剤の添加は、10時間に1回以下の頻度で1回あたり5時間以上行うことが好ましい。これらの他、ビーカーテスト、設備の試運転のときや実運転のときにおけるデータ採取等により適宜決定、調整することもできる。 The addition of the coagulation aid may be performed based on the intermembrane differential pressure of the filtration membrane in the filtration device 14. For example, while monitoring the intermembrane differential pressure of the filtration membrane, when the upper limit value of the predetermined intermembrane differential pressure is reached, a coagulation aid is added and the pressure is lowered to the lower limit value of the predetermined intermembrane differential pressure. Occasionally, the addition of the coagulation aid may be stopped. Further, the coagulation aid may be added at a predetermined time interval for a predetermined time. For example, the addition of the coagulation aid is preferably performed once every 10 hours or less for 5 hours or more each time. In addition to these, it can be appropriately determined and adjusted by beaker test, data collection during test run of equipment, actual operation, and the like.

被処理水のTOC濃度は、0.5〜10mg/Lの範囲であることが好ましい。被処理水の懸濁物質(SS)濃度は、1〜100mg/Lの範囲であることが好ましい。また、被処理水は、TOC濃度が0.5〜10mg/Lの範囲、懸濁物質(SS)濃度が1〜20mg/Lの範囲のうちの少なくとも1つの範囲にあることが好ましい。被処理水のTOC濃度が0.5mg/Lよりも低い場合、膜閉塞が発生しにくいため、本実施形態に係る膜ろ過方法を適応する優位性が薄れる場合がある。被処理水のTOC濃度が10mg/Lよりも高い場合、本実施形態に係る膜ろ過方法を適応しても膜閉塞が発生しやすくなる。被処理水のSS濃度が低いほど、凝集の核となるSSがないため凝集処理が困難になる場合がある。凝集不良が発生すると有機物が十分に除去されなかったり、凝集剤自身が膜閉塞の原因となる場合がある。そのため、本実施形態に係る膜ろ過方法は、SS濃度が1〜20mg/Lの範囲で特に効果的である。 The TOC concentration of the water to be treated is preferably in the range of 0.5 to 10 mg / L. The suspended solids (SS) concentration in the water to be treated is preferably in the range of 1 to 100 mg / L. The water to be treated preferably has a TOC concentration in the range of 0.5 to 10 mg / L and a suspended solids (SS) concentration in the range of 1 to 20 mg / L. When the TOC concentration of the water to be treated is lower than 0.5 mg / L, membrane occlusion is unlikely to occur, so that the advantage of applying the membrane filtration method according to the present embodiment may be diminished. When the TOC concentration of the water to be treated is higher than 10 mg / L, membrane occlusion is likely to occur even if the membrane filtration method according to the present embodiment is applied. The lower the SS concentration of the water to be treated, the more difficult the agglutination treatment may be because there is no SS that is the core of the agglutination. When poor coagulation occurs, organic substances may not be sufficiently removed, or the coagulant itself may cause membrane blockage. Therefore, the membrane filtration method according to the present embodiment is particularly effective when the SS concentration is in the range of 1 to 20 mg / L.

被処理水は、例えば、河川水、工場排水等が挙げられる。 Examples of the water to be treated include river water, factory effluent and the like.

被処理水が河川水等である場合、被処理水中のTOCやSSが変動する場合がある。この場合、膜ろ過装置は、インラインミキサ12のモータ18等の回転数を制御する回転数制御装置をさらに備えることが好ましい。 When the water to be treated is river water or the like, the TOC and SS in the water to be treated may fluctuate. In this case, it is preferable that the membrane filtration device further includes a rotation speed control device that controls the rotation speed of the motor 18 or the like of the in-line mixer 12.

例えば、図2に示す膜ろ過装置3は、図1の膜ろ過装置1の構成に加えて、回転数制御装置32を備える。膜ろ過装置3において、回転数制御装置32はインラインミキサ12の動力のモータ18に電気的接続等によって接続されている。回転数制御装置32を備えることによって、より効率的に凝集処理を行うことができる。 For example, the membrane filtration device 3 shown in FIG. 2 includes a rotation speed control device 32 in addition to the configuration of the membrane filtration device 1 shown in FIG. In the membrane filtration device 3, the rotation speed control device 32 is connected to the motor 18 powered by the in-line mixer 12 by an electrical connection or the like. By providing the rotation speed control device 32, the agglutination process can be performed more efficiently.

回転数制御装置32によって、インラインミキサ12における撹拌強度が0〜2300/sとなるように制御することが好ましく、160〜2300/sとなるように制御することがより好ましく、500〜1900/sとなるように制御することがさらに好ましく、500〜1300/sとなるように制御することが特に好ましい。インラインミキサ12における撹拌強度をこれらの範囲に制御することによって、膜閉塞の発生がより抑制され、より良好な処理水質の処理水が得られる。 The rotation speed control device 32 preferably controls the stirring intensity of the in-line mixer 12 to be 0 to 2300 / s, more preferably 160 to 2300 / s, and more preferably 500 to 1900 / s. It is more preferable to control so as to be 500 to 1300 / s, and it is particularly preferable to control so as to be 500 to 1300 / s. By controlling the stirring intensity in the in-line mixer 12 to these ranges, the occurrence of membrane blockage is further suppressed, and treated water having better treated water quality can be obtained.

回転数制御装置32は、インラインミキサ12のモータ18等の動力の回転数を制御することができるものであればよく、特に制限はないが、例えば、インバータである。 The rotation speed control device 32 may be any one capable of controlling the rotation speed of the power of the motor 18 of the in-line mixer 12, and is not particularly limited, but is, for example, an inverter.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1、比較例1>
実施例1として、図2に示すような、凝集剤添加水が流通する流路(混合室)34、動力としてのモータ18、および、流路34内に設けられ、モータ18により回転する撹拌翼20を有するインラインミキサ12を用いた膜ろ過装置3(以下、インライン系)と、比較例1として、図3に示す、膜ろ過装置3のインラインミキサ12の代わりに撹拌装置60を有する混和槽52を設けた膜ろ過装置5(以下、凝集混和系)で比較試験を行った。図3の膜ろ過装置5において、被処理水槽50の入口には被処理水配管62が接続され、被処理水槽50の出口と混和槽52の入口とは、ポンプ56を介して被処理水供給配管64により接続されている。混和槽52の出口とろ過装置54の入口とは、ポンプ58を介して凝集剤添加水配管66により接続されている。ろ過装置54の出口には処理水配管68が接続されている。混和槽52には、凝集剤添加配管70が接続されている。
<Example 1, Comparative Example 1>
As the first embodiment, as shown in FIG. 2, a flow path (mixing chamber) 34 through which the coagulant-added water flows, a motor 18 as a power source, and a stirring blade provided in the flow path 34 and rotated by the motor 18. A mixing tank 52 having a membrane filtration device 3 (hereinafter, in-line system) using the in-line mixer 12 having 20 and a stirring device 60 instead of the in-line mixer 12 of the membrane filtration device 3 shown in FIG. 3 as Comparative Example 1. A comparative test was conducted with a membrane filtration device 5 (hereinafter referred to as a coagulation-mixed system) provided with the above. In the membrane filtration device 5 of FIG. 3, a water treatment pipe 62 is connected to the inlet of the water tank 50 to be treated, and the outlet of the water tank 50 to be treated and the inlet of the mixing tank 52 are supplied with water to be treated via a pump 56. It is connected by a pipe 64. The outlet of the mixing tank 52 and the inlet of the filtration device 54 are connected by a coagulant-added water pipe 66 via a pump 58. A treated water pipe 68 is connected to the outlet of the filtration device 54. A coagulant addition pipe 70 is connected to the mixing tank 52.

実施例1と比較例1とは、撹拌方法以外の条件は同じで、フラックス1.5m/d、ろ過装置の回収率95%、凝集剤(PAC)注入率25mg/Lで運転した。実施例1では、インラインミキサ12に回転数制御装置32としてインバータを設け、回転数を変化させて(実施例1:撹拌強度G値(/s)=0,160,500,1300,1900,2300、比較例1:撹拌強度G値(/s)=160)通水した。インラインミキサは、マルチラインミキサー(佐竹化学機械工業株式会社製)を用いた。撹拌強度G値(/s)と膜間の差圧上昇速度(kPa/d)との関係を図4に示す。 The conditions of Example 1 and Comparative Example 1 were the same except for the stirring method, and the operation was performed with a flux of 1.5 m / d, a recovery rate of the filtration device of 95%, and a flocculant (PAC) injection rate of 25 mg / L. In the first embodiment, the in-line mixer 12 is provided with an inverter as the rotation speed control device 32, and the rotation speed is changed (Example 1: stirring intensity G value (/ s) = 0,160,500,1300,1900,2300). , Comparative Example 1: Stirring strength G value (/ s) = 160) Water was passed. A multi-line mixer (manufactured by Satake Chemical Machinery Co., Ltd.) was used as the in-line mixer. The relationship between the stirring intensity G value (/ s) and the differential pressure increase rate between the membranes (kPa / d) is shown in FIG.

実施例1は従来の凝集混和系である比較例1と比べて、低い膜間差圧で推移した。撹拌装置を回転させなくても、撹拌装置の撹拌翼によって乱流が発生して凝集剤が撹拌されるため、比較例1と同等の差圧上昇速度であった。これらの結果から、インラインミキサによるインライン凝集膜ろ過の優位性が示された。 Example 1 remained at a lower intermembrane differential pressure as compared with Comparative Example 1 which was a conventional coagulation and miscibility system. Even if the stirring device was not rotated, turbulence was generated by the stirring blade of the stirring device to stir the flocculant, so that the differential pressure increase rate was the same as that of Comparative Example 1. From these results, the superiority of in-line agglutinating membrane filtration by an in-line mixer was shown.

インラインミキサの回転数(G値)による処理水質の違いを図5に示す。インラインミキサの回転数を変化させることで、処理水質を向上させることができることが確認された。インラインミキサを用いることによって、混和槽を設けなくても、凝集膜ろ過を行うことができた。インラインミキサにインバータを設け、回転数を制御することによって処理水質をより向上させることができた。 FIG. 5 shows the difference in treated water quality depending on the rotation speed (G value) of the in-line mixer. It was confirmed that the treated water quality can be improved by changing the rotation speed of the in-line mixer. By using the in-line mixer, it was possible to perform agglutinating membrane filtration without providing a mixing tank. By installing an inverter in the in-line mixer and controlling the number of revolutions, the quality of treated water could be further improved.

このように実施例の方法により、被処理水に凝集剤を添加して膜ろ過処理する膜ろ過方法において、混和槽を設けなくても、膜閉塞の発生を抑制し、良好な処理水質の処理水が得られた。 In this way, in the membrane filtration method in which a flocculant is added to the water to be treated and the membrane filtration treatment is performed by the method of the example, the occurrence of membrane clogging is suppressed and the treatment of good treated water quality is performed even if a mixing tank is not provided. Water was obtained.

1,3,5 膜ろ過装置、10,50 被処理水槽、12 インラインミキサ、14,54 ろ過装置、16,56,58 ポンプ、18 モータ、20 撹拌翼、22,62 被処理水配管、24,64 被処理水供給配管、26,66 凝集剤添加水配管、28,68 処理水配管、30,70 凝集剤添加配管、32 回転数制御装置、34 流路、52 混和槽、60 撹拌装置。 1,3,5 film filtration device, 10,50 water tank to be treated, 12 in-line mixer, 14,54 filtration device, 16,56,58 pump, 18 motor, 20 stirring blades, 22,62 water to be treated pipe, 24, 64 Processed water supply pipe, 26,66 Coagulant-added water pipe, 28,68 Treated water pipe, 30,70 Coagulant-added pipe, 32 Rotation control device, 34 flow path, 52 mixing tank, 60 stirring device.

Claims (10)

被処理水に凝集剤を添加する凝集剤添加手段と、
前記凝集剤を添加した凝集剤添加水を、精密ろ過膜または限外ろ過膜の少なくとも1つを用いて膜ろ過処理する膜ろ過手段と、
前記凝集剤添加手段と前記膜ろ過手段との間に設けられ、前記凝集剤添加水が流通する流路、および、前記流路内に設けられ、動力により回転する撹拌翼を有し、前記凝集剤添加水の撹拌を行う撹拌装置と、
を備え、
前記撹拌装置は、インラインミキサであり、
前記撹拌装置における撹拌強度G値が、5001900/sの範囲であることを特徴とする膜ろ過装置。
A coagulant addition means for adding a coagulant to the water to be treated,
Membrane filtration means for performing membrane filtration treatment of the coagulant-added water to which the coagulant has been added using at least one of a microfiltration membrane or an ultrafiltration membrane.
It has a flow path provided between the coagulant addition means and the membrane filtration means through which the coagulant-added water flows, and a stirring blade provided in the flow path and rotated by power, and the coagulation. A stirrer that stirs the additive-added water and
With
The agitator is an in-line mixer and
A membrane filtration device characterized in that the stirring intensity G value in the stirring device is in the range of 500 to 1900 / s.
請求項1に記載の膜ろ過装置であって、
前記撹拌装置は、前記撹拌翼の回転数を制御する回転数制御装置をさらに備えることを特徴とする膜ろ過装置。
The membrane filtration device according to claim 1.
The agitator is a membrane filtration device further comprising a rotation speed control device for controlling the rotation speed of the stirring blade.
請求項1または2に記載の膜ろ過装置であって、
前記凝集剤添加手段の前段に、前記被処理水に無機系の凝集助剤を添加する凝集助剤添加手段を備えることを特徴とする膜ろ過装置。
The membrane filtration apparatus according to claim 1 or 2.
A membrane filtration apparatus characterized in that a coagulation aid adding means for adding an inorganic coagulation aid to the water to be treated is provided in front of the coagulant adding means.
請求項1〜3のいずれか1項に記載の膜ろ過装置であって、The membrane filtration apparatus according to any one of claims 1 to 3.
前記インラインミキサにおける前記動力は、モータであることを特徴とする膜ろ過装置。 A membrane filtration device characterized in that the power in the in-line mixer is a motor.
請求項1〜4のいずれか1項に記載の膜ろ過装置であって、The membrane filtration apparatus according to any one of claims 1 to 4.
前記撹拌強度G値は、下記の式で表されることを特徴とする膜ろ過装置。 A membrane filtration device characterized in that the stirring intensity G value is represented by the following formula.
G=[ρCΣ G = [ρCΣ i (a(A i v i 3 )/2μV]) / 2μV] 1/21/2
ρ:水の密度(kg/m ρ: Water density (kg / m) 3 、20℃), 20 ° C)
C:撹拌翼の抵抗係数 C: Drag coefficient of stirring blade
a i :撹拌翼iの運動方向に直角な面積(m: Area (m) perpendicular to the direction of movement of the stirring blade i 2 )
v i :撹拌翼iの平均速度(m/s): Average speed of stirring blade i (m / s)
μ:水の粘性係数(kg/m・s、20℃) μ: Viscosity coefficient of water (kg / m · s, 20 ° C)
V:撹拌装置の容量(m V: Capacity of agitator (m 3 )
被処理水に凝集剤を添加する凝集剤添加工程と、
前記凝集剤を添加した凝集剤添加水を、精密ろ過膜または限外ろ過膜の少なくとも1つを用いて膜ろ過処理する膜ろ過工程と、
を含み、
前記凝集剤添加工程と前記膜ろ過工程との間で、前記凝集剤添加水が流通する流路、および、前記流路内に設けられ、動力により回転する撹拌翼を有する撹拌装置によって前記凝集剤添加水の撹拌を行い、
前記撹拌装置は、インラインミキサであり、
前記撹拌装置における撹拌強度G値が、5001900/sの範囲であることを特徴とする膜ろ過方法。
The coagulant addition step of adding the coagulant to the water to be treated, and
A membrane filtration step in which the coagulant-added water to which the coagulant is added is subjected to a membrane filtration treatment using at least one of a microfiltration membrane or an ultrafiltration membrane.
Including
Between the coagulant addition step and the membrane filtration step, the coagulant is provided by a flow path through which the coagulant-added water flows and a stirring device provided in the flow path and having a stirring blade that is rotated by power. Stir the added water and
The agitator is an in-line mixer and
A membrane filtration method characterized in that the stirring intensity G value in the stirring device is in the range of 500 to 1900 / s.
請求項6に記載の膜ろ過方法であって、
前記撹拌装置は、前記撹拌翼の回転数を制御する回転数制御装置をさらに備えることを特徴とする膜ろ過方法。
The membrane filtration method according to claim 6.
The membrane filtration method further includes a rotation speed control device for controlling the rotation speed of the stirring blade.
請求項6または7に記載の膜ろ過方法であって、
前記凝集剤添加工程の前段に、前記被処理水に無機系の凝集助剤を添加する凝集助剤添加工程を含むことを特徴とする膜ろ過方法。
The membrane filtration method according to claim 6 or 7.
A membrane filtration method comprising a coagulation aid addition step of adding an inorganic coagulation aid to the water to be treated before the coagulant addition step.
請求項6〜8のいずれか1項に記載の膜ろ過方法であって、The membrane filtration method according to any one of claims 6 to 8.
前記インラインミキサにおける前記動力は、モータであることを特徴とする膜ろ過方法。 A membrane filtration method characterized in that the power in the in-line mixer is a motor.
請求項6〜9のいずれか1項に記載の膜ろ過方法であって、The membrane filtration method according to any one of claims 6 to 9.
前記撹拌強度G値は、下記の式で表されることを特徴とする膜ろ過方法。 The membrane filtration method, wherein the stirring strength G value is represented by the following formula.
G=[ρCΣ G = [ρCΣ i (a(A i v i 3 )/2μV]) / 2μV] 1/21/2
ρ:水の密度(kg/m ρ: Water density (kg / m) 3 、20℃), 20 ° C)
C:撹拌翼の抵抗係数 C: Drag coefficient of stirring blade
a i :撹拌翼iの運動方向に直角な面積(m: Area (m) perpendicular to the direction of movement of the stirring blade i 2 )
v i :撹拌翼iの平均速度(m/s): Average speed of stirring blade i (m / s)
μ:水の粘性係数(kg/m・s、20℃) μ: Viscosity coefficient of water (kg / m · s, 20 ° C)
V:撹拌装置の容量(m V: Capacity of agitator (m 3 )
JP2017100875A 2017-05-22 2017-05-22 Membrane filtration device and membrane filtration method Active JP6965025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100875A JP6965025B2 (en) 2017-05-22 2017-05-22 Membrane filtration device and membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100875A JP6965025B2 (en) 2017-05-22 2017-05-22 Membrane filtration device and membrane filtration method

Publications (2)

Publication Number Publication Date
JP2018192453A JP2018192453A (en) 2018-12-06
JP6965025B2 true JP6965025B2 (en) 2021-11-10

Family

ID=64569666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100875A Active JP6965025B2 (en) 2017-05-22 2017-05-22 Membrane filtration device and membrane filtration method

Country Status (1)

Country Link
JP (1) JP6965025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560529A (en) * 2022-03-23 2022-05-31 呼和浩特市久科康瑞环保科技有限公司 Oily sewage super filtration handles environment-friendly device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052302A (en) * 2000-08-09 2002-02-19 Japan Organo Co Ltd Liquid processing device
JP3854471B2 (en) * 2001-03-08 2006-12-06 オルガノ株式会社 Water purification equipment
JP4523731B2 (en) * 2001-03-30 2010-08-11 オルガノ株式会社 Water treatment equipment
JP2006075750A (en) * 2004-09-10 2006-03-23 Japan Organo Co Ltd Flocculation separation treatment device and flocculation separation treatment method
JP2007152273A (en) * 2005-12-07 2007-06-21 Tsukishima Kikai Co Ltd Immersed membrane filtration apparatus
JP5348369B2 (en) * 2008-03-31 2013-11-20 栗田工業株式会社 Water treatment method
EP2177479A4 (en) * 2007-08-07 2013-05-29 Kurita Water Ind Ltd Membrane separation method and membrane separation device
CN102781847B (en) * 2010-03-30 2014-08-27 栗田工业株式会社 Water-treatment device
JP2013086069A (en) * 2011-10-21 2013-05-13 Toray Ind Inc Fresh water producing method
CN104603064A (en) * 2012-08-30 2015-05-06 东丽株式会社 Water production method
JP2015044149A (en) * 2013-08-28 2015-03-12 株式会社日立製作所 Flocculation treatment method, flocculation treatment device and water treatment apparatus
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device

Also Published As

Publication number Publication date
JP2018192453A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5131005B2 (en) Water treatment method and water treatment apparatus
JP5277997B2 (en) Water purification method
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP6137176B2 (en) Water treatment method
KR101612219B1 (en) Device and Method for Treating Washing Water using combined coagulation-ceramic ultrafiltration membrane system
JP6965025B2 (en) Membrane filtration device and membrane filtration method
JP7358675B2 (en) Method for separating and purifying fluids containing valuables
JP7021461B2 (en) Water treatment method, water treatment equipment and control method of addition of cake layer forming substance to raw water
JP2016131937A (en) Seawater desalination system and method
WO2014034845A1 (en) Water production method
US20160221846A1 (en) Process for water treatment prior to reverse osmosis
JP2005118608A (en) Water treatment method
JP2011056411A (en) System and method for desalination of water to be treated
JP7224753B2 (en) Cohesive membrane filtration method and cohesive membrane filtration device
JP2012187467A (en) Membrane separation method and membrane separator
JP2014168729A (en) Water treatment method and water treatment apparatus
JP5211432B2 (en) Method for treating water containing suspended matter and chromaticity components
JP5452677B2 (en) Water purifier
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP2003334566A (en) Method and device for treating drain containing fluorine
JP2014046235A (en) Fresh water generating method
Xu et al. Evaluation of dynamic membrane formation and filtration models at constant pressure in a combined coagulation/dynamic membrane process in treating polluted river water
JP7441108B2 (en) Water treatment method and water treatment equipment
JP2022174372A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6965025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150