JP5348369B2 - Water treatment method - Google Patents
Water treatment method Download PDFInfo
- Publication number
- JP5348369B2 JP5348369B2 JP2008092395A JP2008092395A JP5348369B2 JP 5348369 B2 JP5348369 B2 JP 5348369B2 JP 2008092395 A JP2008092395 A JP 2008092395A JP 2008092395 A JP2008092395 A JP 2008092395A JP 5348369 B2 JP5348369 B2 JP 5348369B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- membrane
- polymer
- turbidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、工業用水、市水、河川水、湖沼水、井水などの被処理水の処理方法に関し、詳しくは、濁度が低い被処理水にも適用できる水処理方法に関する。 The present invention relates to a method for treating water to be treated such as industrial water, city water, river water, lake water, and well water, and more particularly to a water treatment method that can be applied to water to be treated having low turbidity.
工業用水、市水、河川水、湖沼水、井水などの被処理水を処理する方法として、精密濾過膜(MF膜)、限外濾過膜(UF膜)、逆浸透膜(RO膜)等の膜に通水する膜分離処理する方法がある。工業用水、市水、井水などは、通常フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物や、界面活性剤等の合成化学物質など、膜を汚染する膜汚染物質を含むため、膜分離処理をすると、これらの膜汚染物質が膜表面に吸着して膜分離性能が劣化するという問題がある。 Microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), reverse osmosis membranes (RO membranes), etc. as methods for treating treated water such as industrial water, city water, river water, lake water, and well water There is a method of membrane separation treatment for passing water through the membrane. Industrial water, city water, well water, etc. are usually membrane contaminants that contaminate membranes, such as humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, and synthetic chemicals such as surfactants. Therefore, when the membrane separation treatment is performed, there is a problem that these membrane contaminants are adsorbed on the membrane surface and the membrane separation performance deteriorates.
そこで、膜分離処理の前に、被処理水に無機凝集剤及びアニオン性等の高分子凝集剤を添加して膜汚染物質を凝結等する凝集処理をし、沈殿や加圧浮上などにより固液分離した後、上澄み、すなわち、膜汚染物質を除去した被処理水を膜分離処理する方法が行われている。しかしながら、高分子凝集剤を添加すると、水中に残留した高分子凝集剤が後段の膜に吸着して膜を汚染し、膜の分離性能を劣化させるという新たな問題が生じる。 Therefore, before the membrane separation treatment, an inorganic flocculant and an anionic polymer flocculant are added to the water to be treated to agglomerate to condense the membrane contaminants, and the liquid is solidified by precipitation or pressurized flotation. After the separation, a method of subjecting the supernatant, that is, the water to be treated from which membrane contaminants have been removed, to membrane separation treatment is performed. However, when the polymer flocculant is added, a new problem arises in that the polymer flocculant remaining in the water is adsorbed on the subsequent membrane to contaminate the membrane and deteriorate the separation performance of the membrane.
このような問題を解決する方法として、被処理水に無機凝集剤と高分子凝集剤とを添加し、凝集反応後、固液分離する前に再び無機凝集剤を添加した後、固液分離する凝集分離方法がある(特許文献1参照)。しかしながら、この特許文献1の方法では、被処理水に無機凝集剤と高分子凝集剤とを添加した後に、再び無機凝集剤を添加する工程が必要であるため、より簡便な方法が求められている。 As a method for solving such a problem, an inorganic flocculant and a polymer flocculant are added to the water to be treated, and after the aggregation reaction, the inorganic flocculant is added again before solid-liquid separation, and then solid-liquid separation is performed. There is an aggregating and separating method (see Patent Document 1). However, in the method of Patent Document 1, it is necessary to add an inorganic flocculant and a polymer flocculant to the water to be treated and then add the inorganic flocculant again. Therefore, a simpler method is required. Yes.
そこで、これらの問題を解決する方法として、本出願人は、被処理水に水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加して吸着処理し、該吸着処理した被処理水を分離膜により膜分離処理する方法を先に出願した(特願2007−284111号)。この方法によれば、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を低減することができる。 Therefore, as a method for solving these problems, the applicant of the present invention added an adsorption treatment by adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water to the treatment water. A method for membrane separation treatment of treated water with a separation membrane was filed earlier (Japanese Patent Application No. 2007-284111). According to this method, adsorption of membrane contaminants contained in the water to be treated to the membrane surface can be reduced, and deterioration of membrane separation performance can be reduced.
しかしながら、特願2007−284111号の方法では、被処理水の濁度が低い場合、すなわち被処理水の濁質(SS)の量が少ない場合には、濁質に吸着しない水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子が存在し、この水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子により、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する反応槽(凝集槽)の壁面など系内が汚染され、清澄な処理水が継続して得られない場合があるという問題が生じる。なお、上述したような膜分離処理する場合に限らず、加圧浮上等のその他の固分離処理を行う場合においても、凝集層など系内が汚染するという問題が同様に存在する。 However, in the method of Japanese Patent Application No. 2007-284111, when the turbidity of the water to be treated is low, that is, when the amount of the turbidity (SS) of the water to be treated is small, Particles that are made of a cationic polymer that does not dissolve in water, and that are made of a cationic polymer that swells in water and does not substantially dissolve in water, so that the cationic polymer swells in water and does not substantially dissolve in water. The inside of the system such as the wall of a reaction tank (coagulation tank) for adding particles made of water to the treated water is contaminated, and there is a problem that clear treated water may not be obtained continuously. In addition, not only in the case of performing the membrane separation process as described above, but also in the case of performing other solid separation processes such as pressurized flotation, there is a similar problem that the inside of the system such as an agglomerated layer is contaminated.
本発明は上述した事情に鑑み、濁度が低い被処理水も処理することができる水処理方法を提供することを目的とする。 An object of this invention is to provide the water treatment method which can process the to-be-processed water with low turbidity in view of the situation mentioned above.
本発明者は上記目的を達成するために鋭意検討した結果、被処理水に凝集助剤を添加した後、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加し、その後固液分離処理する方法とすることにより、上記目的が達成されることを見いだし、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventor has added a coagulation aid to the water to be treated, and then added particles made of a cationic polymer that swells in water and does not substantially dissolve in water, It has been found that the above object can be achieved by employing a solid-liquid separation method, and the present invention has been completed.
即ち、本発明の水処理方法は、被処理水に凝集助剤を添加する凝集助剤添加工程と、該凝集助剤添加工程の後、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、架橋剤モノマーとの共重合体であり且つ膨潤していない時の粒子径に対して水中で10〜200倍の粒子径に膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加するポリマー粒子添加工程と、該ポリマー粒子添加工程の後被処理水を撹拌する撹拌工程と、該撹拌工程の後被処理水を固液分離処理する固液分離処理工程を有することを特徴とする。
前記凝集助剤を添加する前の被処理水の濁度は5度未満であってもよい。
また、前記凝集助剤が無機凝集剤であることが好ましい。
That is, the water treatment method of the present invention comprises a flocculation aid addition step of adding a flocculation aid to treated water, and after the flocculation aid addition step , primary amines, secondary amines, tertiary amines and their acids. It is a copolymer of a cationic monomer having a functional group such as a salt or a quaternary ammonium group and a crosslinking agent monomer, and it swells to a particle size of 10 to 200 times in water with respect to the particle size when not swollen. A polymer particle addition step of adding particles made of a cationic polymer that is substantially insoluble in water, a stirring step of stirring the water to be treated after the polymer particle addition step, and solidifying the water to be treated after the stirring step. It has a solid-liquid separation process step for performing liquid separation.
The turbidity of the water to be treated before adding the coagulation aid may be less than 5 degrees.
Moreover, it is preferable that the aggregating aid is an inorganic aggregating agent.
被処理水に凝集助剤を添加した後、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加し、その後固液分離処理する方法とすることにより、濁度の低い被処理水であっても処理することができ、系内や膜を汚染せずに、清澄な処理水を得ることができる。 After adding a coagulant aid to the water to be treated, particles made of a cationic polymer that swells in water and does not substantially dissolve in water are added, and then a solid-liquid separation treatment is performed. Even treated water can be treated, and clear treated water can be obtained without contaminating the system or the membrane.
以下、本発明を実施形態に基づいて詳細に説明する。
本発明の水処理方法は、被処理水に凝集助剤を添加する凝集助剤添加工程と、該凝集助剤添加工程の後水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加するポリマー粒子添加工程と、該ポリマー粒子添加工程の後被処理水を撹拌する撹拌工程と、該撹拌工程の後被処理水を固液分離処理する固液分離処理工程を有するものである。
Hereinafter, the present invention will be described in detail based on embodiments.
The water treatment method of the present invention comprises a flocculation aid addition step of adding a flocculation aid to treated water, and particles comprising a cationic polymer that swells in water after the flocculation aid addition step and does not substantially dissolve in water. A polymer particle adding step of adding, a stirring step of stirring the water to be treated after the polymer particle adding step, and a solid-liquid separation processing step of subjecting the water to be treated to solid-liquid separation after the stirring step .
まず、被処理水に凝集助剤を添加する(凝集助剤添加工程)。被処理水としては、例えば、濁質、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質などを含む水、具体的には、工業用水、市水、河川水、湖沼水、井水などが挙げられる。なお、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質などは、後段で膜分離処理を行う場合には膜を汚染する物質(膜汚染物質)となる。 First, an agglomeration aid is added to the water to be treated (aggregation aid addition step). Examples of water to be treated include turbidity, humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, or synthetic chemicals such as surfactants, specifically, Industrial water, city water, river water, lake water, well water, and the like. In addition, humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, or synthetic chemical substances such as surfactants are substances that contaminate the membrane when membrane separation treatment is performed later. (Film contamination).
そして、本発明においては、被処理水として濁度(濁質(SS)の量)が5度未満、例えば、0.1度以上5度未満の水を用いても、好適に処理することができる。濁度が5度未満を維持している被処理水も好適に処理して清澄な処理水を得ることができ、また、工業用水、河川水等のように通常は濁度が高い被処理水であっても、水質の変動などにより、濁度が5度未満になるものについても、好適に処理することができる。なお、本明細書において、濁度はカオリン標準液を用いた透過光測定方法により求めた値である。 And in this invention, even if it uses water whose turbidity (amount of turbidity (SS)) is less than 5 degrees, for example, 0.1 degree or more and less than 5 degree | times as to-be-processed water, it can process suitably. it can. Treated water whose turbidity is maintained at less than 5 degrees can be suitably treated to obtain clear treated water. Also, treated water with high turbidity such as industrial water and river water is usually used. However, even those having a turbidity of less than 5 degrees due to fluctuations in water quality can be suitably treated. In the present specification, turbidity is a value determined by a transmitted light measurement method using a kaolin standard solution.
凝集助剤としては、被処理水の濁度を増加させることができるものであれば特に限定はなく、例えば、ベントナイトやカオリン等の濁質となる成分や、硫酸バンド、ポリ塩化アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩等の無機凝集剤を挙げることができるが、特に無機凝集剤が好ましい。無機凝集剤は、凝集剤としての機能も発揮して、COD成分や濁質を被処理水から除去することができ、後段で添加する水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子の添加量を低減することもできるからである。また、複数種の凝集助剤を併用してもよい。 The agglomeration aid is not particularly limited as long as it can increase the turbidity of water to be treated. For example, turbid components such as bentonite and kaolin, and aluminum such as sulfate bands and polyaluminum chloride are used. Inorganic flocculants such as salts, iron salts such as ferric chloride and ferrous sulfate can be mentioned, and inorganic flocculants are particularly preferable. The inorganic flocculant also functions as a flocculant, and can remove COD components and turbidity from the water to be treated. From the cationic polymer that swells in water added later and does not substantially dissolve in water. This is because the amount of added particles can be reduced. Moreover, you may use together multiple types of aggregation adjuvant.
凝集助剤の添加量は特に制限はないが、凝集助剤を添加した後の被処理水の濁度が5度以上になるように添加することが好ましく、例えば、5度〜10度、好ましくは5度〜7度程度である。 The addition amount of the coagulation aid is not particularly limited, but is preferably added so that the turbidity of the water to be treated after adding the coagulation aid is 5 degrees or more, for example, 5 degrees to 10 degrees, preferably Is about 5 to 7 degrees.
凝集助剤添加工程の後、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加する(ポリマー粒子添加工程)。ここで、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質などは、通常の高分子凝集剤や無機凝集剤では凝集が不完全となり被処理水から除去し難い。しかし、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子(以下「膨潤性ポリマー粒子」と記載する場合がある)を添加することにより、良好に凝集させることができる。 After the aggregation auxiliary agent addition step, particles made of a cationic polymer that swells in water and does not substantially dissolve in water are added (polymer particle addition step). Here, humic acid and fulvic acid organic substances, biological metabolites such as sugars produced by algae, or synthetic chemical substances such as surfactants do not aggregate with ordinary polymer flocculants and inorganic flocculants. Complete and difficult to remove from treated water. However, by adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water (hereinafter sometimes referred to as “swellable polymer particles”), the particles can be well aggregated.
この被処理水に添加する粒子を構成する水中で膨潤し実質的に水に溶解しないカチオン性ポリマーは、例えば、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、実質的に水に溶解しないようにするための架橋剤モノマーとの共重合体である。カチオン性モノマーの具体例としては、ジメチルアミノエチル(メタ)アクリレートの酸塩もしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの酸塩もしくはその4級アンモニウム塩、ジアリルジメチルアンモニウムクロリド等が挙げられる。架橋剤モノマーとしては、メチレンビスアクリルアミドなどのジビニルモノマーが挙げられる。また、上記カチオン性モノマーと共重合可能なアニオン性またはノニオン性モノマーとの共重合体としてもよい。共重合させるアニオン性モノマーの具体例としては、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸およびそれらのアルカリ金属塩等が挙げられるが、その含有量は、共重合体がカチオン性ポリマーとしての性質を損なわない程度に少量である必要がある。ノニオン性モノマーとしては、(メタ)アクリルアミド、Nイソプロピルアクリルアミド、Nメチル(NNジメチル)アクリルアミド、アクリロニトリル、スチレン、メチルもしくはエチル(メタ)アクリレート等が挙げられる。各モノマーは1種でも複数種でもよい。なお、ジビニルモノマー等の架橋剤モノマー量は、全モノマーに対して0.0001〜0.1モル%必要であり、この量によって、膨潤性ポリマー粒子の膨潤度や水中での粒子径が調整できる。そして、膨潤性ポリマー粒子としては、例えば、アコジェルC(三井サイテック株式会社製)が市販されている。また、WA20(三菱化学社製)等のアニオン交換樹脂を、膨潤性ポリマー粒子として用いてもよい。また、膨潤性ポリマー粒子の平均粒子径は特に限定されないが、逆相エマルション液体やサスペンション状の分散液体中での平均粒子径、すなわち、水で膨潤していない状態の平均粒子径は100μm以下であることが好ましく、さらに好ましくは0.1〜10μmである。これは、粒子が小さい程、被処理水中に含まれる濁質等の吸着効果が高くなるが、小さすぎると固液分離が困難になるためである。 The cationic polymer which swells in the water constituting the particles to be added to the water to be treated and does not substantially dissolve in water includes, for example, primary amines, secondary amines, tertiary amines and their acid salts, quaternary ammonium groups, etc. Is a copolymer of a cationic monomer having the functional group and a crosslinking agent monomer for substantially not dissolving in water. Specific examples of the cationic monomer include dimethylaminoethyl (meth) acrylate acid salt or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide acid salt or its quaternary ammonium salt, diallyldimethylammonium chloride, and the like. It is done. Examples of the cross-linking agent monomer include divinyl monomers such as methylene bisacrylamide. Moreover, it is good also as a copolymer with the anionic or nonionic monomer copolymerizable with the said cationic monomer. Specific examples of the anionic monomer to be copolymerized include (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkali metal salts thereof. It is necessary to use a small amount so as not to impair the properties as a conductive polymer. Nonionic monomers include (meth) acrylamide, N isopropylacrylamide, N methyl (NN dimethyl) acrylamide, acrylonitrile, styrene, methyl or ethyl (meth) acrylate. Each monomer may be one kind or plural kinds. The amount of the crosslinking agent monomer such as divinyl monomer is required to be 0.0001 to 0.1 mol% with respect to the total monomer, and the amount of swelling of the swellable polymer particles and the particle diameter in water can be adjusted by this amount. . As the swellable polymer particles, for example, Akogel C (manufactured by Mitsui Cytec Co., Ltd.) is commercially available. An anion exchange resin such as WA20 (manufactured by Mitsubishi Chemical Corporation) may be used as the swellable polymer particles. Further, the average particle size of the swellable polymer particles is not particularly limited, but the average particle size in the reversed-phase emulsion liquid or the suspension-like dispersion liquid, that is, the average particle size in a state not swollen with water is 100 μm or less. It is preferable that the thickness is 0.1 to 10 μm. This is because the smaller the particles, the higher the adsorbing effect of turbidity contained in the water to be treated, but if it is too small, solid-liquid separation becomes difficult.
上記水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する形態に特に限定はなく、例えば、粒子そのままでもよく、また、水中に分散した状態や、逆相エマルション液体やサスペンション状の分散液体の形態で添加してもよい。何れにしても、被処理水に膨潤性ポリマー粒子を添加することによって、被処理水が膨潤性ポリマー粒子と接触して、後段の撹拌工程を経て被処理水中に含まれる濁質等が膨潤性ポリマー粒子に吸着して凝集するようにすればよい。 There is no particular limitation on the form of adding particles composed of a cationic polymer that swells in water and does not substantially dissolve in water to the water to be treated. For example, the particles may be used as they are, or dispersed in water, You may add in the form of an emulsion liquid or a suspension-like dispersion liquid. In any case, by adding the swellable polymer particles to the water to be treated, the water to be treated comes into contact with the swellable polymer particles, and the turbidity contained in the water to be treated is swellable through a subsequent stirring step. What is necessary is just to make it adsorb | suck to a polymer particle and to aggregate.
また、2種以上の膨潤性ポリマー粒子を被処理水に添加してもよい。なお、膨潤性ポリマー粒子を構成するカチオン性ポリマーは水中で膨潤し実質的に水に溶解しないため、膨潤性ポリマー粒子も、通常の高分子凝集剤とは異なり、水中で膨潤し実質的に水に溶解しない。「実質的に水に溶解しない」とは、水溶性の程度が水中でカチオン性ポリマーからなる粒子として存在できる程度であればよく、具体的には、例えば、30℃での水への溶解性が0.1g/L以下程度であればよい。また、この粒子の水中での膨潤度は、水で膨潤していない時の粒子径に対して水中での粒子径は10〜200倍程度である。 Two or more kinds of swellable polymer particles may be added to the water to be treated. Since the cationic polymer constituting the swellable polymer particles swells in water and does not substantially dissolve in water, the swellable polymer particles also swell in water and substantially water, unlike ordinary polymer flocculants. Does not dissolve. “Substantially insoluble in water” means that the degree of water solubility is such that it can exist as particles composed of a cationic polymer in water. Specifically, for example, solubility in water at 30 ° C. Is about 0.1 g / L or less. The degree of swelling of these particles in water is about 10 to 200 times the particle size in water with respect to the particle size when not swollen with water.
ここで、逆相エマルション液体の形態としたカチオン性ポリマーからなる粒子について以下に詳細に説明するが、この形態に限定されるものではない。なお、特殊なものではなく、ごく一般的な逆相(W/O)エマルションポリマーである。 Here, although it demonstrates in detail below about the particle | grains which consist of a cationic polymer made into the form of a reverse phase emulsion liquid, it is not limited to this form. In addition, it is not a special thing but is a very general reverse phase (W / O) emulsion polymer.
逆相エマルション液体は、上記カチオン性ポリマー、水、炭化水素液体及び界面活性剤を含有する。そして、各成分の質量比(%)は、カチオン性ポリマー:水:炭化水素液体:界面活性剤=20〜40:20〜40:20〜40:2〜20で、カチオン性ポリマーと水との合計質量が、カチオン性ポリマーと水と炭化水素液体と界面活性剤との全体質量に対して40〜60質量%とすることが好ましい。 The inverse emulsion liquid contains the cationic polymer, water, a hydrocarbon liquid, and a surfactant. And mass ratio (%) of each component is cationic polymer: water: hydrocarbon liquid: surfactant = 20-40: 20-40: 20-40: 2-20, and the cationic polymer and water. The total mass is preferably 40 to 60% by mass with respect to the total mass of the cationic polymer, water, hydrocarbon liquid and surfactant.
炭化水素液体としては、イソヘキサンなどのイソパラフィン、n−ヘキサン、ケロシン、鉱物油などの脂肪族系の炭化水素液体が挙げられるが、これらに限定されるものではない。 Examples of the hydrocarbon liquid include, but are not limited to, isoparaffins such as isohexane, and aliphatic hydrocarbon liquids such as n-hexane, kerosene, and mineral oil.
また、界面活性剤としては、例えば、HLB(親水親油バランス)が7〜10で、炭素数10〜20の高級脂肪族アルコールのポリオキシエチレンエーテル、もしくは、炭素数10〜22の高級脂肪酸のポリオキシエチレンエステルが挙げられる。前者の例としては、ラウリルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコールなどのポリオキシエチレン(EO付加モル数=3〜10)エーテルが挙げられる。後者の例としては、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸などのポリオキシエチレン(EO付加モル数=3〜10)エステルが挙げられる。 Examples of the surfactant include polyoxyethylene ethers of higher aliphatic alcohols having 10 to 20 carbon atoms, or higher fatty acids having 10 to 22 carbon atoms, such as HLB (hydrophilic lipophilic balance) of 7 to 10. A polyoxyethylene ester is mentioned. Examples of the former include polyoxyethylene (EO addition mole number = 3 to 10) ethers such as lauryl alcohol, cetyl alcohol, stearyl alcohol, and oleyl alcohol. Examples of the latter include polyoxyethylene (EO addition mole number = 3 to 10) esters such as lauric acid, palmitic acid, stearic acid, and oleic acid.
なお、逆相エマルション液体は、カチオン性ポリマーの原料であるカチオン性モノマーや架橋剤モノマーと、水、炭化水素液体、界面活性剤を混合してモノマーを重合(乳化重合又は懸濁重合)することにより得られるが、これに限定されるものではなく、例えば、各種モノマーを溶液重合した後、ホモジナイザーなどで粉砕し、その後、界面活性剤などの分散剤と共に炭化水素液体に添加することによっても得られる。 The reverse phase emulsion liquid is obtained by polymerizing a monomer (emulsion polymerization or suspension polymerization) by mixing a cationic monomer or a crosslinking agent monomer, which is a raw material of the cationic polymer, with water, a hydrocarbon liquid, and a surfactant. However, the present invention is not limited to this. For example, after various monomers are solution polymerized, they are pulverized with a homogenizer, and then added to a hydrocarbon liquid together with a dispersant such as a surfactant. It is done.
膨潤性ポリマー粒子を被処理水に添加する際には、粒子の表面積が大きいことが好ましい。したがって、上記逆相エマルション液体やサスペンション状の分散液体の形態である粒子を、撹拌下の水に添加して粒子を膨潤させた状態にした後、被処理水に添加することが好ましい。 When the swellable polymer particles are added to the water to be treated, the surface area of the particles is preferably large. Therefore, it is preferable to add the particles in the form of the above-mentioned reversed phase emulsion liquid or suspension-like dispersion liquid to the water to be treated after adding the particles to the water under stirring to swell the particles.
膨潤性ポリマー粒子を被処理水に添加する量に特に制限は無いが、被処理水中に含まれる濁質や膜汚染物質の総量に対して、1〜50質量%程度とすることが好ましい。 Although there is no restriction | limiting in particular in the quantity which adds a swelling polymer particle to to-be-processed water, It is preferable to set it as about 1-50 mass% with respect to the total amount of the turbidity and film | membrane contaminant contained in to-be-processed water.
また、ポリマー粒子添加工程と同時又は後段に、被処理水に無機凝集剤を添加する工程を設けてもよい。濁質の凝集剤として、無機凝集剤を添加することにより、濁質が凝集しやすくなり、濁質除去効果が増大する。なお、ポリマー粒子添加工程と同時又は後段に、被処理水に無機凝集剤を添加する工程を設ける場合は、ポリマー粒子添加工程の前段に設けた凝集助剤添加工程において、凝集助剤として無機凝集剤ではない凝集助剤を添加することが好ましい。無機凝集剤は特に限定はなく、例えば、硫酸バンド、ポリ塩化アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩などが挙げられる。また、無機凝集剤の添加量にも特に限定はなく、処理する被処理水の性状に応じて調整すればよいが、被処理水に対して概ねアルミニウム又は鉄換算で0.5〜10mg/Lである。また、被処理水の性状にもよるが、無機凝集剤としてポリ塩化アルミニウム(PAC)を用いた場合、膨潤性ポリマー粒子及び無機凝集剤を添加した被処理水のpHを、pH5.0〜7.0程度とすると、凝集が最適となる。 Moreover, you may provide the process of adding an inorganic flocculant to to-be-processed water simultaneously with a polymer particle addition process, or a back | latter stage. By adding an inorganic flocculant as a turbid flocculant, the turbidity easily aggregates, and the turbidity removal effect increases. In addition, when providing the process of adding an inorganic flocculant to to-be-processed water simultaneously with a polymer particle addition process or a back | latter stage, in the agglomeration adjuvant addition process provided in the front | former stage of a polymer particle addition process, it is inorganic aggregation It is preferable to add an agglomeration aid that is not an agent. The inorganic flocculant is not particularly limited, and examples thereof include an aluminum salt such as a sulfuric acid band and polyaluminum chloride, and an iron salt such as ferric chloride and ferrous sulfate. Moreover, there is no limitation in particular also in the addition amount of an inorganic flocculant, What is necessary is just to adjust according to the property of the to-be-processed water to process, but about 0.5-10 mg / L in conversion of aluminum or iron with respect to to-be-processed water. It is. Further, although depending on the properties of the water to be treated, when polyaluminum chloride (PAC) is used as the inorganic flocculant, the pH of the water to be treated to which the swellable polymer particles and the inorganic flocculant are added is pH 5.0-7. If it is about 0.0, aggregation is optimal.
このようなポリマー粒子添加工程の後、被処理水を撹拌する(撹拌工程)。これにより、濁質等を膨潤性ポリマー粒子に完全に吸着させて濁質等を凝集させる。ここで、ポリマー粒子添加工程の前段で凝集助剤添加工程を行わない場合には、被処理水の濁度が低い場合、膨潤性ポリマー粒子を添加する凝集槽の壁面や後段の固液分離処理工程での沈殿槽の壁面など系内に濁質に吸着しない膨潤性ポリマー粒子が付着して、系内を汚染し、また、濁質の凝集が不完全になる。濁質の凝集が不完全になると、清澄な処理水が得られなくなったり、後段の膜分離処理で膜を汚染してしまうという問題が生じる。濁質の凝集が不完全になる機構は明らかではないが、次のように推測される。凝集助剤添加工程を行わない場合、被処理水の濁度が低いと、濁質に吸着しない膨潤性ポリマー粒子が存在し、これが凝集槽や沈殿槽の壁面など系内に付着する。そして、膨潤性ポリマーが壁面等に付着すると、付着した膨潤性ポリマーにさらに膨潤性ポリマーが付着していき、濁質を吸着する膨潤性ポリマーが不足してしまい、濁質の凝集が不完全になる。 After such a polymer particle addition step, the water to be treated is stirred (stirring step). Thereby, turbidity etc. are made to adsorb | suck to swelling polymer particle | grains completely, and turbidity etc. are aggregated. Here, when the flocculation aid addition step is not performed before the polymer particle addition step, when the turbidity of the water to be treated is low, the wall surface of the flocculation tank to which the swellable polymer particles are added and the solid-liquid separation treatment at the latter stage Swelling polymer particles that are not adsorbed by turbidity adhere to the system, such as the walls of the sedimentation tank in the process, contaminate the system, and turbidity aggregation becomes incomplete. If the aggregation of the turbidity becomes incomplete, there arises a problem that a clear treated water cannot be obtained, or the membrane is contaminated by a subsequent membrane separation treatment. The mechanism by which turbid aggregation is incomplete is not clear, but is presumed as follows. When the flocculation aid addition step is not performed, if the turbidity of the water to be treated is low, swellable polymer particles that are not adsorbed by the turbidity are present and adhere to the system such as the wall of the flocculation tank or the precipitation tank. When the swellable polymer adheres to the wall surface or the like, the swellable polymer further adheres to the attached swellable polymer, and the swellable polymer that adsorbs the turbidity is insufficient, and the aggregation of the turbidity is incomplete. Become.
一方、本発明においては、ポリマー粒子添加工程の前段で凝集助剤添加工程を行うので、凝集槽の壁面等の汚染や、凝集不足を抑制することができる。 On the other hand, in the present invention, since the aggregation assistant addition step is performed before the polymer particle addition step, contamination of the wall surface of the aggregation tank or the like, and insufficient aggregation can be suppressed.
撹拌工程の後、被処理水を固液分離処理する(固液分離処理工程)。固液分離処理としては、撹拌工程で生成した濁質等の凝集物を被処理水から除去することができれば特に限定はないが、沈殿処理、砂ろ過処理、加圧浮上処理や、膜分離処理等が挙げられる。 After the stirring step, the water to be treated is subjected to solid-liquid separation treatment (solid-liquid separation treatment step). The solid-liquid separation treatment is not particularly limited as long as aggregates such as turbidity generated in the stirring step can be removed from the water to be treated, but precipitation treatment, sand filtration treatment, pressure flotation treatment, membrane separation treatment, and the like. Etc.
沈殿処理や加圧浮上処理は、カセイソーダ、消石灰や硫酸などでpH調整を行い、最後に有機系高分子凝集剤にて懸濁物をフロック化することが好ましい。また必要に応じて有機凝結剤を併用することもできる。有機凝結剤は特に限定はなく、例えば、ポリエチレンイミン、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミン、ジアリルジメチルアンモニウムクロリドやジメチルアミノエチル(メタ)アクリレートの四級アンモニウム塩を構成モノマーとする重合体等、通常水処理で使用されるカチオン性有機系ポリマーが挙げられる。また、有機凝結剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01〜10mg/Lである。そして、有機系高分子凝集剤も特に限定はなく、水処理で通常使用される高分子凝集剤を用いることができる。例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機系高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機系高分子凝集剤が挙げられる。また、有機系高分子凝集剤の添加量にも特に限定はなく、処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01〜10mg/Lである。 In the precipitation treatment and the pressure levitation treatment, it is preferable to adjust pH with caustic soda, slaked lime, sulfuric acid or the like and finally flocculate the suspension with an organic polymer flocculant. Moreover, an organic coagulant can also be used together as needed. There is no particular limitation on the organic coagulant, for example, polyethyleneimine, ethylenediamine epichlorohydrin polycondensate, polyalkylene polyamine, polymers having quaternary ammonium salts of diallyldimethylammonium chloride or dimethylaminoethyl (meth) acrylate as constituent monomers, etc. Examples include cationic organic polymers that are usually used in water treatment. Moreover, there is no limitation in particular also in the addition amount of an organic coagulant | flocculant, What is necessary is just to adjust according to the property of to-be-processed water, However It is 0.01-10 mg / L in solid content with respect to to-be-processed water. The organic polymer flocculant is not particularly limited, and a polymer flocculant usually used in water treatment can be used. For example, poly (meth) acrylic acid, copolymers of (meth) acrylic acid and (meth) acrylamide, and anionic organic polymer flocculants such as alkali metal salts thereof, poly (meth) acrylamide, etc. Nonionic organic polymer flocculants, homopolymers composed of cationic monomers such as dimethylaminoethyl (meth) acrylate or quaternary ammonium salt thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salt thereof, and the like Examples thereof include cationic organic polymer flocculants such as a copolymer of a cationic monomer and a nonionic monomer copolymerizable. Moreover, there is no limitation in particular also in the addition amount of an organic type polymer flocculant, and what is necessary is just to adjust according to the property of treated water, but it is 0.01-10 mg / L in solid content with respect to to-be-treated water in general. .
膜分離処理としては、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、又は、逆浸透膜(RO膜)等が挙げられる。ここで、例えば、固液分離処理として膜分離処理を行う場合、被処理水である工業用水、市水、河川水、湖沼水、井水などは、通常フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物や、界面活性剤等の合成化学物質などの膜汚染物質を含むため、膜分離処理をすると、膜汚染物質が膜表面に吸着して膜分離性能が劣化してしまうという問題がある。本発明においては、膜分離処理の前に、膨潤性ポリマー粒子を添加するため、該粒子に膜汚染物質が吸着して凝集した後に膜分離処理をすることになる。したがって、生物代謝物などの膜汚染物質の溶存有機物濃度が低い水を膜分離処理することができるので、膜汚染物質の膜への吸着を低減でき、膜の分離性能の劣化を抑制でき、継続して清澄な処理水を得ることができる。 Examples of the membrane separation treatment include a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), or a reverse osmosis membrane (RO membrane). Here, for example, when performing a membrane separation process as a solid-liquid separation process, industrial water, city water, river water, lake water, well water, etc., which are treated water, are usually humic acid, fulvic acid organic matter, algae, etc. Contains membrane contaminants such as sugar and other biological metabolites, and synthetic chemicals such as surfactants. Therefore, when membrane separation treatment is performed, membrane contaminants adsorb to the membrane surface and membrane separation performance deteriorates. There is a problem that it ends up. In the present invention, since the swellable polymer particles are added before the membrane separation treatment, the membrane separation treatment is performed after membrane contaminants are adsorbed and aggregated on the particles. Therefore, water with low dissolved organic matter concentration of membrane pollutants such as biological metabolites can be membrane-separated, so that adsorption of membrane pollutants to the membrane can be reduced, degradation of membrane separation performance can be suppressed, and continued Thus, clear treated water can be obtained.
これらの固液分離処理は、単独で一段以上用いてもよく、また、沈澱処理、砂ろ過処理や加圧浮上処理後に、膜分離処理を行うなど、各種の固液分離処理を組み合わせてもよい。 These solid-liquid separation treatments may be used alone or in one or more stages, and may be combined with various solid-liquid separation treatments such as membrane separation treatment after precipitation treatment, sand filtration treatment or pressure flotation treatment. .
また、膜分離処理の後に、イオン交換処理等の脱イオン処理をさらに有していてもよい。これにより、純水や超純水を得ることができる。そして、脱炭酸処理や、活性炭処理等、被処理水の精製処理をさらに行ってもよい。 Moreover, you may have further deionization processes, such as an ion exchange process, after a membrane separation process. Thereby, pure water or ultrapure water can be obtained. And you may further perform the refinement | purification processes of to-be-processed water, such as a decarboxylation process and an activated carbon process.
また、必要に応じて、凝結剤、殺菌剤、消臭剤、消泡剤、防食剤などを添加してもよい。さらに、必要に応じて、紫外線照射、オゾン処理、生物処理などを併用してもよい。 Moreover, you may add a coagulant | flocculant, a disinfectant, a deodorant, an antifoamer, an anticorrosive, etc. as needed. Furthermore, you may use ultraviolet irradiation, ozone treatment, biological treatment, etc. together as needed.
以上述べたように、本発明の水処理方法によれば、被処理水に凝集助剤を添加した後、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加した後固液分離処理することにより、濁度が低い被処理水も処理することができ、凝集槽の壁面等を汚染することなく、清澄な水を得ることができる。 As described above, according to the water treatment method of the present invention, after adding an agglomeration aid to the water to be treated, solid particles are added after particles made of a cationic polymer that swells in water and does not substantially dissolve in water. By performing liquid separation treatment, water to be treated having low turbidity can be treated, and clear water can be obtained without contaminating the wall surface of the coagulation tank.
この水処理方法を用いた水処理装置の一例を図1の概略系統図に示す。図1に示すように、水処理装置1は、被処理水(原水)を導入するポンプ等の被処理水導入手段10と、原水側から順に第1凝集槽11と第2凝集槽12とからなる凝集槽13と、凝集助剤が保持される凝集助剤槽14から第1凝集槽11に凝集助剤を導入するポンプ等からなる凝集助剤導入手段15と、膨潤性ポリマー粒子が保持される膨潤性ポリマー粒子槽16から第2凝集槽12に膨潤性ポリマー粒子を導入するポンプ等からなる膨潤性ポリマー粒子導入手段17と、凝集槽13で濁質を凝集させた被処理水を排出する排出手段18とを有する。また、凝集槽13には、第1凝集槽11内の被処理水を撹拌する撹拌機19と第2凝集槽12内の被処理水を撹拌する撹拌機20が設けられている。そして、凝集槽13の下流側には、加圧浮上装置21、砂ろ過装置22、及び、MF膜を有する膜分離処理装置23が順に設けられている。
An example of a water treatment apparatus using this water treatment method is shown in the schematic system diagram of FIG. As shown in FIG. 1, the water treatment apparatus 1 includes water to be treated introduction means 10 such as a pump for introducing water to be treated (raw water), and a
このような水処理装置1では、まず、工業用水、市水、河川水、湖沼水、井水などの被処理水(原水)が、第1の凝集槽11に導入される。そして、凝集助剤槽14に保持された凝集助剤が、凝集助剤導入手段15により第1の凝集槽11に導入され被処理水に添加され、該被処理水は撹拌機19により撹拌される。次いで、被処理水は第2の凝集槽12に導入される。そして、膨潤性ポリマー粒子槽16に保持された膨潤性ポリマー粒子が、膨潤性ポリマー粒子導入手段17により第2の凝集槽12に導入され被処理水に添加され、該被処理水は撹拌機20により撹拌される。これにより、被処理水が含有する濁質や膜汚染物質が膨潤性ポリマー粒子に吸着して凝集し、凝集物が形成される。次に、凝集物が形成された被処理水は、排出手段18で反応槽13から排出され、加圧浮上装置21、砂ろ過装置22、及び、MF膜を有する膜分離処理装置23により固液分離処理されて、凝集物が除去され、清澄な処理水が得られる。
In such a water treatment apparatus 1, treated water (raw water) such as industrial water, city water, river water, lake water, and well water is first introduced into the
本発明においては、凝集助剤を添加した後に膨潤性ポリマー粒子を添加するので、第2凝集槽12の壁面等の水処理装置1の系内の汚染を抑制することができ、また、濁質の凝集も十分行うことができるため、清澄な処理水を得ることができる。さらに、図1に示す水処理装置では、膨潤性ポリマー粒子を用いて膜汚染物質を凝集させた後に膜分離処理するため、膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を抑制し、継続して清澄な処理水を得ることができる。
In the present invention, since the swellable polymer particles are added after adding the coagulation aid, contamination in the system of the water treatment apparatus 1 such as the wall surface of the
なお、図1に示す水処理装置においては、第1凝集槽11と第2凝集槽12からなる2槽構造としたが、一方又は両方の凝集槽を配管内で撹拌する構造としてもよい。また、膜分離処理装置23としてMF膜を示したが、UF膜、RO膜、又は、NF膜等でもよい。
In addition, in the water treatment apparatus shown in FIG. 1, although it was set as the 2 tank structure which consists of the
以下、本発明を実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example and a comparative example, this invention is not limited at all by this Example.
(実施例1)
フミン質や生物代謝物を含有し、カオリン標準液を用いた透過光測定方法による濁度が1.2〜4.8度、波長260nmでの吸光度(E260:有機物濃度指標)が0.187〜0.345で変動する工業用水を被処理水(原水)とし、図1に示す凝集槽・加圧浮上装置・砂ろ過装置・MF膜(0.45μm、酢酸セルロール製)を有する膜分離処理装置からなる水処理装置を用い、第1凝集槽にカオリン(キシダ化学社製、300mesh(100%))を、第2凝集槽に膨潤性ポリマー粒子(アコジェルC、三井サイテック社製)を添加して、1ヶ月間水処理を行った。なお、カオリンは、第1凝集槽での被処理水の濁質が5度になる量を添加し、また、アコジェルCは第2凝集槽での被処理水に対して4mg/Lになる量を添加した。
Example 1
Contains humic substances and biological metabolites, has a turbidity of 1.2 to 4.8 degrees according to a transmitted light measurement method using a kaolin standard solution, and an absorbance at a wavelength of 260 nm (E260: organic substance concentration index) of 0.187 to Membrane separation treatment apparatus having industrial water fluctuating at 0.345 as treated water (raw water) and having a coagulation tank, pressurized flotation device, sand filtration device, and MF membrane (0.45 μm, made of cellulose acetate) shown in FIG. A kaolin (Kishida Chemical Co., 300 mesh (100%)) is added to the first coagulation tank, and swellable polymer particles (Akogel C, Mitsui Cytec Co., Ltd.) are added to the second coagulation tank. Water treatment was performed for 1 month. Kaolin is added in such an amount that the turbidity of the water to be treated in the first flocculation tank becomes 5 ° C., and Acogel C is 4 mg / L with respect to the water to be treated in the second flocculation tank. Was added.
水処理を行った1ヶ月の間、砂ろ過した後の被処理水についてTOC濃度及び濁度を求め、また、MF膜で処理した後の被処理水についてMFF値を求めた。結果を表1に示す。なお、TOC濃度は湿式酸化赤外吸収法により、濁度はカオリン標準液を用いた透過光測定方法により求めた。また、MFF値は、目皿外径40mm、目皿上高さ100mmのブフナーロートと、直径47mmの微細孔0.45μmのメンブレンフィルター(ミリポア社製)を用いて、目皿上の空間が常に水で満たされた状態で濾過し、濾過量が500mlとなるまでの時間T1(秒)と、濾過量が1,000mlとなるまでの時間T2(秒)を測定し、下記[数1]から求めた。なお、MFF値が小さいほど、測定された被処理水が清澄であることを示す。さらに、1ヶ月間水処理を行った後の水処理装置内の壁面を目視で観察した。 During one month after water treatment, the TOC concentration and turbidity were determined for the water to be treated after sand filtration, and the MFF value was determined for the water to be treated after being treated with the MF membrane. The results are shown in Table 1. The TOC concentration was determined by a wet oxidation infrared absorption method, and the turbidity was determined by a transmitted light measurement method using a kaolin standard solution. The MFF value is determined by using a Buchner funnel with an outer diameter of 40 mm and an upper height of 100 mm and a membrane filter (Millipore) with a diameter of 47 mm and a fine hole of 0.45 μm. After filtration in a state filled with water, the time T1 (second) until the filtration amount reaches 500 ml and the time T2 (second) until the filtration amount reaches 1,000 ml are measured. From the following [Equation 1] Asked. In addition, it shows that the to-be-processed water measured is clear, so that a MFF value is small. Furthermore, the wall surface in the water treatment apparatus after performing water treatment for one month was observed visually.
(実施例2)
カオリンのかわりに、工業用ポリ塩化アルミニウム(PAC)を用い、第1凝集槽での被処理水に対して30mg/Lとなる量のPACを添加した以外は、実施例1と同様の操作を行った。
(Example 2)
In place of kaolin, industrial polyaluminum chloride (PAC) was used, and the same operation as in Example 1 was performed except that 30 mg / L of PAC was added to the water to be treated in the first coagulation tank. went.
(比較例1)
カオリンを添加しなかった以外は、実施例1と同様の操作を行った。
(Comparative Example 1)
The same operation as in Example 1 was performed except that kaolin was not added.
この結果、実施例1及び実施例2では、第2凝集槽の壁面など水処理装置内には膨潤性ポリマー粒子が付着しておらず、第2凝集槽は汚染されていなかった。
また、実施例1及び実施例2では、砂ろ過後の被処理水のTOC濃度及び濁度を低い値で維持することができた。したがって、膨潤性ポリマー粒子により濁質の凝集が良好に行われ続けたことが確認された。
さらに、実施例1及び実施例2では、MF膜処理後の被処理水のMFF値も低い値で維持することができ、継続して清澄な処理水が確実に得られたことが確認された。なお、1ヶ月通水後もMF膜は汚染していなかった。
As a result, in Example 1 and Example 2, swellable polymer particles did not adhere in the water treatment apparatus such as the wall surface of the second flocculation tank, and the second flocculation tank was not contaminated.
Moreover, in Example 1 and Example 2, the TOC density | concentration and turbidity of the to-be-processed water after sand filtration were able to be maintained at the low value. Therefore, it was confirmed that the turbid agglomeration continued to be satisfactorily performed by the swellable polymer particles.
Furthermore, in Example 1 and Example 2, it was confirmed that the MFF value of the water to be treated after the MF membrane treatment could be maintained at a low value, and that clear treated water was continuously obtained reliably. . Note that the MF membrane was not contaminated even after one month of water flow.
一方、膨潤性ポリマー粒子を添加する前段で凝集助剤を添加しなかった比較例1では、第2凝集槽の壁面は膨潤性ポリマー粒子が付着していた。また、砂ろ過後の被処理水のTOC濃度及び濁度やMF膜処理後の被処理水のMFF値は、実施例1及び実施例2と比較して、高くなる場合があった。したがって、膨潤性ポリマー粒子が凝集槽の壁面に付着することにより、濁質の凝集が不十分となる場合があり、MF膜処理後の処理水として清澄なものを継続して得ることはできなかった。また、MF膜も汚染していた。 On the other hand, in Comparative Example 1 in which the flocculating aid was not added before the swellable polymer particles were added, the swellable polymer particles adhered to the wall surface of the second flocculation tank. In addition, the TOC concentration and turbidity of the water to be treated after sand filtration and the MFF value of the water to be treated after MF membrane treatment were sometimes higher than those in Example 1 and Example 2. Therefore, when the swellable polymer particles adhere to the wall surface of the coagulation tank, turbidity aggregation may be insufficient, and it is not possible to continuously obtain a clear water as the treated water after the MF membrane treatment. It was. The MF membrane was also contaminated.
1 水処理装置
10 被処理水導入手段
11 第1凝集槽
12 第2凝集槽
13 凝集槽
14 凝集助剤槽
15 凝集助剤導入手段
16 膨潤性ポリマー粒子槽
17 膨潤性ポリマー粒子導入手段
18 排出手段
19、20 撹拌機
21 加圧浮上装置
22 砂ろ過装置
23 膜分離処理装置
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092395A JP5348369B2 (en) | 2008-03-31 | 2008-03-31 | Water treatment method |
BRPI0815054-0A2A BRPI0815054A2 (en) | 2007-08-07 | 2008-08-06 | MEMBRANE SPERATION METHOD AND APPARATUS. |
KR1020107002175A KR20100054126A (en) | 2007-08-07 | 2008-08-06 | Membrane separation method and membrane separation device |
EP08827117.6A EP2177479A4 (en) | 2007-08-07 | 2008-08-06 | Membrane separation method and membrane separation device |
CN200880102068.3A CN101815677B (en) | 2007-08-07 | 2008-08-06 | Membrane separation method and membrane separation device |
US12/673,165 US20110094963A1 (en) | 2007-08-07 | 2008-08-06 | Membrane separation method and membrane separation device |
PCT/JP2008/064137 WO2009020157A1 (en) | 2007-08-07 | 2008-08-06 | Membrane separation method and membrane separation device |
CN201410011104.2A CN103768947B (en) | 2007-08-07 | 2008-08-06 | Membrane separating method |
TW097130006A TWI459997B (en) | 2007-08-07 | 2008-08-07 | Membrane separation method and membrane separation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092395A JP5348369B2 (en) | 2008-03-31 | 2008-03-31 | Water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009240974A JP2009240974A (en) | 2009-10-22 |
JP5348369B2 true JP5348369B2 (en) | 2013-11-20 |
Family
ID=41303514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008092395A Expired - Fee Related JP5348369B2 (en) | 2007-08-07 | 2008-03-31 | Water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5348369B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201403820YA (en) | 2012-01-11 | 2014-11-27 | Kurita Water Ind Ltd | Reverse osmosis treatment method |
CN106192293A (en) * | 2015-04-30 | 2016-12-07 | 青岛海尔洗衣机有限公司 | A kind of washing machine and control method |
JP6965025B2 (en) * | 2017-05-22 | 2021-11-10 | オルガノ株式会社 | Membrane filtration device and membrane filtration method |
JP7224753B2 (en) * | 2017-05-30 | 2023-02-20 | オルガノ株式会社 | Cohesive membrane filtration method and cohesive membrane filtration device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3644579A1 (en) * | 1986-12-27 | 1988-07-07 | Henkel Kgaa | NEW FLOCKING AND FILTERING AGENTS AND THEIR USE |
JPS6485199A (en) * | 1987-09-25 | 1989-03-30 | Mitsui Cyanamid Kk | Dehydration method for sludge |
FR2655277A1 (en) * | 1989-12-06 | 1991-06-07 | Atochem | PROCESS FOR TREATING WATER WITH SIMULTANEOUS FLOCCULATION AND ADSORPTION USING PARTIALLY HYDROPHOBIC POLYELECTROLYTES |
JPH0760249A (en) * | 1993-08-31 | 1995-03-07 | Ebara Corp | Method for treating organic waste water |
WO1997018167A1 (en) * | 1995-11-14 | 1997-05-22 | Cytec Technology Corp. | High performance polymer flocculating agents |
JP2007023146A (en) * | 2005-07-15 | 2007-02-01 | Hymo Corp | Ionic fine particle and application of the same |
-
2008
- 2008-03-31 JP JP2008092395A patent/JP5348369B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009240974A (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218731B2 (en) | Water treatment method and water treatment apparatus | |
TWI459997B (en) | Membrane separation method and membrane separation apparatus | |
Farahani et al. | Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis | |
Ma et al. | Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment | |
Wang et al. | Impact of polymer flocculants on coagulation-microfiltration of surface water | |
JP2011230038A (en) | Water treatment apparatus | |
JP5282864B2 (en) | Membrane separation method and membrane separation apparatus | |
JP5348369B2 (en) | Water treatment method | |
KR101282985B1 (en) | Filtration apparatus and water treatment equipment | |
JP2009154095A (en) | Water treatment method | |
WO2010050325A1 (en) | Membrane separation process | |
JP3409322B2 (en) | Pure water production method | |
WO2019008822A1 (en) | Water treatment method and water treatment device | |
JP2008006382A (en) | Method of treating oil-containing waste water | |
WO2019208532A1 (en) | Water treatment method and water treatment apparatus | |
JP2008246372A (en) | Waste water treatment method | |
JP5099315B2 (en) | Method for treating humic-containing water | |
JP2011206750A (en) | Water treatment method and water treatment apparatus | |
JP5874360B2 (en) | Method and apparatus for flocculation treatment of silt-containing water | |
JP4923834B2 (en) | Method and apparatus for treating water containing soluble COD component | |
JP2009240975A (en) | Water treatment method | |
JP2009142761A (en) | Water treatment method | |
JP2019188338A (en) | Water treatment method and water treatment apparatus | |
JP2011025143A (en) | Virus removal method | |
JP2010082593A (en) | Water treatment method and organic coagulant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130806 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |