JP2011206750A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2011206750A
JP2011206750A JP2010079590A JP2010079590A JP2011206750A JP 2011206750 A JP2011206750 A JP 2011206750A JP 2010079590 A JP2010079590 A JP 2010079590A JP 2010079590 A JP2010079590 A JP 2010079590A JP 2011206750 A JP2011206750 A JP 2011206750A
Authority
JP
Japan
Prior art keywords
water
treated
filtration
turbidity
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079590A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
茂 佐藤
Keiryo Kofune
佳亮 小船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010079590A priority Critical patent/JP2011206750A/en
Publication of JP2011206750A publication Critical patent/JP2011206750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment apparatus which use a fibrous filtering medium and are good in capturing performance of suspended matter contained in water to be treated.SOLUTION: A coagulant containing an amphoteric electrolytic polymer having a cationic monomer unit of 20-80 mol%, an anionic monomer unit of 5-40 mol% and a nonionic monomer unit of 0-75%, is added to the water to be treated, to coagulate it. Thereafter, the water to be treated, which is coagulated, is made to flow in a filtration treatment means, which has the fibrous filtering medium for capturing the suspended matter in the flowed water to be treated, to be filtered.

Description

本発明は、工業用水、市水、井水、河川水、湖沼水、工場廃水などの被処理水の水処理
方法及び水処理装置に関する。
The present invention relates to a water treatment method and a water treatment apparatus for water to be treated such as industrial water, city water, well water, river water, lake water, and factory waste water.

工業用水、市水、井水、河川水、湖沼水、工場廃水などの被処理水を処理する方法とし
て、例えば被処理水に無機凝集剤及びアニオン性等の高分子凝集剤を添加して被処理水に
含まれる濁質を吸着や凝結等する凝集処理をした後、砂濾過や加圧浮上処理により濁質を
除去する方法がある。しかしながら砂濾過や加圧浮上処理では、装置が大きくなってしま
うという問題がある。
As a method of treating treated water such as industrial water, city water, well water, river water, lake water, and factory wastewater, for example, an inorganic flocculant and an anionic polymer flocculant are added to the treated water. There is a method of removing turbidity by sand filtration or pressurized flotation treatment after flocculation treatment such as adsorption or condensation of the turbidity contained in the treated water. However, sand filtration and pressure levitation processing have a problem that the apparatus becomes large.

ここで、非常に高い濾過速度での濾過処理が可能なため省スペース化が可能な濾過装置
として、繊維状の濾過体(濾材)を用いた濾過装置が提案されている(特許文献1〜3参
照)。しかし、この繊維状の濾過体を用いた濾過装置は微細な粒子の捕捉性能が悪い。し
たがって、この濾過装置を用いて水処理する際には、無機凝集剤や高分子凝集剤などの凝
集剤を用いたり、この濾過装置で捕捉されなかった微細な粒子を捕捉するために、更に濾
過手段を設けているが、捕捉性能は不十分であり、清澄な処理水を得難いという問題があ
る。
Here, a filtration device using a fibrous filter body (filter material) has been proposed as a filtration device capable of saving space because a filtration process at a very high filtration rate is possible (Patent Documents 1 to 3). reference). However, the filtration apparatus using the fibrous filter body has a poor ability to capture fine particles. Therefore, when water treatment is performed using this filtration device, a flocculant such as an inorganic flocculant or a polymer flocculant is used, or in order to capture fine particles not captured by this filtration device, further filtration is performed. Although means are provided, there is a problem that the capture performance is insufficient and it is difficult to obtain clear treated water.

特開2003−265907号公報JP 2003-265907 A 特開2004−89766号公報JP 2004-89766 A 特開2007−229658公報JP 2007-229658 A

本発明は上述した事情に鑑み、繊維状の濾過体を用い、被処理水中に含まれる濁質の捕
捉性能が良好な水処理方法及び水処理装置を提供することを目的とする。
In view of the above-described circumstances, an object of the present invention is to provide a water treatment method and a water treatment apparatus that use a fibrous filter and have good trapping performance for turbidity contained in water to be treated.

本発明者は上記目的を達成するために鋭意検討した結果、繊維状の濾過体を有する濾過
処理手段での濾過処理の前に、カチオン性モノマーユニット20〜80モル%と、アニオ
ン性モノマーユニット5〜40モル%と、ノニオン性モノマーユニット0〜75%とを有
する両性電解質ポリマーを凝集剤として添加することにより、上記目的が達成されること
を見いだし、本発明を完成した。
As a result of intensive studies to achieve the above object, the present inventors have found that the cationic monomer units 20 to 80 mol% and the anionic monomer unit 5 are filtered before the filtration treatment by the filtration treatment means having a fibrous filter. It was found that the above object was achieved by adding an amphoteric electrolyte polymer having ˜40 mol% and nonionic monomer units of 0 to 75% as a flocculant, and the present invention was completed.

即ち、本発明の水処理方法は、カチオン性モノマーユニット20〜80モル%と、アニ
オン性モノマーユニット5〜40モル%と、ノニオン性モノマーユニット0〜75%とを
有する両性電解質ポリマーを含有する凝集剤を、被処理水に添加して凝集処理した後、該
凝集処理した被処理水を、通水される被処理水中の濁質を捕捉する繊維状の濾過体を有す
る濾過処理手段に通水して濾過処理することを特徴とする。
That is, the water treatment method of the present invention comprises an agglomeration containing an ampholyte polymer having 20 to 80 mol% of cationic monomer units, 5 to 40 mol% of anionic monomer units, and 0 to 75% of nonionic monomer units. After the agent is added to the water to be treated and coagulated, the coagulated water to be treated is passed through a filtration means having a fibrous filter that captures turbidity in the water to be treated. And filtering.

また、前記濾過処理手段は、紐状の濁質捕捉部を有する濾過体が通水時の濾過部の空隙
率が50〜95%になるように濾過槽に充填されていることが好ましい。
Moreover, it is preferable that the said filtration processing means is filled in the filtration tank so that the filter body which has a string-like turbidity capture | acquisition part may have the porosity of the filtration part at the time of water flow to 50 to 95%.

そして、前記濾過処理の前に、被処理水に無機凝集剤を添加してもよい。   And before the said filtration process, you may add an inorganic flocculant to to-be-processed water.

本発明の他の態様は、被処理水が導入される反応槽と、カチオン性モノマーユニット2
0〜80モル%と、アニオン性モノマーユニット5〜40モル%と、ノニオン性モノマー
ユニット0〜75%とを有する両性電解質ポリマーを含有する凝集剤を前記反応槽又は反
応槽の前段で導入して、被処理水に前記凝集剤を添加する凝集剤導入手段と、前記反応槽
の後段に設けられ前記反応槽で凝集処理した被処理水を濾過処理する濾過処理手段であっ
て通水される被処理水中の濁質を捕捉する繊維状の濾過体を有する濾過処理手段とを具備
することを特徴とする水処理装置にある。
Another aspect of the present invention is a reaction tank into which water to be treated is introduced, and a cationic monomer unit 2.
A flocculant containing an amphoteric electrolyte polymer having 0 to 80 mol%, anionic monomer units 5 to 40 mol%, and nonionic monomer units 0 to 75% is introduced in the preceding stage of the reaction vessel or reaction vessel. A flocculant introducing means for adding the flocculant to the water to be treated; and a filtration means for filtering the water to be treated which has been agglomerated in the reaction tank and is provided downstream of the reaction tank. And a filtration means having a fibrous filter for capturing turbidity in the treated water.

カチオン性モノマーユニット20〜80モル%と、アニオン性モノマーユニット5〜4
0モル%と、ノニオン性モノマーユニット0〜75%とを有する両性電解質ポリマーを含
有する凝集剤を、被処理水に添加することにより、被処理水中に含まれる濁質と両性電解
質ポリマーとで非常に強固で大きなフロック(凝集物)を形成することができる。したが
って、繊維状の濾過体を用いた濾過処理手段で濾過処理しても、従来の高分子凝集剤や無
機凝集剤を用いた場合と比較して、形成されたフロックは非常に高い捕捉率で繊維状の濾
過体に捕捉されるので、清澄度の高い処理水を得ることができる。
Cationic monomer units 20 to 80 mol% and anionic monomer units 5 to 4
By adding a flocculant containing an amphoteric electrolyte polymer having 0 mol% and nonionic monomer units of 0 to 75% to the water to be treated, the turbidity contained in the water to be treated and the amphoteric electrolyte polymer are extremely It is possible to form strong and large flocs (aggregates). Therefore, even when filtration is performed by a filtration means using a fibrous filter, the formed floc has a very high capture rate compared to the case of using a conventional polymer flocculant or inorganic flocculant. Since it is captured by the fibrous filter, treated water with high clarity can be obtained.

濾過装置の構成を示す断面図である。It is sectional drawing which shows the structure of a filtration apparatus. 濾過装置の要部拡大図である。It is a principal part enlarged view of a filtration apparatus. 濾過装置の濁質捕捉部の一例を示す図である。It is a figure which shows an example of the turbidity capture | acquisition part of a filtration apparatus. 水処理装置例の概略系統図である。It is a schematic system diagram of the example of a water treatment apparatus. 水処理装置例の概略系統図である。It is a schematic system diagram of the example of a water treatment apparatus.

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の水処理方法は、カチオン性モノマーユニット20〜80モル%と、アニオン性
モノマーユニット5〜40モル%と、ノニオン性モノマーユニット0〜75%とを有する
両性電解質ポリマーを含有する凝集剤を、被処理水に添加して凝集処理した後、この凝集
処理した被処理水を、通水される被処理水中の濁質を捕捉する繊維状の濾過体を有する濾
過処理手段に通水して濾過処理するものである。
The water treatment method of the present invention comprises a flocculant containing an amphoteric electrolyte polymer having 20 to 80 mol% of cationic monomer units, 5 to 40 mol% of anionic monomer units, and 0 to 75% of nonionic monomer units. Then, after adding to the water to be treated and aggregating the water, the water to be treated which has been agglomerated is passed through a filtration means having a fibrous filter that captures turbidity in the water to be treated. Filtering is performed.

被処理水としては、例えば、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの
生物代謝物、又は、界面活性剤等の合成化学物質などを含む水、具体的には、工業用水、
市水、井水、河川水、湖沼水、工場廃水(特に、工場からの廃水を生物処理した生物処理
水)などが挙げられるが、これらに限定されるものではない。なお、フミン質とは、植物
などが微生物に分解されることにより生じる腐食物質をいい、フミン酸等を含むものであ
り、フミン質を含有する水は、フミン質および/またはフミン質に由来する溶解性COD
成分、懸濁物質や色度成分を有する。
Examples of water to be treated include water containing a humic acid / fulvic acid organic substance, a biological metabolite such as sugar produced by algae, or a synthetic chemical substance such as a surfactant, specifically, industrial water. ,
Examples include, but are not limited to, city water, well water, river water, lake water, and factory wastewater (particularly, biologically treated water obtained by biologically treating wastewater from a factory). The humic substance refers to a corrosive substance generated by the decomposition of plants and the like into microorganisms, and includes humic acid, and the water containing the humic substance is derived from humic substance and / or humic substance. Soluble COD
Contains ingredients, suspended matter and chromaticity components.

そして、被処理水に添加する凝集剤は、本発明においては、カチオン性モノマーユニッ
ト20〜80モル%と、アニオン性モノマーユニット5〜40モル%と、ノニオン性モノ
マーユニット0〜75%とを有する両性電解質ポリマーを含有するものである。すなわち
、20〜80モル%のカチオン性モノマーユニットと、5〜40モル%のアニオン性モノ
マーユニットを必須とする両性電解質ポリマーであり、さらに、75モル%以下のノニオ
ン性モノマーユニットを有するものとしてもよい。なお、この共重合体は電解質なので、
水に溶解するものである。
And the flocculant added to to-be-processed water has 20-80 mol% of cationic monomer units, 5-40 mol% of anionic monomer units, and 0-75% of nonionic monomer units in this invention. It contains an ampholyte polymer. That is, it is an ampholyte polymer essentially comprising 20 to 80 mol% of cationic monomer units and 5 to 40 mol% of anionic monomer units, and further having 75% or less of nonionic monomer units. Good. Since this copolymer is an electrolyte,
It is soluble in water.

このように、所定の比率のカチオン性モノマーユニット及びアニオン性モノマーユニッ
トを有する両性の共重合体を凝集剤として添加することにより、被処理水の濁質と非常に
強固で大きなフロック(凝集物)を形成することができるため、後述する実施例に示すよ
うに、清澄な処理水を得ることができる。カチオン性モノマーユニットの比率が80モル
%よりも高い又はアニオン性モノマーユニットの比率が5モル%よりも低いと、両性の特
徴が薄れ、強固で大きなフロックを形成して清澄な処理水を得るという本発明の効果が得
られない。なお、カチオン性モノマーユニットが20〜50モル%、アニオン性モノマー
ユニットが5〜25モル%、ノニオン性モノマーユニット20〜75%である両性の共重
合体とすると、特に強固で大きなフロックを形成することができるため、好ましい。
Thus, by adding an amphoteric copolymer having a predetermined ratio of cationic monomer unit and anionic monomer unit as a flocculant, the turbidity of the water to be treated and a very strong and large floc (aggregate) Therefore, as shown in the examples described later, clear treated water can be obtained. When the ratio of the cationic monomer unit is higher than 80 mol% or the ratio of the anionic monomer unit is lower than 5 mol%, the amphoteric characteristics are diminished, and a strong and large floc is formed to obtain a clear treated water. The effect of the present invention cannot be obtained. The amphoteric copolymer having a cationic monomer unit of 20 to 50 mol%, an anionic monomer unit of 5 to 25 mol%, and a nonionic monomer unit of 20 to 75% forms a particularly strong and large floc. This is preferable.

このような両性電解質ポリマーの製造方法は特に限定されず、例えば、ビニル基等の重
合性基を有するカチオン性モノマー、アニオン性モノマー、ノニオン性モノマーを共重合
させることにより合成することができる。勿論、このカチオン性モノマーから両性電解質
ポリマーのカチオン性モノマーユニットが構成され、アニオン性モノマーから両性電解質
ポリマーのアニオン性モノマーユニットが構成され、ノニオン性モノマーから両性電解質
ポリマーのノニオン性モノマーユニットが構成される。なお、ブロック共重合体でもラン
ダム共重合体でもよい。
The production method of such an amphoteric electrolyte polymer is not particularly limited, and can be synthesized, for example, by copolymerizing a cationic monomer having a polymerizable group such as a vinyl group, an anionic monomer, or a nonionic monomer. Of course, the cationic monomer unit of the amphoteric electrolyte polymer is composed of this cationic monomer, the anionic monomer unit of the amphoteric electrolyte polymer is composed of the anionic monomer, and the nonionic monomer unit of the amphoteric electrolyte polymer is composed of the nonionic monomer. The A block copolymer or a random copolymer may be used.

カチオン性モノマーは、例えば、一級アミン、二級アミン、三級アミンおよびそれらの
酸塩、四級アンモニウム基などの官能基を有するモノマーである。カチオン性モノマーの
具体例としては、ジメチルアミノエチル(メタ)アクリレートの酸塩もしくはその4級ア
ンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの酸塩もしくはその4級
アンモニウム塩、ジアリルジメチルアンモニウムクロリド等が挙げられる。なお、(メタ
)アクリレートは、「アクリレート又はメタクリレート」を表し、(メタ)アクリルアミ
ド、(メタ)アクリル酸についても同様である。また、アニオン性モノマーとしては、例
えば、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸および
それらのアルカリ金属塩等が挙げられる。ノニオン性モノマーとしては、(メタ)アクリ
ルアミド、Nイソプロピルアクリルアミド、Nメチル(NNジメチル)アクリルアミド、
アクリロニトリル、スチレン、メチルもしくはエチル(メタ)アクリレート等が挙げられ
る。なお、各モノマーは1種でも複数種でもよい。
The cationic monomer is, for example, a monomer having a functional group such as a primary amine, secondary amine, tertiary amine and acid salts thereof, or a quaternary ammonium group. Specific examples of the cationic monomer include dimethylaminoethyl (meth) acrylate acid salt or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide acid salt or its quaternary ammonium salt, diallyldimethylammonium chloride, and the like. It is done. Note that (meth) acrylate represents “acrylate or methacrylate”, and the same applies to (meth) acrylamide and (meth) acrylic acid. Examples of the anionic monomer include (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkali metal salts thereof. Nonionic monomers include (meth) acrylamide, N isopropyl acrylamide, N methyl (NN dimethyl) acrylamide,
Examples include acrylonitrile, styrene, methyl or ethyl (meth) acrylate. Each monomer may be one kind or plural kinds.

また、両性電解質ポリマーは、カチオン性の水溶性ポリマー、アニオン性の水溶性ポリ
マーや、ノニオン性の水溶性ポリマーの高分子反応によって合成してもよい。
The ampholyte polymer may be synthesized by a polymer reaction of a cationic water-soluble polymer, an anionic water-soluble polymer, or a nonionic water-soluble polymer.

両性電解質ポリマーの形態は、粉末状、逆相エマルション、水溶液状のいずれでもよい
。そして、両性電解質ポリマーを凝集剤として被処理水に添加する形態も特に限定されず
、被処理水と両性電解質ポリマーが接触して、被処理水中に含まれる濁質(SS)が両性
電解質ポリマーに吸着してフロックを形成する、すなわち凝集処理できるようにすればよ
い。例えば、両性電解質ポリマーの0.01〜0.5質量%水溶液を、被処理水に添加す
ることが好ましい。なお、2種以上の両性電解質ポリマーを被処理水に添加してもよい。
また、両性電解質ポリマーを被処理水に添加する量に特に制限は無いが、被処理水に対し
て、0.5〜100mg/L程度とすることが好ましい。なお、この添加量は、主に水中
の有機物濃度に依存し、処理対象である被処理水の水質によって変わるものである。
The amphoteric electrolyte polymer may be in the form of a powder, a reverse phase emulsion, or an aqueous solution. And the form which adds an amphoteric electrolyte polymer to a to-be-processed water as a coagulant | flocculant is not specifically limited, The to-be-processed water and an amphoteric electrolyte polymer contact, and the suspended matter (SS) contained in a to-be-processed water becomes an amphoteric electrolyte polymer. It is only necessary to form a floc by adsorbing, that is, to perform a coagulation treatment. For example, it is preferable to add a 0.01 to 0.5 mass% aqueous solution of an ampholyte polymer to the water to be treated. Two or more amphoteric electrolyte polymers may be added to the water to be treated.
Moreover, there is no restriction | limiting in particular in the quantity which adds an amphoteric electrolyte polymer to to-be-processed water, However It is preferable to set it as about 0.5-100 mg / L with respect to to-be-processed water. The amount of addition depends mainly on the concentration of organic matter in the water, and varies depending on the quality of the water to be treated.

また、凝集処理の際に、被処理水に無機凝集剤を添加してもよい。無機凝集剤を添加す
ることにより、微小な濁質や水溶性の濁質の除去が可能となり、得られる処理水をより清
澄にすることができる。また、無機凝集剤を添加することにより、上記両性電解質ポリマ
ーと無機凝集剤との相互作用により、両性電解質ポリマー単独で使用する場合よりも強固
なフロックを形成することができる。なお、無機凝集剤の添加は、後述する濾過処理の前
であればよく、両性電解質ポリマーを被処理水に添加する前でも後でもよく、また、両性
電解質ポリマーと同時に添加してもよいが、両性電解質ポリマーの添加前に添加すること
が好ましい。無機凝集剤の添加によってまず微細フロックを生成させ、その後両性電解質
ポリマーを添加してさらにフロックを大きくすることにより、凝集効率を大幅に向上でき
るためである。無機凝集剤に特に限定はなく、例えば、硫酸バンド、ポリ塩化アルミニウ
ム(PAC)等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩などが挙げられる。
また、無機凝集剤の添加量にも特に限定はなく、処理する被処理水の性状に応じて調整す
ればよいが、被処理水に対して概ねアルミニウム又は鉄換算で0.5〜10mg/Lであ
る。また、被処理水の性状にもよるが、無機凝集剤としてポリ塩化アルミニウムを用いた
場合、被処理水のpHを5.0〜7.0程度とすると、凝集が最適になり、大きく強固な
フロックを形成することができる。
In addition, an inorganic flocculant may be added to the water to be treated at the time of the flocculation treatment. By adding an inorganic flocculant, it becomes possible to remove minute turbidity and water-soluble turbidity, and the treated water obtained can be clarified. Further, by adding an inorganic flocculant, a stronger floc can be formed by the interaction between the amphoteric electrolyte polymer and the inorganic flocculant than when the amphoteric electrolyte polymer is used alone. The inorganic flocculant may be added before the filtration treatment described later, before or after the amphoteric electrolyte polymer is added to the water to be treated, and may be added simultaneously with the amphoteric electrolyte polymer. It is preferable to add it before the addition of the ampholyte polymer. This is because, by adding an inorganic flocculant, fine flocs are first generated and then an amphoteric electrolyte polymer is added to further increase the flocs, thereby greatly improving the agglomeration efficiency. There are no particular limitations on the inorganic flocculant, and examples thereof include aluminum salts such as sulfate bands and polyaluminum chloride (PAC), and iron salts such as ferric chloride and ferrous sulfate.
Moreover, there is no limitation in particular also in the addition amount of an inorganic flocculant, What is necessary is just to adjust according to the property of the to-be-processed water to process, but about 0.5-10 mg / L in conversion of aluminum or iron with respect to to-be-processed water. It is. Although depending on the properties of the water to be treated, when polyaluminum chloride is used as the inorganic flocculant, when the pH of the water to be treated is about 5.0 to 7.0, the coagulation is optimized and greatly strong. A floc can be formed.

このように、被処理水に両性電解質ポリマーや、無機凝集剤を添加して、必要に応じて
攪拌等する凝集処理をした後、この被処理水を濾過処理手段に通水して濾過処理する。そ
して、本発明においては、濾過処理手段は、通水される被処理水中の濁質を捕捉する繊維
状の濾過体を有するものである。
In this way, after adding an amphoteric electrolyte polymer or an inorganic flocculant to the water to be treated and subjecting it to agglomeration treatment such as stirring as necessary, the water to be treated is filtered through the filtration means. . And in this invention, a filtration process means has a fibrous filter body which captures the turbidity in the to-be-processed water passed.

ここで、繊維状の濾過体を用いた濾過処理手段は、非常に高い濾過速度での濾過処理が
可能なため省スペース化が図れるが、微細な粒子の捕捉性能が比較的悪い。しかしながら
、本発明においては、この濾過処理手段に通水する前に、上記所定の両性電解質ポリマー
で凝集処理しているため、濾過処理手段に通水される被処理水は、濁質と両性電解質ポリ
マーとで非常に大きく強固なフロックが形成されているものである。したがって、繊維状
の濾過体を用いた濾過処理手段であっても、良好に捕捉することができるため、清澄な処
理水を得ることができる。
Here, the filtration processing means using the fibrous filter body can save space because it can be filtered at a very high filtration rate, but the trapping performance of fine particles is relatively poor. However, in the present invention, since the agglomeration treatment is performed with the predetermined amphoteric electrolyte polymer before passing through the filtration means, the water to be treated that is passed through the filtration means is turbid and amphoteric electrolyte. A very large and strong floc is formed with the polymer. Therefore, even if it is the filtration process means using a fibrous filter body, since it can capture | acquire favorable, clear treated water can be obtained.

濾過処理手段に特に限定はないが、例えば、紐状(繊維状)の濁質捕捉部を有する濾過
体が通水時の濾過部の空隙率が50〜95%になるように濾過槽に充填されていることが
好ましい。このような濾過処理手段の具体例としては、図1に示す濾過装置が挙げられる
。なお、図1は、濾過装置の構成を示す断面図であり、図2は、図1の要部拡大図である
There is no particular limitation on the filtration means, but for example, a filtration body having a string-like (fibrous) turbidity trapping part is filled in the filtration tank so that the porosity of the filtration part when passing water is 50 to 95%. It is preferable that A specific example of such a filtration means is the filtration device shown in FIG. 1 is a cross-sectional view showing the configuration of the filtration device, and FIG. 2 is an enlarged view of a main part of FIG.

図1に示すように、濾過装置10は、被処理水1が通水される筒状の濾過槽11と、通
水される被処理水中の濁質を捕捉する濾過体12とを有する。該濾過体12は、濾過槽1
1の通水方向の両端に接続される芯材13と、紐状の濁質捕捉部14とからなる。そして
、濾過槽11の通水方向両端には、濁質を含有する被処理水が自由に通水できる程度の穴
が複数設けられた樹脂製等の円形のプレート16が設けられ、各プレート16の中心に芯
材13の両端が固定されている。また、濁質捕捉部14は、芯材13に一部が編みこまれ
て固定されると共に固定されていないいわゆるループ状の部分は濾過槽11の内壁面に向
かって放射状に広がるように設けられており、濾過槽11全体に濾過体12が広がってい
る。このため、濁質捕捉部14は通水方向と交差するので、濁質捕捉部14によって被処
理水1に含まれる濁質が捕捉できる。なお、紐状の濁質捕捉部14は長い矩形(テープ)
をループ状にしたものであり、図2の紐状の濁質捕捉部14の拡大図に示すように、長手
方向の端部まで達しないスリット15が複数設けられている。このようにスリット15を
設けることにより、濁質の捕捉効果が向上する。
As shown in FIG. 1, the filtration device 10 includes a cylindrical filtration tank 11 through which the water to be treated 1 is passed, and a filter body 12 that captures turbidity in the water to be treated. The filter body 12 is a filter tank 1
1 consists of a core 13 connected to both ends in the water flow direction and a string-like turbidity capturing portion 14. Further, at both ends of the filtration tank 11 in the water flow direction, a circular plate 16 made of resin or the like provided with a plurality of holes that allow water to be treated containing turbidity to flow freely is provided. Both ends of the core material 13 are fixed to the center of the core. The turbidity trapping part 14 is provided so that a part of the turbidity trapping part 14 is knitted and fixed to the core member 13 and a so-called loop-like part that is not fixed spreads radially toward the inner wall surface of the filtration tank 11. The filter body 12 spreads over the entire filtration tank 11. For this reason, since the turbidity capture | acquisition part 14 cross | intersects a water flow direction, the turbidity contained in the to-be-processed water 1 can be captured by the turbidity capture | acquisition part 14. FIG. The string-like turbidity capturing portion 14 is a long rectangle (tape).
As shown in the enlarged view of the string-like turbid trap 14 in FIG. 2, a plurality of slits 15 that do not reach the end in the longitudinal direction are provided. By providing the slit 15 in this way, the trapping effect of turbidity is improved.

ここで、濾過体12は、被処理水の通水時の濾過部の空隙率が50〜95%、好ましく
は60〜90%、さらに好ましくは、50〜80%になるように濾過槽11に充填されて
いる。空隙率は下記式から求められる値である。そして、濾過部とは、被処理水の濁質が
濾過体12に捕捉される領域、すなわち、濾過槽11の内壁面を側面とし通水時の濾過体
12の通水方向両端を厚さ方向の両端として濾過体12の濁質捕捉部14が充填されてい
る層の内、濾過に寄与しない部分(図1においては芯材13の部分)を排除した部分をい
う。なお、濾過に寄与しない部分が無い場合は、濾過部は、濾過槽11の内壁面を側面と
し通水時の濾過体12の通水方向両端を厚さ方向の両端として濾過体12の濁質捕捉部1
4が充填されている層をいう。「濾過部の体積−濁質捕捉部の体積」は、例えば図1のよ
うに、濾過操作時(被処理水通水時)に濾過体12が圧密せず、濾過槽11内に充填され
た状態のまま濾過操作時の濾過部が形成される例では、被処理水で満たした濾過槽11に
濾過体12を入れた際に溢れた被処理水の量から芯材13の体積を減ずることで容易に求
めることができる。なお、図1においては、濾過体12の両端がそれぞれ濾過槽11の通
水方向両端に固定されており、濾過体12は被処理水の通水時に濾過槽11全体に広がっ
ているため、濾過槽11の内部全体から芯材13の部分を減じた部分が濾過部である。
[式1]
空隙率(%)=[(濾過部の体積−濁質捕捉部の体積)/濾過部の体積]×100
Here, the filter body 12 is in the filtration tank 11 so that the porosity of the filtration part when the water to be treated is passed is 50 to 95%, preferably 60 to 90%, and more preferably 50 to 80%. Filled. The porosity is a value obtained from the following formula. And the filtration part is a region where the turbidity of the water to be treated is captured by the filter body 12, that is, the inner wall surface of the filtration tank 11 is a side surface, and both ends of the water passage direction of the filter body 12 during water flow are in the thickness direction. The part which excluded the part (part of the core material 13 in FIG. 1) which does not contribute to filtration among the layers in which the turbidity trapping part 14 of the filter body 12 is filled as both ends is said. In addition, when there is no part which does not contribute to filtration, a filtration part uses the inner wall surface of the filtration tank 11 as a side surface, and the turbidity of the filter body 12 makes the water flow direction both ends of the filter body 12 at the time of water flow the both ends of the thickness direction. Capture unit 1
4 refers to the layer filled. “The volume of the filtration part—the volume of the turbidity trapping part” is, for example, as shown in FIG. 1, the filter body 12 is not consolidated during the filtration operation (at the time of passing water to be treated) and is filled in the filtration tank 11. In the example in which the filtration part at the time of the filtration operation is formed in the state, the volume of the core material 13 is reduced from the amount of the water to be treated which overflows when the filter body 12 is put into the filtration tank 11 filled with the water to be treated. Can be easily obtained. In FIG. 1, both ends of the filter body 12 are fixed to both ends of the filtration tank 11 in the direction of water flow, and the filter body 12 spreads throughout the filter tank 11 when water to be treated is passed. A portion obtained by subtracting the core 13 from the entire inside of the tank 11 is a filtration unit.
[Formula 1]
Porosity (%) = [(volume of filtration part−volume of turbidity trapping part) / volume of filtration part] × 100

このような濾過装置10に被処理水を通水すると、被処理水は各紐状の濁質捕捉部14
の間や濁質捕捉部14に設けられたスリット15の間を通り、その際被処理水に含まれる
濁質が紐状の濁質捕捉部14やスリット15にトラップされ、濁質が除去された被処理水
が濾過槽11から排出される。そして、通水時の濾過部の空隙率が50〜95%になるよ
うに濾過体12が充填されているため、通水が妨げられず且つ濁質のトラップも良好であ
る。特に、本発明においては、濁質と両性電解質ポリマーで大きく強固なフロックが形成
された被処理水を通水するので、良好に濁質をトラップすることができる。
When the water to be treated is passed through such a filtration device 10, the water to be treated is each turbid trap 14 in the form of a string.
The turbidity contained in the water to be treated is trapped in the string-like turbidity capturing part 14 and the slit 15 and the turbidity is removed. The treated water is discharged from the filtration tank 11. And since the filter body 12 is filled so that the porosity of the filtration part at the time of water flow may be 50 to 95%, water flow is not prevented and a trap of turbidity is also favorable. In particular, in the present invention, since the water to be treated in which a large and strong floc is formed by the turbidity and the amphoteric electrolyte polymer is passed, the turbidity can be trapped well.

このように、通水時の濾過部の空隙率が50〜95%になるように濾過体12を充填す
ることにより、通水が妨げられず且つ濁質のトラップが良好になるため、濾過装置10の
閉塞が抑制でき、また、例えば濁度2.5以下程度の清澄な処理水が得られるという効果
を奏する。空隙率が95%よりも高いと通水が良好になり高速で濾過し易くなるが処理水
の濁度が顕著に高くなってしまい、また、50%よりも低いと濁質のトラップは良好であ
るが通水が不十分で濾過装置や必要に応じて後段に設ける膜分離処理手段に閉塞が生じ、
差圧上昇速度が顕著に高くなってしまう。特に、例えば100m/h以上の高速で濾過運
転をしたり、濁度が高い(例えば20度以上)被処理水を処理すると、得られる処理水の
濁質が悪くなるという問題や、装置が閉塞してしまうという問題が生じやすいが、空隙率
が50〜95%になるように濾過体12を充填した濾過装置10とすることによって、高
速運転や濁度の高い被処理水であっても、閉塞が抑制できまた清澄な処理水が得られる。
勿論、低速で処理したり、濁度が低い被処理水を処理する場合であっても、閉塞が抑制で
きまた清澄な処理水が得られる。なお、空隙率は均一であることが好ましいため、濁質捕
捉部14が濾過槽11の通水方向両端の近傍まで充填されていることが好ましく、また、
濁質捕捉部14が濾過槽11の内壁面の近傍まで充填されていることが好ましい。また、
濾過部の体積は、被処理水の通水時と、後述する逆洗時や濾過停止時などのその他の状態
とで、体積変動しないことが好ましく、濾過部の体積変動率は30%以下、好ましくは1
0%以下であることが好ましい。このような範囲とすることで、濾過装置をコンパクトに
することができる。
In this way, by filling the filter body 12 so that the porosity of the filtration part at the time of water flow is 50 to 95%, the water flow is not hindered and the trap of turbidity is improved. 10 can be suppressed, and for example, clear treated water having a turbidity of about 2.5 or less can be obtained. If the porosity is higher than 95%, the water flow becomes good and it becomes easy to filter at high speed, but the turbidity of the treated water becomes remarkably high, and if it is lower than 50%, the trap of turbidity is good. Although there is insufficient water flow, clogging occurs in the filtration device and the membrane separation treatment means provided in the latter stage if necessary,
The rate of differential pressure increase will be significantly higher. In particular, for example, when the filtration operation is performed at a high speed of 100 m / h or more, or the water to be treated is treated with high turbidity (for example, 20 degrees or more), the turbidity of the treated water is deteriorated or the apparatus is blocked. Although it is easy to cause the problem that it will occur, by using the filtration device 10 filled with the filter body 12 so that the porosity is 50 to 95%, Clogging can be suppressed and clear treated water can be obtained.
Of course, even when processing at low speed or processing water to be treated with low turbidity, blockage can be suppressed and clear treated water can be obtained. In addition, since it is preferable that the porosity is uniform, it is preferable that the turbidity trapping part 14 is filled up to the vicinity of both ends of the water passage direction of the filtration tank 11,
It is preferable that the turbid trap 14 is filled to the vicinity of the inner wall surface of the filtration tank 11. Also,
The volume of the filtration part is preferably not changed in volume at the time of passing water to be treated and in other states such as backwashing or when filtration is stopped, and the volume fluctuation rate of the filtration part is 30% or less, Preferably 1
It is preferably 0% or less. By setting it as such a range, a filtration apparatus can be made compact.

そして、図1の濾過装置においては、濾過槽11の大きさは、例えば筒状であれば、直
径100〜1000mm、高さ200〜1000mmとすることができる。なお、濾過槽
11の大きさが濾過体12に比べて大きい場合は、複数の濾過体12を濾過槽11に充填
したり、濾過体12の濁質捕捉部14を大きくする等して、通水時の濾過部の空隙率が5
0〜95%になるようにすればよい。
And in the filtration apparatus of FIG. 1, if the magnitude | size of the filtration tank 11 is a cylinder shape, it can be 100-1000 mm in diameter and 200-1000 mm in height. When the size of the filter tank 11 is larger than that of the filter body 12, the filter tank 11 is filled with a plurality of filter bodies 12, the turbidity trapping portion 14 of the filter body 12 is enlarged, and the like. The porosity of the filtration part when water is 5
It may be 0 to 95%.

また、芯材13や濁質捕捉部14の材質としては、ポリプロピレン、ポリエステル、ナ
イロンなどの合成樹脂が挙げられる。ここで、芯材13は、ポリプロピレン、ポリエステ
ル、ナイロンなどの合成繊維を製造過程で編み上げることで強度を持たせてもよい。また
、ねじりブラシの様に腐食されないSUSや樹脂で被覆された金属による針金を芯材13
とし、濁質捕捉部14を均等に並べた後、金属を捩ることで、放射状に広げた濾過体12
としてもよい。このように芯材13の強度を向上させることで、芯材13が屈曲すること
がなくなると共に、濾過体12端部の固定が容易となるので、濾過体12の交換作業が容
易になる。
Moreover, as a material of the core material 13 and the suspended matter capture | acquisition part 14, synthetic resins, such as a polypropylene, polyester, nylon, are mentioned. Here, the core material 13 may have strength by knitting synthetic fibers such as polypropylene, polyester, and nylon in the manufacturing process. Further, a wire made of a metal coated with SUS or resin that is not corroded like a torsion brush is made of a core material 13.
After the turbidity traps 14 are evenly arranged, the filter body 12 is spread radially by twisting the metal.
It is good. By improving the strength of the core member 13 in this manner, the core member 13 is not bent, and the end of the filter body 12 can be easily fixed, so that the replacement work of the filter body 12 is facilitated.

芯材13や濁質捕捉部14の大きさに特に限定はないが、例えば、厚さ0.05〜2m
m、幅1〜50mm、長さ(被処理水を通水した際の芯材からの距離)10〜500mm
程度、好ましくは、厚さ0.3〜2mm、幅1〜20mm、長さ50〜200mm程度と
することができる。
Although there is no limitation in particular in the magnitude | size of the core material 13 or the turbidity capture | acquisition part 14, For example, thickness 0.05-2m
m, width 1-50 mm, length (distance from the core when the water to be treated is passed) 10-500 mm
The thickness is preferably about 0.3 to 2 mm, the width is about 1 to 20 mm, and the length is about 50 to 200 mm.

なお、図1では、筒状の濾過槽11としたが、筒状でなくてもよく、通水できる形状、
すなわち、中空であればよく、例えば角柱に空洞を設けた形状でもよい。また、上述した
例では、プレート16に芯材13の両端を固定したが、これに限定されず、例えば芯材の
一端のみを固定するようにしてもよい。
In addition, although it was set as the cylindrical filtration tank 11 in FIG. 1, it does not need to be cylindrical and the shape which can let water flow,
That is, it may be hollow, and for example, it may have a shape in which a hollow is provided in a prism. Moreover, in the example mentioned above, although the both ends of the core material 13 were fixed to the plate 16, it is not limited to this, For example, you may make it fix only one end of a core material.

また、図1では、ループ状の濁質捕捉部14を芯材13に突設するようにしたが、これ
に限定されず、例えば、図3に示すように、短冊状の複数の濁質捕捉部とし各濁質捕捉部
の一端を芯材に固定するようにしてもよい。また、図1では、濁質捕捉部14の断面形状
を四角形になるようにしたが、特に限定はなく、例えば円形状でもよい。なお、各濁質捕
捉部の長さは同一でも異なっていてもよい。さらに、上述した例では、濁質捕捉部14の
材質は一種類としたが、二種以上としてもよい。また、濁質捕捉部に設けるスリットは、
複数でも単数でもよく、設けなくてもよい。そして、芯材13がなくてもよく、濁質捕捉
部のみで構成される濾過体12としてもよいが、濾過体12は濾過槽11に略均一に存在
していることが好ましいので、濁質捕捉部を濾過槽の所定位置に固定することが好ましい
In FIG. 1, the loop-like turbidity capturing portion 14 is provided to protrude from the core material 13, but the present invention is not limited to this. For example, as shown in FIG. One end of each turbidity trapping part may be fixed to the core material. Moreover, in FIG. 1, although the cross-sectional shape of the turbidity capture | acquisition part 14 was made into square, there is no limitation in particular, For example, circular shape may be sufficient. In addition, the length of each turbidity trapping part may be the same or different. Furthermore, in the example mentioned above, the material of the turbid trap 14 is one type, but it may be two or more types. Moreover, the slit provided in the turbidity trapping part is
It may be plural or singular and may not be provided. And although the core material 13 may not be provided and it may be the filter body 12 comprised only by a turbidity capture | acquisition part, since it is preferable that the filter body 12 exists in the filtration tank 11 substantially, it is turbidity. It is preferable to fix the capturing part at a predetermined position of the filtration tank.

このような凝集処理及び濾過処理により、清澄な処理水が得られるが、濾過処理の後段
に、逆浸透膜(RO膜)等による膜分離処理や、イオン交換処理等の脱イオン処理をさら
に有していてもよい。これにより、純水や超純水を得ることができる。また、脱炭酸処理
や、活性炭処理等、被処理水の精製処理をさらに行ってもよい。
Such a coagulation treatment and filtration treatment can provide clear treated water. However, a membrane separation treatment using a reverse osmosis membrane (RO membrane) or a deionization treatment such as an ion exchange treatment is further provided after the filtration treatment. You may do it. Thereby, pure water or ultrapure water can be obtained. Moreover, you may further perform the refinement | purification processes of to-be-processed water, such as a decarboxylation process and activated carbon treatment.

また、濾過処理の前に、沈殿処理や加圧浮上処理により、両性電解質ポリマーによるフ
ロック(凝集物)を被処理水から除去する、固液分離処理を行ってもよい。沈殿処理や加
圧浮上処理は、両性電解質ポリマーや無機凝集剤を被処理水に添加する時に、カセイソー
ダ、消石灰や硫酸などでpH調整を行い、最後に有機系高分子凝集剤にて懸濁物をフロッ
ク化する。また必要に応じて有機凝結剤を併用することもできる。有機凝結剤は特に限定
はなく、例えば、ポリエチレンイミン、エチレンジアミンエピクロルヒドリン重縮合物、
ポリアルキレンポリアミン、ジアリルジメチルアンモニウムクロリドやジメチルアミノエ
チル(メタ)アクリレートの四級アンモニウム塩を構成モノマーとする重合体等、通常水
処理で使用されるカチオン性有機系ポリマーが挙げられる。また、有機凝結剤の添加量に
も特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固
形分で0.01〜10mg/Lである。
Moreover, you may perform the solid-liquid separation process which removes the flock (aggregate) by an amphoteric electrolyte polymer from to-be-processed water by a precipitation process or a pressure levitation process before a filtration process. Precipitation treatment and pressurized flotation treatment are carried out by adjusting pH with caustic soda, slaked lime or sulfuric acid when adding amphoteric electrolyte polymer or inorganic flocculant to the water to be treated, and finally suspending with organic polymer flocculant To flock. Moreover, an organic coagulant can also be used together as needed. There is no particular limitation on the organic coagulant, such as polyethyleneimine, ethylenediamine epichlorohydrin polycondensate,
Examples include cationic organic polymers that are usually used in water treatment, such as polyalkylene polyamines, diallyldimethylammonium chloride, and polymers having quaternary ammonium salts of dimethylaminoethyl (meth) acrylate as constituent monomers. Moreover, there is no limitation in particular also in the addition amount of an organic coagulant | flocculant, What is necessary is just to adjust according to the property of to-be-processed water, However It is 0.01-10 mg / L in solid content with respect to to-be-processed water.

また、必要に応じて、凝結剤、殺菌剤、消臭剤、消泡剤、防食剤などを添加してもよい
。さらに、必要に応じて、紫外線照射、オゾン処理、生物処理などを併用してもよい。
Moreover, you may add a coagulant | flocculant, a disinfectant, a deodorant, an antifoamer, an anticorrosive, etc. as needed. Furthermore, you may use ultraviolet irradiation, ozone treatment, biological treatment, etc. together as needed.

ここで、本発明の水処理方法を用いた水処理装置の一例を図4の概略系統図に示す。図
4に示すように、水処理装置30は、被処理水(原水)が導入される反応槽31と、無機
凝集剤が保持される無機凝集剤槽32から反応槽31に無機凝集剤を導入するポンプ等か
らなる無機凝集剤導入手段33と、上記所定の両性電解質ポリマーを含有する凝集剤が保
持される薬品槽34から反応槽31に薬品を導入するポンプ等からなる薬品導入手段35
と、反応槽31で吸着や凝結など凝集処理した被処理水が導入される図1の濾過装置10
とを具備する。
Here, an example of the water treatment apparatus using the water treatment method of the present invention is shown in the schematic system diagram of FIG. As shown in FIG. 4, the water treatment apparatus 30 introduces the inorganic flocculant into the reaction tank 31 from the reaction tank 31 into which the water to be treated (raw water) is introduced and the inorganic flocculant tank 32 in which the inorganic flocculant is held. And an inorganic flocculant introduction means 33 comprising a pump and the like, and a chemical introduction means 35 comprising a pump and the like for introducing the chemical from the chemical tank 34 holding the flocculant containing the predetermined amphoteric electrolyte polymer into the reaction tank 31.
1 and the water to be treated that has been subjected to agglomeration treatment such as adsorption and condensation in the reaction tank 31 is introduced.
It comprises.

このような水処理装置30では、まず、被処理水(原水)が、反応槽31に導入される
。そして、無機凝集剤槽32に保持された無機凝集剤や、薬品槽34に保持された両性電
解質ポリマーを含有する凝集剤が、無機凝集剤導入手段33や薬品導入手段35により反
応槽31に導入され被処理水に添加される。そして、両性電解質ポリマーを含有する凝集
剤や無機凝集剤が添加された被処理水は、攪拌機36で攪拌されて、凝集処理される。次
いで、凝集処理された被処理水は、反応槽31から排出され、濾過装置10に送られて、
フロックが捕捉され濁質が除去される。本発明の水処理装置30においては、所定の両性
電解質ポリマーを用いているため、反応槽31から排出される被処理水は、濁質と両性電
解質ポリマーとで大きく強固なフロックが形成されたものである。そして、このフロック
は濾過装置10で良好に捕捉されるため、濾過装置10から排出される処理水は、非常に
清澄なものである。さらに、図4の水処理装置30においては、上記所定の空隙率を有す
るように濾過体が充填された濾過装置10を用いているため、濾過装置10の閉塞が抑制
できまた清澄な処理水が得られるという効果を奏する。
In such a water treatment device 30, first, water to be treated (raw water) is introduced into the reaction tank 31. Then, the inorganic flocculant held in the inorganic flocculant tank 32 and the flocculant containing the amphoteric electrolyte polymer held in the chemical tank 34 are introduced into the reaction tank 31 by the inorganic flocculant introduction means 33 and the chemical introduction means 35. And added to the water to be treated. And the to-be-processed water to which the coagulant | flocculant and inorganic coagulant containing an amphoteric electrolyte polymer were added is stirred by the stirrer 36, and is coagulated. Next, the water to be treated that has been subjected to agglomeration treatment is discharged from the reaction tank 31 and sent to the filtration device 10.
Flock is captured and turbidity is removed. In the water treatment apparatus 30 of the present invention, since a predetermined amphoteric electrolyte polymer is used, the water to be treated discharged from the reaction vessel 31 is a flocculate and amphoteric electrolyte polymer in which a large and strong floc is formed. It is. And since this floc is capture | acquired favorably with the filtration apparatus 10, the treated water discharged | emitted from the filtration apparatus 10 is very clear. Furthermore, in the water treatment apparatus 30 of FIG. 4, since the filtration apparatus 10 filled with the filter body so as to have the predetermined porosity is used, blockage of the filtration apparatus 10 can be suppressed, and clear treated water can be obtained. The effect is obtained.

また、図5に示すように、上記水処理装置30の濾過装置10の後段に、逆浸透膜(R
O膜)等の膜分離処理手段41を設けた水処理装置40としてもよい。なお、図5におい
ては、濾過装置10及び膜分離処理手段41を横にならべたが、これに限定されず、濾過
装置10と膜分離処理手段41を縦に一体的に重ねるようにしてもよい。これにより、設
置面積を小さくすることができると共に、部品数を少なくすることができる。
In addition, as shown in FIG. 5, a reverse osmosis membrane (R
A water treatment device 40 provided with membrane separation treatment means 41 such as an O membrane) may be used. In FIG. 5, the filtration device 10 and the membrane separation processing means 41 are arranged side by side. However, the present invention is not limited to this, and the filtration device 10 and the membrane separation processing means 41 may be integrally stacked vertically. . Thereby, the installation area can be reduced and the number of components can be reduced.

以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら
限定されるものではない。
Hereinafter, although it further explains in full detail based on an Example and a comparative example, the present invention is not limited at all by this example.

(ポリマーの合成)
カチオン性モノマーとしてジメチルアミノエチルメタクリレートのメチルクロライド4
級化物(DAM)及びジメチルアミノエチルアクリレートのメチルクロライド4級化物(
DAA)を、ノニオン性モノマーとしてアクリルアミド(AAm)を、アニオン性モノマ
ーとしてアクリル酸を用い、重合開始剤(和光純薬工業株式会社製V−50、各モノマー
に対して0.001〜0.01モル%)を用いて、モノマー濃度10〜35質量%、開始
温度40℃とし、窒素ガス雰囲気下、水溶液重合を行って、共重合させて、表1に示す比
率のモノマーユニットを有するポリマーP−1〜P−4及びP−11〜P−14、P−1
6〜P−17を合成した。なお、1N−NaCl、30℃で測定した固有粘度を表1に示
す。
(Polymer synthesis)
Methyl chloride 4 of dimethylaminoethyl methacrylate as the cationic monomer
Quaternary product (DAM) and dimethylaminoethyl acrylate methyl chloride quaternary product (
DAA), acrylamide (AAm) as the nonionic monomer, acrylic acid as the anionic monomer, a polymerization initiator (V-50 manufactured by Wako Pure Chemical Industries, Ltd., 0.001 to 0.01 for each monomer) Mol%), a monomer concentration of 10 to 35% by mass, a starting temperature of 40 ° C., aqueous solution polymerization in a nitrogen gas atmosphere, copolymerization, and polymer P- having monomer units in the ratios shown in Table 1 1 to P-4 and P-11 to P-14, P-1
6-P-17 was synthesized. The intrinsic viscosity measured at 1N-NaCl and 30 ° C. is shown in Table 1.

Figure 2011206750
Figure 2011206750

(実施例1)
被処理水(原水)として、フミン質や生物代謝物を含有する工業用水(濁度35度、T
OC(全有機炭素)25mg/L、水温:18℃)をそれぞれ1000mL入れたビーカ
ー4個に、ポリ塩化アルミニウム(PAC:10重量%as Al23)を被処理水に対
して10mg/L添加し、5%NaOH水溶液でpHを6.5に調整した後、170rp
mで1分間撹拌した。続いて、両性電解質ポリマーであるP−1の0.1%水溶液を、被
処理水に対して両性電解質ポリマーとして0.5、1、2、4mg/Lになるように添加
し、170rpmで5分間、50rpmで10分間撹拌した。
Example 1
Industrial water containing humic substances and biological metabolites (turbidity 35 degrees, T
Polyaluminum chloride (PAC: 10% by weight as Al 2 O 3 ) in 10 beakers each containing 1000 mL of OC (total organic carbon) 25 mg / L, water temperature: 18 ° C. After adding and adjusting the pH to 6.5 with 5% NaOH aqueous solution, 170 rp
m for 1 minute. Subsequently, a 0.1% aqueous solution of P-1 as an amphoteric electrolyte polymer was added to the water to be treated so as to be 0.5, 1, 2, 4 mg / L as an amphoteric electrolyte polymer, and 5 at 170 rpm. For 10 minutes at 50 rpm.

次いで、フロック(凝集物)が沈殿しないように、この被処理水をスパーテルでゆっく
り撹拌しながら、目開き500μm、内径75mm、深さ20mmのステンレスふるいに
あけ、透過液の濁度を測定した。なお、濁度はカオリン標準液を用いた透過光測定方法に
より求めた。結果を表2に示す。
Next, the water to be treated was slowly stirred with a spatula so as not to precipitate flocs (aggregates), and was opened on a stainless steel sieve having an opening of 500 μm, an inner diameter of 75 mm, and a depth of 20 mm, and the turbidity of the permeate was measured. The turbidity was determined by a transmitted light measurement method using a kaolin standard solution. The results are shown in Table 2.

(実施例2〜4)
P−1の代わりに、表2に示す両性電解質ポリマーを用いた以外は、実施例1と同じ条
件及び操作にて試験を行った。結果を表2に示す。
(Examples 2 to 4)
A test was performed under the same conditions and operation as in Example 1 except that the amphoteric electrolyte polymer shown in Table 2 was used instead of P-1. The results are shown in Table 2.

(実施例5)
両性電解質ポリマーであるP−1を添加し、170rpmで5分間、50rpmで10
分間撹拌した後、ステンレスふるいではなく、図1に示す濾過装置10に上から通水し、
透過液の濁度を測定した以外は、実施例1と同じ条件及び操作にて試験を行った。結果を
表2に示す。なお、濾過装置10は図1に示すように芯材及び紐状の濁質捕捉部からなる
濾過体を有し、濾過槽11は直径200mm、高さ500mmのアクリル製の筒状カラム
であり、芯材13は体積250mLで、各濁質捕捉部14の厚さは0.5mm、幅2mm
、長さ(被処理水を通水した際の芯材からの距離)100mmとなるようループ状に編み
こんだものであり、通水時の濾過部(濾過槽11内部の体積から芯材13の体積を引いた
もの)の空隙率は60%であった。そして、濾過体12の芯材13の両端が、上下に配置
されたプレート16によって固定されている。
(Example 5)
Add ampholyte polymer P-1 and add 10 minutes at 170 rpm for 5 minutes at 170 rpm.
After stirring for a minute, water is passed from above to the filtration device 10 shown in FIG.
The test was performed under the same conditions and operation as in Example 1 except that the turbidity of the permeate was measured. The results are shown in Table 2. As shown in FIG. 1, the filtration device 10 has a filter body composed of a core material and a string-like turbid trapping part, and the filtration tank 11 is an acrylic cylindrical column having a diameter of 200 mm and a height of 500 mm, The core material 13 has a volume of 250 mL, the thickness of each turbid trap 14 is 0.5 mm, and the width is 2 mm.
, Knitted in a loop shape so that the length (distance from the core material when the water to be treated is passed) is 100 mm, and the filtration part (the core material 13 from the volume inside the filtration tank 11 when passing water) The porosity of 60) was 60%. Then, both ends of the core member 13 of the filter body 12 are fixed by plates 16 arranged above and below.

(実施例6)
P−1のかわりにP−4を用いた以外は、実施例5と同じ条件及び操作にて試験を行っ
た。結果を表2に示す。
(Example 6)
The test was performed under the same conditions and operation as in Example 5 except that P-4 was used instead of P-1. The results are shown in Table 2.

(比較例1)
P−1を用いずPACのみを添加した以外は、実施例1と同様の操作を行った。結果を
表3に示す。
(Comparative Example 1)
The same operation as in Example 1 was performed except that only PAC was added without using P-1. The results are shown in Table 3.

(比較例2〜8)
P−1の代わりに、表3に示す両性電解質ポリマーを用いた以外は、実施例1と同じ条
件及び操作にて試験を行った。結果を表3に示す。
(Comparative Examples 2 to 8)
A test was performed under the same conditions and operation as in Example 1 except that the amphoteric electrolyte polymer shown in Table 3 was used instead of P-1. The results are shown in Table 3.

(比較例9〜10)
P−1のかわりに、表1に示すポリマーを用いた以外は、実施例5と同じ条件及び操作
にて試験を行った。結果を表3に示す。
(Comparative Examples 9 to 10)
A test was conducted under the same conditions and operation as in Example 5 except that the polymer shown in Table 1 was used instead of P-1. The results are shown in Table 3.

この結果、カチオン性モノマーユニット20〜80モル%と、アニオン性モノマーユニ
ット5〜40モル%と、ノニオン性モノマーユニット0〜75%とを有する両性電解質ポ
リマーを添加した実施例1〜6では、凝集処理において比較例1〜10と比較して大きく
強固なフロックが形成され、濾過装置やふるいを透過した処理水の濁度は比較例1〜10
と比較して顕著に低かった。
As a result, in Examples 1 to 6 in which the ampholyte polymer having 20 to 80 mol% of the cationic monomer unit, 5 to 40 mol% of the anionic monomer unit, and 0 to 75% of the nonionic monomer unit was added, aggregation was performed. Compared with Comparative Examples 1 to 10 in the treatment, a large and strong floc is formed, and the turbidity of the treated water that has passed through the filtration device and sieve is Comparative Examples 1 to 10.
Was significantly lower than

Figure 2011206750
Figure 2011206750

Figure 2011206750
Figure 2011206750

以下に濾過装置10の効果を示す参考例を示す。
(濾過装置の空隙率と差圧上昇及び処理水濁度の関係)
被処理水(原水)として、濁度20度の工業用水を図4に示す装置を用いて、LV20
0m/hで1週間処理した。なお、濾過装置に用いた濾過体は、図1に示すように芯材1
3及び紐状の濁質捕捉部14からなり、濾過槽11の通水方向両端のプレート16にそれ
ぞれ両端が固定されている。そして、芯材13は体積250mLで、各濁質捕捉部14の
厚さは、0.5mm、幅2mm、長さ(被処理水を通水した際の芯材からの距離)100
mmとなるようループ状に芯材に編みこんだものであり、濁質捕捉部14の編込み密度を
変化させて、通水時の濾過部(濾過槽11内部の体積から芯材13の体積を引いたもの)
の空隙率が、30、40、50、60、70、80、90、95、98%の濾過体を作製
し、各濾過体を用いて水処理した。なお、芯材は両端で固定しているため、被処理水通水
時とその他の時とでは濾過部の体積変化率はほぼ0%であった。また、濾過槽11の大き
さは、直径200mm、高さ500mmである。また、凝集剤として、被処理水に対して
30mg/Lのポリ塩化アルミニウム(PAC:10重量% as Al23)及び被処理
水に対して0.7mg/Lの両性の高分子凝集剤クリベストE851(栗田工業製)を添
加した。濾過装置から排出された処理水の濁度(処理水濁度)及び濾過装置の差圧上昇速
度(差圧上昇速度)を測定した結果を表4に示す。なお、処理水の濁度はカオリン標準液
を用いた透過光測定方法により求め、濾過装置の差圧上昇速度は入口と出口の圧力差で求
めた。
The reference example which shows the effect of the filtration apparatus 10 below is shown.
(Relationship between porosity of filtration device, differential pressure increase and treated water turbidity)
As the water to be treated (raw water), industrial water with a turbidity of 20 degrees is used as an LV20 by using the apparatus shown in FIG.
Treated at 0 m / h for 1 week. In addition, the filter body used for the filtration apparatus is a core material 1 as shown in FIG.
3 and the string-like turbidity trapping part 14, and both ends are fixed to the plates 16 at both ends of the filtration tank 11 in the water passage direction. The core material 13 has a volume of 250 mL, and the thickness of each turbid trap 14 is 0.5 mm, the width is 2 mm, and the length (distance from the core material when the water to be treated is passed) is 100.
It is knitted into a core material in a loop shape so as to be mm, and the knitting density of the turbidity trapping part 14 is changed, and the filtration part at the time of passing water (the volume of the core material 13 from the volume inside the filtration tank 11) Minus
Filter bodies having a porosity of 30, 40, 50, 60, 70, 80, 90, 95, and 98% were prepared, and each filter body was treated with water. In addition, since the core material was fixed at both ends, the volume change rate of the filtration part was approximately 0% when the treated water was passed and at other times. The size of the filtration tank 11 is 200 mm in diameter and 500 mm in height. Further, as the flocculant, 30 mg / L polyaluminum chloride (PAC: 10 wt% as Al 2 O 3 ) with respect to the water to be treated and 0.7 mg / L amphoteric polymer flocculant with respect to the water to be treated. Clivest E851 (manufactured by Kurita Kogyo) was added. Table 4 shows the results of measuring the turbidity of the treated water discharged from the filtration device (treated water turbidity) and the differential pressure increase rate (differential pressure increase rate) of the filtration device. The turbidity of the treated water was determined by a transmitted light measurement method using a kaolin standard solution, and the differential pressure increase rate of the filtration device was determined by the pressure difference between the inlet and the outlet.

この結果、濾過体を通水時の濾過部の空隙率が50〜95%になるように充填した濾過
装置では、50〜95%の範囲外のものに比べて顕著に差圧上昇速度及び処理水濁度が低
く、清澄な処理水が得られまた閉塞が抑制できることが分かった。
As a result, in the filtration device filled so that the porosity of the filtration part when passing through the filter body is 50 to 95%, the differential pressure increase rate and treatment are remarkably compared with those outside the range of 50 to 95%. It was found that water turbidity is low, clear treated water is obtained, and blockage can be suppressed.

Figure 2011206750
Figure 2011206750

(参考例1)
被処理水(原水)として、濁度3.4〜22度、TOC(全有機炭素)0.3〜4.8
mg/L、水温:24.5〜26.0℃の工業用水を図5に示す装置(原水の供給水量:
50L/h)、具体的には、上流側から順に、凝集処理を行う反応槽31、濾過装置10
、膜分離処理手段41が設けられている水処理装置40を用いて、定期的に水質を変動さ
せながら、LV200m/hで処理した。なお、膜分離処理手段41の分離膜として、M
F膜を用いた。濾過装置から排出された処理水の濁度及び濾過装置の差圧上昇速度を測定
した結果を表5に示す。なお、濾過装置10は図1に示すように芯材13及び紐状の濁質
捕捉部からなる濾過体12を有し、各濁質捕捉部14の厚さは0.5mm、幅2mm、長
さ100mmで、通水時の濾過部(濾過槽11)の空隙率は85%である。そして、濾過
体12の芯材13の一端のみが、通水方向の上流側のプレート16に固定されている。な
お、芯材13の一端は固定されていないが、一端が上流側のプレート16に固定されてい
るため、処理水の通水時に濾過体12は濾過槽全体に略均一に広がっていた。また、凝集
剤としてポリ塩化アルミニウム(PAC:10重量%as Al23)を被処理水に対し
て、30mg/Lとなるように添加した。
(Reference Example 1)
As treated water (raw water), turbidity 3.4-22 degrees, TOC (total organic carbon) 0.3-4.8
mg / L, water temperature: 24.5 to 26.0 ° C. industrial water shown in FIG. 5 (raw water supply amount:
50 L / h), specifically, the reaction tank 31 for performing the aggregation treatment in order from the upstream side, the filtration device 10
Using a water treatment device 40 provided with membrane separation treatment means 41, treatment was performed at LV 200 m / h while periodically changing the water quality. As a separation membrane of the membrane separation processing means 41, M
An F membrane was used. Table 5 shows the results of measuring the turbidity of the treated water discharged from the filtration device and the differential pressure increase rate of the filtration device. As shown in FIG. 1, the filtration device 10 has a filter body 12 composed of a core material 13 and a string-like turbid trapping part, and each turbid trapping part 14 has a thickness of 0.5 mm, a width of 2 mm, and a long length. The porosity of the filtration part (filtration tank 11) during water passage is 85% at a length of 100 mm. Only one end of the core member 13 of the filter body 12 is fixed to the upstream plate 16 in the water flow direction. Note that one end of the core member 13 is not fixed, but one end is fixed to the upstream plate 16, so that the filter body 12 spread substantially uniformly throughout the entire filtration tank when the treated water was passed. Further, polyaluminum chloride (PAC: 10% by weight as Al 2 O 3 ) was added as a flocculant so as to be 30 mg / L with respect to the water to be treated.

(参考例2)
ループ形状の各濁質捕捉部の芯材に固定された箇所以外に2〜5本のスリットを入れた
以外は、参考例1と同様の操作を行った。
(Reference Example 2)
The same operation as in Reference Example 1 was performed except that 2 to 5 slits were inserted in addition to the portion fixed to the core material of each turbid trapping part in the loop shape.

(参考例3)
濾過体12の芯材13の両端をそれぞれ通水方向の上流側及び下流側のプレート16に
固定するようにした以外は参考例2と同様の操作を行った。
(Reference Example 3)
The same operation as in Reference Example 2 was performed except that both ends of the core member 13 of the filter body 12 were fixed to the upstream and downstream plates 16 in the water flow direction, respectively.

Figure 2011206750
Figure 2011206750

表5に示すように、参考例1〜3では、処理水濁度及び差圧上昇速度が低く、清澄な処
理水が得られ、また濾過装置の閉塞も生じなかったことが分かった。また、濾過体にスリ
ットを設けた参考例2では、参考例1よりも処理水濁度が下がり、差圧上昇速度が遅かっ
た。そして、濾過体の両端を濾過槽に固定した参考例3では、参考例2よりも被処理水が
高濁度時の処理水濁度が低下した。
As shown in Table 5, in Reference Examples 1 to 3, it was found that the treated water turbidity and the differential pressure increase rate were low, clear treated water was obtained, and no clogging of the filtration device occurred. Further, in Reference Example 2 in which the filter body was provided with slits, the treated water turbidity decreased and the differential pressure increase rate was slower than in Reference Example 1. And in the reference example 3 which fixed the both ends of the filter body to the filtration tank, the to-be-processed water turbidity at the time of high turbidity fell rather than the reference example 2.

10 濾過装置、 11 濾過槽、 12 濾過体、 13 芯材、 14 濁質補捉
部、 16 プレート、 30、40 水処理装置
DESCRIPTION OF SYMBOLS 10 Filtration apparatus, 11 Filtration tank, 12 Filter body, 13 Core material, 14 Suspension trapping part, 16 Plate, 30, 40 Water treatment apparatus

Claims (4)

カチオン性モノマーユニット20〜80モル%と、アニオン性モノマーユニット5〜4
0モル%と、ノニオン性モノマーユニット0〜75%とを有する両性電解質ポリマーを含
有する凝集剤を、被処理水に添加して凝集処理した後、該凝集処理した被処理水を、通水
される被処理水中の濁質を捕捉する繊維状の濾過体を有する濾過処理手段に通水して濾過
処理することを特徴とする水処理方法。
Cationic monomer units 20 to 80 mol% and anionic monomer units 5 to 4
A flocculant containing an amphoteric electrolyte polymer having 0 mol% and nonionic monomer units of 0 to 75% is added to the water to be treated, and the water to be treated is subjected to agglomeration treatment. A water treatment method characterized by passing water through a filtration means having a fibrous filter for capturing turbidity in the water to be treated.
前記濾過処理手段は、紐状の濁質捕捉部を有する濾過体が通水時の濾過部の空隙率が5
0〜95%になるように濾過槽に充填されていることを特徴とする請求項1に記載の水処
理方法。
In the filtration means, the filter body having a string-like turbidity trapping section has a porosity of 5 at the time of passing water.
The water treatment method according to claim 1, wherein the filtration tank is filled so as to be 0 to 95%.
前記濾過処理の前に、被処理水に無機凝集剤を添加することを特徴とする請求項1また
は2に記載の水処理方法。
The water treatment method according to claim 1 or 2, wherein an inorganic flocculant is added to the water to be treated before the filtration treatment.
被処理水が導入される反応槽と、
カチオン性モノマーユニット20〜80モル%と、アニオン性モノマーユニット5〜40
モル%と、ノニオン性モノマーユニット0〜75%とを有する両性電解質ポリマーを含有
する凝集剤を前記反応槽又は反応槽の前段で導入して、被処理水に前記凝集剤を添加する
凝集剤導入手段と、
前記反応槽の後段に設けられ前記反応槽で凝集処理した被処理水を濾過処理する濾過処
理手段であって通水される被処理水中の濁質を捕捉する繊維状の濾過体を有する濾過処理
手段とを具備することを特徴とする水処理装置。
A reaction tank into which treated water is introduced;
Cationic monomer units 20-80 mol% and anionic monomer units 5-40
The flocculant introduction which introduces the flocculant containing the amphoteric electrolyte polymer which has mol% and nonionic monomer units 0-75% in the front | former stage of the said reaction tank or reaction tank, and adds the said flocculant to to-be-processed water Means,
A filtration treatment means provided at a subsequent stage of the reaction tank and filtering the treated water coagulated in the reaction tank, and having a fibrous filter for capturing turbidity in the treated water to be passed therethrough. And a water treatment apparatus.
JP2010079590A 2010-03-30 2010-03-30 Water treatment method and water treatment apparatus Pending JP2011206750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079590A JP2011206750A (en) 2010-03-30 2010-03-30 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079590A JP2011206750A (en) 2010-03-30 2010-03-30 Water treatment method and water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2011206750A true JP2011206750A (en) 2011-10-20

Family

ID=44938444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079590A Pending JP2011206750A (en) 2010-03-30 2010-03-30 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2011206750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment
JP5843071B2 (en) * 2010-03-30 2016-01-13 栗田工業株式会社 Water treatment equipment
JP2016087580A (en) * 2014-11-10 2016-05-23 三菱レイヨンアクア・ソリューションズ株式会社 Long fiber filtration device
CN115652683A (en) * 2022-11-21 2023-01-31 江苏富淼科技股份有限公司 Papermaking method and papermaking system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843071B2 (en) * 2010-03-30 2016-01-13 栗田工業株式会社 Water treatment equipment
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment
JP2016087580A (en) * 2014-11-10 2016-05-23 三菱レイヨンアクア・ソリューションズ株式会社 Long fiber filtration device
CN115652683A (en) * 2022-11-21 2023-01-31 江苏富淼科技股份有限公司 Papermaking method and papermaking system
CN115652683B (en) * 2022-11-21 2024-05-10 江苏富淼科技股份有限公司 Papermaking method and papermaking system

Similar Documents

Publication Publication Date Title
TWI458543B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in landfill leachate treatment
JP5843071B2 (en) Water treatment equipment
JP5218731B2 (en) Water treatment method and water treatment apparatus
JP5672447B2 (en) Filtration device and water treatment device
CN107902793A (en) A kind of processing method of high ammonia-nitrogen wastewater
JP2011206750A (en) Water treatment method and water treatment apparatus
JP5282864B2 (en) Membrane separation method and membrane separation apparatus
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP2012206066A (en) Recovery method for water from aerobically and biologically treated water
CN206437968U (en) A kind of system of high-salt wastewater treatment for reuse
WO2019008822A1 (en) Water treatment method and water treatment device
CN102452749B (en) Process for preparing desalted water from iron and steel enterprises sewage with high conversion rate
JP2015062901A (en) Method for removing colored component
JP2012187467A (en) Membrane separation method and membrane separator
JPH11104696A (en) Production of purified water
Gkotsis et al. Wastewater treatment in membrane bioreactors: The use of polyelectrolytes to control membrane fouling
JP2014004508A (en) Water treatment apparatus and method for forming flocculate
JP2016093789A (en) Water treatment method and water treatment system
Johir et al. Deep bed filter as pre-treatment to stormwater
JP2020069448A (en) Water purification treatment method and water purification treatment device
JP2010179247A (en) Filtration device and water treatment apparatus
JP2014046235A (en) Fresh water generating method
JP2019010621A (en) Water treatment method and management method of water treatment device
Xu et al. Evaluation of dynamic membrane formation and filtration models at constant pressure in a combined coagulation/dynamic membrane process in treating polluted river water
JP2019188338A (en) Water treatment method and water treatment apparatus