JP2019188338A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2019188338A
JP2019188338A JP2018084265A JP2018084265A JP2019188338A JP 2019188338 A JP2019188338 A JP 2019188338A JP 2018084265 A JP2018084265 A JP 2018084265A JP 2018084265 A JP2018084265 A JP 2018084265A JP 2019188338 A JP2019188338 A JP 2019188338A
Authority
JP
Japan
Prior art keywords
water
cationic polymer
treated
treatment
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018084265A
Other languages
Japanese (ja)
Inventor
貴子 岩見
Takako Iwami
貴子 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018084265A priority Critical patent/JP2019188338A/en
Publication of JP2019188338A publication Critical patent/JP2019188338A/en
Pending legal-status Critical Current

Links

Images

Abstract

To perform stable and efficient water treatment by preventing coagulation treatment means and a membrane separation apparatus from being tainted and further preventing a subsequent-stage apparatus that receives water subjected to membrane separation from being tainted, in water treatment in which water to be treated such as industrial water, city water, river water, lake water, well water, industrial exhaust water and biologically treated water is subjected to coagulation treatment and the water subjected to coagulation treatment is directly subjected to membrane separation.SOLUTION: Water to be treated is subjected to coagulation treatment by adding a cationic polymer with water solubility of mass average molecular weight of 100 thousand-8 million which has, at a polymer side chain, functional groups selected from a primary amino group, a secondary amino group and a tertiary amino group as well as acid-bases of the amino groups and a quaternary ammonium base and does not have a hydrophobic group, and then water subjected to coagulation treatment is directly subjected to membrane separation, with a separation membrane with a hole diameter of 0.2 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、工業用水、市水、河川水、湖沼水、井水、工業排水、生物処理水などの被処理水を凝集処理して凝集処理水を直接膜分離する水処理において、凝集処理手段や膜分離装置、更には膜分離水を受け入れる後段装置の汚染を防止して、安定かつ効率的な処理を行う水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method in which water to be treated such as industrial water, city water, river water, lake water, well water, industrial waste water, biological treatment water is subjected to agglomeration treatment to directly subject the agglomerated treated water to membrane separation. More particularly, the present invention relates to a water treatment method and a water treatment apparatus for preventing contamination of a downstream apparatus that receives membrane separation water and performing stable and efficient treatment.

工業用水、市水、河川水、湖沼水、井水、工業排水、生物処理水などの被処理水を処理する方法としては、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄、ポリ塩化アルミニウム、硫酸アルミニウムなどの無機凝集剤で凝集処理を行った後、凝集処理水を沈殿装置または浮上装置などの固液分離装置を用いて清澄水を得る方法が一般的である。また、無機凝集剤による凝集処理と共に、原水中のフミン酸、フルボ酸などの腐植性有機物や、生物代謝物、界面活性剤、濁質などを高分子ポリマーによって凝結させる処理や、微粒子に吸着させる処理が併用される場合もある。これらの高分子ポリマーや粒子による処理は、単独で行われる場合もあるが、一般的には無機凝集剤の使用量を削減する目的で無機凝集剤による凝集処理と併用されている。   Methods for treating treated water such as industrial water, city water, river water, lake water, well water, industrial wastewater, biologically treated water include ferric chloride, polyferric sulfate, ferrous sulfate, poly A general method is to obtain clarified water using a solid-liquid separation device such as a precipitation device or a flotation device after performing a flocculation treatment with an inorganic flocculant such as aluminum chloride or aluminum sulfate. In addition to coagulation with an inorganic coagulant, humic acids such as humic acid and fulvic acid in raw water, biological metabolites, surfactants, turbidity, etc. are coagulated with a polymer, and adsorbed to fine particles. Processing may be used in combination. The treatment with these high molecular polymers and particles may be carried out independently, but is generally used in combination with the agglomeration treatment with an inorganic flocculant for the purpose of reducing the amount of the inorganic flocculant used.

しかしながら、高分子ポリマーを使用する場合、高分子ポリマー自体が固液分離装置を汚染するという問題がある。   However, when a polymer is used, there is a problem that the polymer itself contaminates the solid-liquid separator.

特許文献1には無機凝集剤と高分子凝集剤とを添加して凝集処理した後、固液分離する前に再び無機凝集剤を添加する技術が示されているが、この方法では凝集剤の添加回数が多く、装置が複雑で操作が煩雑になるという問題がある。   Patent Document 1 discloses a technique in which an inorganic flocculant and a polymer flocculant are added and subjected to agglomeration treatment, and then added again before solid-liquid separation. There is a problem that the number of additions is large, the apparatus is complicated, and the operation becomes complicated.

特許文献2には被処理水中の有機物を吸着する吸着剤として、水中では溶解しないカチオン性ポリマーからなる粒子を用いて吸着処理した後に、膜分離する技術が示されている。しかしながら、本方法では被処理水中の有機物あるいは濁質と吸着しなかった粒子によって装置(凝集槽)が汚染する問題があるほか、粒子を含む凝集フロックが粗大になるため、膜分離装置内に堆積しやすく膜分離装置内で濁質汚染を引き起こす問題がある。   Patent Document 2 discloses a technique of performing membrane separation after an adsorption treatment using particles made of a cationic polymer that does not dissolve in water as an adsorbent that adsorbs organic substances in the water to be treated. However, in this method, there is a problem that the apparatus (aggregation tank) is contaminated by particles that have not been adsorbed with organic matter or turbidity in the water to be treated, and the aggregated floc containing particles becomes coarse, so it accumulates in the membrane separation apparatus. There is a problem of causing turbid contamination in the membrane separation device.

凝集槽内の汚染を回避する手段として、特許文献3では、水中では溶解しないカチオン性ポリマーからなる粒子の添加に先立ち無機凝集剤を添加する方法が示されているが、本方法においても分離膜装置内の濁質汚染の問題が残る。   As a means for avoiding contamination in the flocculation tank, Patent Document 3 discloses a method of adding an inorganic flocculant prior to the addition of particles made of a cationic polymer that does not dissolve in water. The problem of turbid contamination in the equipment remains.

特許文献4には、生物処理槽内に塩鉄と水溶性高分子を添加して凝集させ、その凝集処理水を膜分離する処理において、メラミン性アンモニウム基を有する水溶性高分子を用いることが記載されているが、これを添加する生物処理槽内のSS濃度は本発明が対象とする被処理水のSS濃度範囲を大きく逸脱するものであり、本発明とは技術分野が異なるものである。   In Patent Literature 4, a water-soluble polymer having a melamine ammonium group is used in a treatment for adding salt iron and a water-soluble polymer in a biological treatment tank to cause aggregation and aggregating the agglomerated treated water into a membrane. Although described, the SS concentration in the biological treatment tank to which it is added greatly deviates from the SS concentration range of the water to be treated which is the subject of the present invention, and is different from the present invention in the technical field. .

特許文献5には、疎水性基を有するカチオン性ポリマーを被処理水に添加して膜分離する処理が記載されている。しかし、疎水性基を有するカチオン性ポリマーは逆浸透(RO)膜素材と疎水性結合で強固に結合するため、一般的なRO膜洗浄法であるアルカリ条件での洗浄で除去することが難しい。また、疎水基を含有するカチオン性ポリマーは分離膜に一般的に使用されるポリフッ化ビニリデンやポリアクリロニトリル等の素材に吸着しやすく、未反応のポリマーが凝集工程を抜けて分離膜にリークした際には、著しく分離膜を汚染する可能性がある。   Patent Document 5 describes a treatment in which a cationic polymer having a hydrophobic group is added to water to be treated for membrane separation. However, since a cationic polymer having a hydrophobic group is strongly bonded to a reverse osmosis (RO) membrane material by a hydrophobic bond, it is difficult to remove it by washing under alkaline conditions, which is a general RO membrane washing method. Cationic polymers containing hydrophobic groups tend to be adsorbed on materials commonly used for separation membranes such as polyvinylidene fluoride and polyacrylonitrile, and when unreacted polymers leak through the aggregation process and leak into the separation membrane. May significantly contaminate the separation membrane.

なお、従来、凝集処理に用いるカチオン性ポリマーとして多数例示された化合物中に、一級アミノ基、二級アミノ基、三級アミノ基およびそれらの酸塩基、四級アンモニウム塩基を有するカチオン性ポリマー、特にジメチルアミノエチルアクリレート四級化物を有する共重合体があり、従来、このようなカチオン性ポリマーで凝集処理することは知られているが、このカチオン性ポリマーで凝集処理した後、凝集処理水を直接膜分離することは行われていない。また、カチオン性ポリマーを、直接膜分離するための膜分離装置および後段のRO膜分離装置の安定性の観点から選択することも行われていない。   Conventionally, among the compounds exemplified as many of the cationic polymers used for the aggregation treatment, a cationic polymer having a primary amino group, a secondary amino group, a tertiary amino group and their acid base, quaternary ammonium base, in particular There is a copolymer having a dimethylaminoethyl acrylate quaternized product, and it has been conventionally known that agglomeration treatment with such a cationic polymer is carried out. Membrane separation is not performed. In addition, the cationic polymer is not selected from the viewpoint of the stability of a membrane separation device for direct membrane separation and a subsequent RO membrane separation device.

特開平11−77062号公報Japanese Patent Laid-Open No. 11-77062 特開2009−56454号公報JP 2009-56454 A 特開2009−240974号公報JP 2009-240974 A 特開2009−226373号公報JP 2009-226373 A 特開2009−101260号公報JP 2009-101260 A

本発明は、上記従来技術に鑑みてなされたものであって、工業用水、市水、河川水、湖沼水、井水、工業排水、生物処理水などの被処理水を凝集処理して凝集処理水を直接膜分離する水処理において、凝集処理手段や膜分離装置、更には膜分離水を受け入れる後段装置の汚染を防止して、安定かつ効率的な処理を行う水処理方法及び水処理装置を提供することを目的とする。   The present invention has been made in view of the above-described prior art, and agglomeration treatment is performed by subjecting water to be treated such as industrial water, city water, river water, lake water, well water, industrial wastewater, biological treatment water, and the like. A water treatment method and a water treatment apparatus for performing stable and efficient treatment by preventing the contamination of a coagulation treatment means, a membrane separation apparatus, and a subsequent apparatus for receiving the membrane separation water in water treatment for direct membrane separation of water. The purpose is to provide.

本発明者は上記課題を解決すべく検討を重ねた結果、凝集剤としてポリマー側鎖に特定のカチオン性官能基を有し、疎水基を有さない、特定の分子量の水溶性のカチオン性ポリマーを用いることにより、上記課題を解決することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above-mentioned problems, the present inventor has a specific cationic functional group in the polymer side chain as a flocculant and a water-soluble cationic polymer having a specific molecular weight and no hydrophobic group. It has been found that the above-mentioned problems can be solved by using.
That is, the gist of the present invention is as follows.

[1] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を孔径0.2μm以下の分離膜で直接膜分離することを特徴とする水処理方法。 [1] A primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. A water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million is added to the water to be treated and agglomerated, and then the agglomerated water is directly subjected to membrane separation with a separation membrane having a pore size of 0.2 μm or less. Water treatment method.

[2] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を直接膜分離し、分離水を逆浸透膜処理することを特徴とする水処理方法。 [2] A primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. A water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million is added to the water to be treated and subjected to agglomeration, and then the agglomerated water is directly subjected to membrane separation, and the separated water is subjected to a reverse osmosis membrane treatment. Water treatment method.

[3] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を孔径0.2μm以下の分離膜で直接膜分離し、分離水を逆浸透膜処理することを特徴とする水処理方法。 [3] A primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. After adding a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million to the water to be treated and aggregating it, the agglomerated water is directly separated by a separation membrane having a pore size of 0.2 μm or less, and the separated water is reversed. A water treatment method characterized by performing osmosis membrane treatment.

[4] 前記被処理水が、濁質濃度が200mg/L未満で、溶存有機物濃度が0.01mg/L以上200mg/L未満の、工業用水、市水、河川水、湖沼水、井水、排水、又は生物処理水である[1]ないし[3]のいずれかに記載の水処理方法。 [4] The water to be treated has industrial water, city water, river water, lake water, well water, turbidity concentration of less than 200 mg / L, and dissolved organic matter concentration of 0.01 mg / L or more and less than 200 mg / L, The water treatment method according to any one of [1] to [3], which is wastewater or biologically treated water.

[5] 前記カチオン性ポリマーがジメチルアミノエチルアクリレート四級化物に由来する構成単位を有する共重合体である[1]ないし[4]のいずれかに記載の水処理方法。 [5] The water treatment method according to any one of [1] to [4], wherein the cationic polymer is a copolymer having a structural unit derived from dimethylaminoethyl acrylate quaternized product.

[6] 前記カチオン性ポリマーが、ジメチルアミノエチルアクリレート四級化物に由来する構成単位を全構成単位中に20〜50モル%含み、固有粘度が0.5〜5.5dL/gのカチオン性ポリマーである[5]に記載の水処理方法。 [6] The cationic polymer contains 20 to 50 mol% of a structural unit derived from dimethylaminoethyl acrylate quaternized product, and has an intrinsic viscosity of 0.5 to 5.5 dL / g. The water treatment method according to [5].

[7] 前記被処理水に前記カチオン性ポリマーと無機凝集剤とを添加して凝集処理する[1]ないし[6]のいずれかに記載の水処理方法。 [7] The water treatment method according to any one of [1] to [6], in which the cationic polymer and an inorganic flocculant are added to the water to be treated to perform an agglomeration treatment.

[8] 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、前記凝集処理において該被処理水に該カチオン性ポリマーを添加し、無機凝集剤を添加しない場合は、該カチオン消費量Aと該カチオン性ポリマーの添加濃度が下記関係式(Ia)を満たすように、該カチオン性ポリマーの添加量を制御し、前記凝集処理において該被処理水に該カチオン性ポリマーと無機凝集剤を添加する場合は、該カチオン消費量Aと該無機凝集剤及び該カチオン性ポリマーの添加濃度が下記関係式(Ib)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する[1]ないし[7]のいずれかに記載の水処理方法。
カチオン消費量A×α=カチオン性ポリマー添加濃度(mg/L) …(Ia)
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(Ib)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
[8] The required amount of the cationic polymer necessary for neutralizing the charge of the water to be treated is determined as the cation consumption A by titrating the water to be treated with the cationic polymer by the streaming potential method. In the flocculation treatment, when the cationic polymer is added to the water to be treated and no inorganic flocculant is added, the cation consumption A and the addition concentration of the cationic polymer satisfy the following relational formula (Ia): In addition, when the addition amount of the cationic polymer is controlled and the cationic polymer and the inorganic flocculant are added to the water to be treated in the flocculation treatment, the cation consumption A, the inorganic flocculant and the cationic flocculant [1] to [7], wherein the addition amount of the cationic polymer and the addition amount of the inorganic flocculant are controlled such that the addition concentration of the polymer satisfies the following relational expression (Ib): Water treatment method.
Cation consumption A × α = cationic polymer addition concentration (mg / L) (Ia)
Cation consumption A × α =
Cationic polymer addition concentration (mg / L) + Inorganic flocculant addition concentration (mg / L) × β
... (Ib)
α: Safety factor taking into account fluctuations in water quality β: Factor for converting the cation amount of the inorganic flocculant into the cation amount of the cationic polymer

[9] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を孔径0.2μm以下の分離膜で直接膜分離する膜分離装置とを有することを特徴とする水処理装置。 [9] A primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. Aggregation treatment means for adding a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million to the water to be treated for aggregation treatment, and the aggregation treatment water of the aggregation treatment means is directly applied to a separation membrane having a pore size of 0.2 μm or less. A water treatment device comprising a membrane separation device for membrane separation.

[10] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を直接膜分離する膜分離装置と、該膜分離装置の分離水を逆浸透膜処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。 [10] A primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. A coagulation treatment means for adding a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million to the water to be treated for coagulation treatment, a membrane separation apparatus for directly performing membrane separation of the coagulation treatment water of the coagulation treatment means, A water treatment device comprising a reverse osmosis membrane separation device for treating the separated water of a membrane separation device with a reverse osmosis membrane.

[11] 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を孔径0.2μm以下の分離膜で直接膜分離する膜分離装置と、該膜分離装置の分離水を逆浸透膜処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。 [11] A functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and no hydrophobic group. Aggregation treatment means for adding a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million to the water to be treated for aggregation treatment, and the aggregation treatment water of the aggregation treatment means is directly applied to a separation membrane having a pore size of 0.2 μm or less. A water treatment device comprising: a membrane separation device for membrane separation; and a reverse osmosis membrane separation device for treating a separation water of the membrane separation device with a reverse osmosis membrane.

[12] 前記被処理水が、濁質濃度が200mg/L未満で、溶存有機物濃度が0.01mg/L以上200mg/L未満の、工業用水、市水、河川水、湖沼水、井水、排水、又は生物処理水である[9]ないし[11]のいずれかに記載の水処理装置。 [12] The water to be treated is industrial water, city water, river water, lake water, well water, having a turbidity concentration of less than 200 mg / L and a dissolved organic matter concentration of 0.01 mg / L or more and less than 200 mg / L, The water treatment apparatus according to any one of [9] to [11], which is wastewater or biologically treated water.

[13] 前記カチオン性ポリマーがジメチルアミノエチルアクリレート四級化物に由来する構成単位を有する共重合体である[9]ないし[12]のいずれかに記載の水処理装置。 [13] The water treatment apparatus according to any one of [9] to [12], wherein the cationic polymer is a copolymer having a structural unit derived from dimethylaminoethyl acrylate quaternized product.

[14] 前記カチオン性ポリマーが、ジメチルアミノエチルアクリレート四級化物に由来する構成単位を全構成単位中に20〜50モル%含み、固有粘度が0.5〜5.5dL/gのカチオン性ポリマーである[13]に記載の水処理装置。 [14] The cationic polymer contains 20 to 50 mol% of a structural unit derived from dimethylaminoethyl acrylate quaternized product, and has an intrinsic viscosity of 0.5 to 5.5 dL / g. The water treatment device according to [13].

[15] 前記凝集処理手段において、前記被処理水に前記カチオン性ポリマーと無機凝集剤とを添加して凝集処理する[9]ないし[14]のいずれかに記載の水処理装置。 [15] The water treatment apparatus according to any one of [9] to [14], wherein the aggregation treatment unit performs the aggregation treatment by adding the cationic polymer and the inorganic flocculant to the water to be treated.

[16] 前記凝集処理手段で前記被処理水に前記カチオン性ポリマーが添加され、無機凝集剤が添加されない場合は、流動電位法により該被処理水を該カチオン性ポリマーで滴定して求めた該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとし、該カチオン性ポリマーの添加濃度が下記関係式(Ia)を満たすように、該カチオン性ポリマーの添加量を制御し、前記凝集処理手段で該被処理水に該カチオン性ポリマーと無機凝集剤が添加される場合は、該カチオン消費量Aと該無機凝集剤及び該カチオン性ポリマーの添加濃度が下記関係式(Ib)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する制御手段を更に有する[9]ないし[15]のいずれかに記載の水処理装置。
カチオン消費量A×α=カチオン性ポリマー添加濃度(mg/L) …(Ia)
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(Ib)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
[16] When the cationic polymer is added to the water to be treated by the aggregating treatment means and the inorganic flocculant is not added, the water to be treated is titrated with the cationic polymer by a streaming potential method. The necessary amount of the cationic polymer necessary for neutralizing the charge of the water to be treated is defined as cation consumption A, and the cationic polymer is added so that the concentration of the cationic polymer satisfies the following relational formula (Ia): In the case where the cationic polymer and the inorganic flocculant are added to the water to be treated by the aggregating treatment means, the cation consumption A, the inorganic flocculant and the concentration of the cationic polymer added The water according to any one of [9] to [15], further comprising control means for controlling the addition amount of the cationic polymer and the addition amount of the inorganic flocculant so that the above satisfies the following relational formula (Ib): Processing equipment.
Cation consumption A × α = cationic polymer addition concentration (mg / L) (Ia)
Cation consumption A × α =
Cationic polymer addition concentration (mg / L) + Inorganic flocculant addition concentration (mg / L) × β
... (Ib)
α: Safety factor taking into account fluctuations in water quality β: Factor for converting the cation amount of the inorganic flocculant into the cation amount of the cationic polymer

本発明によれば、工業用水、市水、河川水、湖沼水、井水、工業排水、生物処理水などの被処理水を凝集処理して凝集処理水を直接膜分離する水処理において、凝集剤として特定のカチオン性ポリマーを用いることにより、凝集処理手段や膜分離装置、更には膜分離水を受け入れる後段装置の汚染を防止して、安定かつ効率的な処理を行うことができる。   According to the present invention, in water treatment in which water to be treated such as industrial water, city water, river water, lake water, well water, industrial wastewater, biologically treated water is subjected to agglomeration treatment, and the agglomerated treated water is directly subjected to membrane separation, By using a specific cationic polymer as the agent, it is possible to prevent the contamination of the coagulation treatment means, the membrane separation device, and the subsequent device that receives the membrane separation water, and perform a stable and efficient treatment.

実施例で用いた外圧式ミニモジュール試験装置を示す構成図である。It is a block diagram which shows the external pressure type | mold mini-module test apparatus used in the Example. 実験例IVの結果を示すグラフである。10 is a graph showing the results of Experimental Example IV. 実験例Vで用いたRO膜モジュール試験装置を示す構成図である。It is a block diagram which shows the RO membrane module test apparatus used in Experimental example V.

以下に本発明の水処理方法及び水処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of a water treatment method and a water treatment apparatus of the present invention will be described in detail.

本発明の水処理方法は、一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を直接膜分離するものである。   The water treatment method of the present invention has a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid group and a quaternary ammonium group of these amino groups in the polymer side chain, and a hydrophobic group. The water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million is added to the water to be treated and subjected to agglomeration treatment, and then the agglomerated water is directly subjected to membrane separation.

本発明の水処理装置は、一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を直接膜分離する膜分離装置とを有するものである。   The water treatment apparatus of the present invention has a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, and a hydrophobic group. A coagulation treatment means for adding a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million to the water to be treated and a membrane for directly separating the coagulation treated water of the coagulation treatment means And a separation device.

なお、以下において、本発明で用いる、「一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマー」を「本発明のカチオン性ポリマー」と称す場合がある。
また、「一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基」を「特定カチオン基」と称す場合がある。
また、「ジメチルアミノエチルアクリレート・メチルクロライド四級塩に由来する構成単位」、「ジメチルアミノエチルメタクリレート・メチルクロライド四級塩に由来する構成単位」および「ジメチルアミノエチルメタクリレート・ベンジルクロライド四級塩に由来する構成単位」をそれぞれ「DAAモノマー単位またはDAA」、「DAMモノマー単位またはDAM」および「DAM(Bzl)モノマー単位またはDAM(Bzl)」と称し、「カチオン性ポリマー中の全構成単位に占めるDAAモノマー単位の割合」及び「カチオン性ポリマー中の全構成単位に占めるDAMモノマー単位の割合」をそれぞれ「DAAモノマー単位量」および「DAMモノマー単位量」と称す場合がある。
In the following, as used in the present invention, “a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain, The water-soluble cationic polymer having a weight average molecular weight of 100,000 to 8 million and having no hydrophobic group is sometimes referred to as “cationic polymer of the present invention”.
In addition, “a primary amino group, secondary amino group, tertiary amino group, and a functional group selected from acid bases and quaternary ammonium bases of these amino groups” may be referred to as “specific cation groups”.
In addition, “structural units derived from dimethylaminoethyl acrylate / methyl chloride quaternary salt”, “structural units derived from dimethylaminoethyl methacrylate / methyl chloride quaternary salt” and “dimethylaminoethyl methacrylate / benzyl chloride quaternary salt” The “derived structural unit” is referred to as “DAA monomer unit or DAA”, “DAM monomer unit or DAM” and “DAM (Bzl) monomer unit or DAM (Bzl)”, respectively, and occupies all the structural units in the cationic polymer. The “ratio of DAA monomer units” and “ratio of DAM monomer units in all constituent units in the cationic polymer” may be referred to as “DAA monomer unit amount” and “DAM monomer unit amount”, respectively.

[メカニズム]
本発明によれば、本発明のカチオン性ポリマーによる以下の作用効果で、工業用水、市水、河川水、湖沼水、井水、工業排水、生物処理水などの被処理水を凝集処理して凝集処理水を直接膜分離する水処理において、凝集処理手段や膜分離装置、更には膜分離水を受け入れる後段装置の汚染を防止して、安定かつ効率的な処理を行うことができる。
[mechanism]
According to the present invention, water to be treated such as industrial water, city water, river water, lake water, well water, industrial wastewater, biologically treated water is agglomerated by the following effects of the cationic polymer of the present invention. In the water treatment in which the flocculated water is directly subjected to membrane separation, it is possible to prevent the contamination of the flocculation means, the membrane separation apparatus, and the subsequent apparatus that receives the membrane separation water, and perform stable and efficient treatment.

除濁を目的とした限外濾過(UF)膜分離装置や精密濾過(MF)膜分離装置などの膜分離装置(除濁膜装置)においては、分離膜に汚れが付着するため、通常30秒〜60分ごとに間欠的に洗浄流体(水及び/又は気体)を供給して膜の物理洗浄が行われる。
このような膜分離装置の前処理として、特定カチオン基をポリマー側鎖に有する本発明の水溶性のカチオン性ポリマーを被処理水に添加した場合、本発明のカチオン性ポリマーが被処理水中のはフミン酸・フルボ酸、SSなどアニオン荷電を有する膜汚染物質と結合して、分離膜で十分除去可能な大きさまで凝結させるため、本発明のカチオン性ポリマーによる凝集処理後は、これをそのまま直接膜分離装置で膜分離することができる。また、無機凝集剤と本発明のカチオン性ポリマーとを併用する場合は、無機凝集剤単独凝集時に比べて、分離膜の閉塞を抑制することが可能である。また、該カチオン性ポリマーは微細な無機凝集剤コロイドと結合してフロック化することが可能であるため、無機凝集剤と併用する際は無機凝集剤の使用量ひいては汚泥発生量の低減、および無機凝集剤コロイドが膜分離装置の後段にリークすることによる、その後の高度処理装置の汚染を防止することができる。
In a membrane separation device (turbidity membrane device) such as an ultrafiltration (UF) membrane separation device or a microfiltration (MF) membrane separation device for the purpose of turbidity, dirt is attached to the separation membrane, usually 30 seconds. Physical cleaning of the membrane is performed by supplying cleaning fluid (water and / or gas) intermittently every 60 minutes.
As a pretreatment of such a membrane separator, when the water-soluble cationic polymer of the present invention having a specific cationic group in the polymer side chain is added to the water to be treated, the cationic polymer of the present invention is in the water to be treated. Since it binds to membrane contaminants having anion charge such as humic acid, fulvic acid, SS, etc., and coagulates to a size that can be sufficiently removed by the separation membrane, this is directly applied to the membrane after the aggregation treatment with the cationic polymer of the present invention. Membrane separation can be performed with a separation device. Further, when the inorganic flocculant and the cationic polymer of the present invention are used in combination, it is possible to suppress the clogging of the separation membrane as compared with the case of the inorganic flocculant alone aggregation. In addition, since the cationic polymer can be combined with a fine inorganic flocculant colloid to form a floc, when used in combination with the inorganic flocculant, the amount of the inorganic flocculant used and thus the amount of sludge generated can be reduced. It is possible to prevent subsequent contamination of the advanced processing apparatus due to leakage of the coagulant colloid to the subsequent stage of the membrane separation apparatus.

小さいカチオン性ポリマーは分離膜を抜けやすいため後段装置の汚染源になる上に、被処理水中のフミン酸・フルボ酸、SS等への凝結力が低い。さらには微細なフロックを形成するため、分離膜の内部汚染を生じる可能性がある。一方、大き過ぎるカチオン性ポリマーは、粗大化したフロックによる分離膜の濁質汚染性や、薬液の粘性増加によるハンドリング性の悪化を生じる。また、分離膜の細孔径が大きければ、カチオン性ポリマーが分離膜を抜けて後段装置における汚染となりやすいほか、フロックが膜内部に入りこむため、物理洗浄で落ちにくい膜内汚染を生じる。
本発明のカチオン性ポリマーは質量平均分子量10万〜800万という適度な大きさのものであるため、上記のような問題を引き起こすことがなく、また、このようなカチオン性ポリマーによる凝集処理水を孔径0.2μm以下の細孔径の小さい分離膜で膜分離することで、後段装置へのカチオン性ポリマーのリークも防止することができる。
A small cationic polymer is likely to pass through the separation membrane, and thus becomes a source of contamination of the subsequent apparatus, and has a low coagulation force to humic acid, fulvic acid, SS, etc. in the water to be treated. Furthermore, since fine flocs are formed, internal contamination of the separation membrane may occur. On the other hand, an excessively large cationic polymer causes turbid contamination of the separation membrane due to coarse flocs, and deteriorates handling properties due to increased viscosity of the chemical solution. Further, if the pore size of the separation membrane is large, the cationic polymer tends to pass through the separation membrane and cause contamination in the subsequent apparatus, and flocs enter the inside of the membrane, resulting in in-membrane contamination that is difficult to remove by physical cleaning.
Since the cationic polymer of the present invention has an appropriate size such as a mass average molecular weight of 100,000 to 8 million, it does not cause the above-mentioned problems. By performing membrane separation with a separation membrane having a pore size of 0.2 μm or less and a small pore size, it is possible to prevent leakage of the cationic polymer to the subsequent apparatus.

特定カチオン基を有するカチオン性ポリマーにおいて、同コロイド当量および同質量平均分子量であれば、これらの特定カチオン基をポリマー側鎖に有するカチオン性ポリマーの方が、特定カチオン基をポリマー主鎖に有するカチオン性ポリマーよりも高い凝集能を示す。この作用はカチオン性ポリマー内における特定カチオン基の広がり方に起因していると考えられ、少なくとも炭素数1〜3の長さの側鎖であればポリマー側鎖に特定カチオン基を有する構造の方が、ポリマー主鎖に特定カチオン基を有するカチオン性ポリマーよりも高い凝集効果が得られる。   In the cationic polymer having a specific cationic group, if the colloidal equivalent and the mass average molecular weight are the same, the cationic polymer having the specific cationic group in the polymer side chain is more cationic than the cationic polymer having the specific cationic group in the polymer main chain. The coagulation ability is higher than that of the conductive polymer. This action is thought to be due to the way in which the specific cationic group spreads within the cationic polymer. If the side chain has a length of at least 1 to 3 carbon atoms, the structure having the specific cationic group in the polymer side chain However, a higher agglomeration effect can be obtained than a cationic polymer having a specific cationic group in the polymer main chain.

また、カチオン性ポリマー内にベンゼン環や長鎖アルキル基の疎水性官能基や界面活性剤のような疎水性部位を有すると、後段のRO膜を閉塞させた場合において、一般的な有機物汚染の洗浄法であるアルカリ洗浄によって除去することが困難であるが、本発明のカチオン性ポリマーは、このような疎水基を有さないため、たとえRO膜に付着したとしても、これを通常のアルカリ洗浄によって膜面から容易に除去可能である。さらに、未反応のカチオン性ポリマーが凝集工程を抜けて分離膜に到達した際も、疎水基を有さない本発明のカチオン性ポリマーであれば比較的容易に膜面から剥がれるため、分離膜汚染のリスクが低い。   In addition, if the cationic polymer has a hydrophobic site such as a benzene ring or a hydrophobic functional group of a long-chain alkyl group or a surfactant, it will cause general organic contamination when the RO membrane in the latter stage is blocked. Although it is difficult to remove by alkaline washing which is a washing method, the cationic polymer of the present invention does not have such a hydrophobic group. Can be easily removed from the film surface. Furthermore, when the unreacted cationic polymer passes through the agglomeration step and reaches the separation membrane, the cationic polymer of the present invention having no hydrophobic group can be peeled off from the membrane surface relatively easily. Risk is low.

さらに、本発明者が特定カチオン基の広がり方からカチオン性ポリマーの構造と凝集性を評価した結果、DAAモノマー単位量が20〜50モル%のカチオン性ポリマーが最も高い凝集能を示すことが判明した。また、この割合でDAAモノマー単位を有する本発明のカチオン性ポリマーは、その他の本発明のカチオン性ポリマーに比べて、分離膜に吸着しにくく、分離膜を汚しにくいという利点もある。   Furthermore, as a result of evaluation of the structure and aggregation of the cationic polymer by the present inventor based on how the specific cationic group spreads, it was found that the cationic polymer having a DAA monomer unit amount of 20 to 50 mol% exhibits the highest aggregation ability. did. In addition, the cationic polymer of the present invention having DAA monomer units at this ratio also has the advantage that it is less likely to be adsorbed on the separation membrane and less likely to contaminate the separation membrane than the other cationic polymers of the present invention.

[被処理水]
本発明で処理する被処理水としては特に制限はないが、本発明は、濁質(SS)濃度が200mg/L未満、例えば10〜100mg/Lで、溶存有機物濃度が0.01mg/L以上200mg/L未満、好ましくは1〜30mg/Lの、工業用水、市水、河川水、湖沼水、井水、排水、又は生物処理水に対して有効に適用される。
[Treatment water]
Although there is no restriction | limiting in particular as to-be-processed water processed by this invention, In this invention, suspended matter (SS) density | concentration is less than 200 mg / L, for example, 10-100 mg / L, and dissolved organic matter density | concentration is 0.01 mg / L or more. Effectively applied to industrial water, city water, river water, lake water, well water, waste water, or biologically treated water of less than 200 mg / L, preferably 1 to 30 mg / L.

なお、被処理水としての生物処理水は、生物処理槽の上澄みあるいは、生物を含む担体・汚泥等からスクリーンや沈殿処理等によって分離された一次処理水が適用される。   In addition, the biologically treated water as the water to be treated is the primary treated water separated from the supernatant of the biological treatment tank or the carrier-containing sludge containing living organisms by a screen or precipitation treatment.

[本発明のカチオン性ポリマー]
本発明のカチオン性ポリマーは、一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーである。
[Cationic Polymer of the Present Invention]
The cationic polymer of the present invention has a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid group and a quaternary ammonium group of these amino groups in the polymer side chain, and a hydrophobic group. It is a water-soluble cationic polymer having a mass average molecular weight of 100,000 to 8 million.

即ち、前述のメカニズムの項で説明した通り、凝集性の観点から特定カチオン基をポリマー側鎖に有するものを用い、また、分離膜の汚染性やハンドリング性の観点から質量平均分子量10万〜800万で、疎水基を有さない水溶性のカチオン性ポリマーを用いる。なお、本発明のカチオン性ポリマーの質量平均分子量は20万〜500万であることが好ましく、20万〜100万であることがより好ましい。   That is, as explained in the above-mentioned mechanism section, those having a specific cation group in the polymer side chain are used from the viewpoint of aggregation, and mass average molecular weight is 100,000 to 800 from the viewpoint of contamination and handling properties of the separation membrane. Use a water-soluble cationic polymer that does not have a hydrophobic group. The mass average molecular weight of the cationic polymer of the present invention is preferably 200,000 to 5,000,000, and more preferably 200,000 to 1,000,000.

なお、カチオン性ポリマーの質量平均分子量とはクロマトグラフィー法(GPC法)により測定された質量平均分子量の値をさす。
また、「カチオン性ポリマー」とは、コロイド当量が正の値を示すものであり、本発明のカチオン性ポリマーのコロイド当量は1.0〜6.0meq/gであることが好ましい。
ここでコロイド当量は1/400NのPVSK(ポリビニル硫酸カリウム)で滴定を行い、流動電位法により測定した値である。
また、「水溶性」とは、水に対する溶解度が1g以上/水100g(20℃)であることをさす。
The weight average molecular weight of the cationic polymer refers to the value of the weight average molecular weight measured by a chromatography method (GPC method).
In addition, the “cationic polymer” indicates a positive colloidal equivalent, and the colloidal equivalent of the cationic polymer of the present invention is preferably 1.0 to 6.0 meq / g.
Here, the colloidal equivalent is a value obtained by titration with 1 / 400N PVSK (potassium polyvinyl sulfate) and measured by the streaming potential method.
The term “water-soluble” means that the solubility in water is 1 g or more / 100 g of water (20 ° C.).

また、本発明のカチオン性ポリマーは、固有粘度が0.5〜5.5dL/gであることが好ましい。固有粘度が0.5dL/g未満では分子量が小さすぎるため、未反応のポリマーが分離膜を通り抜けて後段装置を汚染する場合があり、更に凝集能が低下する場合がある。固有粘度が5.5dL/gを超えると粘性が増し、ハンドリングが難しくなる。
なお、ここで、カチオン性ポリマーの固有粘度は、1N硝酸ナトリウム水溶液を溶媒として、ウベローデ型粘度計等により30℃で測定した値である。
In addition, the cationic polymer of the present invention preferably has an intrinsic viscosity of 0.5 to 5.5 dL / g. If the intrinsic viscosity is less than 0.5 dL / g, the molecular weight is too small, so that the unreacted polymer may pass through the separation membrane and contaminate the subsequent apparatus, and the coagulation ability may be further reduced. When the intrinsic viscosity exceeds 5.5 dL / g, the viscosity increases and handling becomes difficult.
Here, the intrinsic viscosity of the cationic polymer is a value measured at 30 ° C. with an Ubbelohde viscometer or the like using a 1N sodium nitrate aqueous solution as a solvent.

カチオン性ポリマーとしては、上記の好適物性を満たすものであればよく、特に制限はないが、カチオン性モノマーとアクリルアミド等のノニオン性モノマーとの共重合物を好適に用いることができる。カチオン性モノマーの具体例としては、ジメチルアミノエチルアクリレートやジメチルアミノエチルメタクリレートの酸塩もしくはその4級アンモニウム塩、ジメチルアミノプロピルアクリアミドやジメチルアミノプロピルメタクリアミドの酸塩もしくはその4級アンモニウム塩を好適に用いることができるが、これに限定されるものではない。なお、4級アンモニウム塩としては、メチルクロライドやエチルクロライドなどの4級アンモニウム塩を用いることができる。
これらのカチオン性ポリマーは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
前述の通り、本発明のカチオン性ポリマーは、DAAモノマー単位を有するものが凝集性の観点から好ましく、DAAモノマー単位量が20〜50モル%のものが特に好ましい。
The cationic polymer is not particularly limited as long as it satisfies the above-mentioned preferred physical properties, but a copolymer of a cationic monomer and a nonionic monomer such as acrylamide can be preferably used. As specific examples of the cationic monomer, dimethylaminoethyl acrylate or dimethylaminoethyl methacrylate acid salt or quaternary ammonium salt thereof, dimethylaminopropyl acryamide or dimethylaminopropyl methacrylate acid acid salt or quaternary ammonium salt are suitable. However, the present invention is not limited to this. As the quaternary ammonium salt, a quaternary ammonium salt such as methyl chloride or ethyl chloride can be used.
These cationic polymers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
As described above, the cationic polymer of the present invention preferably has a DAA monomer unit from the viewpoint of cohesion, and particularly preferably has a DAA monomer unit amount of 20 to 50 mol%.

被処理水へのカチオン性ポリマーの添加量は、被処理水の水質や用いるカチオン性ポリマーの種類、無機凝集剤の併用の有無等によっても異なるが、有効成分量として0.1〜5mg/Lの範囲をすることが好ましい。   The amount of the cationic polymer added to the water to be treated varies depending on the quality of the water to be treated, the kind of the cationic polymer to be used, whether or not the inorganic flocculant is used in combination, and the amount of the active ingredient is 0.1 to 5 mg / L. It is preferable to make the range.

[無機凝集剤]
本発明においては、本発明のカチオン性ポリマーと共に無機凝集剤を併用添加して凝集処理を行ってもよい。この場合、被処理水に添加する無機凝集剤としては、幅広いpH範囲でフロックを形成することができる鉄系又はアルミニウム系の無機凝集剤を併用することが好ましい。鉄系無機凝集剤としては、塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などが挙げられ、アルミニウム系無機凝集剤としては、ポリ塩化アルミニウムや硫酸アルミニウムが挙げられる。特に凝集効果とコストの面で鉄系無機凝集剤である塩化第二鉄が好ましい。これらの無機凝集剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[Inorganic flocculant]
In the present invention, an aggregating treatment may be performed by adding an inorganic flocculant together with the cationic polymer of the present invention. In this case, as the inorganic flocculant added to the water to be treated, it is preferable to use an iron-based or aluminum-based inorganic flocculant capable of forming flocs in a wide pH range. Examples of the iron-based inorganic flocculant include ferric chloride, ferric sulfate, polyferric chloride, and polyferric sulfate. Examples of the aluminum-based inorganic flocculant include polyaluminum chloride and aluminum sulfate. It is done. In particular, ferric chloride, which is an iron-based inorganic flocculant, is preferable from the viewpoints of the aggregation effect and cost. These inorganic flocculants may be used individually by 1 type, and 2 or more types may be mixed and used for them.

被処理水への無機凝集剤の添加量は、被処理水の水質や、用いる無機凝集剤の種類、要求される処理水水質等によっても異なるが、有効成分量として2〜100mg/Lの範囲とすることが好ましい。   The amount of the inorganic flocculant added to the water to be treated varies depending on the quality of the water to be treated, the type of the inorganic flocculant to be used, the quality of the water to be treated, etc., but the amount of the active ingredient is in the range of 2 to 100 mg / L. It is preferable that

[凝集処理]
被処理水に本発明のカチオン性ポリマーを添加した後は、反応時間を確保するために2〜10分程度攪拌することが好ましい。
[Aggregation treatment]
After adding the cationic polymer of this invention to to-be-processed water, in order to ensure reaction time, it is preferable to agitate about 2 to 10 minutes.

[膜分離装置]
本発明では、本発明のカチオン性ポリマー、又は本発明のカチオン性ポリマーと無機凝集剤を添加して凝集処理した後は、凝集処理水を直接膜分離装置で膜分離する。
ここで、「直接膜分離する」とは、凝集処理水に更なる凝集剤の添加や、沈殿槽等による固液分離等を行わずに、そのまま膜分離装置に給水することをさす。
[Membrane separator]
In the present invention, after the cationic polymer of the present invention or the cationic polymer of the present invention and an inorganic flocculant are added and subjected to an agglomeration treatment, the agglomerated water is directly subjected to membrane separation with a membrane separator.
Here, “directly membrane-separated” refers to supplying water directly to the membrane separation apparatus without adding a flocculant to the flocculated water or performing solid-liquid separation using a precipitation tank or the like.

本発明で用いる膜分離装置については、膜形式や構造には特に制限はないが、膜分離装置としてはMF膜分離装置又はUF膜分離装置を用いることが好ましい。
UF膜、MF膜の孔径については、前述の通り、0.2μm以下、例えば、0.1〜0.01μm程度であることが好ましい。
The membrane separator used in the present invention is not particularly limited in terms of membrane type or structure, but it is preferable to use an MF membrane separator or a UF membrane separator as the membrane separator.
As described above, the pore size of the UF membrane and the MF membrane is preferably 0.2 μm or less, for example, about 0.1 to 0.01 μm.

分離膜の素材は特に限定しないが、例えばポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどの延伸法で製造される分離膜は、細孔径が0.2μmより大きいものになってしまうため、本発明には不適当である。
また、膜分離装置による膜分離方式にも特に制限はなく、後述の実施例ではデッドエンド通水方式で行っているが、クロスフロー通水方式であってもよい。
The material of the separation membrane is not particularly limited, but for example, a separation membrane produced by a stretching method such as polyethylene, polypropylene, polytetrafluoroethylene, etc., has a pore diameter larger than 0.2 μm. Inappropriate.
Moreover, there is no restriction | limiting in particular also in the membrane separation system by a membrane separator, In the below-mentioned Example, although it carries out by the dead end water flow system, a cross flow water flow system may be sufficient.

[高度処理]
本発明において、上記の膜分離装置による膜分離で得られる処理水は有機物、SS等が十分に除去された高水質のものであり、これをそのまま工業用水として使用したり放流することができるが、必要に応じて逆浸透(RO)膜分離装置でRO膜処理してもよく、この場合において、本発明のカチオン性ポリマーはRO膜汚染性が低く、また、RO膜汚染を生じた場合でも通常のアルカリ洗浄により容易に膜性状を回復させることができる。
[Advanced processing]
In the present invention, the treated water obtained by membrane separation by the membrane separation apparatus is of high water quality from which organic substances, SS, etc. are sufficiently removed, and can be used or discharged as industrial water as it is. If necessary, the RO membrane may be treated with a reverse osmosis (RO) membrane separator. In this case, the cationic polymer of the present invention has low RO membrane contamination, and even when RO membrane contamination occurs. The film properties can be easily recovered by ordinary alkali cleaning.

[凝集剤添加量の制御]
被処理水に対して、カチオン性ポリマーを過剰添加した場合、カチオン凝集処理水中の荷電がプラス雰囲気になるため、カチオン性ポリマーの吸着対象物質(原水中SS、有機物、無機凝集剤コロイド)の除去率を低下させる結果となる。そのため、被処理水の電荷を中和するために必要なカチオン消費量Aを測定し、添加する凝集剤の総カチオン量を被処理水のカチオン消費量A以下に調整することが好ましい。被処理水のカチオン消費量Aは、流動電位法により被処理水を用いるカチオン性ポリマーで滴定することにより求めることができる。
[Control of amount of flocculant added]
When the cationic polymer is excessively added to the water to be treated, the charge in the cationic flocculation water becomes a positive atmosphere, so removal of the cationic polymer adsorption target material (raw water SS, organic matter, inorganic flocculant colloid) As a result, the rate decreases. Therefore, it is preferable to measure the cation consumption A necessary for neutralizing the charge of the water to be treated and adjust the total cation amount of the flocculant to be added to the cation consumption A or less of the water to be treated. The cation consumption A of the water to be treated can be determined by titrating with a cationic polymer that uses the water to be treated by the streaming potential method.

本発明では、このようにして被処理水のカチオン消費量Aを求め、凝集処理において被処理水に本発明のカチオン性ポリマーを添加し、無機凝集剤を添加しない場合は、カチオン消費量Aと本発明のカチオン性ポリマーの添加濃度が下記関係式(Ia)を満たすように、本発明のカチオン性ポリマーの添加量を制御することが好ましい。また、凝集処理において被処理水に本発明のカチオン性ポリマーと無機凝集剤を添加する場合は、カチオン消費量Aと無機凝集剤及び本発明のカチオン性ポリマーの添加濃度が下記関係式(Ib)を満たすように、本発明のカチオン性ポリマーの添加量と無機凝集剤の添加量を制御することが好ましい。
カチオン消費量A×α=カチオン性ポリマー添加濃度(mg/L) …(Ia)
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(Ib)
ここで、αは水質変動を加味した安全係数であり、通常、0.6〜0.9程度である。
また、βは用いる無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数であり、流動電位計により求められる。
In the present invention, the cation consumption A of the water to be treated is obtained in this way. When the cationic polymer of the present invention is added to the water to be treated in the flocculation treatment and the inorganic flocculant is not added, the cation consumption A and It is preferable to control the addition amount of the cationic polymer of the present invention so that the addition concentration of the cationic polymer of the present invention satisfies the following relational formula (Ia). In addition, when the cationic polymer and the inorganic flocculant of the present invention are added to the water to be treated in the flocculation treatment, the cation consumption A, the concentration of the inorganic flocculant and the cationic polymer of the present invention are represented by the following relational formula (Ib): It is preferable to control the addition amount of the cationic polymer of the present invention and the addition amount of the inorganic flocculant so as to satisfy the above.
Cation consumption A × α = cationic polymer addition concentration (mg / L) (Ia)
Cation consumption A × α =
Cationic polymer addition concentration (mg / L) + Inorganic flocculant addition concentration (mg / L) × β
... (Ib)
Here, α is a safety factor taking into account water quality fluctuations, and is generally about 0.6 to 0.9.
Β is a coefficient for converting the cation amount of the inorganic flocculant used to the cation amount of the cationic polymer, and is determined by a rheometer.

以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples and comparative examples.

[実験例I]
国内工業用水(SS濃度:10mg/L、溶存有機物濃度:1〜2mg/L)を試験水として、以下の方法で各種カチオン性ポリマーの凝集効果を調べる実験を行った。
[Experimental Example I]
Using domestic industrial water (SS concentration: 10 mg / L, dissolved organic matter concentration: 1-2 mg / L) as test water, an experiment was conducted to examine the aggregation effect of various cationic polymers by the following method.

試験水を150rpmで急速攪拌しながら無機凝集剤(塩化第二鉄)を38%水溶液として75mg/Lおよび表1に示す各種カチオン性ポリマー0.6mg/L(純分として)を添加し(ただし、No.I−1では無機凝集剤のみ)、次いでpH調整剤(塩酸)を用いてpH5.5に調整した。更に5分間急速攪拌した後、50rpmで5分間緩速攪拌してフロックを成長させた。
得られた凝集処理水を、No.5A濾紙で濾過した後、濾液を直径25mm、孔径0.45μmの酢酸セルロースメンブレンフィルターを用いて−500mmHgで減圧濾過した。このとき、初めの150mLを濾過するのに要した時間をT1(秒)、次の150mLを濾過するのに要した時間をT2(秒)とし、MFF=T2/T1で処理水の評価を行った。
MFFは小さい値であるほど、良好な水質であることを意味する。結果を表1に示す。
75 mg / L of inorganic flocculant (ferric chloride) as a 38% aqueous solution and 0.6 mg / L of various cationic polymers shown in Table 1 (as pure components) were added while rapidly stirring the test water at 150 rpm (however, No. I-1 was adjusted to pH 5.5 using only an inorganic flocculant and then a pH adjuster (hydrochloric acid). After further stirring rapidly for 5 minutes, flocs were grown by stirring gently at 50 rpm for 5 minutes.
The obtained agglomerated treated water was No. After filtration with 5A filter paper, the filtrate was filtered under reduced pressure at −500 mmHg using a cellulose acetate membrane filter having a diameter of 25 mm and a pore diameter of 0.45 μm. At this time, the time required to filter the first 150 mL is T1 (seconds), the time required to filter the next 150 mL is T2 (seconds), and the treated water is evaluated at MFF = T2 / T1. It was.
A smaller value of MFF means better water quality. The results are shown in Table 1.

Figure 2019188338
Figure 2019188338

表1より次のことが分かる。
無機凝集剤単独処理(No.I−1)に比べて、水溶性カチオン性ポリマーの添加で処理水MFFの低下が認められた。特に、側鎖に特定カチオン基を有する本発明のカチオン性ポリマーを用いたNo.I−5〜7は、主鎖に特定カチオン基を有するカチオン性ポリマーを用いたNo.I−3〜4に比べて低い処理水MFFを示す。
なお、No.I−2で用いたカチオン性ポリマーはカチオン基近傍に電子供与性のある官能基(カルボニル基など)がなく、カチオン基が誘起しにくいため、ほとんどカチオン性(電子吸引性)を有さない。したがって、No.I−2で用いたカチオン性ポリマーは、一般的には非イオン性のポリマーに分類されているポリマーであり、本発明のカチオン性ポリマーとは異なるため、処理水MFFが高く、凝集能が劣っている。
Table 1 shows the following.
Compared with the inorganic flocculant single treatment (No. I-1), a decrease in the treated water MFF was observed with the addition of the water-soluble cationic polymer. In particular, No. 1 using the cationic polymer of the present invention having a specific cationic group in the side chain. Nos. I-5 to 7 are Nos. 1 to 5 using a cationic polymer having a specific cationic group in the main chain. The treated water MFF which is low compared with I-3-4 is shown.
In addition, No. The cationic polymer used in I-2 has almost no cationic property (electron-withdrawing property) because it has no electron-donating functional group (such as a carbonyl group) in the vicinity of the cationic group and the cationic group is difficult to induce. Therefore, no. The cationic polymer used in I-2 is a polymer generally classified as a nonionic polymer, and is different from the cationic polymer of the present invention, so that the treated water MFF is high and the aggregating ability is inferior. ing.

[実験例II]
カチオン性ポリマーとして表2に示すものを用いたこと以外は実験例Iと同様に試験を行った。ただし、カチオン性ポリマーの添加量は純分として0.3mg/L,0.9mg/L,1.2mg/Lとし、各々の添加量で処理水MFFの評価を行った。結果を表2に示す。
[Experimental example II]
The test was conducted in the same manner as in Experimental Example I except that the cationic polymer shown in Table 2 was used. However, the addition amount of the cationic polymer was 0.3 mg / L, 0.9 mg / L, and 1.2 mg / L as pure components, and the treated water MFF was evaluated at each addition amount. The results are shown in Table 2.

Figure 2019188338
Figure 2019188338

表2より次のことが分かる。
特定カチオン基をポリマー側鎖に有する水溶性カチオン性ポリマーを用いたもののうち、ジメチルアミノエチルアクリレート・メチルクロライド四級塩/アクリルアミド共重合体(DAA/AN共重合体、DAAモノマー単位量50モル%)であるNo.II−5が最も添加量に対する処理水MFFが低く、高い凝集能を示した。前述の特許文献5では、フミン酸試薬に対する除去性を評価しており、その場合は疎水基を有するカチオン性ポリマーの方が疎水基を持たないカチオン性ポリマーよりも高い除去性能を示した。しかしながら、フミン酸以外の有機物を含む実用水を用いて凝集能をMFFで評価した場合は、疎水性基を有するカチオン性ポリマー(No.II−1)の凝集能は疎水基を有さないカチオン性ポリマー(No.II−2〜5)に比べて劣る結果となった。
Table 2 shows the following.
Among those using a water-soluble cationic polymer having a specific cationic group in the polymer side chain, dimethylaminoethyl acrylate / methyl chloride quaternary salt / acrylamide copolymer (DAA / AN copolymer, DAA monomer unit amount 50 mol%) No.). II-5 had the lowest treated water MFF relative to the amount added, and showed high coagulation ability. In the above-mentioned patent document 5, the removability with respect to the humic acid reagent was evaluated, and in that case, the cationic polymer having a hydrophobic group showed higher removal performance than the cationic polymer having no hydrophobic group. However, when the aggregating ability is evaluated by MFF using practical water containing organic substances other than humic acid, the aggregating ability of the cationic polymer having a hydrophobic group (No. II-1) is a cation having no hydrophobic group. Results were inferior to those of the conductive polymer (No. II-2 to 5).

[実験例III]
生物処理水(SS濃度:40mg/L、溶存有機物濃度:2.5mg/L)を試験水として、カチオン性ポリマーとして、DAAモノマー単位量の異なるジメチルアミノエチルアクリレート・メチルクロライド四級塩/アクリルアミド共重合体(DAA/AN共重合体)(質量平均分子量200万〜300万)を用いたこと以外(ただし、No.III−1ではポリアクリルアミドを用い、No.III−2では、ポリジメチルアミノエチルアクリレート・メチルクロライド四級塩を用いた。)は、実験例Iと同様にして試験を行った。
用いたカチオン性ポリマーのDAA単位量と処理水MFFを表3に示す。
[Experimental Example III]
Biologically treated water (SS concentration: 40 mg / L, dissolved organic matter concentration: 2.5 mg / L) as test water, as a cationic polymer, dimethylaminoethyl acrylate / methyl chloride quaternary salt / acrylamide with different DAA monomer unit amounts Other than using a polymer (DAA / AN copolymer) (mass average molecular weight 2 million to 3 million) (however, polyacrylamide was used in No. III-1, and polydimethylaminoethyl was used in No. III-2). Acrylate / methyl chloride quaternary salt was used) and was tested in the same manner as in Experimental Example I.
Table 3 shows the DAA unit amount of the cationic polymer and the treated water MFF.

Figure 2019188338
Figure 2019188338

表3より次のことが分かる。
DAA単位量が20〜50モル%のカチオン性ポリマーを用いた場合(No.III−5,6)は、DAA単位量がこの範囲外のカチオン性ポリマーを用いた場合よりも低い処理水MFFを示した。
なお、質量平均分子量10万〜800万で、DAA単位量20〜50モル%のカチオン性ポリマーでは固有粘度0.5〜5.5dL/gを示した。
Table 3 shows the following.
When a cationic polymer having a DAA unit amount of 20 to 50 mol% is used (No. III-5, 6), treated water MFF having a lower DAA unit amount than when a cationic polymer having a DAA unit amount outside this range is used. Indicated.
A cationic polymer having a mass average molecular weight of 100,000 to 8 million and a DAA unit amount of 20 to 50 mol% showed an intrinsic viscosity of 0.5 to 5.5 dL / g.

[実験例IV]
カチオン性ポリマーとして各例毎に下記表4に示すものを用い、試験装置としては、図1(a),(b)に示す外圧式ミニモジュール試験装置(外圧式中空糸UF膜、孔径:0.02μm、膜長さ:7.5cm、膜面積:10.6cm、膜素材ポリフッ化ビニリデン)を用いて、カチオン性ポリマーの汚染性を調べた。この試験装置の構造、操作の評価については、実施例1〜5、比較例1〜2の項において説明する。
[Experimental example IV]
As the cationic polymer, those shown in Table 4 below are used for each example, and the test apparatus is an external pressure type mini-module test apparatus (external pressure type hollow fiber UF membrane, pore size: 0 shown in FIGS. 1 (a) and 1 (b). 0.02 μm, membrane length: 7.5 cm, membrane area: 10.6 cm 2 , membrane material polyvinylidene fluoride), and the contamination property of the cationic polymer was examined. Evaluation of the structure and operation of this test apparatus will be described in the sections of Examples 1 to 5 and Comparative Examples 1 and 2.

Figure 2019188338
Figure 2019188338

各々のカチオン性ポリマーを純水で0.5mg/L濃度に希釈し、希釈液50mLを配管11からデッドエンド通水方式で外圧式ミニモジュール10に導入して中空糸膜1の1次側から2次側へ膜透過させ、膜1をカチオン性ポリマーで汚染させた後、純水30mLを通水するに要する時間T1(秒)を測定した。
次いで、配管13Aから0.15MPaの空気を配管13に送気して配管13内の水を中空糸膜1の2次側から1次側に通水する逆洗浄を行った後、上記と同様に純水30mLを通水するに要する時間T2(秒)を測定した。
カチオン性ポリマーによる膜の汚染度はT2/T1で求めた。T2/T1が大きい程膜の汚染度が高い。
この膜汚染度とカチオン性ポリマーの種類と質量平均分子量との関係を図2に示した。
Each cationic polymer is diluted with pure water to a concentration of 0.5 mg / L, and 50 mL of the diluted solution is introduced into the external pressure mini-module 10 from the pipe 11 by a dead-end water flow system, from the primary side of the hollow fiber membrane 1. After passing through the membrane to the secondary side and contaminating the membrane 1 with the cationic polymer, the time T1 (second) required to pass 30 mL of pure water was measured.
Next, after performing reverse cleaning in which air of 0.15 MPa is supplied from the pipe 13A to the pipe 13 and water in the pipe 13 is passed from the secondary side to the primary side of the hollow fiber membrane 1, the same as described above. The time T2 (second) required to pass 30 mL of pure water was measured.
The degree of contamination of the membrane by the cationic polymer was determined by T2 / T1. The greater T2 / T1, the higher the degree of membrane contamination.
FIG. 2 shows the relationship between the degree of membrane contamination, the kind of the cationic polymer, and the mass average molecular weight.

図2より次のことが分かる。
高分子ポリマーは分離膜細孔を詰まらせて汚染しやすいが、特に疎水基を含むNo.IV−7〜9で用いたカチオン性ポリマーは同程度の質量平均分子量の疎水性基を含まないNo.IV−1〜6で用いたカチオン性ポリマーに比べて膜を汚染しやすいことが分かる。さらに、No.IV−4〜6のカチオン性ポリマーは同程度の質量平均分子量のその他のカチオン性ポリマーに比べて膜から剥がれ易く、分離膜を汚染しにくいことが分かる。
The following can be seen from FIG.
High molecular polymers are likely to clog the separation membrane pores and are easily contaminated. The cationic polymers used in IV-7 to No. 9 contain no hydrophobic groups having the same mass average molecular weight. It turns out that it is easy to contaminate a film | membrane compared with the cationic polymer used by IV-1-6. Furthermore, no. It can be seen that the cationic polymers of IV-4 to 6 are more easily peeled off from the membrane than other cationic polymers having the same mass average molecular weight and are less likely to contaminate the separation membrane.

[実験例V]
図3に示す試験装置を用い、カチオン性ポリマーの希釈液をRO膜モジュールに透過させてRO膜汚染性を調べる実験を行った。
この試験装置は、給水タンク6内の給水がポンプPにより配管21よりRO膜モジュール8に導入され、透過水が配管22より処理水タンク7に送給され、濃縮水が配管23より排出されるように構成されたものである。RO膜としては、一般的な超低圧RO膜(平膜)を用いた。
PIは圧力計、Vは背圧弁である。
[Experiment V]
Using the test apparatus shown in FIG. 3, an experiment was conducted to examine the RO membrane contamination by allowing the diluted solution of the cationic polymer to permeate the RO membrane module.
In this test apparatus, the water supply in the water supply tank 6 is introduced into the RO membrane module 8 from the pipe 21 by the pump P, the permeated water is supplied from the pipe 22 to the treated water tank 7, and the concentrated water is discharged from the pipe 23. It is comprised as follows. A general ultra-low pressure RO membrane (flat membrane) was used as the RO membrane.
PI is a pressure gauge, V 4 is a back pressure valve.

カチオン性ポリマーとしては下記表5に示すものを用い、各カチオン性ポリマーを純水で0.5mg/L濃度に希釈した希釈液をRO膜モジュール8にフラックス0.7m/m/d、水回収率80%で20時間通水して、RO膜を閉塞させた。次いで、pH12のNaOH水溶液をRO膜モジュールに30分間給水側に循環させて洗浄を行った。
この試験前の新膜、カチオン性ポリマー希釈液を20時間通水した後の汚染膜、NaOHで洗浄後の膜のフラックスをそれぞれ純水を0.75MPaで透過させることで調べ、新膜のフラックスに対する各々のフラックス比を算出し結果を表5に示した。
As the cationic polymer, those shown in Table 5 below were used, and a diluted solution obtained by diluting each cationic polymer to a concentration of 0.5 mg / L with pure water was supplied to the RO membrane module 8 with a flux of 0.7 m 3 / m 2 / d, The RO membrane was blocked by passing water for 20 hours at a water recovery rate of 80%. Next, pH 12 NaOH aqueous solution was circulated through the RO membrane module for 30 minutes to the water supply side for cleaning.
The new membrane before this test, the contaminated membrane after passing through the cationic polymer diluent for 20 hours, and the flux of the membrane after washing with NaOH were examined by permeating pure water at 0.75 MPa. The results are shown in Table 5.

Figure 2019188338
Figure 2019188338

表5より次のことが分かる。
いずれのカチオン性ポリマーもRO膜を汚染するが、疎水基を分子内に有するカチオン性ポリマーを用いた場合(No.V−2)は、30分の循環洗浄では、殆どフラックスの回復効果が得られない。
これに対して、疎水基を有さない、本発明のカチオン性ポリマーを用いた場合(No.V−1)は、洗浄によるフラックス回復効果が高く、フラックスは新膜の96%まで回復した。
Table 5 shows the following.
Any cationic polymer contaminates the RO membrane, but when a cationic polymer having a hydrophobic group in the molecule is used (No. V-2), the circulation cleaning for 30 minutes almost gives a flux recovery effect. I can't.
In contrast, when the cationic polymer of the present invention having no hydrophobic group was used (No. V-1), the flux recovery effect by washing was high, and the flux recovered to 96% of the new film.

[実施例1〜5、比較例1〜2]
以下の無機凝集剤及びカチオン性ポリマーを用いてカチオン性ポリマーの質量平均分子量による効果を調べた。
無機凝集剤:塩化第二鉄
カチオン性ポリマー:表6に示すDAA/AN共重合体(特定カチオン基をポリマー側鎖に有する。)
[Examples 1-5, Comparative Examples 1-2]
Using the following inorganic flocculant and cationic polymer, the effect of the weight average molecular weight of the cationic polymer was examined.
Inorganic flocculant: ferric chloride Cationic polymer: DAA / AN copolymer shown in Table 6 (having specific cationic group in polymer side chain)

また、試験装置としては、図1(a),(b)に示す外圧式ミニモジュール試験装置(外圧式中空糸UF膜、孔径:0.02μm、膜長さ:7.5cm、膜面積:10.6cm、膜素材ポリフッ化ビニリデン)を用いた。
図1(a)中、1は中空糸膜、2はポッティング剤、3は原水導入口、4は排水口、5はモジュールハウジングであり、内部に中空糸膜1が装填されている。原水は導入口3からハウジング5内に導入され、中空糸膜1を透過した透過水が中空糸膜1の膜内からハウジング5外へ取り出される。
In addition, as a test apparatus, an external pressure type mini-module test apparatus (external pressure type hollow fiber UF membrane, pore diameter: 0.02 μm, membrane length: 7.5 cm, membrane area: 10 shown in FIGS. .6 cm 2 , a membrane material polyvinylidene fluoride).
In FIG. 1A, 1 is a hollow fiber membrane, 2 is a potting agent, 3 is a raw water introduction port, 4 is a drainage port, 5 is a module housing, and the hollow fiber membrane 1 is loaded therein. The raw water is introduced into the housing 5 from the introduction port 3, and the permeated water that has permeated through the hollow fiber membrane 1 is taken out from the inside of the hollow fiber membrane 1 to the outside of the housing 5.

この外圧式中空糸ミニモジュール10に図1(b)の通り配管を接続して外圧式ミニモジュール試験装置とした。この試験装置では、原水の処理時は、バルブV,V,Vを閉として、ポンプPを作動させて、給水タンク6から配管11を経て原水を外圧式ミニモジュール10に導入し、透過水を配管13を経て処理水タンク7に送給するデッドエンド通水方式で膜濾過を行う。膜の逆洗浄を行う際は、ポンプPを停止し、バルブVを閉、V,Vを開として、配管13Aより空気を配管13に送気し、配管13内の水を中空糸膜1の内側(2次側)から外側(1次側)へ透過させる。排水時は、ポンプPを停止した状態で、バルブV,Vを開、バルブVを閉として、配管11Aから空気を配管11に送気し、配管12よりモジュール10内の水を排出させる。配管11A,13Aからの空気は0.15MPaで送気した。水張り時は、バルブVを開、バルブV,Vを閉として、ポンプPを作動させて給水タンク6内の水をモジュール10内に導入する。PIは圧力計である。 A pipe was connected to the external pressure type hollow fiber mini-module 10 as shown in FIG. In this test apparatus, when the raw water is treated, the valves V 1 , V 2 and V 3 are closed, the pump P is operated, and the raw water is introduced from the water supply tank 6 through the pipe 11 into the external pressure mini-module 10. Membrane filtration is performed by a dead-end water passing method in which the permeate is supplied to the treated water tank 7 through the pipe 13. When performing backwashing of the membrane, the pump P is stopped, the valve V 1 is closed, the V 2, V 3 is opened and air was supplied to the pipe 13 from the pipe 13A, the hollow fiber water in the pipe 13 Permeation from the inner side (secondary side) of the membrane 1 to the outer side (primary side). During wastewater, while stopping the pump P, and valve V 1, V 2 opens, the valve V 3 is closed, the air air into the pipe 11 from the pipe 11A, the discharge of water of the pipe 12 from the module 10 Let Air from the pipes 11A and 13A was supplied at 0.15 MPa. At the time of water filling, the valve V 2 is opened, the valves V 1 and V 3 are closed, the pump P is operated, and the water in the water supply tank 6 is introduced into the module 10. PI is a pressure gauge.

液晶工場排水の生物処理水(SS濃度40mg/L、溶存有機物濃度2〜2.5mg/L)を150rpmで急速攪拌しながら無機凝集剤(塩化第二鉄)を38%水溶液として100mg/Lを添加し、次いでpH調整剤(塩酸)を用いてpH5.5に調整した。更に5分間急速攪拌した後、引き続き150rpmで急速攪拌しながら、表6に示す通り、質量平均分子量の異なるカチオン性ポリマー0.6mg/Lをそれぞれ添加して5分間反応させた後に、50rpmでさらに5分間緩速攪拌して凝集処理を行った。
得られた凝集処理水を、図1(a),(b)に示す外圧式ミニモジュール試験装置に48時間通水した。通水中、フラックス4m/m/dの濾過28分おきに逆洗浄(30秒)、次いで排水(30秒)、その後水張り(30秒)を行い、配管11に設けた圧力計Plで測定される膜間差圧の上昇速度を調べた。
また、給水(膜分離に供した凝集処理水)のSS濃度と、48時間の通水で得られた排水中のSS量を測定し、モジュール内のSS残留率を以下の式で算出した。
Biologically treated water (SS concentration 40 mg / L, dissolved organic matter concentration 2 to 2.5 mg / L) of liquid crystal factory effluent is rapidly stirred at 150 rpm while inorganic flocculant (ferric chloride) is used as a 38% aqueous solution and 100 mg / L Then, the pH was adjusted to 5.5 using a pH adjuster (hydrochloric acid). After further rapidly stirring for 5 minutes and then continuously stirring at 150 rpm, as shown in Table 6, 0.6 mg / L of a cationic polymer having a different mass average molecular weight was added and reacted for 5 minutes. Aggregation was carried out with gentle stirring for 5 minutes.
The obtained agglomerated water was passed through an external pressure mini-module test apparatus shown in FIGS. 1 (a) and 1 (b) for 48 hours. Measured with a pressure gauge Pl provided on the pipe 11 after passing through water and backwashing every 30 minutes with a flux of 4 m 3 / m 2 / d (30 seconds), then draining (30 seconds), and then watering (30 seconds). The rate of increase in transmembrane pressure was investigated.
Further, the SS concentration of the feed water (flocculated treated water subjected to membrane separation) and the amount of SS in the wastewater obtained by passing water for 48 hours were measured, and the SS residual ratio in the module was calculated by the following formula.

Figure 2019188338
Figure 2019188338

給水SS濃度および排水中SS量は、これらの水を、直径47mm、孔径1μmのガラス濾紙で濾過した際に得られる濾取物の乾燥重量として測定した。結果を表6に示す。   The feed water SS concentration and the amount of SS in the wastewater were measured as the dry weight of the filtered product obtained when these waters were filtered through a glass filter paper having a diameter of 47 mm and a pore diameter of 1 μm. The results are shown in Table 6.

Figure 2019188338
Figure 2019188338

表6より次のことが分かる。
低分子量の質量平均分子量を用いると、フロックが微細になるため膜閉塞を生じやすく、差圧上昇速度が大きくなる傾向を示した(比較例1)。カチオン性ポリマーの分子量が大きくなると、フロックが粗大になるためモジュール内に堆積しやすく、SS残留率が増加した(比較例2)。これらの結果から、膜汚染性の観点から、カチオン性ポリマーの適正質量平均分子量は10万〜800万であり、望ましくは20万〜100万であることが分かる。
Table 6 shows the following.
When the mass average molecular weight having a low molecular weight was used, the flocs became fine, so that the membrane was likely to be clogged and the rate of increase in the differential pressure tended to increase (Comparative Example 1). When the molecular weight of the cationic polymer is increased, flocs are coarsened, so that they are easily deposited in the module, and the SS residual ratio is increased (Comparative Example 2). From these results, it is understood that the proper weight average molecular weight of the cationic polymer is 100,000 to 8 million, and desirably 200,000 to 1 million from the viewpoint of membrane contamination.

1 中空糸膜
2 ポッティング剤
3 原水導入口
4 排水口
5 モジュールハウジング
6 給水タンク
7 処理水タンク
8 RO膜モジュール
10 外圧式中空糸ミニモジュール
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane 2 Potting agent 3 Raw water introduction port 4 Drainage port 5 Module housing 6 Water supply tank 7 Treated water tank 8 RO membrane module 10 External pressure type hollow fiber mini module

Claims (16)

一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を孔径0.2μm以下の分離膜で直接膜分離することを特徴とする水処理方法。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group A water treatment method characterized in that 100,000 to 8 million water-soluble cationic polymer is added to the water to be treated and agglomerated, and then the agglomerated water is directly subjected to membrane separation with a separation membrane having a pore diameter of 0.2 μm or less . 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を直接膜分離し、分離水を逆浸透膜処理することを特徴とする水処理方法。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group A water treatment method characterized in that 100,000 to 8 million water-soluble cationic polymer is added to the water to be treated for coagulation treatment, the coagulation treatment water is directly subjected to membrane separation, and the separated water is subjected to reverse osmosis membrane treatment. . 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理した後、凝集処理水を孔径0.2μm以下の分離膜で直接膜分離し、分離水を逆浸透膜処理することを特徴とする水処理方法。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group After adding 100,000 to 8 million water-soluble cationic polymer to the water to be treated and aggregating, the agglomerated water is directly separated by a separation membrane having a pore size of 0.2 μm or less, and the separated water is treated with a reverse osmosis membrane. A water treatment method characterized by: 前記被処理水が、濁質濃度が200mg/L未満で、溶存有機物濃度が0.01mg/L以上200mg/L未満の、工業用水、市水、河川水、湖沼水、井水、排水、又は生物処理水である請求項1ないし3のいずれかに記載の水処理方法。   The water to be treated is industrial water, city water, river water, lake water, well water, drainage water, having a turbidity concentration of less than 200 mg / L and a dissolved organic matter concentration of 0.01 mg / L or more and less than 200 mg / L, or The water treatment method according to claim 1, which is biologically treated water. 前記カチオン性ポリマーがジメチルアミノエチルアクリレート四級化物に由来する構成単位を有する共重合体である請求項1ないし4のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the cationic polymer is a copolymer having a structural unit derived from dimethylaminoethyl acrylate quaternized product. 前記カチオン性ポリマーが、ジメチルアミノエチルアクリレート四級化物に由来する構成単位を全構成単位中に20〜50モル%含み、固有粘度が0.5〜5.5dL/gのカチオン性ポリマーである請求項5に記載の水処理方法。   The cationic polymer is a cationic polymer having a structural unit derived from dimethylaminoethyl acrylate quaternized compound in an amount of 20 to 50 mol% in all structural units and having an intrinsic viscosity of 0.5 to 5.5 dL / g. Item 6. The water treatment method according to Item 5. 前記被処理水に前記カチオン性ポリマーと無機凝集剤とを添加して凝集処理する請求項1ないし6のいずれかに記載の水処理方法。   The water treatment method according to claim 1, wherein the cationic polymer and an inorganic flocculant are added to the water to be treated for agglomeration treatment. 流動電位法により前記被処理水を前記カチオン性ポリマーで滴定することで、該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとして求め、前記凝集処理において該被処理水に該カチオン性ポリマーを添加し、無機凝集剤を添加しない場合は、該カチオン消費量Aと該カチオン性ポリマーの添加濃度が下記関係式(Ia)を満たすように、該カチオン性ポリマーの添加量を制御し、前記凝集処理において該被処理水に該カチオン性ポリマーと無機凝集剤を添加する場合は、該カチオン消費量Aと前記無機凝集剤及び該カチオン性ポリマーの添加濃度が下記関係式(Ib)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する請求項1ないし7のいずれかに記載の水処理方法。
カチオン消費量A×α=カチオン性ポリマー添加濃度(mg/L) …(Ia)
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(Ib)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
The amount of the cationic polymer necessary to neutralize the charge of the water to be treated is determined as a cation consumption amount A by titrating the water to be treated with the cationic polymer by the streaming potential method, and the aggregation When the cationic polymer is added to the water to be treated and no inorganic flocculant is added in the treatment, the cation consumption A and the addition concentration of the cationic polymer satisfy the following relational formula (Ia): When the addition amount of the cationic polymer is controlled and the cationic polymer and the inorganic flocculant are added to the water to be treated in the flocculation treatment, the cation consumption A, the addition of the inorganic flocculant and the cationic polymer are added. The water treatment according to any one of claims 1 to 7, wherein the addition amount of the cationic polymer and the addition amount of the inorganic flocculant are controlled so that the concentration satisfies the following relational expression (Ib). Law.
Cation consumption A × α = cationic polymer addition concentration (mg / L) (Ia)
Cation consumption A × α =
Cationic polymer addition concentration (mg / L) + Inorganic flocculant addition concentration (mg / L) × β
... (Ib)
α: Safety factor taking into account fluctuations in water quality β: Factor for converting the cation amount of the inorganic flocculant into the cation amount of the cationic polymer
一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を孔径0.2μm以下の分離膜で直接膜分離する膜分離装置とを有することを特徴とする水処理装置。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group Aggregation treatment means for adding 100,000 to 8 million water-soluble cationic polymer to the water to be treated for aggregation treatment, and the aggregation treatment water of the aggregation treatment means are directly subjected to membrane separation with a separation membrane having a pore size of 0.2 μm or less. A water treatment device comprising a membrane separation device. 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を直接膜分離する膜分離装置と、該膜分離装置の分離水を逆浸透膜処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group Aggregation treatment means for adding 100,000 to 8 million water-soluble cationic polymer to the water to be treated for aggregation treatment, membrane separation apparatus for directly performing membrane separation of the aggregation treatment water of the aggregation treatment means, and the membrane separation apparatus And a reverse osmosis membrane separation device for treating the separated water with a reverse osmosis membrane. 一級アミノ基、二級アミノ基、三級アミノ基並びにこれらのアミノ基の酸塩基及び四級アンモニウム塩基より選ばれる官能基をポリマー側鎖に有し、かつ疎水基を有さない、質量平均分子量10万〜800万の水溶性のカチオン性ポリマーを被処理水に添加して凝集処理する凝集処理手段と、該凝集処理手段の凝集処理水を孔径0.2μm以下の分離膜で直接膜分離する膜分離装置と、該膜分離装置の分離水を逆浸透膜処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。   Mass average molecular weight having a primary amino group, a secondary amino group, a tertiary amino group, and a functional group selected from an acid base and a quaternary ammonium base of these amino groups in the polymer side chain and no hydrophobic group Aggregation treatment means for adding 100,000 to 8 million water-soluble cationic polymer to the water to be treated for aggregation treatment, and the aggregation treatment water of the aggregation treatment means are directly subjected to membrane separation with a separation membrane having a pore size of 0.2 μm or less. A water treatment device comprising: a membrane separation device; and a reverse osmosis membrane separation device for treating the separated water of the membrane separation device with a reverse osmosis membrane. 前記被処理水が、濁質濃度が200mg/L未満で、溶存有機物濃度が0.01mg/L以上200mg/L未満の、工業用水、市水、河川水、湖沼水、井水、排水、又は生物処理水である請求項9ないし11のいずれかに記載の水処理装置。   The water to be treated is industrial water, city water, river water, lake water, well water, drainage water, having a turbidity concentration of less than 200 mg / L and a dissolved organic matter concentration of 0.01 mg / L or more and less than 200 mg / L, or The water treatment device according to any one of claims 9 to 11, which is biologically treated water. 前記カチオン性ポリマーがジメチルアミノエチルアクリレート四級化物に由来する構成単位を有する共重合体である請求項9ないし12のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 9 to 12, wherein the cationic polymer is a copolymer having a structural unit derived from dimethylaminoethyl acrylate quaternized product. 前記カチオン性ポリマーが、ジメチルアミノエチルアクリレート四級化物に由来する構成単位を全構成単位中に20〜50モル%含み、固有粘度が0.5〜5.5dL/gのカチオン性ポリマーである請求項13に記載の水処理装置。   The cationic polymer is a cationic polymer having a structural unit derived from dimethylaminoethyl acrylate quaternized compound in an amount of 20 to 50 mol% in all structural units and having an intrinsic viscosity of 0.5 to 5.5 dL / g. Item 14. A water treatment device according to item 13. 前記凝集処理手段において、前記被処理水に前記カチオン性ポリマーと無機凝集剤とを添加して凝集処理する請求項9ないし14のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 9 to 14, wherein in the coagulation treatment means, the cationic polymer and an inorganic coagulant are added to the water to be treated for coagulation treatment. 前記凝集処理手段で前記被処理水に前記カチオン性ポリマーが添加され、無機凝集剤が添加されない場合は、流動電位法により該被処理水を該カチオン性ポリマーで滴定して求めた該被処理水の電荷を中和するのに必要な該カチオン性ポリマーの必要量をカチオン消費量Aとし、該カチオン性ポリマーの添加濃度が下記関係式(Ia)を満たすように、該カチオン性ポリマーの添加量を制御し、前記凝集処理手段で該被処理水に該カチオン性ポリマーと無機凝集剤が添加される場合は、該カチオン消費量Aと該無機凝集剤及び該カチオン性ポリマーの添加濃度が下記関係式(Ib)を満たすように、該カチオン性ポリマーの添加量と該無機凝集剤の添加量を制御する制御手段を更に有する請求項9ないし15のいずれかに記載の水処理装置。
カチオン消費量A×α=カチオン性ポリマー添加濃度(mg/L) …(Ia)
カチオン消費量A×α=
カチオン性ポリマー添加濃度(mg/L)+無機凝集剤添加濃度(mg/L)×β
…(Ib)
α:水質変動を加味した安全係数
β:無機凝集剤のカチオン量をカチオン性ポリマーのカチオン量に換算する係数
When the cationic polymer is added to the water to be treated by the aggregating treatment means and no inorganic flocculant is added, the water to be treated is obtained by titrating the water to be treated with the cationic polymer by a streaming potential method. The required amount of the cationic polymer necessary to neutralize the charge of the product is defined as cation consumption A, and the amount of the cationic polymer added so that the concentration of the cationic polymer satisfies the following relational formula (Ia): When the cationic polymer and the inorganic flocculant are added to the water to be treated by the flocculation treatment means, the cation consumption A and the additive concentration of the inorganic flocculant and the cationic polymer have the following relationship: The water treatment apparatus according to any one of claims 9 to 15, further comprising control means for controlling the addition amount of the cationic polymer and the addition amount of the inorganic flocculant so as to satisfy the formula (Ib).
Cation consumption A × α = cationic polymer addition concentration (mg / L) (Ia)
Cation consumption A × α =
Cationic polymer addition concentration (mg / L) + Inorganic flocculant addition concentration (mg / L) × β
... (Ib)
α: Safety factor taking into account fluctuations in water quality β: Factor for converting the cation amount of the inorganic flocculant into the cation amount of the cationic polymer
JP2018084265A 2018-04-25 2018-04-25 Water treatment method and water treatment apparatus Pending JP2019188338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084265A JP2019188338A (en) 2018-04-25 2018-04-25 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084265A JP2019188338A (en) 2018-04-25 2018-04-25 Water treatment method and water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2019188338A true JP2019188338A (en) 2019-10-31

Family

ID=68388642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084265A Pending JP2019188338A (en) 2018-04-25 2018-04-25 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2019188338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021186745A (en) * 2020-05-29 2021-12-13 水ing株式会社 Coagulation membrane filtration system and coagulation membrane filtration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021186745A (en) * 2020-05-29 2021-12-13 水ing株式会社 Coagulation membrane filtration system and coagulation membrane filtration method
JP7403387B2 (en) 2020-05-29 2023-12-22 水ing株式会社 Coagulation membrane filtration system and coagulation membrane filtration method

Similar Documents

Publication Publication Date Title
AU2007292849B2 (en) Method of heavy metal removal from industrial wastewater using submerged ultrafiltration or microfiltration membranes
TWI459997B (en) Membrane separation method and membrane separation apparatus
AU2007256957B2 (en) Method of improving performance of ultrafiltration or microfiltration membrane process in backwash water treatment
CA2660610C (en) Method of improving performance of ultrafiltration or microfiltration membrane process in landfill leachate treatment
JP5218731B2 (en) Water treatment method and water treatment apparatus
JP2019141801A (en) Water treatment method and water treatment apparatus
JP5282864B2 (en) Membrane separation method and membrane separation apparatus
TWI760553B (en) Water treatment method and water treatment device
JP6687056B2 (en) Water treatment method and water treatment device
WO2010053051A1 (en) Filtration apparatus and water treatment equipment
JP2019188338A (en) Water treatment method and water treatment apparatus
US20040065613A1 (en) Use of polymer as flocculation aid in membrane filtration
JP2012187467A (en) Membrane separation method and membrane separator
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP2016093789A (en) Water treatment method and water treatment system
JP2020058964A (en) Water treatment chemical for membrane, and membrane treatment method
JP2014046235A (en) Fresh water generating method
WO2013174984A1 (en) Water treatment method comprising addition of surfactant before reverse osmosis filtration and use of surfactant
JP6142574B2 (en) Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus
JP2011025143A (en) Virus removal method
JP2010179247A (en) Filtration device and water treatment apparatus
JP2010000474A (en) Operation method of combined filtration equipment
JP2018075544A (en) Apparatus and method for treating water
JP2009240905A (en) Membrane separation method and apparatus