JP7403387B2 - Coagulation membrane filtration system and coagulation membrane filtration method - Google Patents

Coagulation membrane filtration system and coagulation membrane filtration method Download PDF

Info

Publication number
JP7403387B2
JP7403387B2 JP2020094263A JP2020094263A JP7403387B2 JP 7403387 B2 JP7403387 B2 JP 7403387B2 JP 2020094263 A JP2020094263 A JP 2020094263A JP 2020094263 A JP2020094263 A JP 2020094263A JP 7403387 B2 JP7403387 B2 JP 7403387B2
Authority
JP
Japan
Prior art keywords
water
membrane
treated
coagulation
membrane filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020094263A
Other languages
Japanese (ja)
Other versions
JP2021186745A (en
Inventor
吉英 貝谷
拓也 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2020094263A priority Critical patent/JP7403387B2/en
Publication of JP2021186745A publication Critical patent/JP2021186745A/en
Application granted granted Critical
Publication of JP7403387B2 publication Critical patent/JP7403387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、凝集膜ろ過システムおよび凝集膜ろ過方法に関し、特に、被処理水に凝集剤を混和して得られた凝集処理水を分離膜で膜ろ過する凝集膜ろ過システムおよび凝集膜ろ過方法に関する。 The present invention relates to a coagulating membrane filtration system and a coagulating membrane filtration method, and in particular to a coagulating membrane filtration system and a coagulating membrane filtration method for filtering coagulated treated water obtained by mixing a coagulant into water to be treated using a separation membrane. .

従来、浄水処理では固液分離プロセスとして砂ろ過が主流であったが、近年では、より高度な固液分離が期待できる精密ろ過膜(MF膜)や限外ろ過膜(UF膜)を用いた低圧膜ろ過法の導入が進んでいる。 Traditionally, sand filtration has been the mainstream solid-liquid separation process in water purification, but in recent years, microfiltration membranes (MF membranes) and ultrafiltration membranes (UF membranes) have been used, which are expected to achieve more advanced solid-liquid separation. The introduction of low-pressure membrane filtration is progressing.

そして、昨今は、中大規模の浄水場の老朽化に伴う更新設備に膜ろ過を適用するケースが多くなっているが、その場合、水道原水として河川水などの表流水を利用しているため、色度成分などの溶解性物質除去の観点から膜前処理として凝集処理を組み合わせる場合が多い。 Nowadays, membrane filtration is increasingly being applied to renewal equipment due to aging of medium-sized and large-scale water treatment plants, but in these cases, surface water such as river water is used as raw water for water supply. From the viewpoint of removing soluble substances such as chromaticity components, aggregation treatment is often combined as membrane pretreatment.

前処理としての凝集処理は、膜ろ過法の課題の一つである有機性膜汚染の原因物質であるバイオポリマーの低減にも有効であるが、一方で、残留凝集剤による膜汚染の問題が生じる。 Coagulation treatment as a pretreatment is effective in reducing biopolymers, which are the cause of organic membrane contamination, which is one of the issues with membrane filtration methods. arise.

浄水処理における凝集では、ポリ塩化アルミニウム(PACl)や硫酸バンド(Alm)などのアルミニウム系凝集剤が用いられるため、凝集処理水中に存在する残留アルミニウムが膜汚染の原因物質となる。 In flocculation in water purification treatment, aluminum-based flocculants such as polyaluminum chloride (PACl) and aluminum sulfate (Alm) are used, so residual aluminum present in the flocculation treatment water becomes a substance that causes membrane contamination.

凝集膜ろ過システムにおける凝集剤由来のアルミニウムによる膜汚染は、システムの安定運転の維持、経済性の観点から大きな問題となっており、膜汚染対策は、いろいろな側面から検討実施されているが、合理的に説明できない不明な点も多い。 Membrane contamination due to aluminum derived from the flocculant in coagulation membrane filtration systems is a major problem from the viewpoint of maintaining stable operation of the system and economical efficiency, and countermeasures against membrane contamination have been studied and implemented from various aspects. There are many unknown points that cannot be explained rationally.

従来の凝集沈殿急速砂ろ過システムの場合、凝集処理系は、凝集剤を混和する急速撹拌槽と、急速撹拌槽で形成されたマイクロフロックを沈殿処理が可能な大きなフロックに成長させる緩速撹拌槽と、で構成される。 In the case of a conventional coagulation-sedimentation rapid sand filtration system, the coagulation treatment system consists of a rapid stirring tank that mixes the flocculant, and a slow stirring tank that grows the micro flocs formed in the rapid stirring tank into large flocs that can be subjected to sedimentation treatment. It consists of and.

非特許文献1によれば、急速撹拌槽の水理学的滞留時間は1~5分程度を確保するように示されており、また、緩速撹拌槽の水理学的滞留時間は20~40分程度とされている。 According to Non-Patent Document 1, it is shown that the hydraulic residence time of the rapid stirring tank should be approximately 1 to 5 minutes, and the hydraulic residence time of the slow stirring tank is 20 to 40 minutes. It is said that the degree of

MF膜やUF膜のような膜ろ過の前処理として凝集処理系を組み合わせる場合、膜の孔径が0.01~0.1μmである事から、急速撹拌処理で形成される数~数十μm程度の大きさのフロック、いわゆるマイクロフロックが形成されれば、膜の物理的な篩分け効果で除去が可能であるので、大きなフロックを形成するための緩速撹拌処理は不要と考えるのが合理的である。 When combining a flocculation treatment system as a pretreatment for membrane filtration such as MF membrane or UF membrane, the pore size of the membrane is 0.01 to 0.1 μm, so the pore size formed by rapid stirring treatment is about several to several tens of μm. If flocs of size , so-called micro flocs, are formed, they can be removed by the physical sieving effect of the membrane, so it is reasonable to think that slow stirring treatment to form large flocs is not necessary. It is.

しかし、実際には、凝集フロックや凝集剤由来の残留アルミニウムによる膜汚染抑制を目的に凝集処理系が設計されるが、凝集剤による膜汚染現象のメカニズムが正確に理解されていない事から、過剰設計になったり、正しい設計根拠を持たないまま装置設計が行われたりしていると言っても過言ではない。また、そのような事を避けるために、パイロット規模の長期実証実験を行う事が多いが、非常に多額の費用が発生する事になる。 However, in reality, flocculation treatment systems are designed to suppress membrane contamination due to flocculation flocs and residual aluminum derived from flocculants, but the mechanism of membrane contamination caused by flocculants is not accurately understood, so excessive It is not an exaggeration to say that equipment design is being carried out without proper design basis. Additionally, in order to avoid such problems, pilot-scale long-term demonstration experiments are often conducted, but this results in extremely large costs.

例えば、ケーシング型中空糸膜モジュールをろ過膜として用いる場合、前処理として凝集処理を行う時は、凝集沈殿まで行った処理水を膜に供給する事を膜メーカーは取扱説明書などの資料に明示している。 For example, when using a casing-type hollow fiber membrane module as a filtration membrane, the membrane manufacturer clearly states in the instruction manual and other materials that when coagulation treatment is performed as a pretreatment, the treated water that has undergone coagulation and precipitation must be supplied to the membrane. are doing.

この理由は、ケーシング型中空糸膜モジュールの膜充填密度、すなわち、ケーシング内容積当たりの膜面積が比較的大きいため、付着性の高い凝集フロックが流入すると膜同士が束になる膜間閉塞現象が生じる危険性があるというためである事、また、中空糸膜は高分子膜であり、残留アルミニウムによる膜閉塞が生じ易い事が挙げられる。 The reason for this is that the membrane packing density of the casing-type hollow fiber membrane module, that is, the membrane area per casing internal volume, is relatively large, so when highly adhesive flocs flow in, the membranes become bunched together, resulting in an intermembrane blockage phenomenon. Another reason is that hollow fiber membranes are polymeric membranes and membrane clogging due to residual aluminum is likely to occur.

しかし、水道水質基準を確実に達成するためには凝集処理は必要なものの、比較的清澄な原水である場合には、緩速撹拌処理、沈殿処理は過剰設備であり、膜ろ過法のメリットを著しく低減する。緩速撹拌処理を行うにしてもその目的、規模は合理的な設計が成されるべきである。 However, although flocculation treatment is necessary to reliably achieve tap water quality standards, in the case of relatively clear raw water, slow agitation treatment and sedimentation treatment are excessive equipment, and the benefits of membrane filtration cannot be achieved. Significantly reduced. Even if slow stirring treatment is to be carried out, its purpose and scale should be rationally designed.

特許文献1は、被処理水を塩基度70%のいわゆる超高塩基度PACl溶液と急速撹拌槽で混和して微細なフロックを形成し、次に緩速撹拌槽でこの微細なフロックを粗大化させて凝集処理水を得て、この凝集処理水をろ過膜でデッドエンドろ過する膜ろ過方法を開示する。これによれば、塩基度70%のいわゆる超高塩基度PACl溶液を用いる事で、一般に広く利用されている塩基度50%の通常塩基度PAClよりも膜汚染を低減できるとされている。 Patent Document 1 discloses that water to be treated is mixed with a so-called ultra-high basicity PACl solution having a basicity of 70% in a rapid stirring tank to form fine flocs, and then the fine flocs are coarsened in a slow stirring tank. Disclosed is a membrane filtration method in which coagulated treated water is obtained, and the coagulated treated water is dead-end filtered using a filtration membrane. According to this, by using a so-called ultra-high basicity PACl solution with a basicity of 70%, membrane contamination can be reduced more than the commonly used normal basicity PACl with a basicity of 50%.

特許第5614644号公報Patent No. 5614644

日本水道協会発行、水道施設設計指針2012Published by Japan Water Works Association, Water Facility Design Guidelines 2012

従来の砂ろ過法の場合、水質基準の観点から、濁度、色度、有機物指標などに着目してジャーテストにより最適な凝集剤注入率や凝集pHを決定するが、膜ろ過法の場合、膜汚染の観点からも凝集条件を選定する必要がある。 In the case of the conventional sand filtration method, from the viewpoint of water quality standards, the optimal coagulant injection rate and coagulation pH are determined by a jar test, focusing on turbidity, color, organic matter index, etc., but in the case of the membrane filtration method, Coagulation conditions must also be selected from the viewpoint of membrane contamination.

しかし、本来、固定条件となるべき、急速撹拌時間、緩速撹拌の有無、緩速撹拌を必要する場合の撹拌時間は、従来の凝集沈殿砂ろ過システムと同じ観点から選定されており、非常に経験的であり、決して合理的ではない。 However, the rapid stirring time, the presence or absence of slow stirring, and the stirring time when slow stirring is required, which should be fixed conditions, are selected from the same viewpoint as the conventional coagulation-sedimentation sand filtration system, and are extremely difficult. It is empirical and never rational.

上述のとおり非特許文献1の急速撹拌槽の水理学的滞留時間および緩速撹拌槽の水理学的滞留時間は、従来の凝集沈殿急速砂ろ過システムを想定したものであり、凝集膜ろ過システムにとって最適なものかどうかは検討されていない。 As mentioned above, the hydraulic retention time of the rapid stirring tank and the hydraulic retention time of the slow stirring tank of Non-Patent Document 1 are based on the assumption of the conventional coagulation sedimentation rapid sand filtration system, and are not suitable for the coagulation membrane filtration system. It has not been considered whether it is optimal.

また、特許文献1は膜ろ過の前処理としての凝集処理に好適な凝集処理剤として超高塩基度PACl溶液を用いることを開示するが、急速撹拌槽で形成した微細なフロックを緩速撹拌槽で長時間撹拌して粗大化させるやり方は従来の凝集沈殿砂ろ過システムに適した凝集処理条件であると思われる。 Further, Patent Document 1 discloses the use of an ultra-high basicity PACl solution as a flocculation treatment agent suitable for flocculation treatment as a pretreatment for membrane filtration, but fine flocs formed in a rapid stirring tank are transferred to a slow stirring tank. The method of coarsening by stirring for a long time is considered to be the flocculation processing conditions suitable for the conventional flocculation-sedimentation sand filtration system.

上記課題に鑑みた本願発明の目的は、分離膜を用いた浄水処理に適した凝集処理部を有する凝集膜ろ過システムを提供することにある。さらに、本願発明の目的は、分離膜を用いた浄水処理に適した凝集処理プロセスを有する凝集膜ろ過方法を提供することにある。 In view of the above problems, an object of the present invention is to provide a coagulation membrane filtration system having a coagulation processing section suitable for water purification treatment using a separation membrane. Furthermore, an object of the present invention is to provide a coagulation membrane filtration method having a coagulation treatment process suitable for water purification using a separation membrane.

発明者らが鋭意検討を重ねた結果、凝集膜ろ過システムにおいて重大な影響を及ぼす膜汚染因子は大きく分類すると二つあることがわかった。一つは凝集剤中に含まれる100nmより小さいアルミニウムナノ粒子であり、もう一つは、有機物などとの凝集粒子(有機物とアルミニウムの複合体)であり、その大きさも100nmより小さく、これもアルミニウムナノ粒子と言える。 As a result of extensive studies by the inventors, it has been found that there are two broad categories of membrane contamination factors that have a significant effect on coagulation membrane filtration systems. One is aluminum nanoparticles smaller than 100 nm contained in the flocculant, and the other is aggregate particles with organic matter (composite of organic matter and aluminum), which are also smaller than 100 nm in size and are also aluminum nanoparticles. It can be said to be a nanoparticle.

これらのアルミニウムナノ粒子は、前者は、急速撹拌時に凝集剤の注入により被処理水に添加される事になり、後者は、凝集剤注入時の数秒も経過しない間に被凝集物質と凝集剤が反応し生成する。 In the former case, these aluminum nanoparticles are added to the water to be treated by injecting a flocculant during rapid stirring, and in the latter case, the substance to be flocculated and the flocculant are mixed together in less than a few seconds when the flocculant is injected. React and generate.

これらのアルミニウムナノ粒子は、100nm未満と非常に小さく、また、濃度も希薄なため、それら自身で凝集して粗大化し難いので、凝集処理水中に残留し、膜汚染を引き起こす事になるため、膜ろ過処理前にこれらアルミニウムナノ粒子を除去することが重要である。 These aluminum nanoparticles are very small (less than 100 nm) and have a dilute concentration, so they are difficult to aggregate and become coarse by themselves, so they remain in the coagulation treatment water and cause membrane contamination. It is important to remove these aluminum nanoparticles before the filtration process.

発明者がさらに鋭意検討を重ねた結果、肉眼では視認できない、サブミクロンオーダーの微小フロック(0.1~1μm程度)、いわゆるサブマイクロフロックや、数μm程度の比較的小さいマイクロフロック(1~10μm程度)の形成過程と、これらサブマイクロフロックおよびマイクロフロックへのアルミニウムナノ粒子の衝突や取り込みとが、アルミニウムナノ粒子の除去メカニズムであることを確認した。逆に、緩速撹拌処理において目視観察できるような大きなフロックの形成過程とこの大きなフロックとアルミニウムナノ粒子の接触がアルミニウムナノ粒子の除去メカニズムではないことがわかった。 As a result of further intensive studies, the inventor found that micro flocs on the order of submicrons (approximately 0.1 to 1 μm), so-called sub-micro flocs, which cannot be seen with the naked eye, and relatively small micro flocs of several μm (1 to 10 μm) It was confirmed that the removal mechanism of aluminum nanoparticles is the formation process of aluminum nanoparticles, and the collision and incorporation of aluminum nanoparticles into these sub-microflocs and microflocs. On the contrary, it was found that the formation process of large flocs that can be visually observed during slow stirring treatment and the contact between these large flocs and aluminum nanoparticles were not the mechanism for removing aluminum nanoparticles.

また、アルミニウムナノ粒子の除去に効果的なサブマイクロフロック及びマイクロフロックの形成には、従来のフロック形成のための緩速撹拌ではなく、撹拌速度が速い急速撹拌の方が効果的であり、これらのフロック群とアルミニウムナノ粒子との衝突によりその成長が得られる事を見出した。 In addition, for forming sub-micro flocs and micro flocs that are effective in removing aluminum nanoparticles, rapid stirring with a high stirring speed is more effective than the conventional slow stirring for forming flocs. It was found that the growth of aluminum nanoparticles can be achieved through the collision of flocs with aluminum nanoparticles.

加えて、発明者は、急速撹拌単独では、十分長く行った場合でも、アルミニウムナノ粒子の除去率は頭打ちになり向上しない場合が多く、この解決策として、急速撹拌処理を十分に行った後で短い緩速撹拌処理を行う事で急速撹拌では取りきれなかったアルミニウムナノ粒子をサブマイクロフロック及びマイクロフロックに取り込む事が可能となる事を見出したことに基づき、本願発明はなされたものである。 In addition, the inventor found that when rapid stirring alone is used for a sufficient period of time, the removal rate of aluminum nanoparticles often reaches a plateau and does not improve. The present invention was made based on the discovery that aluminum nanoparticles that could not be removed by rapid stirring can be incorporated into sub-micro flocs and micro flocs by performing a short slow stirring process.

すなわち、上記目的を達成するための請求項1に記載の発明は、
被処理水に凝集剤が混和され、凝集処理が施される凝集処理部と、前記凝集処理部で得られた凝集処理水を分離膜でろ過する膜ろ過部と、有する凝集膜ろ過システムであって、
前記凝集処理部が急速撹拌槽および前記急速撹拌槽の後段に位置する緩速撹拌槽を備え、前記急速撹拌槽での前記凝集剤が混和された被処理水の水理学的滞留時間が、前記緩速撹拌槽における水理学的滞留時間以上であることを特徴とする。
That is, the invention according to claim 1 for achieving the above object,
A coagulation membrane filtration system comprising: a coagulation treatment section in which a coagulant is mixed with water to be treated and subjected to coagulation treatment; and a membrane filtration section that filters coagulation treated water obtained in the coagulation treatment section through a separation membrane. hand,
The flocculation treatment section includes a rapid stirring tank and a slow stirring tank located downstream of the rapid stirring tank, and the hydraulic residence time of the water to be treated in which the flocculant is mixed in the rapid stirring tank is equal to It is characterized by a retention time longer than the hydraulic retention time in a slow stirring tank.

この構成によれば、凝集処理部における急速撹拌槽での水理学的滞在時間が緩速撹拌槽の水理学的滞在時間よりも大きいことで、アルミニウムナノ粒子のサブマイクロフロック及びマイクロフロックへの取り込みが促進される。これにより、凝集処理水中に残留するアルミニウムナノ粒子が低減し、この残留アルミニウムナノ粒子に起因する膜汚染を回避することができ、したがって、分離膜を用いた浄水処理に適した凝集処理部を有する凝集膜ろ過システムを提供することができる。 According to this configuration, the hydraulic residence time in the rapid stirring tank in the flocculation processing section is longer than the hydraulic residence time in the slow stirring tank, so that aluminum nanoparticles can be incorporated into sub-micro flocs and micro flocs. is promoted. This reduces the amount of aluminum nanoparticles remaining in the flocculation treated water and avoids membrane contamination caused by these residual aluminum nanoparticles.Therefore, the flocculation treatment section is suitable for water purification using a separation membrane. A coagulating membrane filtration system can be provided.

請求項2に記載の発明は、請求項1に記載の凝集膜ろ過システムにおいて、前記急速撹拌槽での水理学的滞留時間が6分以上であることを特徴とする。 The invention according to claim 2 is the coagulation membrane filtration system according to claim 1, characterized in that the hydraulic residence time in the rapid stirring tank is 6 minutes or more.

この構成によれば、アルミニウムナノ粒子のサブマイクロフロック及びマイクロフロックへの取り込みのために十分な急速撹拌槽での水理学的滞在時間を確保することができ、したがって、より効果的に凝集処理水中に残留するアルミニウムナノ粒子を低減させることができる。 According to this configuration, it is possible to ensure sufficient hydraulic residence time in the rapid stirring tank for the incorporation of aluminum nanoparticles into sub-micro flocs and micro flocs, and therefore, more effectively It is possible to reduce the amount of aluminum nanoparticles remaining in the aluminum nanoparticles.

請求項3に記載の発明は、請求項1又は2に記載の凝集膜ろ過システムにおいて、前記緩速撹拌槽における水理学的滞留時間が3分以上であることを特徴とする。 The invention according to claim 3 is the coagulation membrane filtration system according to claim 1 or 2, characterized in that the hydraulic residence time in the slow stirring tank is 3 minutes or more.

この構成によれば、急速撹拌後に残留するアルミニウムナノ粒子をより効果的にサブマイクロフロック及びマイクロフロックに取り込ませることができ、したがって、さらに効果的に凝集処理水中に残留するアルミニウムナノ粒子を低減させることができる。 According to this configuration, the aluminum nanoparticles remaining after rapid stirring can be incorporated into the sub-micro flocs and micro flocs more effectively, and therefore the aluminum nanoparticles remaining in the coagulation treatment water can be further effectively reduced. be able to.

請求項4に記載の発明の被処理水の凝集膜ろ過方法は、
被処理水に凝集剤を混和し、凝集処理を施す凝集処理工程と、前記凝集処理工程で得られた凝集処理水を分離膜でろ過する膜ろ過工程と、前記凝集処理工程が、凝集剤が添加された被処理水を急速撹拌する急速撹拌プロセスと、前記急速撹拌プロセス後の被処理水を緩速撹拌する緩速撹拌プロセスと、を有し、前記急速撹拌プロセスの水理学的滞留時間が前記緩速撹拌プロセスの水理学的滞留時間以上であることを特徴とする。
The method for coagulating membrane filtration of water to be treated according to the invention according to claim 4 includes:
A flocculation treatment step in which a flocculant is mixed with the water to be treated and subjected to flocculation treatment, a membrane filtration step in which the flocculation treated water obtained in the flocculation treatment step is filtered through a separation membrane, and a coagulation treatment step in which the flocculant is a rapid stirring process for rapidly stirring the added water to be treated, and a slow stirring process for slowly stirring the water to be treated after the rapid stirring process, and the hydraulic residence time of the rapid stirring process is It is characterized in that it is longer than the hydraulic residence time of the slow stirring process.

この構成によれば、凝集処理工程における急速撹拌プロセスの水理学的滞在時間が緩速撹拌プロセスの水理学的滞在時間よりも大きいことで、アルミニウムナノ粒子のサブマイクロフロック及びマイクロフロックへの取り込みが促進される。これにより、凝集処理水中に残留するアルミニウムナノ粒子が低減し、この残留アルミニウムナノ粒子に起因する膜汚染を回避することができ、したがって、分離膜を用いた浄水処理に適した凝集処理プロセスを有する凝集膜ろ過方法を提供することができる。 According to this configuration, the hydraulic residence time of the rapid stirring process in the flocculation treatment step is longer than the hydraulic residence time of the slow stirring process, so that the incorporation of aluminum nanoparticles into sub-micro flocs and micro flocs is facilitated. promoted. This reduces the amount of aluminum nanoparticles remaining in the flocculation treated water and avoids membrane contamination caused by the residual aluminum nanoparticles, thus making the flocculation treatment process suitable for water purification using separation membranes. A coagulation membrane filtration method can be provided.

本発明の凝集膜ろ過システムによれば、凝集処理部における急速撹拌槽での水理学的滞在時間が緩速撹拌槽の水理学的滞在時間よりも長いことで、アルミニウムナノ粒子のサブマイクロフロック及びマイクロフロックへの取り込みが促進される。これにより、凝集処理水中に残留するアルミニウムナノ粒子が低減し、この残留アルミニウムナノ粒子に起因する膜汚染を回避することができ、したがって、分離膜を用いた浄水処理に適した凝集処理部を有する凝集膜ろ過システムを提供することができる。 According to the flocculation membrane filtration system of the present invention, the hydraulic residence time in the rapid stirring tank in the flocculation processing section is longer than the hydraulic residence time in the slow stirring tank, so that sub-micro flocs and Incorporation into microflocs is promoted. This reduces the amount of aluminum nanoparticles remaining in the flocculation treated water and avoids membrane contamination caused by these residual aluminum nanoparticles.Therefore, the flocculation treatment section is suitable for water purification using a separation membrane. A coagulating membrane filtration system can be provided.

よって、膜ろ過の凝集前処理を最適化することができ、従来より前処理時間を短縮してシステム全体の運転時間を短縮しつつ、残留アルミニウムナノ粒子に起因する膜汚染が回避されることで分離膜のライフサイクルを延ばすことができると共に、膜の再生や交換によるシステムの運転中断時間も減らすことができる。 Therefore, the pre-coagulation treatment for membrane filtration can be optimized, reducing the pre-treatment time and overall system operation time compared to conventional methods, while avoiding membrane contamination caused by residual aluminum nanoparticles. Not only can the life cycle of the separation membrane be extended, but also the amount of time the system will be interrupted due to membrane regeneration or replacement can be reduced.

本発明の凝集膜ろ過方法についても同様の効果を得ることができる。 Similar effects can be obtained with the coagulation membrane filtration method of the present invention.

本発明の第一実施の形態に係る凝集膜ろ過システム10を説明する模式図である。It is a schematic diagram explaining coagulation membrane filtration system 10 concerning a first embodiment of the present invention. 本発明の第二実施の形態に係る凝集膜ろ過システム100を説明する模式図である。It is a schematic diagram explaining coagulation membrane filtration system 100 concerning a second embodiment of the present invention. 本発明の凝集膜ろ過方法を説明するフローチャートである。It is a flow chart explaining the coagulation membrane filtration method of the present invention. (a)ケーキろ過の閉塞モデル図であり、(b)ろ材(円管の束)上の堆積粒子pによる抵抗増加を、円管tが長くなったことに置き換えて説明するモデル図である。(a) A blockage model diagram of cake filtration, and (b) a model diagram illustrating an increase in resistance due to accumulated particles p on a filter medium (bundle of circular tubes) by replacing it with an increase in the length of the circular tube t. 実施例および比較例の各凝集処理水のみかけのケーキろ過定数(KVVHP)を示す棒グラフである。It is a bar graph showing the apparent cake filtration constant (K VVHP ) of each coagulation-treated water of Examples and Comparative Examples.

以下に本発明の好ましい実施の形態を示す。 Preferred embodiments of the present invention are shown below.

<凝集膜ろ過システム>
図1は本発明の第一実施の形態に係る凝集膜ろ過システム10を説明する模式図である。図示のように、凝集膜ろ過システム10は、被処理水1に凝集剤が混和され、凝集処理が施される凝集処理部40と、凝集処理部40の後段に位置し、凝集処理部40で得られた凝集処理水を分離膜でろ過する膜ろ過部60と、を有する。
<Coagulation membrane filtration system>
FIG. 1 is a schematic diagram illustrating a coagulation membrane filtration system 10 according to a first embodiment of the present invention. As shown in the figure, the coagulation membrane filtration system 10 includes a coagulation processing section 40 in which a coagulant is mixed with the water to be treated 1 and subjected to coagulation treatment, and a coagulation processing section 40 located downstream of the coagulation processing section 40. It has a membrane filtration section 60 that filters the obtained coagulated treated water with a separation membrane.

被処理水1には水道原水が用いられる。水道原水は、例えば、河川水、地下水、ダム湖水、湖沼水、伏流水、地下水などが挙げられる。 Water source water is used as the water to be treated 1. Examples of water supply raw water include river water, groundwater, dam lake water, lake water, underground water, and groundwater.

凝集剤は、その種類に何ら制限はないが、ポリ塩化アルミニウム、硫酸バンドなどのアルミニウム系凝集剤が好ましい。また、塩基度も何ら制限される事は無く、50~90%でのいずれでも構わない。 Although there are no restrictions on the type of flocculant, aluminum-based flocculants such as polyaluminum chloride and aluminum sulfate are preferred. Furthermore, the basicity is not limited in any way and may be anywhere from 50 to 90%.

本実施の形態においては、被処理水1は、ポンプまたは水位高低差で粉末活性炭混和槽2に流入し、同時に粉末活性炭注入設備3から粉末活性炭が注入される。この粉末活性炭処理は、本発明に直接的には関与しないが、粉末活性炭が負電荷を有している事からも、後段の凝集処理を担う槽での残留アルミニウム粒子の吸着及び付着が期待できるので本発明に組み合わせる事が好ましい。 In this embodiment, the water to be treated 1 flows into the powdered activated carbon mixing tank 2 using a pump or a water level difference, and at the same time, powdered activated carbon is injected from the powdered activated carbon injection equipment 3. This powdered activated carbon treatment is not directly related to the present invention, but since the powdered activated carbon has a negative charge, it is expected that residual aluminum particles will be adsorbed and attached in the tank responsible for the subsequent agglomeration treatment. Therefore, it is preferable to combine it with the present invention.

粉末活性炭混和槽2での接触時間は、処理対象物質が臭気物質ならば20分~40分程度が適当であり、色度成分やトリハロメタン前駆物質に代表される消毒副生成物である有機物が対象の場合は15~30分程度が必要である。また、後段の膜ろ過装置が槽浸漬型であれば、膜浸漬槽での粉末活性炭の吸着反応が期待できるので、粉末活性炭混和槽2の滞留時間(接触時間に相当)は3分程度で十分である。 The appropriate contact time in the powdered activated carbon mixing tank 2 is about 20 to 40 minutes if the substance to be treated is an odor substance, and it is suitable for organic substances that are disinfection byproducts such as color components and trihalomethane precursors. In this case, approximately 15 to 30 minutes are required. Additionally, if the subsequent membrane filtration device is a tank immersion type, an adsorption reaction of powdered activated carbon can be expected in the membrane immersion tank, so a residence time (corresponding to contact time) in powdered activated carbon mixing tank 2 of about 3 minutes is sufficient. It is.

もちろん、原水水質によっては、粉末活性炭処理は省略されても何ら差し支えない。 Of course, depending on the quality of the raw water, the powdered activated carbon treatment may be omitted.

凝集処理部40は、急速撹拌槽4および急速撹拌槽4の後段に位置する緩速撹拌槽5を備える。 The aggregation processing section 40 includes a rapid stirring tank 4 and a slow stirring tank 5 located downstream of the rapid stirring tank 4.

本実施の形態において、粉末活性炭処理が施された被処理水1は、急速撹拌槽4(図1では、急速撹拌槽41、42及び43で構成される)に送られるが、pH調整装置45により、苛性ソーダのようなアルカリ剤、又は、硫酸のような酸剤を注入し、凝集剤注入時の凝集pHが所定の値になるように、pH調整剤を注入する。薬品の注入位置は、粉末活性炭混和槽2のような位置の前槽または急速撹拌槽41のどちらでも構わない。次いで、凝集剤注入装置44により凝集剤を注入する。 In this embodiment, the water to be treated 1 that has been subjected to powdered activated carbon treatment is sent to a rapid stirring tank 4 (consisting of rapid stirring tanks 41, 42, and 43 in FIG. 1). Accordingly, an alkaline agent such as caustic soda or an acid agent such as sulfuric acid is injected, and a pH adjuster is injected so that the coagulation pH at the time of injecting the flocculant becomes a predetermined value. The injection position of the chemical may be either a front tank at a position such as the powdered activated carbon mixing tank 2 or the rapid stirring tank 41. Next, a flocculant is injected by the flocculant injection device 44.

図示する本実施形態は一例であり、急速撹拌槽4は、三槽の急速撹拌槽から構成されても良いし、それ以下の二槽としても良いし、単槽でも差し支えない。もちろん、三槽以上でも構わない。単槽、もしくは槽数が少なくて滞留時間が短くなると、短絡流の発生や混合状態が悪くなるので、それを考慮した槽構成や槽構造とすれば良い。 The illustrated embodiment is an example, and the rapid stirring tank 4 may be composed of three rapid stirring tanks, two tanks or less, or a single tank. Of course, you can use more than three tanks. If the residence time becomes short due to a single tank or a small number of tanks, short-circuit currents will occur and the mixing condition will deteriorate, so the tank configuration and structure should take this into consideration.

一槽の滞留時間の目安は、3分程度であるが、上記の事を満足できる構造であれば何ら制限される事はない。 The standard residence time in one tank is about 3 minutes, but there is no restriction at all as long as the structure satisfies the above requirements.

水道施設設計指針2012によると、従来のフロック形成池の撹拌強度(速度勾配)G値の望ましい値は、10~75 1/sとしており、逆に、急速撹拌効果を得る撹拌強度は、G値で考えると、75 1/sより大きい値となる。 According to the Water Facility Design Guidelines 2012, the desirable value of the agitation intensity (velocity gradient) G value for conventional floc formation ponds is 10 to 75 1/s, and conversely, the agitation intensity that achieves a rapid agitation effect is the G value Considering this, the value is larger than 75 1/s.

本実施形態において、原水水質が悪く、凝集剤注入率が比較多くなる場合や、凝集pHが6程度と比較的低い場合には、急速撹拌槽4の滞留時間を長くとる必要が生じ、全体を均一に撹拌するためには三槽の急速撹拌槽で設計する事が好ましい。 In this embodiment, if the quality of the raw water is poor and the flocculant injection rate is relatively high, or if the flocculation pH is relatively low at about 6, it will be necessary to increase the residence time in the rapid stirring tank 4, and the overall In order to stir uniformly, it is preferable to design a rapid stirring tank with three tanks.

そのような場合、急速撹拌槽41と42の撹拌強度は同じ程度とし、急速撹拌槽43の撹拌強度は前者二槽よりも低くする事が好ましい。 In such a case, it is preferable that the stirring strengths of the rapid stirring tanks 41 and 42 be approximately the same, and that the stirring strength of the rapid stirring tank 43 be lower than that of the former two tanks.

急速撹拌槽41及び42の撹拌強度は、G値で考えると、150 1/s以上が良く、さらに好ましくは、150~250 1/s、最も望ましくは、250 1/s以上である。 The stirring intensity of the rapid stirring tanks 41 and 42 is preferably 150 1/s or more, more preferably 150 to 250 1/s, most preferably 250 1/s or more, in terms of G value.

急速撹拌処理を行った後の凝集処理水は、緩速撹拌槽5に送られ、緩速撹拌処理を行う事で、みかけフロック形成が行われつつ、サブマイクロフロック及びマイクロフロックへのアルミニムナノ粒子の取り込みが行われる。 The flocculated water after the rapid stirring process is sent to the slow stirring tank 5, and by performing the slow stirring process, while forming apparent flocs, aluminum nanoparticles are formed into sub-micro flocs and micro flocs. Import is performed.

緩速撹拌槽5における緩速撹拌処理は、G値が10~75 1/sの範囲で行われる事が望ましいが、そのすぐ前段の急速撹拌槽43の撹拌強度は、100~150 1/s程度のG値の範囲で運転される事が好ましい。 It is desirable that the slow stirring process in the slow stirring tank 5 be performed with a G value in the range of 10 to 75 1/s, but the stirring intensity of the rapid stirring tank 43 immediately preceding it is 100 to 150 1/s. It is preferable to operate within a G value range of approximately

この理由は、前記凝集条件のような場合、急速撹拌槽41及び42で生成するアルミニウムナノ粒子も非常に多くなり、緩速撹拌槽5のみではフロックへの取り込み能力が不足する可能性が高くなる。そこで、急速撹拌槽41及び42と緩速撹拌槽5の中間の撹拌強度領域を作る事により、アルミニムナノ粒子のサブマイクロフロック及びマイクロフロックへの接触効率を高く保ちながら、フロックへの取り込みも行わせる事により確実な膜汚染を抑制する凝集処理を行うためである。 The reason for this is that under the above-mentioned aggregation conditions, the number of aluminum nanoparticles generated in the rapid stirring tanks 41 and 42 becomes very large, and there is a high possibility that the slow stirring tank 5 alone will not have the ability to incorporate them into the flocs. . Therefore, by creating a stirring intensity region between the rapid stirring tanks 41 and 42 and the slow stirring tank 5, the aluminum nanoparticles can be incorporated into the flocs while maintaining a high contact efficiency with the sub-micro flocs and micro flocs. This is to perform a flocculation process that more reliably suppresses membrane contamination.

本発明において、急速撹拌槽4での凝集剤が混和された被処理水の水理学的滞留時間は、緩速撹拌槽5における水理学的滞留時間以上である。これにより、凝集処理水中に残留するアルミニウムナノ粒子が低減し、この残留アルミニウムナノ粒子に起因する後段の膜ろ過部60における分離膜の膜汚染を回避することができる。 In the present invention, the hydraulic residence time of the water to be treated mixed with the flocculant in the rapid stirring tank 4 is longer than the hydraulic residence time in the slow stirring tank 5. As a result, the amount of aluminum nanoparticles remaining in the coagulation-treated water is reduced, and membrane contamination of the separation membrane in the subsequent membrane filtration section 60 caused by the remaining aluminum nanoparticles can be avoided.

なお、水理学的滞留時間(Hydraulic retention time、HRTともいう)とは、ここでは急速撹拌槽4および緩速撹拌槽5のそれぞれに処理対象水が滞留する時間をいう。例えば、処理対象水の流量と各槽の体積とから各槽における水理学的滞留時間を算出することができる。 Note that the hydraulic retention time (also referred to as HRT) herein refers to the time during which the water to be treated stays in each of the rapid stirring tank 4 and the slow stirring tank 5. For example, the hydraulic residence time in each tank can be calculated from the flow rate of the water to be treated and the volume of each tank.

急速撹拌槽4における水理学的滞留時間は2分以上であり、好ましくは3分以上であり、さらに好ましくは6分以上である。 The hydraulic residence time in the rapid stirring tank 4 is 2 minutes or more, preferably 3 minutes or more, and more preferably 6 minutes or more.

緩速撹拌槽5における水理学的滞留時間は1分以上であり、好ましくは2分以上であり、さらに好ましくは3分以上である。 The hydraulic residence time in the slow stirring tank 5 is 1 minute or more, preferably 2 minutes or more, and more preferably 3 minutes or more.

凝集処理部40(図1では、急速撹拌部槽4および緩速撹拌槽5)を経た被処理水、すなわち、凝集処理水は、膜ろ過部60に送られる。 The water to be treated, that is, the flocculation treated water, which has passed through the flocculation processing unit 40 (in FIG. 1, the rapid stirring tank 4 and the slow stirring tank 5) is sent to the membrane filtration unit 60.

膜ろ過部60の分離膜の種類は、高分子膜、無機膜、MF膜、UF膜のいずれでも構わないが、浸漬型膜モジュールが使用できる高分子膜、特に、物理的にも化学的にも強いPVDFを材質とする膜が好ましく、これも浸漬型膜モジュールが使用できるMF膜が好ましい。加えて、膜の形状は中空糸膜が容積効率的に好ましい。 The type of separation membrane in the membrane filtration section 60 may be a polymer membrane, an inorganic membrane, a MF membrane, or a UF membrane. A membrane made of strong PVDF is preferable, and an MF membrane that can be used with a submerged membrane module is also preferable. In addition, the shape of the membrane is preferably a hollow fiber membrane in terms of volume efficiency.

省エネルギの観点から水位差が利用できる孔径0.05μm以上の膜が好ましく、さらには、有機物による膜閉塞抑制の観点から、その最小径である0.05μmの膜が最適である。 From the viewpoint of energy saving, a membrane with a pore diameter of 0.05 μm or more is preferable so that the water level difference can be utilized, and furthermore, from the viewpoint of suppressing membrane clogging by organic matter, a membrane with a minimum diameter of 0.05 μm is optimal.

膜ろ過装置の構造は、ケーシング型でも槽浸漬型のいずれでも構わないが、高濁度原水への適用性が高い、槽浸漬型の方が好ましい。 The structure of the membrane filtration device may be either a casing type or a tank immersion type, but the tank immersion type is preferable because it is highly applicable to highly turbid raw water.

膜ろ過された凝集処理水は、処理水槽7に処理水としてある程度の時間滞留させ、浄水8として使用される。処理水槽7の処理水(膜ろ過水)は、分離膜の逆洗に使用されるが、その際、次亜塩素酸ナトリウムなどの酸化剤を逆洗水に添加して分離膜に通水する。 The membrane-filtered coagulated treated water is retained as treated water in the treated water tank 7 for a certain period of time and is used as purified water 8. The treated water (membrane filtration water) in the treated water tank 7 is used for backwashing the separation membrane, but at that time, an oxidizing agent such as sodium hypochlorite is added to the backwash water and the water is passed through the separation membrane. .

上記第一実施の形態では、凝集膜ろ過システム10は粉末活性炭混和槽2、pH調整装置45および三槽からなる急速撹拌槽4を備えているが、これらの構成が必須というわけではない。例えば、比較的清澄な水道原水を被処理水1とし、凝集剤添加後の被処理水1のpHが凝集pHと近いと想定されるような場合には、以下の第二実施の形態の凝集膜ろ過システムの態様を取ることも可能である。 In the first embodiment, the coagulation membrane filtration system 10 includes the powdered activated carbon mixing tank 2, the pH adjustment device 45, and the rapid stirring tank 4 consisting of three tanks, but these configurations are not essential. For example, when comparatively clear tap water raw water is used as the water to be treated 1 and the pH of the water to be treated 1 after addition of a coagulant is assumed to be close to the coagulation pH, the coagulation according to the second embodiment below may be used. It is also possible to take the form of a membrane filtration system.

図2は、本発明の第二実施の形態に係る凝集膜ろ過システム100を説明する模式図である。図示のように、凝集膜ろ過システム100は、一槽の急速撹拌槽4-2および緩速撹拌槽5-2を有する凝集処理部40-2と、膜ろ過部60-2と、を有する。 FIG. 2 is a schematic diagram illustrating a coagulation membrane filtration system 100 according to a second embodiment of the present invention. As illustrated, the coagulation membrane filtration system 100 includes a coagulation processing section 40-2 having one rapid stirring tank 4-2 and one slow stirring tank 5-2, and a membrane filtration section 60-2.

急速撹拌槽4-2には凝集剤注入装置44-2が設けられている。粉末活性炭混和槽およびpH調整装置45は設けられていない。 A flocculant injection device 44-2 is provided in the rapid stirring tank 4-2. A powder activated carbon mixing tank and a pH adjustment device 45 are not provided.

本実施の形態において、被処理水1は急速撹拌槽4-2に供給され、凝集剤添加後に急速撹拌処理後、緩速撹拌槽5-2で緩速撹拌処理が施される。急速撹拌槽4-2での凝集剤が混和された被処理水の水理学的滞留時間は、緩速撹拌槽5-2における水理学的滞留時間以上である。 In the present embodiment, the water to be treated 1 is supplied to the rapid stirring tank 4-2, and after the addition of the coagulant, rapid stirring is performed, and then slow stirring is performed in the slow stirring tank 5-2. The hydraulic residence time of the water mixed with the flocculant in the rapid stirring tank 4-2 is longer than the hydraulic residence time in the slow stirring tank 5-2.

緩速撹拌後の凝集処理水は膜ろ過部60-2において分離膜でろ過され、処理水として処理水槽7-2に貯留され、浄水となる。 The flocculated treated water after the slow stirring is filtered by a separation membrane in the membrane filtration section 60-2, and stored as treated water in the treated water tank 7-2 to become purified water.

<被処理水の凝集膜ろ過方法>
本発明は、さらに、被処理水の凝集膜ろ過方法を提供する。図3は、本発明の凝集膜ろ過方法を説明するフローチャートである。
<Coagulation membrane filtration method for treated water>
The present invention further provides a coagulation membrane filtration method for water to be treated. FIG. 3 is a flowchart illustrating the coagulation membrane filtration method of the present invention.

本発明の凝集膜ろ過方法は、図示のように、凝集処理工程(S110)と、膜ろ過工程(S120)とを有する。 As illustrated, the coagulation membrane filtration method of the present invention includes a coagulation treatment step (S110) and a membrane filtration step (S120).

[凝集処理工程(S110)]
本工程では、被処理水に凝集剤が混和され、凝集処理が施される。被処理水および凝集剤は、上記凝集膜ろ過システムの項目に記載されているとおりである。
[Aggregation treatment step (S110)]
In this step, a flocculant is mixed with the water to be treated, and flocculation treatment is performed. The water to be treated and the flocculant are as described in the above section of the flocculating membrane filtration system.

凝集処理は、凝集剤が添加された被処理水を急速撹拌する急速撹拌プロセスと、急速撹拌プロセス後の被処理水を緩速撹拌する緩速撹拌プロセスと、を有する。 The flocculation treatment includes a rapid stirring process in which water to be treated to which a flocculant has been added is rapidly stirred, and a slow stirring process in which water to be treated after the rapid stirring process is slowly stirred.

急速撹拌プロセスの撹拌強度は、G値で考えると、150 1/s以上が良く、さらに好ましくは、150~250 1/s、最も望ましくは、250 1/s以上であり、緩速撹拌プロセスの撹拌強度は、G値が10~75 1/sの範囲で行われる事が望ましい。 Considering the G value, the stirring intensity of the rapid stirring process is preferably 150 1/s or more, more preferably 150 to 250 1/s, most preferably 250 1/s or more, and is higher than that of the slow stirring process. The stirring intensity is preferably such that the G value is in the range of 10 to 75 1/s.

また、急速撹拌プロセスを複数の急速撹拌により行う場合には、緩速撹拌プロセスが行われる槽のすぐ前段に位置する急速撹拌槽の撹拌強度は、100~150 1/s程度のG値の範囲で運転される事が好ましい。 In addition, when the rapid stirring process is performed by multiple rapid stirrings, the stirring intensity of the rapid stirring tank located immediately before the tank in which the slow stirring process is performed is in the G value range of about 100 to 150 1/s. It is preferable to drive with

本工程において、急速撹拌プロセスの水理学的滞留時間は、緩速撹拌プロセスの水理学的滞留時間以上である。 In this step, the hydraulic residence time of the rapid stirring process is greater than or equal to the hydraulic residence time of the slow stirring process.

これにより、凝集処理水中に残留するアルミニウムナノ粒子が低減し、この残留アルミニウムナノ粒子に起因する後段の膜ろ過工程(S120)における分離膜の膜汚染を回避することができる(以上、凝集処理工程(S110))。 As a result, the amount of aluminum nanoparticles remaining in the coagulation treatment water is reduced, and it is possible to avoid membrane contamination of the separation membrane in the subsequent membrane filtration step (S120) caused by the residual aluminum nanoparticles. (S110)).

[膜ろ過工程(S120)]
本工程では、凝集処理工程(S110)で得られた凝集処理水を分離膜でろ過する。
[Membrane filtration step (S120)]
In this step, the flocculation treated water obtained in the flocculation treatment step (S110) is filtered through a separation membrane.

本工程において、分離膜および分離膜を有する膜ろ過装置の構成については、上記凝集膜ろ過システムの項目に記載された構成を用いることができる。 In this step, for the configuration of the separation membrane and the membrane filtration device having the separation membrane, the configuration described in the item of the coagulation membrane filtration system above can be used.

分離膜でろ過されたろ過水は、処理水槽に処理水としてある程度の時間滞留させ、浄水8として使用される。 The filtrate water filtered through the separation membrane is retained in the treated water tank as treated water for a certain period of time, and is used as purified water 8.

本発明の凝集膜ろ過システムおよび凝集膜ろ過方法の効果は、以下に示すような、みかけのケーキろ過定数の測定方法においてもそれを簡単に評価する事ができ、凝集処理条件の決定を行う事ができる。 The effects of the flocculation membrane filtration system and flocculation membrane filtration method of the present invention can be easily evaluated by the method of measuring the apparent cake filtration constant as shown below, and the flocculation treatment conditions can be determined. Can be done.

具体的には、凝集処理後の凝集処理水に対して膜ろ過試験を行う事により、分離膜(MF膜等)の表層にアルミニウムナノ粒子から成るケーキ層形成させ、そのろ過抵抗から凝集処理水中のアルミニムナノ粒子の濃度を間接的に定量する。そして、この膜ろ過試験の結果を一般的なケーキろ過理論を用いて解析し、みかけのケーキろ過定数(Kcと呼ばれる事が多い)を算出し、それらを比較するものである。実用上の観点から直観的に分かり易く非常に便利である。 Specifically, by conducting a membrane filtration test on the flocculated water after flocculation treatment, a cake layer consisting of aluminum nanoparticles is formed on the surface layer of a separation membrane (MF membrane, etc.), and from the filtration resistance, the flocculation treated water is quantifies the concentration of aluminum nanoparticles indirectly. The results of this membrane filtration test are then analyzed using general cake filtration theory, the apparent cake filtration constant (often referred to as Kc) is calculated, and these are compared. From a practical standpoint, it is intuitively understandable and very convenient.

みかけのケーキろ過定数の測定は、ケーキろ過の閉塞モデルに基づくケーキろ過式により行うことができる(例えば、角屋正人著、日本ポール株式会社 マーケティング・コミュニケーショングループ編集発行、2013 SPRING Pall News、117巻第10~第15頁を参照)。 The apparent cake filtration constant can be measured using the cake filtration equation based on the occlusion model of cake filtration (for example, Masato Kadoya, published by Marketing Communication Group, Japan Pall Co., Ltd., 2013 SPRING Pall News, Vol. 117) (See pages 10 to 15).

ケーキろ過の閉塞モデルとは、ろ材を均一な内径、長さを持った円管の束と仮定した場合、負荷した粒子が円管を塞ぐことなく、ろ材(円管の束)の表面に体積していくというモデルである。その場合、図4(a)に示すように、円管tの束上に負荷した粒子pの量に比例して、堆積粒子p(ケーキ層)の厚みが増していく。ここで、堆積粒子pによる抵抗増加は、図4(b)に示す円管tが長くなったことに置き換えられる。 The occlusion model for cake filtration means that when the filter medium is assumed to be a bundle of circular tubes with uniform inner diameter and length, the loaded particles do not block the circular tubes and create a volume on the surface of the filter medium (bundle of circular tubes). This is a model of continuing to do so. In that case, as shown in FIG. 4(a), the thickness of the deposited particles p (cake layer) increases in proportion to the amount of particles p loaded onto the bundle of circular tubes t. Here, the increase in resistance due to the deposited particles p is replaced by an increase in the length of the circular tube t shown in FIG. 4(b).

そして、ハーゲンポアズイユの式をろ材に適用し、上記ケーキろ過の閉塞モデルも考慮して計算を進めることにより、定圧ろ過の場合には、以下の式(1)

Figure 0007403387000001
(式(1)中、Jは単位ろ過面積あたりの流量(m/m・s)を、Jは単位ろ過面積あたりの初期流量(m/m・s)を、Kcはケーキろ過定数(1/m)、閉塞係数ともいう)を、vは単位面積あたりのろ液量(m/m)を、それぞれ示す。)を、
定流量ろ過の場合には、以下の式(2)
Figure 0007403387000002
(式(2)中、ΔPは円管両端での差圧(Pa)を、ΔPは円管両端での初期差圧(Pa)を、Kcはケーキろ過定数((1/m)、閉塞係数ともいう)を、vは単位面積あたりのろ液量(m/m)を、それぞれ示す。)
を、それぞれ得ることができる。 Then, by applying Hagen-Poiseuille's equation to the filter medium and proceeding with calculations taking into account the blockage model of cake filtration described above, in the case of constant pressure filtration, the following equation (1) is obtained.
Figure 0007403387000001
(In formula (1), J is the flow rate per unit filtration area (m 3 /m 2・s), J 0 is the initial flow rate per unit filtration area (m 3 /m 2・s), and Kc is the cake The filtration constant (1/m) (also referred to as occlusion coefficient) and v represent the filtrate volume per unit area (m 3 /m 2 ), respectively. )of,
In the case of constant flow filtration, the following equation (2)
Figure 0007403387000002
(In formula (2), ΔP is the differential pressure (Pa) at both ends of the circular tube, ΔP 0 is the initial differential pressure (Pa) at both ends of the circular tube, Kc is the cake filtration constant ((1/m), occlusion (also referred to as the coefficient), and v indicates the filtrate volume per unit area (m 3 /m 2 ), respectively.
can be obtained respectively.

以下、実施例を示して本発明について具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

1.膜及びフィルターホルダー
以下の実施例および比較例において、膜はメルク社製のVVHP膜(疎水性PVDF膜、孔径0.1μm)を使用し、直径25mmの平膜用ガラス製フィルターホルダーを使用した。
1. Membrane and Filter Holder In the following examples and comparative examples, a VVHP membrane (hydrophobic PVDF membrane, pore size 0.1 μm) manufactured by Merck & Co. was used as the membrane, and a glass filter holder for flat membranes with a diameter of 25 mm was used.

2.膜ろ過試験(みかけのケーキろ過定数の測定)
以下の実施例および比較例において、吸引ポンプを用いて全量定圧ろ過(吸引圧力90kPa)で240mLの供試水を膜に通水し、ろ過水量経時変化を測定し、上記(1)の式に当てはめてケーキろ過定数Kc、すなわち、KVVHPの値(1/m)を求めた。
2. Membrane filtration test (measurement of apparent cake filtration constant)
In the following Examples and Comparative Examples, 240 mL of sample water was passed through the membrane using a suction pump with constant pressure filtration (suction pressure 90 kPa), and the change over time in the amount of filtrated water was measured, and the equation (1) above was used. By applying this, the cake filtration constant Kc, that is, the value of KVVHP (1/m) was determined.

<実施例1~4および比較例1~2>
被処理水には、比較的清澄な時期の冬季の河川水(濁度:0.7度、色度:3.3度、pH7.3、TOC:0.9mg/L、UVA260:0.114(5cmセル))を使用した。
<Examples 1 to 4 and Comparative Examples 1 to 2>
The water to be treated includes relatively clear winter river water (turbidity: 0.7 degrees, chromaticity: 3.3 degrees, pH 7.3, TOC: 0.9 mg/L, UVA260: 0.114). (5 cm cell)) was used.

この被処理水に対し、ポリ塩化アルミニウム(PACl、塩基度50%)を注入率20mg/Lで添加し、500mLのビーカーを使用して凝集処理を行った。 To this water to be treated, polyaluminum chloride (PACl, basicity 50%) was added at an injection rate of 20 mg/L, and flocculation treatment was performed using a 500 mL beaker.

撹拌条件は、凝集pH7.0、急速撹拌処理(130rpm)→緩速撹拌処理(30rpm)とし、それぞれの処理時間を変化させて凝集処理を行い、凝集処理水を得て、そのみかけのケーキろ過定数(KVVHP)(以下、単にKVVHPともいう)を求めた。 The stirring conditions were as follows: coagulation pH 7.0, rapid stirring treatment (130 rpm) → slow stirring treatment (30 rpm), each treatment time was changed to perform flocculation treatment, obtain flocculation treated water, and filter the apparent cake. A constant (K VVHP ) (hereinafter also simply referred to as K VVHP ) was determined.

得られた凝集処理水について、撹拌時間およびみかけのケーキろ過定数(KVVHP)は以下の表1および図5に示すとおりである。なお、表中、急3-緩0のラベル(比較例1)は、急速撹拌処理の水理学的滞留時間が3分間であり、緩速撹拌処理の水理学的滞留時間が0分間(すなわち、緩速撹拌処理が行われていない)であったことを示す。他の実施例、比較例のラベルの説明についても同様である。 The stirring time and apparent cake filtration constant (K VVHP ) of the obtained coagulated treated water are as shown in Table 1 and FIG. 5 below. In addition, in the table, the label ``Sudden 3 - Slow 0'' (Comparative Example 1) indicates that the hydraulic residence time of the rapid stirring treatment is 3 minutes, and the hydraulic residence time of the slow stirring treatment is 0 minutes (i.e., This indicates that the slow stirring process was not performed. The same applies to the explanations of the labels of other Examples and Comparative Examples.

Figure 0007403387000003
Figure 0007403387000003

表1および図5によれば、急速撹拌処理のみ(比較例1(急3-緩0)、比較例2(急6-緩0))では、処理時間が長いほど、KVVHPの値は低下するものの十分には下がらない。 According to Table 1 and Figure 5, in the case of rapid stirring only (Comparative Example 1 (3-slow 0), Comparative Example 2 (6-slow 0)), the longer the treatment time, the lower the value of KVVHP . Although it does, it doesn't go down enough.

また、従来の急速撹拌処理の範囲である、急速撹拌3分の条件においては、その後に行う緩速撹拌の時間が長くなるほどKVVHPの値は低下するが、従来の凝集処理条件に一番近い比較例4(急3-緩9)でさえKVVHPの値は4.5であった。 In addition, under the conditions of rapid stirring for 3 minutes, which is the range of conventional rapid stirring processing, the value of K VVHP decreases as the time of subsequent slow stirring increases, but it is the closest to the conventional coagulation processing conditions. Even in Comparative Example 4 (sudden 3-slow 9), the KVVHP value was 4.5.

また、急速撹拌のみで3分とする場合(比較例1(急3-緩0))よりも、それに緩速撹拌を同じ3分で加えた実施例1(急3-緩3)の方が、KVVHPの値は低下した。 Furthermore, compared to the case of rapid stirring alone for 3 minutes (Comparative Example 1 (fast 3 - slow 0)), Example 1 (fast 3 - slow 3), in which slow stirring was added for the same 3 minutes, was better. , K VVHP values decreased.

一方、急速撹拌を6分以上として緩速撹拌を行った場合は、急速撹拌のみ、急速撹拌3分に緩速撹拌を加えたいずれの場合よりも、KVVHPの値は低下した。 On the other hand, when rapid stirring was performed for 6 minutes or longer and slow stirring was performed, the value of K VVHP was lower than either the case of rapid stirring alone or the case of adding slow stirring to 3 minutes of rapid stirring.

さらに、急速撹拌6分よりも9分の方がKVVHPの値は低下したが、その差は僅かであり、急速撹拌時間は6~9分が最適であると考えられた。 Furthermore, although the value of K VVHP was lower after 9 minutes of rapid stirring than after 6 minutes, the difference was small, and it was considered that the optimum rapid stirring time was 6 to 9 minutes.

1 被処理水
10、100 凝集膜ろ過システム
40、40-2 凝集処理部
4、4-2、41、42、43 急速撹拌槽
5、5-2 緩速撹拌槽
60、60-2 膜ろ過部
1 Water to be treated 10, 100 Coagulation membrane filtration system 40, 40-2 Coagulation treatment section 4, 4-2, 41, 42, 43 Rapid stirring tank 5, 5-2 Slow stirring tank 60, 60-2 Membrane filtration section

Claims (4)

被処理水にアルミニウム系凝集剤が混和され、凝集処理が施される凝集処理部と、
前記凝集処理部で得られた凝集処理水を分離膜でろ過する膜ろ過部と、を有する凝集膜ろ過システムであって、
前記凝集処理部が急速撹拌槽および前記急速撹拌槽の後段に位置する緩速撹拌槽を備え、
前記凝集処理部において前記被処理水に高分子凝集剤は添加されず、
前記急速撹拌槽での前記アルミニウム系凝集剤が混和された被処理水の水理学的滞留時間が、前記緩速撹拌槽における水理学的滞留時間よりも長いことを特徴とする凝集膜ろ過システム。
a flocculation treatment section in which an aluminum-based flocculant is mixed with the water to be treated and flocculation treatment is performed;
A coagulation membrane filtration system comprising: a membrane filtration section that filters the coagulation-treated water obtained in the coagulation treatment section through a separation membrane,
The aggregation processing section includes a rapid stirring tank and a slow stirring tank located downstream of the rapid stirring tank,
A polymer flocculant is not added to the water to be treated in the flocculation treatment section,
A coagulation membrane filtration system, wherein a hydraulic residence time of the water to be treated mixed with the aluminum-based flocculant in the rapid stirring tank is longer than a hydraulic residence time in the slow stirring tank.
前記急速撹拌槽での水理学的滞留時間が6分以上であることを特徴とする請求項1に記載の凝集膜ろ過システム。 The coagulating membrane filtration system according to claim 1, wherein the hydraulic residence time in the rapid stirring tank is 6 minutes or more. 前記緩速撹拌槽における水理学的滞留時間が3分以上であることを特徴とする請求項1または2に記載の凝集膜ろ過システム。 The coagulation membrane filtration system according to claim 1 or 2, wherein the hydraulic residence time in the slow stirring tank is 3 minutes or more. 被処理水にアルミニウム系凝集剤を混和し、凝集処理を施す凝集処理工程と、
前記凝集処理工程で得られた凝集処理水を分離膜でろ過する膜ろ過工程と、
前記凝集処理工程が、アルミニウム系凝集剤が添加された前記被処理水を急速撹拌する急速撹拌プロセスと、
前記急速撹拌プロセス後の被処理水を緩速撹拌する緩速撹拌プロセスと、
を有し、
前記凝集処理工程において前記被処理水に高分子凝集剤は添加されず、
前記急速撹拌プロセスの水理学的滞留時間が前記緩速撹拌プロセスの水理学的滞留時間よりも長いことを特徴とする被処理水の凝集膜ろ過方法。
A flocculation treatment step of mixing an aluminum flocculant into the water to be treated and performing flocculation treatment;
a membrane filtration step of filtering the flocculation treated water obtained in the flocculation treatment step with a separation membrane;
a rapid stirring process in which the aggregation treatment step rapidly stirs the water to be treated to which an aluminum-based coagulant has been added;
a slow stirring process of slowly stirring the water to be treated after the rapid stirring process;
has
A polymer flocculant is not added to the water to be treated in the flocculation treatment step,
A coagulation membrane filtration method for water to be treated, characterized in that a hydraulic residence time in the rapid stirring process is longer than a hydraulic residence time in the slow stirring process.
JP2020094263A 2020-05-29 2020-05-29 Coagulation membrane filtration system and coagulation membrane filtration method Active JP7403387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020094263A JP7403387B2 (en) 2020-05-29 2020-05-29 Coagulation membrane filtration system and coagulation membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020094263A JP7403387B2 (en) 2020-05-29 2020-05-29 Coagulation membrane filtration system and coagulation membrane filtration method

Publications (2)

Publication Number Publication Date
JP2021186745A JP2021186745A (en) 2021-12-13
JP7403387B2 true JP7403387B2 (en) 2023-12-22

Family

ID=78847881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020094263A Active JP7403387B2 (en) 2020-05-29 2020-05-29 Coagulation membrane filtration system and coagulation membrane filtration method

Country Status (1)

Country Link
JP (1) JP7403387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024076248A1 (en) 2022-10-07 2024-04-11 First Water Technology Sp. Z O.O. Low maintenance, gravity powered enhanced coagulation systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013029A (en) 2015-07-06 2017-01-19 栗田工業株式会社 Flocculation tank and flocculation treatment method
JP2019188338A (en) 2018-04-25 2019-10-31 栗田工業株式会社 Water treatment method and water treatment apparatus
JP2019188337A (en) 2018-04-25 2019-10-31 栗田工業株式会社 Water treatment method and water treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118665A (en) * 1996-10-15 1998-05-12 Kurita Water Ind Ltd Treatment of nh4 type cmp waste solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013029A (en) 2015-07-06 2017-01-19 栗田工業株式会社 Flocculation tank and flocculation treatment method
JP2019188338A (en) 2018-04-25 2019-10-31 栗田工業株式会社 Water treatment method and water treatment apparatus
JP2019188337A (en) 2018-04-25 2019-10-31 栗田工業株式会社 Water treatment method and water treatment apparatus

Also Published As

Publication number Publication date
JP2021186745A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
Liu et al. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water
RU2421407C2 (en) Method and device for water treatment
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
WO2013054810A1 (en) Organic sewage collection processing device and collection processing method
Yu et al. Comparison of submerged coagulation and traditional coagulation on membrane fouling: Effect of active flocs
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP5282864B2 (en) Membrane separation method and membrane separation apparatus
CN106103352A (en) Purification of waste water
JP7358675B2 (en) Method for separating and purifying fluids containing valuables
JP3409322B2 (en) Pure water production method
JP2010247057A (en) Water purification method combining fine particle-making method and membrane separation method
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP2005118608A (en) Water treatment method
JP6662558B2 (en) Water treatment method and water treatment device
WO2014034845A1 (en) Water production method
JP7113454B2 (en) Water treatment method and equipment
WO2019208532A1 (en) Water treatment method and water treatment apparatus
JP2013046891A (en) Outside-tank installation type membrane separation activated sludge method and activated sludge treatment apparatus
JP2002346347A (en) Method and apparatus for filtration
JP2009220020A (en) Wastewater treatment system and its operation method
KR101153772B1 (en) Water treatment process using direct filtration technique and membrane separation technique
JP2014046235A (en) Fresh water generating method
JP2019188338A (en) Water treatment method and water treatment apparatus
CN109879496A (en) A kind of water treatment system and method for treating water removing Humic Acid in Drinking Water
CN204727691U (en) The device of a kind of enhanced coagulation-ultra-filtration membrane combined system process cities and towns tap water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R150 Certificate of patent or registration of utility model

Ref document number: 7403387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150