JP2009154095A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2009154095A
JP2009154095A JP2007335377A JP2007335377A JP2009154095A JP 2009154095 A JP2009154095 A JP 2009154095A JP 2007335377 A JP2007335377 A JP 2007335377A JP 2007335377 A JP2007335377 A JP 2007335377A JP 2009154095 A JP2009154095 A JP 2009154095A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
water
added
average molecular
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007335377A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
茂 佐藤
Keiryo Kofune
佳亮 小船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007335377A priority Critical patent/JP2009154095A/en
Publication of JP2009154095A publication Critical patent/JP2009154095A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method which can efficiently remove a soluble COD component such as a nonionic soluble COD component even without performing activated carbon treatment causing the problem of a clogging trouble or the like, water passing to an ion exchange resin column, membrane treatment or the like. <P>SOLUTION: Regarding the water treatment method, an anionic polymer electrolyte with the weight average molecular weight of ≥1,000 is added to the water to be treated, thereafter, a cationic polymer electrolyte with the weight average molecular weight of 10,000 to 1,000,000 is added thereto, and stirring is performed, or, the cationic polymer electrolyte is added simultaneously with the anionic polymer electrolyte, and stirring is performed, and thereafter, an inorganic flocculant and an organic flocculant are successively added. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排水などの水処理方法に関し、さらに詳しくは、印刷工場、半導体工場、食品工場、紙・パルプ工場、化学工場などから排出される工場排水、し尿処理場、下水処理場からの処理水、あるいは、浄水や用水に含まれる溶解性COD成分を効率的に除去することができる水処理方法に関する。   The present invention relates to a method for treating water such as wastewater. More specifically, the present invention relates to industrial wastewater discharged from printing factories, semiconductor factories, food factories, paper / pulp factories, chemical factories, etc., treatment from human waste treatment plants, and sewage treatment plants. The present invention relates to a water treatment method capable of efficiently removing soluble COD components contained in water or purified water or water.

地球環境保護、人の健康確保の面から、年々排水処理に係わる規制が地球規模で厳しくなってきている。特に、河川への放流や閉鎖水域への放流については、水質管理項目の規制値の見直しなど、国および各地方自治体での動きが活発になってきている。水質規制の対象物質には、毒性等、有害性のある物質以外に、湖沼や海域の富栄養化の原因であるりん、窒素、BOD、COD(化学的酸素要求量)等があり、化学物質汚染の指標となるCODは、特に重要な規制管理項目である。   From the viewpoint of protecting the global environment and ensuring human health, regulations relating to wastewater treatment are becoming stricter on a global scale year by year. In particular, with regard to discharge into rivers and closed water areas, movements in the national and local governments have become active, such as reviewing regulatory values for water quality management items. Substances subject to water quality regulations include not only toxic and harmful substances, but also phosphorus, nitrogen, BOD, COD (chemical oxygen demand) and other chemical substances that cause eutrophication in lakes and marine areas. COD as an index of pollution is a particularly important regulatory management item.

従来より、工場排水などに含まれる溶解性COD成分の処理としては、活性汚泥法などの生物処理、凝集沈殿処理や加圧浮上処理が一般的である。しかし、生物処理の場合は処理装置に広大な面積が必要であるという問題があるため、凝集沈殿処理や加圧浮上処理にて処理するケースが多い。そして、凝集沈殿処理や加圧浮上処理は、無機凝集剤の荷電中和作用により主に負電荷を帯びている懸濁物質やアニオン性の溶解性COD成分を除去する方法であり、印刷工場、半導体工場、食品工場、紙・パルプ工場、化学工場など多くの工場排水で問題となるノニオン性界面活性剤などのノニオン性の溶解性COD成分を除去することは基本的に困難である。   Conventionally, biological treatment such as an activated sludge method, coagulation sedimentation treatment, and pressurized flotation treatment are generally used as treatment of soluble COD components contained in factory wastewater and the like. However, in the case of biological treatment, there is a problem that a large area is required for the treatment apparatus, and therefore, there are many cases where treatment is performed by coagulation sedimentation treatment or pressure flotation treatment. And the coagulation sedimentation treatment and the pressure flotation treatment are methods for removing suspended substances and anionic soluble COD components that are mainly negatively charged due to the charge neutralization action of the inorganic flocculant. It is basically difficult to remove nonionic soluble COD components such as nonionic surfactants which are problematic in many industrial wastewaters such as semiconductor factories, food factories, paper / pulp factories, chemical factories, and the like.

このノニオン性の溶解性COD成分も含め、水中から溶解性COD成分を除去する技術としては、活性炭処理、紫外線照射、オゾン処理、硫酸第一鉄と過酸化水素を組み合わせたフェントン処理などの物理化学的手法(非特許文献1参照)、被処理液をイオン交換樹脂カラムに通す方法や膜処理を行う方法(特許文献1及び特許文献2参照)、それ自身凝集性を高めてフロックを容易に生成させる親水性の粘土鉱物などの加重剤を排水に添加したのち凝集沈殿処理することにより排水処理を安定的に効率よく行う方法(特許文献3参照)が開示されている。   Physiological chemistry such as activated carbon treatment, ultraviolet irradiation, ozone treatment, Fenton treatment combining ferrous sulfate and hydrogen peroxide can be used to remove soluble COD components from water, including this nonionic soluble COD component. Method (see Non-Patent Document 1), a method of passing a liquid to be treated through an ion exchange resin column, a method of performing a membrane treatment (see Patent Document 1 and Patent Document 2), and itself easily increases flocs by increasing cohesion A method of stably and efficiently performing wastewater treatment by adding a weighting agent such as a hydrophilic clay mineral to the wastewater and then coagulating and precipitating is disclosed (see Patent Document 3).

しかしながら、活性炭処理、紫外線照射、オゾン処理、硫酸第一鉄と過酸化水素を組み合わせたフェントン処理などの物理化学的手法では、活性炭吸着塔の閉塞、紫外線照射効率の低下、オゾンや薬剤の消耗を招き易いという問題がある。また、薬剤コストや電気代が嵩むという問題もある。被処理液をイオン交換樹脂カラムに通す方法や、膜処理を行う方法では、懸濁物質を含んでいる場合には、容易に閉塞を起こすため、ろ過や沈降分離等の前処理設備が別途必要となるという問題がある。さらに、親水性の粘土鉱物などの加重剤を添加したのち凝集沈殿処理する方法では、粘土鉱物は薬剤自体が低価格であるという利点はあるものの、処理効率が低いという問題がある。また、汚泥量が増加してしまうという問題も生じる。   However, physicochemical methods such as activated carbon treatment, ultraviolet irradiation, ozone treatment, and Fenton treatment combining ferrous sulfate and hydrogen peroxide can block activated carbon adsorption towers, reduce ultraviolet irradiation efficiency, and consume ozone and chemicals. There is a problem that it is easy to invite. There is also a problem that drug costs and electricity costs increase. In the method of passing the liquid to be treated through the ion exchange resin column or the method of membrane treatment, if suspended substances are included, clogging easily occurs, so additional pretreatment equipment such as filtration and sedimentation separation is required. There is a problem of becoming. Furthermore, the method of coagulating and precipitating after adding a weighting agent such as a hydrophilic clay mineral has the problem that the treatment efficiency is low, although the clay mineral has the advantage that the chemical itself is inexpensive. Moreover, the problem that the amount of sludge will increase also arises.

特開2000−317445号公報JP 2000-317445 A 特開2001−276825号公報JP 2001-276825 A 特開2003−245504号公報JP 2003-245504 A 山本信行、促進酸化法、化学工業、30巻9号、335−338(2002)Nobuyuki Yamamoto, Accelerated Oxidation, Chemical Industry, Vol. 30, No. 9, 335-338 (2002)

本発明は上述した事情に鑑み、閉塞トラブル等の問題を生じる活性炭処理、イオン交換樹脂カラムへの通水や膜処理等を行わなくてもノニオン性の溶解性COD成分等の溶解性COD成分を効率よく除去できる水処理方法を提供することを目的とする。   In view of the above-described circumstances, the present invention eliminates soluble COD components such as nonionic soluble COD components without performing activated carbon treatment that causes problems such as clogging troubles, water passing through ion exchange resin columns, membrane treatment, and the like. It aims at providing the water treatment method which can be removed efficiently.

本発明者は上記目的を達成するために鋭意検討した結果、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、前記アニオン性高分子電解質と同時に前記カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤と有機高分子凝集剤とを順に添加することにより、上記目的が達成されることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventor added a cationic polymer electrolyte having a weight average molecular weight of 10,000 or more and 1,000,000 or less after adding an anionic polymer electrolyte having a weight average molecular weight of 1,000 or more. Or by adding the cationic polymer electrolyte simultaneously with the anionic polymer electrolyte and stirring, and then adding the inorganic flocculant and the organic polymer flocculant in order. The present invention has been completed.

即ち、本発明の水処理方法は、被処理水に、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、前記アニオン性高分子電解質と同時に前記カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤と有機高分子凝集剤とを順に添加することを特徴とする。   That is, in the water treatment method of the present invention, an anionic polymer electrolyte having a weight average molecular weight of 1000 or more is added to water to be treated, and then a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added. The cationic polymer electrolyte is added and stirred simultaneously with the anionic polymer electrolyte, and then an inorganic flocculant and an organic polymer flocculant are added in order.

また、前記被処理水がノニオン性の溶解性COD成分を含む場合に、特に顕著に本発明の効果を発揮することができる。   Moreover, when the said to-be-processed water contains a nonionic soluble COD component, the effect of this invention can be exhibited notably especially.

被処理水に、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、前記アニオン性高分子電解質と同時に前記カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤と有機高分子凝集剤とを順に添加することにより、閉塞トラブル等の問題を生じる活性炭処理、イオン交換樹脂カラムへの通水や膜処理等を行わなくても、工場排水などの被処理水から、ノニオン性の溶解性COD成分などの溶解性COD成分を効率よく除去できるという効果を奏する。   After adding an anionic polymer electrolyte having a weight average molecular weight of 1000 or more to the water to be treated, a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred, or the anionic Activated carbon treatment and ion exchange resin that causes problems such as clogging troubles by adding the cationic polymer electrolyte simultaneously with the polymer electrolyte and stirring, and then sequentially adding the inorganic flocculant and the organic polymer flocculant There is an effect that soluble COD components such as nonionic soluble COD components can be efficiently removed from water to be treated such as factory effluent without water passing through the column or membrane treatment.

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の水処理方法は、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、該アニオン性高分子電解質と同時に該カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤と有機高分子凝集剤とを順に添加するものである。   In the water treatment method of the present invention, after adding an anionic polymer electrolyte having a weight average molecular weight of 1000 or more, a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred, or The cationic polymer electrolyte is added simultaneously with the anionic polymer electrolyte and stirred, and then an inorganic flocculant and an organic polymer flocculant are sequentially added.

被処理水としては、印刷工場、半導体工場、食品工場、紙・パルプ工場、化学工場などから排出される工場排水、し尿処理場、下水処理場からの処理水、或いは、浄水や用水が挙げられる。このような被処理水は、通常、糖類やタンパク質など天然由来、界面活性剤、工業原料や化学品由来、食品由来、それらの分解物由来などの、アニオン性、カチオン性又はノニオン性の溶解性COD成分を含む。本発明の水処理方法によれば、これらの被処理水に含まれる溶解性COD成分、特に従来除去し難かったノニオン性の溶解性COD成分も効率的に除去することができる。   Examples of treated water include industrial wastewater discharged from printing factories, semiconductor factories, food factories, paper / pulp factories, chemical factories, treated water from human waste treatment plants, sewage treatment plants, or purified water and water for use. . Such treated water usually has anionic, cationic or nonionic solubility such as saccharides and proteins derived from natural sources, surfactants, derived from industrial raw materials and chemicals, derived from foods, and their degradation products. Contains a COD component. According to the water treatment method of the present invention, the soluble COD component contained in the water to be treated, particularly the nonionic soluble COD component that has been difficult to remove, can be efficiently removed.

本発明においては、このような被処理水に、まず重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、重量平均分子量が1000以上のアニオン性高分子電解質と同時に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌する。なお、後者の重量平均分子量が1000以上のアニオン性高分子電解質と重量平均分子量が1万以上100万以下のカチオン性高分子電解質とを被処理水に同時に添加する場合、重量平均分子量が1000以上のアニオン性高分子電解質及び重量平均分子量が1万以上100万以下のカチオン性高分子電解質を別々に被処理水に添加するようにしてもよく、また、重量平均分子量が1000以上のアニオン性高分子電解質と重量平均分子量が1万以上100万以下のカチオン性高分子電解質とを溶解した溶液を作成し、その溶液を被処理水に添加するようにしてもよい。   In the present invention, first, an anionic polymer electrolyte having a weight average molecular weight of 1000 or more is added to such water to be treated, and then a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added. Stirring is performed, or a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred simultaneously with the anionic polymer electrolyte having a weight average molecular weight of 1,000 or more. When the latter anionic polymer electrolyte having a weight average molecular weight of 1000 or more and a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 are simultaneously added to the water to be treated, the weight average molecular weight is 1,000 or more. The anionic polymer electrolyte and the cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 may be separately added to the water to be treated, and the anionic polymer electrolyte having a weight average molecular weight of 1,000 or more. A solution in which a molecular electrolyte and a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 are dissolved may be prepared, and the solution may be added to water to be treated.

このように、被処理水に、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、該アニオン性高分子電解質と同時に該カチオン性高分子電解質を添加して撹拌して、アニオン性高分子電解質とカチオン性高分子電解質とを反応させることにより、ポリマー同士の反応物であるポリイオンコンプレックスが析出する。この析出により、被処理水中に含まれる懸濁物質、有機物、COD成分も同時に析出するため、被処理液に溶解しているノニオン性のCOD成分等の溶解性COD成分量を低下させたり、後段の無機凝集剤及び有機高分子凝集剤の添加による凝集反応を効率的に行うことができる。したがって、溶解性COD成分、懸濁物質を容易に系外に除去することができる。   Thus, after adding an anionic polymer electrolyte having a weight average molecular weight of 1000 or more to the water to be treated, a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred, or A polyion complex that is a reaction product between polymers by adding and stirring the cationic polymer electrolyte simultaneously with the anionic polymer electrolyte and reacting the anionic polymer electrolyte with the cationic polymer electrolyte Precipitates. As a result of this precipitation, suspended substances, organic substances, and COD components contained in the water to be treated also precipitate at the same time, so that the amount of soluble COD components such as nonionic COD components dissolved in the liquid to be treated can be reduced. The agglomeration reaction by adding the inorganic flocculant and the organic polymer flocculant can be performed efficiently. Therefore, soluble COD components and suspended substances can be easily removed from the system.

なお、重量平均分子量が1000以上のアニオン性高分子電解質よりも先に、重量平均分子量が1万以上100万以下のカチオン性高分子電解質を被処理水に添加すると、該カチオン性高分子電解質がまず被処理水に含まれる懸濁物質と反応してしまい、その後にアニオン性高分子凝集剤を添加しても、カチオン性高分子電解質とアニオン性高分子電解質との反応物が生成し難くなるため、本発明の溶解性COD成分の除去効果が得られない。   When a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added to the water to be treated prior to the anionic polymer electrolyte having a weight average molecular weight of 1,000 or more, the cationic polymer electrolyte is First, it reacts with the suspended solids contained in the water to be treated, and even if an anionic polymer flocculant is added thereafter, it becomes difficult to produce a reaction product between the cationic polymer electrolyte and the anionic polymer electrolyte. Therefore, the removal effect of the soluble COD component of the present invention cannot be obtained.

また、重量平均分子量が1000未満のアニオン性高分子電解質や、重量平均分子量が100万より大きいカチオン性高分子電解質を用いても、本発明の溶解性COD成分の除去効果が得られない。   Even if an anionic polymer electrolyte having a weight average molecular weight of less than 1000 or a cationic polymer electrolyte having a weight average molecular weight of more than 1,000,000 is used, the effect of removing the soluble COD component of the present invention cannot be obtained.

被処理水に添加する重量平均分子量が1000以上のアニオン性高分子電解質としては、アニオン性官能基を有するモノマーを重合して得られるポリマーやコポリマー、アニオン性官能基を有するモノマーと共重合可能なノニオン性モノマーとの共重合体などが挙げられる。アニオン性官能基を有するモノマーに特に限定はなく、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有モノマーや、ビニルスルホン酸、アリルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸等のスルホン酸基含有モノマーが挙げられる。また、ノニオン性モノマーとしては、アクリルアミド、メタクリルアミド、アクリロニトリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、スチレンなどを挙げることができるが、これらに限定されるものではない。   The anionic polymer electrolyte having a weight average molecular weight of 1000 or more added to the water to be treated can be copolymerized with a polymer or copolymer obtained by polymerizing a monomer having an anionic functional group, or a monomer having an anionic functional group. Examples thereof include a copolymer with a nonionic monomer. The monomer having an anionic functional group is not particularly limited, and examples thereof include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, vinyl sulfonic acid, allyl sulfonic acid, and 2-acrylamido-2-methylpropane. Examples thereof include sulfonic acid group-containing monomers such as sulfonic acid. Nonionic monomers include, but are not limited to, acrylamide, methacrylamide, acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, styrene, and the like.

また、上記のように、被処理水に添加するアニオン性高分子電解質の重量平均分子量は1000以上であればよいが、100万以下であることが好ましい。重量平均分子量が1000未満のアニオン性高分子電解質では、しっかりとしたポリイオンコンプレックスが生成されず、そのポリマー自体がCOD成分になってしまう。また、重量平均分子量が100万より大きいと、ポリイオンコンプレックスがゲル状やゴム状となり凝集処理に支障をきたす場合がある。被処理水中に均一に分散させるためには、アニオン性高分子電解質の重量平均分子量は2000〜50万が好ましく、さらに好ましくは、10万以下である。なお、アニオン性高分子電解質の重量平均分子量は、ゲル浸透クロマトグラフィー法(以下、GPC法)で測定できる。   Further, as described above, the weight average molecular weight of the anionic polymer electrolyte added to the water to be treated may be 1000 or more, but preferably 1 million or less. In an anionic polymer electrolyte having a weight average molecular weight of less than 1000, a solid polyion complex is not generated, and the polymer itself becomes a COD component. On the other hand, if the weight average molecular weight is larger than 1,000,000, the polyion complex may be in the form of gel or rubber, which may hinder the aggregation treatment. In order to disperse uniformly in the water to be treated, the weight average molecular weight of the anionic polymer electrolyte is preferably 2000 to 500,000, more preferably 100,000 or less. The weight average molecular weight of the anionic polymer electrolyte can be measured by a gel permeation chromatography method (hereinafter referred to as GPC method).

また、重量平均分子量1000以上のアニオン性高分子電解質の添加量は、被処理水に対して1mg/L以上である。1mg/L未満であると、本発明の溶解性COD成分の除去効果が顕著ではなくなるためである。   Moreover, the addition amount of the anionic polymer electrolyte having a weight average molecular weight of 1000 or more is 1 mg / L or more with respect to the water to be treated. This is because if it is less than 1 mg / L, the removal effect of the soluble COD component of the present invention is not significant.

被処理水に添加する重量平均分子量が1万以上100万以下のカチオン性高分子電解質としては、カチオン性官能基を有するモノマーを重合して得られるポリマーやコポリマー、カチオン性官能基を有するモノマーと共重合可能なノニオン性モノマーとの共重合体などが挙げられる。カチオン性官能基を有するモノマーとしては、ジメチルアミノエチル(メタ)アクリレート及びその四級化物、ジメチルアミノプロピル(メタ)アクリルアミド及びその四級化物、ジアリルジメチルアンモニウムクロリド、アリルアミンなどが挙げられる。ノニオン性モノマーとしては、アクリルアミド、メタクリルアミド、アクリロニトリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、スチレンなどを挙げることができるが、これらに限定されるものではない。また、カチオン性高分子電解質は、高分子反応にてカチオン化されたポリマーでもよく、例えば、ポリ−N−ビニルホルムアミド又はポリ−N−ビニルアセトアミドの加水分解によるポリビニルアミン、N−ビニルホルムアミドとアクリロニトリルとの共重合体の変性により得られるアミジン系ポリマーが挙げられる。さらに、カチオン性高分子電解質は、ポリエチレンイミン、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミンや、ジメチルアミン−エピクロルヒドリン縮合物でもよい。   The cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 added to the water to be treated includes a polymer or copolymer obtained by polymerizing a monomer having a cationic functional group, a monomer having a cationic functional group, Examples thereof include a copolymer with a copolymerizable nonionic monomer. Examples of the monomer having a cationic functional group include dimethylaminoethyl (meth) acrylate and a quaternized product thereof, dimethylaminopropyl (meth) acrylamide and a quaternized product thereof, diallyldimethylammonium chloride, and allylamine. Nonionic monomers include, but are not limited to, acrylamide, methacrylamide, acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, styrene, and the like. The cationic polyelectrolyte may be a polymer cationized by a polymer reaction, for example, polyamine-N-vinylformamide or polyamine-N-vinylacetamide by hydrolysis, polyvinylamine, N-vinylformamide and acrylonitrile. And amidine-based polymers obtained by modification of the copolymer. Furthermore, the cationic polymer electrolyte may be polyethyleneimine, ethylenediamine epichlorohydrin polycondensate, polyalkylene polyamine, or dimethylamine-epichlorohydrin condensate.

また、上記のように、被処理水に添加するカチオン性高分子電解質は、重量平均分子量が1万以上100万以下である。先に又は同時に添加するアニオン性高分子電解質とカチオン性高分子電解質とがゴム状の固まりの沈殿物にならず被処理水中で均一な析出物になるようにするためである。なお、カチオン性高分子電解質の重量平均分子量は光散乱法で測定できる。また、カチオン性高分子電解質の重量平均分子量は固有粘度から求める方法により測定してもよい。例えば、本発明で被処理水に添加するカチオン性高分子電解質の重量平均分子量1万以上100万以下を、1N−NaCl中で30℃での固有粘度に換算すると、1dL/g以下で0.03dL/g以上である。   Further, as described above, the cationic polymer electrolyte added to the water to be treated has a weight average molecular weight of 10,000 to 1,000,000. This is because the anionic polymer electrolyte and the cationic polymer electrolyte to be added first or at the same time are not a rubber-like lump precipitate but a uniform precipitate in the water to be treated. The weight average molecular weight of the cationic polymer electrolyte can be measured by a light scattering method. Moreover, you may measure the weight average molecular weight of a cationic polymer electrolyte by the method calculated | required from intrinsic viscosity. For example, when the weight average molecular weight of 10,000 or more and 1,000,000 or less of the cationic polymer electrolyte added to the water to be treated in the present invention is converted into an intrinsic viscosity at 30 ° C. in 1N-NaCl, it is 0.00 at 1 dL / g or less. It is 03 dL / g or more.

また、重量平均分子量が1万以上100万以下のカチオン性高分子電解質の添加量は、被処理水に対して1mg/L以上である。1mg/L未満では本発明の効果が顕著ではなくなるためである。   Moreover, the addition amount of the cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is 1 mg / L or more with respect to the water to be treated. This is because the effect of the present invention is not remarkable if it is less than 1 mg / L.

そして、上記重量平均分子量1000以上のアニオン性高分子電解質と1万以上100万以下のカチオン性高分子電解質との添加量の比は、アニオン性高分子電解質:カチオン性高分子電解質=70:30〜30:70(質量比)であることが好ましい。この範囲外であると、アニオン性高分子電解質又はカチオン性高分子電解質のどちらかが被処理水中に残留して電気的に均一な反応物が形成できず、本発明の溶解性COD成分の除去効果が顕著ではなくなるためである。   The ratio of the addition amount of the anionic polymer electrolyte having a weight average molecular weight of 1,000 or more and the cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is anionic polymer electrolyte: cationic polymer electrolyte = 70: 30. It is preferably ˜30: 70 (mass ratio). If it is outside this range, either the anionic polymer electrolyte or the cationic polymer electrolyte remains in the water to be treated, so that an electrically uniform reaction product cannot be formed, and the soluble COD component of the present invention is removed. This is because the effect is not noticeable.

なお、アニオン性高分子電解質やカチオン性高分子電解質を被処理水に添加する形態に特に限定はなく、アニオン性高分子電解質やカチオン性高分子電解質の水溶液を通常の水処理での操作方法、例えば、送液ポンプを用いて処理水量に応じて一定量添加すればよい。   In addition, there is no particular limitation on the form of adding the anionic polymer electrolyte or the cationic polymer electrolyte to the water to be treated, an operation method of an aqueous solution of the anionic polymer electrolyte or the cationic polymer electrolyte in a normal water treatment, For example, a certain amount may be added according to the amount of treated water using a liquid feed pump.

このように、被処理水に重量平均分子量が1000以上のアニオン性高分子電解質を添加した後重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、該アニオン性高分子電解質と同時に該カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤を添加した後、有機高分子凝集剤を添加することで、ノニオン性の溶解性COD成分などの溶解性COD成分を被処理水から容易に除去することができる。   Thus, after adding an anionic polymer electrolyte having a weight average molecular weight of 1,000 or more to the water to be treated, a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred, or The cationic polymer electrolyte is added at the same time as the anionic polymer electrolyte and stirred, then an inorganic flocculant is added, and then an organic polymer flocculant is added, so that a nonionic soluble COD component, etc. The soluble COD component can be easily removed from the water to be treated.

被処理水に添加する無機凝集剤に特に限定はなく、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄などが挙げられる。また、無機凝集剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で100〜5000mg/Lである。   There is no limitation in particular in the inorganic flocculant added to to-be-processed water, For example, a sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate etc. are mentioned. Further, the amount of the inorganic flocculant added is not particularly limited and may be adjusted according to the properties of the water to be treated.

また、有機高分子凝集剤は特に限定はなく、水処理で通常使用される有機高分子凝集剤を用いることができる。例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機高分子凝集剤が挙げられる。また、有機高分子凝集剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で1〜100mg/Lである。   The organic polymer flocculant is not particularly limited, and organic polymer flocculants usually used in water treatment can be used. For example, poly (meth) acrylic acid, copolymers of (meth) acrylic acid and (meth) acrylamide, and anionic organic polymer flocculants such as alkali metal salts thereof, nonions such as poly (meth) acrylamide Organic polymer flocculants, homopolymers composed of cationic monomers such as dimethylaminoethyl (meth) acrylate or quaternary ammonium salts thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salts thereof, and their cationic properties Examples thereof include cationic organic polymer flocculants such as a copolymer of a nonionic monomer copolymerizable with a monomer. The amount of the organic polymer flocculant added is not particularly limited, and may be adjusted according to the properties of the water to be treated.

また、有機凝結剤も併用することができる。有機凝結剤は特に限定はなく、例えば、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミンなど、通常水処理で使用されるカチオン性有機系ポリマーが挙げられる。また、有機凝結剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で1〜100mg/Lである。なお、有機凝結剤の添加時期も特に限定されない。   An organic coagulant can also be used in combination. The organic coagulant is not particularly limited, and examples thereof include cationic organic polymers that are usually used in water treatment, such as polyethyleneimine, diallyldimethylammonium chloride, ethylenediamine epichlorohydrin polycondensate, and polyalkylene polyamine. Moreover, there is no limitation in particular also in the addition amount of an organic coagulant | flocculant, What is necessary is just to adjust according to the property of to-be-processed water, but it is 1-100 mg / L in solid content with respect to to-be-processed water. The addition timing of the organic coagulant is not particularly limited.

無機凝集剤や有機高分子凝集剤の添加による凝集処理時のpHに特に制限はないが、凝集処理が行いやすい中性域、通常pH5〜9の範囲が好ましい。例えば、無機凝集剤及び必要に応じて添加する有機凝結剤を添加した後、有機高分子凝集剤を添加する前にpH5〜9に調整するようにしてもよい。なお、pHを調整する方法は特に限定されず、例えば、硫酸、塩酸、硝酸などの酸性物質や、水酸化ナトリウムなどアルカリ性物質を添加すればよい。   Although there is no restriction | limiting in particular in the pH at the time of the aggregation process by addition of an inorganic flocculant or an organic polymer flocculant, The neutral range which is easy to perform an aggregation process, and the range of normal pH 5-9 are preferable. For example, after adding an inorganic flocculant and an organic flocculant to be added as necessary, the pH may be adjusted to 5 to 9 before adding the organic polymer flocculant. The method for adjusting the pH is not particularly limited. For example, an acidic substance such as sulfuric acid, hydrochloric acid, or nitric acid, or an alkaline substance such as sodium hydroxide may be added.

無機凝集剤を添加した後、有機高分子凝集剤を添加し、撹拌などして反応させて、懸濁物質、ノニオン性の溶解性COD成分などの溶解性COD成分を凝集させた後は、生成した凝集フロックを、重力沈降、加圧浮上、ろ過などで分離除去することで、被処理水から溶解性COD成分を除去することができる。なお、溶解性COD成分の除去の効果は、本発明の水処理方法で処理して得られた処理水を必要に応じてろ過などして、CODMnやCODCrを測定することで確認できる。 After adding an inorganic flocculant, add an organic polymer flocculant and react by stirring to agglomerate soluble COD components such as suspended matter and nonionic soluble COD components. By separating and removing the agglomerated floc that has been separated by gravity sedimentation, pressurized flotation, filtration, etc., the soluble COD component can be removed from the water to be treated. The effect of removing the soluble COD component can be confirmed by measuring the COD Mn and COD Cr by filtering the treated water obtained by treating with the water treatment method of the present invention as necessary.

また、必要に応じて、殺菌剤、消臭剤、消泡剤、防食剤などを添加してもよい。さらに、必要に応じて、紫外線照射、オゾン処理、膜処理、生物処理などを併用してもよい。   Moreover, you may add a disinfectant, a deodorant, an antifoamer, an anticorrosive, etc. as needed. Furthermore, if necessary, ultraviolet irradiation, ozone treatment, membrane treatment, biological treatment, etc. may be used in combination.

以下、本発明を実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example and a comparative example, this invention is not limited at all by this Example.

(実施例1)
紙パルプ工場から排出された総合排水(ノニオン性の溶解性COD成分を含有、SS(濁質)濃度3250mg/L、原水CODMn=415mg/L)500mLを入れた500mLビーカーを用意し、ジャーテスターに設置した。そして、ビーカーに、下記表1に示すアニオン性高分子電解質A1−1を排水に対する添加率2mg/Lで添加した後、150rpmで120秒間撹拌した。続いて、下記表1に示すカチオン性高分子電解質C1−1を排水に対する添加率2mg/Lで添加した後、150rpmで120秒間撹拌した。次に、ビーカーに無機凝集剤(Alで18重量%の硫酸バンド)を排水に対して250mg/Lで添加して150rpmで60秒間撹拌後、5%NaOHでpHを6.5に調整し、150rpmで60秒間撹拌した。続いて、有機高分子凝集剤(アクリル酸ソーダ:アクリルアミド=20:80(モル%)の共重合体、1N−NaCl,30℃で測定した固有粘度dL/g=22)をビーカーに排水に対して2mg/L添加し、まず150rpmで60秒、次いで50rpmにて180秒間撹拌し、SS(濁質)を凝集させた。そして、撹拌停止後、各ビーカーの上澄み液の濁質(NTU)を測定し、続いて上澄み液をNo.5Aろ紙(アドバンテック社製、保留粒子径7μm)でろ過し、ろ液のCODMnを測定した。測定結果を表2に示す。
Example 1
Prepare a 500 mL beaker containing 500 mL of total wastewater discharged from the pulp and paper mill (containing nonionic soluble COD components, SS (turbidity) concentration 3250 mg / L, raw water COD Mn = 415 mg / L), and jar tester Installed. And after adding the anionic polymer electrolyte A1-1 shown in following Table 1 to the beaker with the addition rate 2 mg / L with respect to waste_water | drain, it stirred at 150 rpm for 120 second. Subsequently, the cationic polymer electrolyte C1-1 shown in Table 1 below was added at a rate of 2 mg / L with respect to the waste water, and then stirred at 150 rpm for 120 seconds. Next, an inorganic flocculant (18 wt% sulfuric acid band with Al 2 O 3 ) was added to the beaker at 250 mg / L with respect to the waste water, stirred at 150 rpm for 60 seconds, and adjusted to pH 6.5 with 5% NaOH. Adjust and stir at 150 rpm for 60 seconds. Subsequently, an organic polymer flocculant (a copolymer of sodium acrylate: acrylamide = 20: 80 (mol%), 1N-NaCl, intrinsic viscosity dL / g = 22 measured at 30 ° C.) was discharged into the beaker with respect to the wastewater. 2 mg / L was added, and the mixture was first stirred at 150 rpm for 60 seconds and then at 50 rpm for 180 seconds to aggregate SS (turbidity). After the stirring was stopped, the turbidity (NTU) of the supernatant of each beaker was measured. The filtrate was filtered with 5A filter paper (manufactured by Advantech Co., Ltd., retained particle diameter 7 μm), and COD Mn of the filtrate was measured. The measurement results are shown in Table 2.

Figure 2009154095
Figure 2009154095

(実施例2)
アニオン性高分子電解質とカチオン性高分子電解質を別々に同時に排水に添加した以外は実施例1と同様の操作を行った。結果を表2に示す。
(Example 2)
The same operation as in Example 1 was performed except that the anionic polymer electrolyte and the cationic polymer electrolyte were separately added to the waste water simultaneously. The results are shown in Table 2.

(実施例3〜5)
アニオン性高分子電解質とカチオン性高分子電解質の種類を下記表2に示すようにした以外は実施例1と同様の操作を行った。結果を表2に示す。
(Examples 3 to 5)
The same operation as in Example 1 was performed except that the types of anionic polymer electrolyte and cationic polymer electrolyte were as shown in Table 2 below. The results are shown in Table 2.

(実施例6)
アニオン性高分子電解質とカチオン性高分子電解質の種類及び添加率を下記表2に示すようにした以外は実施例2と同様の操作を行った。結果を表2に示す。
(Example 6)
The same operation as in Example 2 was performed except that the types and addition rates of the anionic polymer electrolyte and the cationic polymer electrolyte were as shown in Table 2 below. The results are shown in Table 2.

(比較例1)
アニオン性高分子電解質及びカチオン性高分子電解質を添加せず、実施例1における無機凝集剤の添加以降の操作と同様の操作を行った。結果を表2に示す。
(Comparative Example 1)
The same operation as that after the addition of the inorganic flocculant in Example 1 was performed without adding the anionic polymer electrolyte and the cationic polymer electrolyte. The results are shown in Table 2.

(比較例2)
カチオン性高分子電解質をアニオン性高分子電解質よりも先に添加した以外は実施例1と同様の操作を行った。結果を表2に示す。
(Comparative Example 2)
The same operation as in Example 1 was performed except that the cationic polymer electrolyte was added before the anionic polymer electrolyte. The results are shown in Table 2.

(比較例3〜6)
アニオン性高分子電解質とカチオン性高分子電解質の種類を下記表2に示すようにした以外は実施例1と同様の操作を行った。結果を表2に示す。
(Comparative Examples 3-6)
The same operation as in Example 1 was performed except that the types of anionic polymer electrolyte and cationic polymer electrolyte were as shown in Table 2 below. The results are shown in Table 2.

(比較例7及び8)
アニオン性高分子電解質及びカチオン性高分子電解質の種類及び添加量を表2に示すようにし、アニオン性高分子電解質とカチオン性高分子電解質を別々に同時に排水に添加した以外は実施例1と同様の操作を行った。結果を表2に示す。
(Comparative Examples 7 and 8)
The kind and addition amount of the anionic polymer electrolyte and the cationic polymer electrolyte are as shown in Table 2, and the same as in Example 1 except that the anionic polymer electrolyte and the cationic polymer electrolyte were separately added to the waste water simultaneously. Was performed. The results are shown in Table 2.

表2に示すように、本発明の水処理方法で処理した実施例1〜6では、処理水濁度及びCODMnとも良好な結果が得られ、濁質、CODMn成分が除去されていることが確認された。一方、本発明の範囲外、具体的には、アニオン性高分子電解質及びカチオン性高分子電解質を添加しなかった比較例1、カチオン性高分子電解質をアニオン性高分子電解質よりも先に添加した比較例2、重量平均分子量が1000未満のアニオン性高分子電解質を添加した比較例3、比較例4及び比較例8、重量平均分子量が100万より大きいカチオン性高分子電解質を添加した比較例5〜7では、濁質、CODMn成分を除去することができなかった。 As shown in Table 2, in Examples 1 to 6 treated with the water treatment method of the present invention, good results were obtained for both the treated water turbidity and COD Mn, and the turbidity and COD Mn components were removed. Was confirmed. On the other hand, outside the scope of the present invention, specifically, Comparative Example 1 in which the anionic polymer electrolyte and the cationic polymer electrolyte were not added, the cationic polymer electrolyte was added before the anionic polymer electrolyte. Comparative Example 2, Comparative Example 3, Comparative Example 4 and Comparative Example 8 to which an anionic polymer electrolyte having a weight average molecular weight of less than 1000 was added, Comparative Example 5 to which a cationic polymer electrolyte having a weight average molecular weight of more than 1,000,000 was added In -7, turbidity and COD Mn component could not be removed.

Figure 2009154095
Figure 2009154095

Claims (2)

被処理水に、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加して撹拌するか、又は、前記アニオン性高分子電解質と同時に前記カチオン性高分子電解質を添加して撹拌し、その後、無機凝集剤と有機高分子凝集剤とを順に添加することを特徴とする水処理方法。   After adding an anionic polymer electrolyte having a weight average molecular weight of 1000 or more to the water to be treated, a cationic polymer electrolyte having a weight average molecular weight of 10,000 to 1,000,000 is added and stirred, or the anionic A water treatment method comprising adding the cationic polymer electrolyte together with the polymer electrolyte and stirring the mixture, and then sequentially adding an inorganic flocculant and an organic polymer flocculant. 前記被処理水がノニオン性の溶解性COD成分を含むことを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the water to be treated contains a nonionic soluble COD component.
JP2007335377A 2007-12-26 2007-12-26 Water treatment method Pending JP2009154095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335377A JP2009154095A (en) 2007-12-26 2007-12-26 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335377A JP2009154095A (en) 2007-12-26 2007-12-26 Water treatment method

Publications (1)

Publication Number Publication Date
JP2009154095A true JP2009154095A (en) 2009-07-16

Family

ID=40958694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335377A Pending JP2009154095A (en) 2007-12-26 2007-12-26 Water treatment method

Country Status (1)

Country Link
JP (1) JP2009154095A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131167A (en) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk Flocculation treatment method of waste water
KR101154359B1 (en) * 2010-04-14 2012-06-15 주식회사 화성산업 W/o type emulsion polymer containing organic coagulant and process for preparing the same
CN102923832A (en) * 2012-11-19 2013-02-13 重庆大学 Flocculant for removing synedra from water and removing method
JP2014046265A (en) * 2012-08-31 2014-03-17 Dai Ichi Kogyo Seiyaku Co Ltd Method for collecting useful metal and toxic metal using polyion complex
CN105565462A (en) * 2016-02-02 2016-05-11 同济大学 Algae removal coagulant and method for low-concentration algae-containing water
CN109052743A (en) * 2016-01-19 2018-12-21 青岛大学 A method of decoloration and nitrogen recycling for printing waste water
WO2019044312A1 (en) * 2017-08-31 2019-03-07 オルガノ株式会社 Water treatment method and water treatment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131167A (en) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk Flocculation treatment method of waste water
KR101154359B1 (en) * 2010-04-14 2012-06-15 주식회사 화성산업 W/o type emulsion polymer containing organic coagulant and process for preparing the same
JP2014046265A (en) * 2012-08-31 2014-03-17 Dai Ichi Kogyo Seiyaku Co Ltd Method for collecting useful metal and toxic metal using polyion complex
CN102923832A (en) * 2012-11-19 2013-02-13 重庆大学 Flocculant for removing synedra from water and removing method
CN109052743A (en) * 2016-01-19 2018-12-21 青岛大学 A method of decoloration and nitrogen recycling for printing waste water
CN109052743B (en) * 2016-01-19 2021-08-27 青岛大学 Method for decoloring printing wastewater and recovering nitrogen
CN105565462A (en) * 2016-02-02 2016-05-11 同济大学 Algae removal coagulant and method for low-concentration algae-containing water
WO2019044312A1 (en) * 2017-08-31 2019-03-07 オルガノ株式会社 Water treatment method and water treatment device
JPWO2019044312A1 (en) * 2017-08-31 2019-11-07 オルガノ株式会社 Water treatment method and water treatment apparatus

Similar Documents

Publication Publication Date Title
Sahu et al. Review on chemical treatment of industrial waste water
JP5364298B2 (en) Dispersant-containing water treatment method
EP2643364B1 (en) Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
JP2009154095A (en) Water treatment method
Hassan et al. Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum
JP2002346572A (en) Clean water treatment method and treatment agent
JP2011139997A (en) Coagulation treatment method for waste water
Najid et al. Improvement of permeation flux by evaluating the effects of coagulated-humic acids flocs and pH during coagulation-microfiltration hybrid process for water treatment: Performance, fouling modeling, specific energy consumption, and processes comparison
JP2007313492A (en) Method and apparatus for treating soluble cod component-containing water
JP6738492B2 (en) Water treatment method and water treatment device
KR101980478B1 (en) Manufacturing method of inorganic coagulants used acid waste water for treatment an activated clay
JP2008246372A (en) Waste water treatment method
JP2008086848A (en) Apparatus and method for treating organic liquid waste
JP6744526B2 (en) Wastewater treatment method and wastewater treatment agent
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP2009142761A (en) Water treatment method
JP2010179248A (en) Method for treating livestock sludge
JP2009056397A (en) Organic coagulant and waste water coagulation method using the same
JP2008006382A (en) Method of treating oil-containing waste water
JP5099315B2 (en) Method for treating humic-containing water
JP2012187467A (en) Membrane separation method and membrane separator
WO2004046046A1 (en) Agents for purifying waste water and muddy water
WO2015045093A1 (en) Water treatment method
JP5038587B2 (en) Dewatering method for sewage digested sludge