JP4923834B2 - Method and apparatus for treating water containing soluble COD component - Google Patents

Method and apparatus for treating water containing soluble COD component Download PDF

Info

Publication number
JP4923834B2
JP4923834B2 JP2006218472A JP2006218472A JP4923834B2 JP 4923834 B2 JP4923834 B2 JP 4923834B2 JP 2006218472 A JP2006218472 A JP 2006218472A JP 2006218472 A JP2006218472 A JP 2006218472A JP 4923834 B2 JP4923834 B2 JP 4923834B2
Authority
JP
Japan
Prior art keywords
water
cod component
liquid
organic
soluble cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006218472A
Other languages
Japanese (ja)
Other versions
JP2008036606A (en
Inventor
茂 佐藤
康彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006218472A priority Critical patent/JP4923834B2/en
Publication of JP2008036606A publication Critical patent/JP2008036606A/en
Application granted granted Critical
Publication of JP4923834B2 publication Critical patent/JP4923834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、各種産業排水、浄水、用水など、溶解性COD成分を含有した水から溶解性COD成分を除去する方法及び装置に関する。詳しくは、本発明は、有機系微粒子よりなるCOD成分除去材を用いて溶解性COD成分を除去する方法及び装置に関する。   The present invention relates to a method and an apparatus for removing soluble COD components from water containing soluble COD components such as various industrial wastewater, purified water, and irrigation water. Specifically, the present invention relates to a method and apparatus for removing a soluble COD component using a COD component removing material made of organic fine particles.

I.溶解性COD成分含有水からCOD成分除去材としてイオン交換樹脂を用いて溶解性COD成分を除去する場合、従来はイオン交換樹脂を充填したイオン交換樹脂塔に通水するのが通常である(例えば特開2000−317445号公報、特開2001−276825号公報)。   I. When the soluble COD component is removed from the soluble COD component-containing water by using an ion exchange resin as a COD component removing material, conventionally, water is usually passed through an ion exchange resin tower packed with an ion exchange resin (for example, JP 2000-317445 A, JP 2001-276825 A).

このように、イオン交換樹脂塔に通水して排水処理を行う場合、排水中の懸濁物質等のために樹脂塔に閉塞を起こす場合がある。   As described above, when wastewater treatment is performed by passing water through the ion exchange resin tower, the resin tower may be blocked due to suspended substances in the wastewater.

II.排水処理のために粉末活性炭を排水に添加した後、この粉末活性炭を凝集剤によって凝集させ、沈降分離することは周知である。(例えば特開平6−226011号)。
特開2000−317445号公報 特開2001−276825号公報 特開平6−226011号公報
II. It is well known that powdered activated carbon is added to wastewater for wastewater treatment, and then this powdered activated carbon is agglomerated by a flocculant and settled. (For example, JP-A-6-226011).
JP 2000-317445 A JP 2001-276825 A Japanese Patent Laid-Open No. 6-226011

本発明は、粉末活性炭を用いた場合と同様に、あるいはそれよりも十分に溶解性COD成分を十分に除去することが可能な溶解性COD成分含有水の処理方法及び装置を提供することを目的とする。   It is an object of the present invention to provide a method and an apparatus for treating water containing soluble COD components that can sufficiently remove soluble COD components in the same manner as in the case of using powdered activated carbon or more than that. And

本発明の溶解性COD成分含有水の処理方法は、溶解性COD成分含有水に微粒状のCOD成分除去材を添加した後、固液分離することにより、溶解性COD成分含有水から溶解性COD成分を除去するCOD成分含有水の処理方法において、該COD成分除去材は、カチオン性官能基を有した有機系微粒子であって、該有機系微粒子は架橋構造を有する電解質ポリマーであり、該有機系微粒子を炭化水素液体含有媒体中に分散した逆相エマルションで、又は該逆相エマルションを希釈水希釈した状態で、該溶解性COD成分含有水に添加して撹拌した後に、無機凝集剤及び/又は有機凝結剤を添加して凝集させ、生成した凝集フロックを分離する処理方法であって、該逆相エマルションは、有機系微粒子(P)と、水(W)と、炭化水素液体(HC)と、界面活性剤(S)とを含み、成分P、W、HC、Sの重量比(%)でP:W:HC:S=20〜50:20〜40:20〜40:2〜20であり、PとWの合計量が全体重量に対して、40〜80重量%であることを特徴とするものである。 The method for treating soluble COD component-containing water according to the present invention comprises adding soluble COD component-containing water to a soluble COD component-containing water, followed by solid-liquid separation, thereby dissolving soluble COD component-containing water from soluble COD component-containing water. In the method for treating COD component-containing water for removing components, the COD component removing material is organic fine particles having a cationic functional group, and the organic fine particles are electrolyte polymers having a crosslinked structure, In a reverse phase emulsion in which system fine particles are dispersed in a hydrocarbon liquid-containing medium, or in a state where the reverse phase emulsion is diluted with dilution water , after adding to the water containing the soluble COD component and stirring, an inorganic flocculant and / or organic coagulant is added to aggregate, the resulting floc a processing method of separating, the reverse phase emulsion, the organic fine particles (P), and water (W), hydrocarbons Body (HC) and surfactant (S), and P: W: HC: S = 20-50: 20-40: 20-40 in the weight ratio (%) of components P, W, HC, S : 2 to 20, and the total amount of P and W is 40 to 80% by weight based on the total weight .

本発明の溶解性COD成分含有水の処理装置は、溶解性COD成分含有水に微粒状のCOD成分除去材を添加する手段と、その後、この液を固液分離処理する固液分離手段とを有する溶解性COD成分含有水の処理装置において、該COD成分除去材は、カチオン性官能基を有した有機系微粒子であって、該有機系微粒子は架橋構造を有する電解質ポリマーであり、該有機系微粒子を炭化水素液体含有媒体中に分散した逆相エマルションで、又は該逆相エマルションを希釈水希釈した状態で添加した溶解性COD成分含有水を撹拌する混合槽と、該混合槽からの液に無機凝集剤及び/又は有機凝結剤を添加して撹拌する凝集槽と、該凝集槽からの液を固液分離処理する固液分離手段とを有することを特徴とするものである。 The apparatus for treating soluble COD component-containing water according to the present invention comprises means for adding a particulate COD component removing material to soluble COD component-containing water, and thereafter, solid-liquid separation means for subjecting this liquid to solid-liquid separation. In the water treatment apparatus containing soluble COD component, the COD component removing material is an organic fine particle having a cationic functional group, and the organic fine particle is an electrolyte polymer having a crosslinked structure, microparticles reverse phase emulsion dispersed in a hydrocarbon liquid containing medium, or a mixing tank for stirring the solubility COD component-containing water added in a state in which the inverse phase emulsion was diluted with dilution water, the liquid from the mixing vessel And a coagulation tank for adding and stirring an inorganic coagulant and / or an organic coagulant, and a solid-liquid separation means for performing a solid-liquid separation process on the liquid from the coagulation tank.

発明者らが種々研究を重ねた結果、架橋構造を有する電解質ポリマー、COD成分除去能を有した有機系微粒子を溶解性COD成分含有水に添加すると、水中の溶解性COD成分がこの有機系微粒子に吸着され、従って有機系微粒子を固液分離すると溶解性COD成分も水中から除去されること、この有機系微粒子による溶解性COD成分の吸着作用は粉末活性炭と略同等又はそれ以上であることが見出された。 As a result of various studies by the present inventors, when an organic fine particle having a COD component removal ability of an electrolyte polymer having a crosslinked structure is added to water containing soluble COD component, the soluble COD component in water becomes the organic polymer. Therefore, when the organic fine particles are solid-liquid separated, the soluble COD component is also removed from the water, and the adsorption action of the soluble COD component by the organic fine particles is substantially equal to or higher than that of the powdered activated carbon. It was found.

本発明は、かかる知見に基づくものであり、本発明によれば、従来の粉末活性炭添加プラス凝集分離プロセスと同様の簡易なプロセスによって、十分に溶解性COD成分を除去することが可能となる。   The present invention is based on such knowledge, and according to the present invention, the soluble COD component can be sufficiently removed by a simple process similar to the conventional powdered activated carbon addition plus coagulation separation process.

本発明においては、処理対象水に架橋構造を有する電解質ポリマーの有機系微粒子を逆相エマルションとして添加することにより、処理対象液中の懸濁物質が多量にあっても、樹脂塔通水で起こる閉塞トラブルが全くなく、効率的に処理することができる。なお、イオン性のCOD成分に対しては樹脂のカチオン性官能基が作用し、COD成分の吸着が起こるものと推察される。 In the present invention, by adding organic fine particles of an electrolyte polymer over having a crosslinked structure in the water being treated as a reverse phase emulsion, even a large amount of suspended solids in the processed liquid, a resin tower water flow There is no obstruction trouble that occurs, and it can be processed efficiently. Incidentally, with respect to the ionic COD components acts cationic functional groups of the resin, is assumed that the adsorption of C OD component occurs.

本発明では、無機凝集剤、有機凝結剤又は有機高分子凝集剤を添加して凝集分離することにより、液中からCOD成分及び有機系微粒子が十分に除去される。なお、有機系微粒子よりも先に凝集剤又は凝結剤を添加すると、無機凝集剤等から持ち込まれるイオン成分によって、有機系微粒子等への負荷が上がり、効率的な処理ができなくなることがある。 In the present invention, no machine flocculants, by coagulation and separation by adding an organic coagulating agent or an organic polymeric flocculant, COD components and organic fine particles are sufficiently removed from the liquid. Incidentally, the addition of a flocculant or coagulant before the organic-based particles, the ion component carried over from the inorganic flocculant or the like, raise the load on the organic fine particles and the like, it can not be efficient processing Kotogaa The

なお、本発明においては、架橋した高分子電解質ゲルを実質的に水不溶性の有機系微粒子として添加するので、架橋した高分子の分子間にもCOD成分の拡散が起こるため、ポリマーの官能基がゲル内部まで有効に機能できる。また、O/W(逆相)エマルジョンとすることで、ゲル状の有機系微粒子同士が付着したり、合一したりするのを防止でき、製品安定性を保つことができる、という効果も奏する。   In the present invention, since the crosslinked polyelectrolyte gel is added as substantially water-insoluble organic fine particles, the COD component diffuses between the molecules of the crosslinked polymer. It can function effectively to the inside of the gel. Moreover, by making it an O / W (reverse phase) emulsion, it is possible to prevent the gel-like organic fine particles from adhering to and coalescing with each other and to maintain the product stability. .

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明では、溶解性COD成分含有水に有機系微粒子を添加した後、固液分離して溶解性COD成分含有水から溶解性COD成分を除去する。この固液分離としては、無機凝集剤、有機凝結剤又は有機高分子凝集剤を添加して凝集させ、生成した凝集フロックを分離する。ただし、固液分離としては凝集剤や凝結剤を利用しない固液分離、例えば、浮上分離、遠心分離、濾過などの分離操作を採用してもよい。 In the present invention, the organic fine particles are added to the soluble COD component-containing water, and then solid-liquid separation is performed to remove the soluble COD component from the soluble COD component-containing water. As the solid-liquid separation, an inorganic coagulant, with the addition of organic coagulating agent or an organic polymer flocculant to agglomerate, it separates the resulting floc. However, as solid-liquid separation, solid-liquid separation that does not use a flocculant or a coagulant, for example, separation operations such as flotation separation, centrifugation, and filtration may be employed.

以下、溶解性COD成分含有水、有機系微粒子、凝集剤及び凝結剤、装置形態等について項目別に詳述する。   Hereinafter, the soluble COD component-containing water, the organic fine particles, the flocculant and the coagulant, the device form, and the like will be described in detail.

1)溶解性COD成分含有水
本発明方法及び装置が処理対象とする溶解性COD成分含有水としては、印刷工場、半導体工場、食品工場、紙・パルプ工場、化学工場などから排出される工場排水、し尿処理場、下水処理場からの処理水、あるいは浄水や用水が例示されるが、これらに限定されない。
1) Water containing soluble COD components Water containing soluble COD components to be treated by the method and apparatus of the present invention is industrial wastewater discharged from printing factories, semiconductor factories, food factories, paper / pulp factories, chemical factories, etc. Examples include, but are not limited to, treated water from human waste treatment plants and sewage treatment plants, or purified water and irrigation water.

溶解性COD成分としては、糖類、タンパク質などの天然由来のもの、界面活性剤や工業原料や科学由来のもの、食品由来のもの、およびそれらの分解物など種々のものが例示されるが、これらに限定されない。溶解性COD成分に、アニオン性、カチオン性、ノニオン性などのイオン性の限定もない。   Examples of soluble COD components include naturally occurring substances such as saccharides and proteins, surfactants, industrial raw materials and scientific substances, food-derived substances, and decomposition products thereof. It is not limited to. The soluble COD component is not limited to ionic properties such as anionic property, cationic property, and nonionic property.

溶解性COD成分の分子量は、特に限定されるものではないが、概ね数十〜数百万、特に数百〜数十万程度である。   The molecular weight of the soluble COD component is not particularly limited, but is generally about several tens to several millions, particularly about several hundreds to several hundreds of thousands.

本発明は、被処理水中における溶解性COD成分の濃度が10〜5000mg/L、特に20〜1000mg/L程度である場合に適用するのに好適である。   The present invention is suitable for application when the concentration of the soluble COD component in the water to be treated is about 10 to 5000 mg / L, particularly about 20 to 1000 mg / L.

2)有機系微粒子
有機系微粒子のカチオン性官能基としては、一級アミン、二級アミン、三級アミンおよびそれらの酸塩や四級アンモニウム基等の官能基を挙げることができる
2) Organic fine particles Examples of the cationic functional groups of the organic fine particles include primary amines, secondary amines, tertiary amines, and functional groups such as acid salts and quaternary ammonium groups thereof .

有機系微粒子は架橋構造を有する電解質ポリマーである。電解質ポリマーの例を次に示すが、これらに限定されるものではない。 Organic fine particles are electrolyte polymer over having a crosslinked structure. Examples of the electrolyte polymer are shown below, but are not limited thereto.

有機系微粒子としては架橋構造構成モノマー単位として、アニオン系であれば、アクリル酸、メタアクリル酸、マレイン酸、イタコン酸、ビニルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸等、およびそれらのアルカリ金属塩等のアニオン性モノマーが挙げられる。ノニオン系であれば、ポリ(メタ)アクリルアミド、Nイソプロピルアクリルアミド、Nメチル(NNジメチル)アクリルアミド、アクリロニトリル、スチレン、メチルもしくはエチル(メタ)アクリレート等のノニオン性モノマーが挙げられる。カチオン系であれば、ジメチルアミノエチル(メタ)アクリレートもしくはその四級アンモニウム塩やジメチルアミノプロピル(メタ)アクリルアミドもしくはその四級アンモニウム塩、ジアリルジメチルアンモニウムクロリド等のカチオン性モノマーが挙げられる。これらのホモポリマー、あるいは上記モノマーを組み合わせた共重合体が、電解質ポリマーの基本となる。実質的に水溶解しないようにするため、上記モノマーに加えて、架橋剤として、メチレンビスアクリルアミド、ジビニルベンゼンなどのジビニルモノマーをエマルション重合させる。ジビニルモノマー量は、全モノマーに対して0.0001〜0.1モル%必要で、この量によって、ポリマー微粒子の膨潤度つまり水中での粒子径を調整できる。   As organic fine particles, as cross-linked structural monomer units, if anionic, acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, etc. And anionic monomers such as alkali metal salts thereof. Nonionic monomers include nonionic monomers such as poly (meth) acrylamide, N isopropylacrylamide, N methyl (NN dimethyl) acrylamide, acrylonitrile, styrene, methyl or ethyl (meth) acrylate. If it is a cationic type, cationic monomers such as dimethylaminoethyl (meth) acrylate or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide or its quaternary ammonium salt, diallyldimethylammonium chloride and the like can be mentioned. These homopolymers or copolymers obtained by combining the above monomers are the basis of the electrolyte polymer. In order to prevent substantial dissolution in water, in addition to the above monomers, divinyl monomers such as methylenebisacrylamide and divinylbenzene are emulsion-polymerized as a crosslinking agent. The amount of divinyl monomer is required to be 0.0001 to 0.1 mol% with respect to the total monomer, and the amount of swelling of the polymer fine particles, that is, the particle diameter in water can be adjusted by this amount.

本発明では、この実質的に水不溶性の有機系微粒子を逆相エマルションとして被処理水に添加する。   In the present invention, the substantially water-insoluble organic fine particles are added to the water to be treated as a reverse phase emulsion.

この逆相エマルションとしては、上記有機系微粒子(P)と、水(W)と、炭化水素液体(HC)と、界面活性剤(S)とを含むものが好ましい。これら成分P、W、HC、Sの割合は、重量比(%)でP:W:HC:S=20〜50:20〜40:20〜40:2〜20であり、PとWの合計量が全体重量に対して、40〜80重量%であるのが好ましい。   As this reverse phase emulsion, those containing the organic fine particles (P), water (W), hydrocarbon liquid (HC), and surfactant (S) are preferable. The ratio of these components P, W, HC, S is P: W: HC: S = 20-50: 20-40: 20-40: 2-20 by weight ratio (%), and the total of P and W The amount is preferably 40 to 80% by weight relative to the total weight.

この炭化水素液体としては、脂肪族系の炭化水素液体が好適であり、具体的にはイソヘキサンなどのイソパラフィン、n−ヘキサン、ケロシン、鉱物油などが挙げられるが、これらに限定されるものではない。   As this hydrocarbon liquid, an aliphatic hydrocarbon liquid is suitable, and specific examples include isoparaffins such as isohexane, n-hexane, kerosene, and mineral oil, but are not limited thereto. .

また、界面活性剤としては、例えば、HLB7〜10の高級脂肪族(C10〜20)アルコールのポリオキシエチレンエーテル、もしくは高級脂肪酸(C10〜22)のポリオキシエチレンエステルが好適である。前者の例としては、ラウリルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコール、などのポリオキシエチレン(EO付加モル数=3〜10)エーテルが挙げられる。後者の例としては、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸などのポリオキシエチレン(EO付加モル数=3〜10)エステルが挙げられる。ただし、界面活性剤はこれらに限定されない。   Moreover, as surfactant, the polyoxyethylene ether of higher aliphatic (C10-20) alcohol of HLB7-10, or the polyoxyethylene ester of higher fatty acid (C10-22) is suitable, for example. Examples of the former include polyoxyethylene (EO addition mole number = 3 to 10) ethers such as lauryl alcohol, cetyl alcohol, stearyl alcohol, and oleyl alcohol. Examples of the latter include polyoxyethylene (EO addition mole number = 3 to 10) esters such as lauric acid, palmitic acid, stearic acid, and oleic acid. However, the surfactant is not limited to these.

[平均粒子径]
有機系微粒子の平均粒子径は、200μm以下、特に1〜100μm、とりわけ1〜10μmであることが好ましい。粒径が小さいと、比表面積が大きくなり、反応効率が向上する。
[Average particle size]
The average particle diameter of the organic fine particles is preferably 200 μm or less, particularly 1 to 100 μm, and particularly preferably 1 to 10 μm. When the particle size is small, the specific surface area is increased and the reaction efficiency is improved.

なお、この粒径は、通常の散乱光方式、又は透過光方式等の粒度分布測定装置により測定される。   The particle size is measured by a particle size distribution measuring apparatus such as a normal scattered light method or a transmitted light method.

[イオン性]
本発明では、処理対象水中の溶解性COD成分のイオン性に応じて有機系微粒子のイオン性を選択してもよい。なお、通常の溶解性COD成分はアニオン性もしくはノニオン性である。このような場合には、カチオン性の官能基を有する有機系微粒子を適用する。
[Ionic]
In the present invention, the ionicity of the organic fine particles may be selected according to the ionicity of the soluble COD component in the water to be treated. The usual soluble COD component is anionic or nonionic. In such a case, it applies organic fine particles having a cationic functional group.

[添加時における有機系微粒子の形態]
有機系微粒子は、被処理水に上記の逆相エマルションとして又は希釈水に分散させて希釈して添加される。
[Form of organic fine particles upon addition]
The organic fine particles are added to the water to be treated as the above-mentioned reversed phase emulsion or diluted in water for dilution.

被処理水に有機系微粒子含有エマルションを添加するには、例えばタンクに保管したエマルションを一般的な送液ポンプを用いて、添加することができる。なお、添加直前に水等の液状媒体に分散させて添加してもよい。   In order to add the organic fine particle-containing emulsion to the water to be treated, for example, an emulsion stored in a tank can be added using a general liquid feed pump. In addition, you may disperse and add in liquid media, such as water, just before addition.

[有機系微粒子の添加場所]
有機系微粒子の添加場所は特に限定はない。被処理水の配管にライン注入してもよく、何らかの撹拌装置を備えた反応槽に添加してもよい。
[Location of organic fine particles]
There is no particular limitation on the place where the organic fine particles are added. Lines may be injected into the pipe of the water to be treated, or they may be added to a reaction vessel equipped with some kind of stirring device.

[有機系微粒子の添加率]
有機系微粒子の添加率は被処理水中の溶解性COD成分溶濃度、性状等に応じて変わるが、概ね固形分で0.1〜5g/L特に0.5〜3g/L程度が好適である。
[Addition rate of organic fine particles]
The addition rate of the organic fine particles varies depending on the solubility and properties of the soluble COD component in the water to be treated, but is preferably about 0.1 to 5 g / L, particularly about 0.5 to 3 g / L in terms of solid content. .

3)無機凝集剤、有機凝結剤、有機高分子凝集剤
[無機凝集剤の種類及び添加量]
無機凝集剤の種類に特に限定はない。硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄など任意に選定できる。
3) Inorganic flocculant, organic flocculant, organic polymer flocculant [Type and amount of inorganic flocculant]
There is no limitation in particular in the kind of inorganic flocculant. A sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate and the like can be arbitrarily selected.

無機凝集剤の添加量に特に限定はない。被処理対象水の溶解性COD成分濃度その他の性状に応じて変わるが、概ね固形分で500〜5000mg/Lである。   There is no limitation in particular in the addition amount of an inorganic flocculant. Although it varies depending on the soluble COD component concentration and other properties of the water to be treated, the solid content is generally 500 to 5000 mg / L.

[有機凝結剤の種類及び添加量]
有機凝結剤の種類に特に限定はない。例えば、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリ重縮合物、ポリアルキレンポリアミンなど、通常水処理で使用されるカチオン性有機系ポリマーが挙げられる。
[Type and amount of organic coagulant]
There is no particular limitation on the type of organic coagulant. Examples thereof include cationic organic polymers usually used in water treatment, such as polyethyleneimine, diallyldimethylammonium chloride, ethylenediamine epichlorohydride polycondensate, and polyalkylene polyamine.

有機凝結剤の添加量に特に限定はない。被処理対象液の性状に応じて変わるが、概ね固形分で1〜100mg/Lである。   There is no particular limitation on the amount of organic coagulant added. Although it changes according to the property of the liquid to be treated, it is generally 1 to 100 mg / L in solid content.

[有機高分子凝集剤]
有機高分子凝集剤の種類に特に限定はない。水処理で通常使用される高分子凝集剤であれば採用可能である。例えば、アニオン系であれば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、およびそれらのアルカリ金属塩等が挙げられる。ノニオン系であれば、ポリ(メタ)アクリルアミド等が挙げられる。カチオン系であれば、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩やジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、あるいはそれらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等が挙げられる。
[Organic polymer flocculant]
There is no particular limitation on the type of organic polymer flocculant. Any polymer flocculant usually used in water treatment can be used. For example, poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and alkali metal salts thereof may be used as long as they are anionic. If it is nonionic, poly (meth) acrylamide etc. are mentioned. In the case of a cationic system, a homopolymer composed of a cationic monomer such as dimethylaminoethyl (meth) acrylate or a quaternary ammonium salt thereof, dimethylaminopropyl (meth) acrylamide or a quaternary ammonium salt thereof, or a copolymer with these cationic monomers. Examples thereof include a copolymer with a polymerizable nonionic monomer.

有機高分子凝集剤の添加量に特に限定はない。被処理対象液の性状に応じて変わるが、概ね固形分で1〜100mg/Lである。   There is no limitation in particular in the addition amount of an organic polymer flocculant. Although it changes according to the property of the liquid to be treated, it is generally 1 to 100 mg / L in solid content.

[凝集剤又は凝結剤の添加順序]
まず、被処理対象水に有機系微粒子を添加し、撹拌などによってさらに充分接触させた後に、上記凝集剤又は凝結剤を添加し、撹拌などによってさらに充分反応させる。
[Addition order of flocculant or coagulant]
First, the addition of organic fine particles to the treatment object water, after was further sufficient contact as by stirring, adding the flocculant or coagulant, Ru is more fully react as by stirring.

凝集剤又は凝結剤の添加方法]
通常の排水処理での操作と同様に、送液ポンプを用いて、水量に応じて一定量添加すればよい。ただし、添加のための機器はこれに限定されない。
[ Method of adding flocculant or coagulant]
Similar to the operation in normal waste water treatment, a fixed amount may be added according to the amount of water using a liquid feed pump. However, the equipment for addition is not limited to this.

[他薬剤との併用]
必要に応じて、殺菌剤、消臭剤、消泡剤、防食剤などと併用してもよい。
[Combination with other drugs]
You may use together with a disinfectant, a deodorant, an antifoamer, an anticorrosive, etc. as needed.

4)その他の形態
本発明においては、本発明による処理と共に、必要に応じて、紫外線照射、オゾン処理、膜処理、生物処理などを併用してもよく、これらの処理は本発明の処理の前、後又は途中のいずれにおいて行われてもよい。
4) Other forms In the present invention, ultraviolet irradiation, ozone treatment, membrane treatment, biological treatment, etc. may be used in combination with the treatment according to the present invention, if necessary. It may be performed either after or during the process.

なお、処理水を通常のCODmnやCODcr測定を行うことにより、効果確認ができる。必要に応じて、測定前にろ過等の前処理を行ってもよい。   In addition, an effect can be confirmed by performing normal CODmn and CODcr measurement of treated water. If necessary, a pretreatment such as filtration may be performed before the measurement.

5)本発明装置の一例
第1図は、本発明方法を行うのに好適な溶解性COD成分含有水の処理装置の一例を示す系統図である。原水(溶解性COD成分含有水)は、混合槽1に導入され、ここにおいて有機系微粒子含有逆相エマルションが添加され、好ましくは撹拌機でゆっくりと撹拌される。この混合槽1内の液は次いで凝集槽に送られ、無機凝集剤、有機凝結剤又は有機高分子凝集剤の添加を受け、好ましくはゆっくりと撹拌される。
5) Example of the apparatus of the present invention FIG. 1 is a system diagram showing an example of a treatment apparatus for water containing soluble COD components suitable for carrying out the method of the present invention. The raw water (soluble COD component-containing water) is introduced into the mixing tank 1, where the organic fine particle-containing reversed-phase emulsion is added, and is preferably stirred slowly with a stirrer. The liquid in the mixing tank 1 is then sent to a coagulation tank where it is added with an inorganic coagulant, an organic coagulant or an organic polymer coagulant and is preferably stirred slowly.

この凝集槽2内の液は、沈殿槽3に送られ、固形分と処理水(上澄水)とに固液分離され、処理水が系外に取り出される。   The liquid in the flocculation tank 2 is sent to the precipitation tank 3, where it is separated into solid and liquid and treated water (supernatant water), and the treated water is taken out of the system.

なお、凝集槽2に無機凝集剤と有機高分子凝集剤又は有機凝結剤とを添加してもよく、凝集槽2と沈殿槽3との間にフロック成長用の槽を設け、凝集槽2で無機凝集剤を添加し、このフロック成長用の槽に有機高分子凝集剤又は有機凝結剤を添加してもよい。   In addition, an inorganic flocculant and an organic polymer flocculant or an organic flocculant may be added to the flocculation tank 2. A floc growth tank is provided between the flocculation tank 2 and the precipitation tank 3, An inorganic flocculant may be added, and an organic polymer flocculant or an organic flocculant may be added to the floc growth tank.

以下、実施例及び比較例について説明する。なお、この実施例及び比較例では、原水として、試薬「でんぷん」をモデルCOD成分とした試験排水を用いた。でんぷん試薬としてはキシダ化学製試薬特級を使用した。コロイド当量測定によるアニオン化度は、−0・15mep/gで、若干アニオン性を示した。   Hereinafter, examples and comparative examples will be described. In this example and comparative example, a test wastewater using the reagent “starch” as a model COD component was used as raw water. As the starch reagent, a special grade reagent manufactured by Kishida Chemical was used. The degree of anionization by colloidal equivalent measurement was −0.15 mep / g, which was slightly anionic.

この試験排水の調整方法は次のとおりである。まずホットプレートスターラーにて過熱溶解した5重量%でんぷん水溶液を調製し、そのでんぷん水溶液83mlを純水9917mlに投入し、414mg/lでんぷん水溶液とした。この水溶液のCODmnは、実測で309mg/lであった。   The test drainage adjustment method is as follows. First, a 5 wt% aqueous starch solution dissolved by heating with a hot plate stirrer was prepared, and 83 ml of the aqueous starch solution was added to 9917 ml of pure water to obtain a 414 mg / l aqueous starch solution. The CODmn of this aqueous solution was 309 mg / l measured.

水不溶の有機系微粒子の逆相エマルション液体としては、有機系微粒子としてジメチルアミノエチルアクリレートの塩化メチル四級化物/アクリルアミド=60/40(モル%)コポリマーの架橋ゲル微粒子(平均粒径15μm)を含むものを用いた。   As a water-insoluble organic fine particle reversed phase emulsion liquid, a crosslinked gel fine particle (average particle size of 15 μm) of dimethylaminoethyl acrylate methyl chloride quaternary compound / acrylamide = 60/40 (mol%) copolymer is used as the organic fine particle. What was included was used.

このゲルの製造手順は次の通りである。   The manufacturing procedure of this gel is as follows.

撹拌機、ジムロート冷却管、窒素導入管、温度計を備えた、1L4つ口セパラブルフラスコを用意し、窒素雰囲気下、HLB=9.5の高級アルコールポリオキシエチレンエーテル48gを混合したケロシン123gをフラスコに入れる。窒素雰囲気で強く撹拌しながら、ジメチルアミノエチルアクリレートの塩化メチル四級化物(65%)178gとアクリルアミド28gと、メチレンビスアクリルアミド0.01gと水82の混合物をゆっくりフラスコに投入する。フラスコ内を50℃に保ち、そこに開始剤として、アゾビスイソブチロニトリルのアセトン10%溶液0.65gを添加して、50℃のまま8時間窒素雰囲気下、撹拌しながら重合を行う。反応物は、水に入れても溶解しない、不溶性の微粒子ゲルであった。   Prepare a 1L 4-neck separable flask equipped with a stirrer, Dimroth condenser, nitrogen inlet tube, and thermometer. Place in flask. While stirring vigorously in a nitrogen atmosphere, a mixture of 178 g of methyl chloride quaternized product of dimethylaminoethyl acrylate (65%), 28 g of acrylamide, 0.01 g of methylenebisacrylamide and 82 of water is slowly put into the flask. The inside of the flask is maintained at 50 ° C., and 0.65 g of a 10% solution of azobisisobutyronitrile in acetone is added as an initiator, and polymerization is carried out while stirring at 50 ° C. for 8 hours in a nitrogen atmosphere. The reaction product was an insoluble fine particle gel that did not dissolve even when placed in water.

ゲル分散液の組成は、ポリマー31重量%、水31重量%、ケロシン27重量%、界面活性剤11重量%であった。ゲルの成分はポリマー50重量%、水50重量%である。   The composition of the gel dispersion was 31% by weight of polymer, 31% by weight of water, 27% by weight of kerosene, and 11% by weight of surfactant. The components of the gel are 50% by weight of polymer and 50% by weight of water.

説明の便宜上、まず粉末活性炭添加又は水溶性ポリマーを用いた比較例1,2について説明する。   For convenience of explanation, Comparative Examples 1 and 2 using powdered activated carbon added or a water-soluble polymer will be described first.

比較例1
この比較例1では、比重0.35Kg/Lの粉末活性炭を用いた。
Comparative Example 1
In Comparative Example 1, powdered activated carbon having a specific gravity of 0.35 Kg / L was used.

上記試験排水を500mL入れた500mLビーカーを6個用意し、6連ジャーテスターに設置した。   Six 500 mL beakers containing 500 mL of the test waste water were prepared and installed in a six-unit jar tester.

添加率が0、50、100、200、600、1000、2000mg/Lになるように、0、0.025、0.05、0.1、0.3、0.5、1.0gの粉末活性炭を粉末のまま添加し、まずスパーテルで液中に分散させた。   Powder of 0, 0.025, 0.05, 0.1, 0.3, 0.5, 1.0 g so that the addition rate is 0, 50, 100, 200, 600, 1000, 2000 mg / L Activated carbon was added as a powder, and was first dispersed in the liquid with a spatula.

直ちに、ジャーテスターにて150rpm30分間撹拌した。   Immediately, the mixture was stirred with a jar tester at 150 rpm for 30 minutes.

つづいて、各液に無機凝集剤として硫酸バンドを3000mg/L添加し、同じく150rpmで60秒撹拌した。   Subsequently, 3000 mg / L of a sulfuric acid band as an inorganic flocculant was added to each solution, and the mixture was similarly stirred at 150 rpm for 60 seconds.

つづいて、pHをおおよそ7に調整し、3000rpm10分間遠心分離にかけ、上澄液のCODmnを測定した。   Subsequently, the pH was adjusted to approximately 7, centrifuged at 3000 rpm for 10 minutes, and the CODmn of the supernatant was measured.

なお、原水のCOD測定は、活性炭を添加せずに上記と同じ操作を行い、計測を行った。   In addition, COD measurement of raw | natural water measured by performing the same operation as the above, without adding activated carbon.

結果を第2図に示す。   The results are shown in FIG.

比較例2
粉末活性炭の代わりに、水溶性ポリマーとしてメチルアミノエチルアクリレートの塩化メチル四級化物/アクリルアミド60/40(モル%)のコポリマーを用いたこと以外は比較例1と同じ操作にて行った。
Comparative Example 2
The same operation as in Comparative Example 1 was conducted except that instead of powdered activated carbon, a methylaminoethyl acrylate methyl chloride quaternary compound / acrylamide 60/40 (mol%) copolymer was used as the water-soluble polymer.

実施例1
上記比較例1の粉末活性炭の代わりに有機系微粒子含有エマルションとしてのゲルを用いたこと以外は比較例1と同じ操作にて行った。
Example 1
It carried out by the same operation as the comparative example 1 except having used the gel as an organic type fine particle containing emulsion instead of the powdered activated carbon of the said comparative example 1. FIG.

実施例1においても、有機系微粒子の添加率を、比較例1と同じく0、50、100、200、600、1000、2000mg/Lとした。   Also in Example 1, the addition rate of the organic fine particles was set to 0, 50, 100, 200, 600, 1000, and 2000 mg / L as in Comparative Example 1.

処理水のCOD測定結果を第2図に示す。   The COD measurement result of treated water is shown in FIG.

第2図の通り、実施例1によると、比較例1,2に比べて良好なCOD除去効果を得ることができる。通常の水溶性ポリマーは、COD成分としたでんぷんと吸着反応が起きたとしても、溶解したままであり、水中から析出分離できないため、ポリマーを入れた分に相当するCODが上昇したものと考えられる。   As shown in FIG. 2, according to Example 1, a better COD removal effect can be obtained as compared with Comparative Examples 1 and 2. Even if an ordinary water-soluble polymer is adsorbed with starch as a COD component, it remains dissolved and cannot be precipitated and separated from water, so it is considered that the COD corresponding to the amount of polymer added has increased. .

実施例のフロー図である。It is a flowchart of an Example. 実施例及び比較例のCOD測定結果を示すグラフである。It is a graph which shows the COD measurement result of an Example and a comparative example.

1 混合槽
2 凝集槽
3 沈殿槽
1 Mixing tank 2 Coagulation tank 3 Precipitation tank

Claims (4)

溶解性COD成分含有水に微粒状のCOD成分除去材を添加した後、固液分離することにより、溶解性COD成分含有水から溶解性COD成分を除去するCOD成分含有水の処理方法において、
該COD成分除去材は、カチオン性官能基を有した有機系微粒子であって、
該有機系微粒子は架橋構造を有する電解質ポリマーであり、
該有機系微粒子を炭化水素液体含有媒体中に分散した逆相エマルションで、又は該逆相エマルションを希釈水希釈した状態で、該溶解性COD成分含有水に添加して撹拌した後に、無機凝集剤及び/又は有機凝結剤を添加して凝集させ、生成した凝集フロックを分離する処理方法であって、
該逆相エマルションは、有機系微粒子(P)と、水(W)と、炭化水素液体(HC)と、界面活性剤(S)とを含み、成分P、W、HC、Sの重量比(%)でP:W:HC:S=20〜50:20〜40:20〜40:2〜20であり、PとWの合計量が全体重量に対して、40〜80重量%であることを特徴とする溶解性COD成分含有水の処理方法。
In the method for treating COD component-containing water in which the soluble COD component-containing water is removed from the soluble COD component-containing water by adding a particulate COD component removing material to the soluble COD component-containing water, followed by solid-liquid separation.
The COD component removing material is an organic fine particle having a cationic functional group,
The organic fine particle is an electrolyte polymer having a crosslinked structure,
The organic-based fine particles by reverse phase emulsion dispersed in a hydrocarbon liquid containing medium, or the inverse phase emulsion while diluting with dilution water, after stirring was added The soluble COD components containing water, inorganic coagulant A processing method for adding an agent and / or an organic coagulant to cause aggregation and separating the generated aggregated floc ,
The inverse emulsion contains organic fine particles (P), water (W), hydrocarbon liquid (HC), and surfactant (S), and the weight ratio of components P, W, HC, S ( %) P: W: HC: S = 20 to 50:20 to 40:20 to 40: 2 to 20, and the total amount of P and W is 40 to 80% by weight with respect to the total weight. A method for treating water containing a soluble COD component.
請求項1において、分散した状態の前記有機系微粒子の平均粒径が200μm以下であることを特徴とするCOD成分含有水の処理方法。   2. The method for treating COD component-containing water according to claim 1, wherein an average particle diameter of the dispersed organic fine particles is 200 μm or less. 請求項1又は2において、前記炭化水素液体が脂肪族系炭化水素液体であることを特徴とする溶解性COD成分含有水の処理方法。   The method for treating water containing soluble COD components according to claim 1 or 2, wherein the hydrocarbon liquid is an aliphatic hydrocarbon liquid. 溶解性COD成分含有水に微粒状のCOD成分除去材を添加する手段と、その後、この液を固液分離処理する固液分離手段とを有する溶解性COD成分含有水の処理装置において、
該COD成分除去材は、カチオン性官能基を有した有機系微粒子であって、
該有機系微粒子は架橋構造を有する電解質ポリマーであり、
該有機系微粒子を炭化水素液体含有媒体中に分散した逆相エマルションで、又は該逆相エマルションを希釈水希釈した状態で添加した溶解性COD成分含有水を撹拌する混合槽と、該混合槽からの液に無機凝集剤及び/又は有機凝結剤を添加して撹拌する凝集槽と、該凝集槽からの液を固液分離処理する固液分離手段とを有することを特徴とする溶解性COD成分含有水の処理装置。
In a treatment apparatus for soluble COD component-containing water having means for adding a particulate COD component removing material to soluble COD component-containing water and then solid-liquid separation means for subjecting this liquid to solid-liquid separation treatment,
The COD component removing material is an organic fine particle having a cationic functional group,
The organic fine particle is an electrolyte polymer having a crosslinked structure,
The organic-based fine particles by reverse phase emulsion dispersed in a hydrocarbon liquid containing medium, or a mixing tank for stirring the solubility COD component-containing water added in a state in which the inverse phase emulsion was diluted with the dilution water, the mixing tank A soluble COD comprising: a coagulation tank for adding an inorganic coagulant and / or an organic coagulant to the liquid from which the liquid is stirred, and a solid-liquid separation means for subjecting the liquid from the coagulation tank to solid-liquid separation treatment Component-containing water treatment equipment.
JP2006218472A 2006-08-10 2006-08-10 Method and apparatus for treating water containing soluble COD component Expired - Fee Related JP4923834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218472A JP4923834B2 (en) 2006-08-10 2006-08-10 Method and apparatus for treating water containing soluble COD component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218472A JP4923834B2 (en) 2006-08-10 2006-08-10 Method and apparatus for treating water containing soluble COD component

Publications (2)

Publication Number Publication Date
JP2008036606A JP2008036606A (en) 2008-02-21
JP4923834B2 true JP4923834B2 (en) 2012-04-25

Family

ID=39172225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218472A Expired - Fee Related JP4923834B2 (en) 2006-08-10 2006-08-10 Method and apparatus for treating water containing soluble COD component

Country Status (1)

Country Link
JP (1) JP4923834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464315B2 (en) * 2008-09-24 2014-04-09 栗田工業株式会社 Sludge dewatering method
JP2016203104A (en) * 2015-04-24 2016-12-08 前澤工業株式会社 Water treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783869B2 (en) * 1987-03-20 1995-09-13 三井サイテック株式会社 Method for treating starch-containing water
JPH08309339A (en) * 1995-05-17 1996-11-26 Hymo Corp Wastewater treatment method

Also Published As

Publication number Publication date
JP2008036606A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP5521272B2 (en) Sludge or wastewater treatment method
CA2378718C (en) Process for flocculating suspensions
US5925714A (en) Surfactant for self-inverting polyacrylmides
JPH06502112A (en) Purification of aqueous liquids
JP2004529761A (en) Suspension processing
JP2009154095A (en) Water treatment method
JP2013248584A (en) Method for treating drainage
JP2007313492A (en) Method and apparatus for treating soluble cod component-containing water
JP5589430B2 (en) Treatment method of inorganic waste water
JP4923834B2 (en) Method and apparatus for treating water containing soluble COD component
CA2006795A1 (en) Polymeric flocculent water purifying process
JP2008246372A (en) Waste water treatment method
JP5348369B2 (en) Water treatment method
JP2008006382A (en) Method of treating oil-containing waste water
JPH0783869B2 (en) Method for treating starch-containing water
JP2009056397A (en) Organic coagulant and waste water coagulation method using the same
JP5099315B2 (en) Method for treating humic-containing water
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
JP2011062634A (en) Flocculant for service water and method for treating raw water for service water
JP6824869B2 (en) Treatment method and treatment equipment for water to be treated
JP4177513B2 (en) Emulsion and flocculant compositions
JPH08309339A (en) Wastewater treatment method
JP7190642B2 (en) Composition for sludge control
JP2002192199A (en) Method and apparatus for dehydrating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees