JP5464315B2 - Sludge dewatering method - Google Patents

Sludge dewatering method Download PDF

Info

Publication number
JP5464315B2
JP5464315B2 JP2008245030A JP2008245030A JP5464315B2 JP 5464315 B2 JP5464315 B2 JP 5464315B2 JP 2008245030 A JP2008245030 A JP 2008245030A JP 2008245030 A JP2008245030 A JP 2008245030A JP 5464315 B2 JP5464315 B2 JP 5464315B2
Authority
JP
Japan
Prior art keywords
sludge
polymer
amino group
cationic
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008245030A
Other languages
Japanese (ja)
Other versions
JP2010075802A (en
Inventor
茂 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008245030A priority Critical patent/JP5464315B2/en
Publication of JP2010075802A publication Critical patent/JP2010075802A/en
Application granted granted Critical
Publication of JP5464315B2 publication Critical patent/JP5464315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、化学工場、半導体工場、食品工場、紙・パルプ工場、印刷工場、自動車工場等の一般工場から排出される排水や、し尿処理場、下水処理場から排出される生物処理水の処理及び該処理等で生じる汚泥の処理などで用いる有機凝結剤、汚泥脱水組成物、及び排水処理方法並びに汚泥脱水方法に関する。   The present invention treats wastewater discharged from general factories such as chemical factories, semiconductor factories, food factories, paper and pulp factories, printing factories, automobile factories, biologically treated water discharged from human waste treatment plants and sewage treatment plants. The present invention also relates to an organic coagulant, a sludge dewatering composition, a wastewater treatment method, and a sludge dewatering method used in the treatment of sludge generated by the treatment.

地球環境保護、人の健康確保の面から、年々排水処理に係わる規制が地球規模で厳しくなってきている。特に、河川放流、閉鎖水域への放流については、水質管理項目の規制値の見直しなど、国および各地方自治体での動きが活発になってきている。また、排水処理では濁質の凝集沈殿物である汚泥が生じるが、運搬費用や処分地の確保の点から、汚泥の減容化が求められている。   From the viewpoint of protecting the global environment and ensuring human health, regulations relating to wastewater treatment are becoming stricter on a global scale year by year. In particular, for river discharges and discharges into closed water areas, movements in the national and local governments have become active, such as reviewing the regulatory values for water quality management items. In addition, sludge, which is a turbid coagulated sediment, is generated in wastewater treatment, but volume reduction of sludge is required from the viewpoint of transportation costs and securing of disposal site.

ここで、例えば、工場などから排出される排水の処理の場合、有機系の排水に対しては通常活性汚泥などの生物処理が行われ、その後、河川等への放流前に、濁質除去を目的に凝集沈殿処理や加圧浮上処理などが行われる。   Here, for example, in the case of treatment of wastewater discharged from factories and the like, biological wastewater treatment such as activated sludge is usually performed on organic wastewater, and then turbidity removal is performed before discharge into rivers etc. For the purpose, coagulation sedimentation treatment or pressure levitation treatment is performed.

一般的な凝集沈澱処理や加圧浮上処理の方法は、排水に、硫酸アルミニウム、ポリ塩化アルミニウム、ポリ鉄、塩化第二鉄、塩化アルミニウム等の無機凝集剤を添加し、次に有機高分子凝集剤を添加することにより微細な濁質を凝集させる。その後、シックナーや加圧浮上装置にて固液分離処理することにより、濁度の低い処理水を得ることができる。無機凝集剤を添加する目的は濁質の荷電で、微細な濁質を一次凝集させ、次に添加する高分子量の有機高分子凝集剤により、微細な濁質の一次凝集体をさらに大きくフロック(凝集物)化して、凝集沈殿処理では沈降しやすく、また、加圧浮上処理では浮上しやすくする。   General coagulation-precipitation and pressure flotation methods include adding inorganic flocculants such as aluminum sulfate, polyaluminum chloride, polyiron, ferric chloride, and aluminum chloride to the wastewater, and then organic polymer flocculation. The fine turbidity is agglomerated by adding the agent. Thereafter, a solid-liquid separation process is performed with a thickener or a pressure levitation device, whereby treated water with low turbidity can be obtained. The purpose of adding the inorganic flocculant is to charge the turbidity, primary aggregate the fine turbidity, and then add the high molecular weight organic polymer flocculant to further increase the primary flocculated fine flocculated floc ( Agglomerated), and easily settled in the coagulation sedimentation process, and floated easily in the pressure levitation process.

この無機凝集剤と有機高分子凝集剤による処理の適正な凝集条件は、pHが中性付近であるため、無機凝集剤由来の金属水酸化物が生じる。したがって、金属水酸化物も汚泥となるため、上記排水処理方法では、汚泥量が多くなるという問題点を有している。   The proper coagulation condition for the treatment with the inorganic coagulant and the organic polymer coagulant is that the pH is near neutral, so that a metal hydroxide derived from the inorganic coagulant is generated. Therefore, since the metal hydroxide also becomes sludge, the wastewater treatment method has a problem that the amount of sludge increases.

また、最近の排水は、工場での製造物の多様化に伴い、排水成分の変動が大きくなり、また、ノニオン性成分等の凝集し難い成分が含まれることが多くなってきている。   Moreover, with recent diversification of products at factories, fluctuations in drainage components have increased and more and more non-aggregated components such as nonionic components have been included.

したがって、工場排水の排水処理において、近年特に無機凝集剤の使用量低減、凝集効果の安定化や向上が望まれている。なお、このような問題は、工場から排出される排水に限らず、し尿処理場や下水処理場から排出されるその他の排水においても、同様に存在する。   Therefore, in the wastewater treatment of factory wastewater, reduction of the amount of inorganic flocculant used in recent years and stabilization and improvement of the agglomeration effect are particularly desired. Such a problem is not limited to wastewater discharged from factories, but also exists in other wastewater discharged from human waste treatment plants and sewage treatment plants.

このような要望に対して、無機凝集剤にジアリルジメチルアンモニウムクロライド(DADMAC)系ポリマーを併用する方法(特許文献1参照)や、無機凝集剤にポリアミンやジアルキルアミン・エピクロルヒドリン縮合物を併用する方法(特許文献2参照)、が提案されている。   In response to such a request, a method of using diallyldimethylammonium chloride (DADMAC) -based polymer in combination with an inorganic flocculant (see Patent Document 1), or a method of using polyamine or a dialkylamine / epichlorohydrin condensate in combination with an inorganic flocculant ( Patent Document 2) has been proposed.

しかしながら、特許文献1及び2の方法では、排水成分の変動によって効果が変動し安定した処理効果が得られないという問題や、無機凝集剤の低減効果が排水の種類によって異なるという問題がある。   However, the methods of Patent Documents 1 and 2 have a problem that the effect varies due to fluctuations in drainage components and a stable treatment effect cannot be obtained, and a reduction effect of the inorganic flocculant varies depending on the type of drainage.

また、排水処理の際、上述したように汚泥が生じ、運搬費用や処分地の確保の点から汚泥の減容化が求められているが、汚泥の減容化では、汚泥の機械的脱水後の脱水ケーキの含水率を如何に下げるかがポイントとなる。含水率を下げることにより、ケーキの重量、体積が低減するため、処分地不足の問題が軽減される。また、ケーキを焼却処理する場合は、含水率を下げることにより重油使用量が大幅に削減でき、コスト低減、省エネになるばかりでなく、CO排出削減効果も期待でき、地球温暖化防止にもつながる。 In addition, sludge is generated during wastewater treatment as described above, and it is necessary to reduce the volume of sludge in terms of transportation costs and securing the disposal site, but in sludge volume reduction, after sludge is mechanically dehydrated. The point is how to lower the moisture content of the dehydrated cake. By reducing the moisture content, the cake weight and volume are reduced, so the problem of insufficient landfill is alleviated. In addition, when incinerating cakes, the amount of heavy oil used can be significantly reduced by lowering the moisture content, which not only reduces costs and saves energy, but also can be expected to reduce CO 2 emissions, thus preventing global warming. Connected.

しかしながら、工場での製造物の多様化により、有機物の比率が高いなど以前よりも脱水しにくい汚泥性状になりつつあり、また、汚泥性状の変動も大きくなり、安定した汚泥処理を行いにくくなってきている。また、食生活の多様化から、し尿処理場や下水処理場から排出される汚泥も脱水しにくくかつ性状変動も大きく、安定した汚泥処理を行いにくくなってきている。   However, diversification of products in factories is causing sludge properties that are more difficult to dehydrate than before, such as a high proportion of organic matter, and fluctuations in the sludge properties are increasing, making it difficult to perform stable sludge treatment. ing. In addition, due to diversification of eating habits, sludge discharged from human waste treatment plants and sewage treatment plants is difficult to dehydrate and has a large variation in properties, making it difficult to perform stable sludge treatment.

ここで、汚泥の脱水処理には、一般的に高分子量のカチオン性ポリマーが使用されているが、充分な処理量が得られないことや、低含水率のケーキが得られにくいことから最近では見直され、例えば、無機凝集剤を添加した後、両性ポリマーを添加して、汚泥を脱水する方法(特許文献3参照)、ポリアルキレンイミンを汚泥脱水に用いる方法(特許文献4参照)が提案されている。   Here, a high molecular weight cationic polymer is generally used for the sludge dewatering treatment, but recently it is difficult to obtain a cake with a low water content because a sufficient amount cannot be obtained. For example, a method of adding an amphoteric polymer after adding an inorganic flocculant and dewatering sludge (see Patent Document 3) and a method of using polyalkyleneimine for sludge dewatering (see Patent Document 4) have been proposed. ing.

しかしながら、汚泥性状の変動、特にVSS(揮発性浮遊固形分)の増加や繊維分の減少により、上記方法では低含水率のケーキが得られにくいことや、最近の高効率脱水機に適用できる高フロック強度が得られにくくなっていることなど、汚泥脱水方法について改善が求められている。   However, due to fluctuations in sludge properties, especially the increase in VSS (volatile floating solids) and the decrease in fiber content, it is difficult to obtain a cake with a low water content by the above method, and it is possible to apply it to recent high-efficiency dehydrators. There is a need for improvements in the sludge dewatering method, such as the difficulty in obtaining floc strength.

特開平6−126286号公報JP-A-6-126286 特開2002−346572号公報JP 2002-346572 A 特開平7−256299号公報JP 7-256299 A 特開2003−53400号公報JP 2003-53400 A

本発明は上述した事情に鑑み、凝結性能に優れ、排水処理や汚泥脱水処理を良好に行うことができる有機凝結剤、及び該有機凝結剤を用いた排水処理方法並びに汚泥脱水方法を提供することを目的とする。   In view of the circumstances described above, the present invention provides an organic coagulant that is excellent in coagulation performance and can perform wastewater treatment and sludge dewatering, and a wastewater treatment method and sludge dewatering method using the organic coagulant. With the goal.

本発明者は上記目的を達成するために鋭意検討した結果、一級アミノ基又は二級アミノ基を有するポリマーに、ジエポキシド化合物を反応させて得られるカチオン性ポリマーを含有する有機凝結剤により、上記目的が達成されることを見いだし、本発明を完成させた。   As a result of intensive investigations to achieve the above object, the present inventor has found that the above object is achieved by using an organic coagulant containing a cationic polymer obtained by reacting a polymer having a primary amino group or a secondary amino group with a diepoxide compound. And the present invention has been completed.

即ち、本発明の汚泥脱水方法は、カチオン性高分子凝集剤及び両性高分子凝集剤の少なくとも一方と、一級アミノ基又は二級アミノ基を有するポリマーにジエポキシド化合物を反応させて得られるカチオン性ポリマーを含有する有機凝結剤と、無機凝集剤とを汚泥に添加した後、脱水する汚泥脱水方法であって、前記一級アミノ基又は二級アミノ基を有するポリマーが、ポリエチレンイミン又はポリビニルアミンであり、前記ジエポキシド化合物が、1,7−オクタジエンジエポキシド、ポリエチレングリコールジグリシジルエーテル及びビスフェノールA型液状エポキシ樹脂からなる群から選択される少なくとも1種であり、前記カチオン性ポリマーの30質量%水溶液を25℃、30rpmでB型粘度計にて測定した回転粘度が600〜10000mPa・sであり、前記カチオン性高分子凝集剤が、ジメチルアミノエチル(メタ)アクリレートの4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの4級アンモニウム塩、又は、ジアリルジメチルアンモニウムクロライドのカチオン性モノマーからなるホモポリマー、あるいはそれらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体であり、前記両性高分子凝集剤が、ジメチルアミノエチル(メタ)アクリレートの4級アンモニウム塩であるカチオン性モノマーと(メタ)アクリル酸であるアニオン性モノマーとの共重合体であって、かつ該アニオン性モノマーの方が該カチオン性モノマーよりもモル%が大きいものであることを特徴とする。 That is, the sludge dewatering method of the present invention is a cationic polymer obtained by reacting at least one of a cationic polymer flocculant and an amphoteric polymer flocculant with a polymer having a primary amino group or a secondary amino group and a diepoxide compound. After adding the organic coagulant containing the organic flocculant and the inorganic flocculant to the sludge, the sludge dewatering method, wherein the polymer having the primary amino group or the secondary amino group is polyethyleneimine or polyvinylamine, The diepoxide compound is at least one selected from the group consisting of 1,7-octadiene diepoxide, polyethylene glycol diglycidyl ether, and bisphenol A type liquid epoxy resin, and 25% by mass of a 30% by mass aqueous solution of the cationic polymer. Rotational viscosity measured with B-type viscometer at 600 ° C. and 30 rpm is 600 to A 0000mPa · s, the cationic polymer flocculating agent, a quaternary ammonium salt of dimethylaminoethyl (meth) acrylate, quaternary ammonium salts of dimethylaminopropyl (meth) acrylamide, or, cationic diallyl dimethyl ammonium chloride Cation which is a homopolymer consisting of monomers, or a copolymer of nonionic monomers copolymerizable with these cationic monomers, wherein the amphoteric polymer flocculant is a quaternary ammonium salt of dimethylaminoethyl (meth) acrylate what sex monomer and (meth) copolymer der of anionic monomer is acrylic acid, and towards the anionic monomer is characterized der Rukoto greater mole% than the cationic monomer .

また、前記ジエポキシド化合物の比率は、前記一級アミノ基又は二級アミノ基を有するポリマーのアミノ基に対し、0.001〜0.1モル%であってもよい。 The ratio of the diepoxide compound may be 0.001 to 0.1 mol% with respect to the amino group of the polymer having the primary amino group or the secondary amino group.

本発明によれば、一級アミノ基又は二級アミノ基を有するポリマーに、ジエポキシド化合物を反応させて得られるカチオン性ポリマーを含むことにより、凝結性能に優れた有機凝結剤を提供することができる。そして、この有機凝結剤を排水処理に用いると、凝集効果が安定し向上するため、清澄な処理水が得られ、また、無機凝集剤の使用量を低減して汚泥発生量を抑制することができる。また、この有機凝結剤を汚泥脱水処理に用いると、フロック強度が高くなり、低含水率のケーキを得ることができる。さらに、この有機凝結剤及び高分子凝集剤等を含有した泥脱水組成物は、良好に汚泥脱水処理を行うことができる。   According to the present invention, an organic coagulant excellent in coagulation performance can be provided by including a cationic polymer obtained by reacting a diepoxide compound with a polymer having a primary amino group or a secondary amino group. And when this organic coagulant is used in wastewater treatment, the coagulation effect is stabilized and improved, so that clear treated water can be obtained, and the amount of inorganic coagulant used can be reduced to suppress sludge generation. it can. Moreover, when this organic coagulant is used for sludge dehydration, floc strength is increased, and a cake having a low water content can be obtained. Furthermore, the mud dewatering composition containing the organic coagulant, the polymer flocculant, and the like can be satisfactorily sludge dewatered.

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の有機凝結剤は、一級アミノ基又は二級アミノ基を有するポリマーに、ジエポキシド化合物を反応させて得られるカチオン性ポリマーを含有するものである。   The organic coagulant of the present invention contains a cationic polymer obtained by reacting a polymer having a primary amino group or a secondary amino group with a diepoxide compound.

一級アミノ基又は二級アミノ基を有するポリマーは、一級アミノ基を有するポリマー、二級アミノ基を有するポリマー、一級アミノ基及び二級アミノ基の両方を有するポリマー、又は、これらの混合物である。一級アミノ基を有するポリマーとしては、例えば、N−ビニルホルムアミドやN−ビニルアセトアミドをモノマー単位として含むポリマーの加水分解によって得られるビニルアミン構造を有するカチオン性ポリマー、ビニルアニリン単位を有するカチオン性ポリマー、ポリアクリルアミドのホフマン分解物、アリルアミン構造を有するカチオン性ポリマー、ポリビニルアミジン、及びこれらの混合物があげられるが、これらに限定されるものではない。また、二級アミノ基を有するポリマーも特に限定はなく、二級アミノ基をポリマーの側鎖に有していても主鎖に有していてもよい。二級アミノ基を有するポリマーとしては、例えば、ポリエチレンイミン、エチレンイミンとエチレンオキサイド単位を有するカチオン性ポリマー、及びこれらの混合物があげられるが、これらに限定されるものではない。   The polymer having a primary amino group or a secondary amino group is a polymer having a primary amino group, a polymer having a secondary amino group, a polymer having both a primary amino group and a secondary amino group, or a mixture thereof. Examples of the polymer having a primary amino group include a cationic polymer having a vinylamine structure obtained by hydrolysis of a polymer containing N-vinylformamide or N-vinylacetamide as a monomer unit, a cationic polymer having a vinylaniline unit, Examples include, but are not limited to, acrylamide Hoffman degradation products, cationic polymers having an allylamine structure, polyvinylamidine, and mixtures thereof. The polymer having a secondary amino group is not particularly limited, and may have a secondary amino group in the side chain of the polymer or in the main chain. Examples of the polymer having a secondary amino group include, but are not limited to, polyethyleneimine, cationic polymer having ethyleneimine and ethylene oxide units, and a mixture thereof.

ジエポキシド化合物としては、例えば、1,5−ヘキサジエンジエポキシド、1,7−オクタジエンジエポキシド、ブタジエンジエポキシド、ポリエチレングリコールジグリシジルエーテル(ポリエチレングリコールの重合度:2〜30)、グリセリン・エピクロルヒドリン付加物のポリグリシジルエーテル、エチレングリコール・エピクロルヒドリン付加物のポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ビスフェノールA型液状エポキシ樹脂、及びこれらの混合物があげられるが、これらに限定されるものではない。   Examples of diepoxide compounds include 1,5-hexadiene diepoxide, 1,7-octadiene diepoxide, butadiene diepoxide, polyethylene glycol diglycidyl ether (polyethylene glycol polymerization degree: 2 to 30), and glycerin / epichlorohydrin adduct. Polyglycidyl ether, polyglycidyl ether of ethylene glycol / epichlorohydrin adduct, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, bisphenol A type liquid epoxy resin, and mixtures thereof, but are not limited thereto. It is not something.

一級アミノ基又は二級アミノ基を有するポリマー、及び、ジエポキシド化合物を反応させる方法は特に限定されないが、例えば、以下の方法で反応させることができる。まず、上記一級アミノ基又は二級アミノ基を有するポリマーの5〜50質量%水溶液を撹拌しながら、室温以下で、ジエポキシド化合物をそのままもしくはアセトンやアルコール溶液として添加する。そして、室温でも反応は起こるが未反応物をできだけ低減するため、好ましくは50℃以上に加温して、2〜3時間反応させることで、カチオン性ポリマーを得ることができる。   The method of reacting the polymer having a primary amino group or secondary amino group and the diepoxide compound is not particularly limited, and for example, the reaction can be performed by the following method. First, the diepoxide compound is added as it is or as an acetone or alcohol solution at room temperature or lower while stirring a 5 to 50 mass% aqueous solution of the polymer having the primary amino group or the secondary amino group. And although reaction occurs even at room temperature, in order to reduce unreacted substances as much as possible, the cationic polymer can be obtained by preferably heating to 50 ° C. or higher and reacting for 2 to 3 hours.

ジエポキシド化合物の添加量は、一級アミノ基又は二級アミノ基を有するポリマーのアミノ基に対し、0.001〜0.1モル%が好ましくは、さらに好ましくは0.003〜0.05モル%である。ジエポキシド化合物は架橋剤であるため、多すぎると得られるカチオン性ポリマーがゲル化して水不溶になり、低すぎると架橋構造による効果が現れにくくなるからである。水溶液粘度で架橋度の過不足が判断できる。上記のモル%の範囲で得られるカチオン性ポリマーは、30質量%水溶液(蒸発残分換算)を25℃、30rpmでB型粘度計にて測定した回転粘度が600〜10000mPa・sである。   The addition amount of the diepoxide compound is preferably 0.001 to 0.1 mol%, more preferably 0.003 to 0.05 mol%, based on the amino group of the polymer having a primary amino group or a secondary amino group. is there. This is because the diepoxide compound is a crosslinking agent, and if it is too much, the resulting cationic polymer gels and becomes insoluble in water, and if it is too low, the effect of the crosslinked structure is difficult to appear. Excess or deficiency in the degree of crosslinking can be determined by the aqueous solution viscosity. The cationic polymer obtained in the above mol% range has a rotational viscosity of 600 to 10000 mPa · s as measured with a B-type viscometer at 25 ° C. and 30 rpm in a 30% by mass aqueous solution (evaporation residue conversion).

例えば、一級アミノ基又は二級アミノ基を有するポリマーが下記式(i)で表される繰り返し単位を有するポリマーであり、ジエポキシド化合物が、下記式(ii)である場合、得られるカチオン性ポリマーの構造は、下記式(1)で表される繰り返し単位を有する。なお、各式中、R及びRはそれぞれ独立に、単結合、フェニレン基、フェニレン基含有アルキレン基、−(CH−又は−(CHCHO)−(nは1〜18である。)を表し、Rは水素、炭素数1〜4のアルキル基又はベンジル基を表す。 For example, when the polymer having a primary amino group or a secondary amino group is a polymer having a repeating unit represented by the following formula (i) and the diepoxide compound is the following formula (ii), the resulting cationic polymer The structure has a repeating unit represented by the following formula (1). In each formula, R 1 and R 3 are each independently a single bond, a phenylene group, a phenylene group-containing alkylene group, — (CH 2 ) n — or — (CH 2 CH 2 O) n — (n is 1 And R 2 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a benzyl group.

また、一級アミノ基又は二級アミノ基を有するポリマーが下記式(iii)で表される繰り返し単位を有するポリマーであり、ジエポキシド化合物が、上記式(ii)である場合、得られるカチオン性ポリマーの構造は、下記式(2)で表される繰り返し単位を有する。   Further, when the polymer having a primary amino group or a secondary amino group is a polymer having a repeating unit represented by the following formula (iii) and the diepoxide compound is the above formula (ii), the resulting cationic polymer The structure has a repeating unit represented by the following formula (2).

上記式に示すように、一級アミノ基又は二級アミノ基を有するポリマーに、ジエポキシド化合物を反応させて得られるカチオン性ポリマーは、該一級アミノ基又は二級アミノ基を有するポリマーをジエポキシド化合物が架橋した構造を有する。   As shown in the above formula, a cationic polymer obtained by reacting a polymer having a primary amino group or a secondary amino group with a diepoxide compound is such that the diepoxide compound crosslinks the polymer having the primary amino group or secondary amino group. Has the structure.

このように、一級アミノ基又は二級アミノ基を有するポリマーに、ジエポキシド化合物を反応させて得られるカチオン性ポリマーは、高カチオン密度で架橋構造を有するためか、凝結性能に優れ、密度の高いフロックを形成することができる。したがって、該カチオン性ポリマーを用いると、排水処理や、汚泥脱水処理を良好に行うことができる。   In this way, the cationic polymer obtained by reacting a polymer having a primary amino group or a secondary amino group with a diepoxide compound has a crosslinked structure with a high cation density. Can be formed. Therefore, when the cationic polymer is used, waste water treatment and sludge dewatering treatment can be performed satisfactorily.

具体的には、本発明の排水処理方法は、上記本発明の有機凝結剤と、無機凝集剤、及び、高分子凝集剤を排水に添加して、固液分離処理を行うものである。   Specifically, in the wastewater treatment method of the present invention, the organic coagulant, the inorganic flocculant, and the polymer flocculant of the present invention are added to the wastewater to perform solid-liquid separation treatment.

本発明の排水処理方法においては、まず、無機凝集剤及び本発明の有機凝結剤を排水に添加して、排水に含まれる濁質と反応させる。   In the wastewater treatment method of the present invention, first, the inorganic flocculant and the organic coagulant of the present invention are added to the wastewater and reacted with the turbidity contained in the wastewater.

排水としては、化学工場、半導体工場、食品工場、紙・パルプ工場、印刷工場、自動車工場などの一般工場から排出される排水や、し尿処理場、下水処理場から排出される生物処理水を挙げることができるが、これらに限定されるものではない。最近の排水は、工場での製造物の多様化に伴い、排水成分の変動が大きくなり、また、ノニオン性成分等の凝集し難い成分が含まれることが多くなってきているため、従来の方法では処理し難いが、本発明の排水処理方法においては、上記所定の有機凝結剤を用いるため、良好に処理することができる。なお、本発明の有機凝結剤の添加量は特に限定はなく、排水の性状に応じて調整すればよいが、排水に対して、1〜100mg/L程度(蒸発残分換算)である。   Examples of wastewater include wastewater discharged from general factories such as chemical factories, semiconductor factories, food factories, paper and pulp factories, printing factories, automobile factories, and biologically treated water discharged from human waste treatment plants and sewage treatment plants. However, it is not limited to these. With recent diversification of products in factories, fluctuations in drainage components have increased and more and more non-aggregated components such as nonionic components have been included. However, in the waste water treatment method of the present invention, since the predetermined organic coagulant is used, it can be treated well. The amount of the organic coagulant of the present invention is not particularly limited and may be adjusted according to the properties of the wastewater, but is about 1 to 100 mg / L (evaporation residue conversion) with respect to the wastewater.

無機凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化アルミニウム、塩化第二鉄、硫酸第一鉄、及びこれらの混合物などが挙げられるが、これらに限定されるものではない。無機凝集剤の添加量も特に限定はなく、排水の性状に応じて調整すればよいが、処理する排水に対して、通常の市販製品で概ね100〜5000mg/L程度である。   Examples of the inorganic flocculant include, but are not limited to, a sulfate band, polyaluminum chloride, aluminum chloride, ferric chloride, ferrous sulfate, and a mixture thereof. The amount of the inorganic flocculant added is not particularly limited and may be adjusted according to the properties of the wastewater, but is about 100 to 5000 mg / L for ordinary waste products with respect to the wastewater to be treated.

本発明の有機凝結剤及び無機凝集剤を排水に添加する順序に特に限定はなく、無機凝集剤を添加した後に本発明の有機凝結剤を添加してもよく、また、排水に本発明の有機凝結剤を添加した後無機凝集剤を添加してもよく、さらに、本発明の有機凝結剤及び無機凝集剤を同時に添加してもよい。   The order in which the organic coagulant and inorganic flocculant of the present invention are added to the wastewater is not particularly limited, and the organic flocculant of the present invention may be added after the inorganic flocculant is added. An inorganic flocculant may be added after the addition of the coagulant, and further, the organic coagulant and the inorganic flocculant of the present invention may be added simultaneously.

次に、本発明の有機凝結剤及び無機凝集剤を添加した排水を必要に応じて、pHを5〜7程度に調整する。   Next, the pH of the waste water to which the organic coagulant and inorganic flocculant of the present invention are added is adjusted to about 5 to 7 as necessary.

次に、排水に高分子凝集剤を添加する。高分子凝集剤に特に限定はなく、排水処理で通常使用される有機高分子凝集剤を用いることができる。例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系有機高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系有機高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系有機高分子凝集剤が挙げられる。また、高分子凝集剤の添加量にも特に限定はなく、排水の性状に応じて調整すればよいが、処理する排水に対して概ね固形分で1〜100mg/Lである。   Next, a polymer flocculant is added to the waste water. There is no particular limitation on the polymer flocculant, and an organic polymer flocculant usually used in wastewater treatment can be used. For example, poly (meth) acrylic acid, copolymers of (meth) acrylic acid and (meth) acrylamide, and anionic organic polymer flocculants such as alkali metal salts thereof, and nonionics such as poly (meth) acrylamide Organic polymer flocculants, homopolymers composed of cationic monomers such as dimethylaminoethyl (meth) acrylate or quaternary ammonium salts thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salts thereof, and those cationic monomers Examples thereof include cationic organic polymer flocculants such as a copolymer with a copolymerizable nonionic monomer. Moreover, there is no limitation in particular also in the addition amount of a polymer flocculant, Although it should just adjust according to the property of waste_water | drain, it is 1-100 mg / L in solid content with respect to the waste_water | drain to process.

高分子凝集剤を添加し、撹拌などして反応させて排水中の濁質を凝集させた後は、生成した凝集フロックを、凝集沈殿処理、加圧浮上処理、ろ過、膜分離処理などで固液分離処理することで、排水から濁質を除去することができる。   After adding a polymer flocculant and reacting by stirring or the like to agglomerate turbidity in the wastewater, the generated flocs are solidified by agglomeration precipitation treatment, pressurized flotation treatment, filtration, membrane separation treatment, etc. By performing liquid separation treatment, turbidity can be removed from waste water.

なお、本発明の有機凝結剤、無機凝集剤、及び、高分子凝集剤に加えて、さらに、一般的な有機凝結剤を併用することもできる。一般的な有機凝結剤としては、例えば、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミン、及びこれらの混合物など、通常の排水処理で使用されるカチオン性有機系ポリマーが挙げられる。添加量に特に限定はなく、排水の性状に応じて調整すればよいが、処理する排水に対して、概ね固形分で1〜100mg/L添加すればよい。   In addition to the organic coagulant, inorganic coagulant, and polymer coagulant of the present invention, a general organic coagulant can be used in combination. Typical organic coagulants include, for example, cationic organic polymers used in normal wastewater treatment such as polyethyleneimine, diallyldimethylammonium chloride, ethylenediamine epichlorohydrin polycondensate, polyalkylene polyamine, and mixtures thereof. It is done. The addition amount is not particularly limited and may be adjusted according to the properties of the waste water. However, it may be generally added in an amount of 1 to 100 mg / L as a solid content to the waste water to be treated.

さらに、必要に応じて、殺菌剤、消臭剤、消泡剤、防食剤なども任意に併用してもよい。   Furthermore, if necessary, bactericides, deodorants, antifoaming agents, anticorrosives and the like may be used in combination.

このような排水処理方法では、高カチオン密度で架橋構造を有するカチオン性ポリマーを含有し凝結性能に優れた本発明の有機凝結剤を用いるため、無機凝集剤によって生成する微凝集フロックをさらに高密度化して密度の高いフロックを形成することができる。したがって、凝集効果が安定し向上するので、清澄な処理水が得られ、また、無機凝集剤の使用量が低減できるので汚泥発生量を抑制することができる。なお、凝集状態は、フロック形成時間、フロック系や沈降速度を評価することで確認できる。また、処理水の清澄性については、濁度、色度、場合によってはTOCやCODを測定することで確認できる。   In such a wastewater treatment method, since the organic coagulant of the present invention containing a cationic polymer having a high cation density and a cross-linked structure and excellent in coagulation performance is used, fine aggregation flocs generated by the inorganic coagulant are more dense. To form a dense floc. Therefore, since the coagulation effect is stabilized and improved, clear treated water can be obtained, and the amount of inorganic coagulant used can be reduced, so that the amount of sludge generated can be suppressed. The aggregation state can be confirmed by evaluating the floc formation time, floc system and sedimentation speed. In addition, the clarity of the treated water can be confirmed by measuring turbidity, chromaticity, and in some cases TOC and COD.

また、本発明の汚泥脱水方法は、上記本発明の有機凝結剤及び高分子凝集剤を汚泥に添加した後、脱水するものである。具体的には、まず、本発明の有機凝結剤を排水に添加して、排水に含まれる濁質と反応させる。   The sludge dewatering method of the present invention is to dehydrate after adding the organic coagulant and polymer flocculant of the present invention to the sludge. Specifically, first, the organic coagulant of the present invention is added to the wastewater and reacted with the turbidity contained in the wastewater.

汚泥としては、化学工場、半導体工場、食品工場、紙・パルプ工場、印刷工場、自動車工場などの一般工場排水の凝集沈殿や加圧浮上処理にて生成する有機性汚泥や生物処理により生成する余剰汚泥、し尿処理場、下水処理場における凝集沈殿や生物処理により生成する有機性汚泥が主に挙げられるが、これらに限定されるものではない。近年工場での製造物の多様化により、有機物の比率が高いなど以前よりも脱水しにくい汚泥性状になりつつあり、また、汚泥性状の変動も大きくなり、安定した汚泥処理を行いにくくなってきている。さらに、食生活の多様化から、し尿処理場や下水処理場から排出される汚泥も脱水しにくくかつ性状変動も大きく、安定した汚泥処理を行いにくくなってきている。したがって、従来の方法では低含水率のケーキを得難いが、本発明の汚泥脱水方法においては、上記所定の有機凝結剤を用いるため、良好に処理することができる。なお、本発明の有機凝結剤の添加量は特に限定はなく、汚泥の性状に応じて調整すればよいが、汚泥スラリーに対して5〜200mg/L程度(蒸発残分換算)である。   As sludge, organic sludge generated by coagulation sedimentation and pressure flotation treatment of wastewater from general factories such as chemical factories, semiconductor factories, food factories, paper and pulp factories, printing factories and automobile factories, and surplus generated by biological treatment Although organic sludge produced | generated mainly by the coagulation sedimentation in a sludge, a human waste treatment plant, and a sewage treatment plant and biological treatment is mentioned, it is not limited to these. In recent years, diversification of products in factories has led to sludge properties that are more difficult to dehydrate than before, such as a high proportion of organic matter, and fluctuations in sludge properties have increased, making it difficult to perform stable sludge treatment. Yes. Furthermore, due to diversification of eating habits, sludge discharged from human waste treatment plants and sewage treatment plants is difficult to dehydrate and has a large variation in properties, making it difficult to perform stable sludge treatment. Therefore, although it is difficult to obtain a cake having a low water content by the conventional method, the sludge dewatering method of the present invention uses the above-mentioned predetermined organic coagulant, so that it can be treated well. The amount of the organic coagulant of the present invention is not particularly limited and may be adjusted according to the properties of the sludge, but is about 5 to 200 mg / L (evaporation residue conversion) with respect to the sludge slurry.

ここで、本発明の有機凝結剤を汚泥に添加するに際して、無機凝集剤も併用してもよい。無機凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化アルミニウム、塩化第二鉄、硫酸第一鉄、及びこれらの混合物などが挙げられるが、これらに限定されるものではない。無機凝集剤の添加量も特に限定はなく、汚泥の性状に応じて調整すればよいが、処理する汚泥スラリーに対して、通常の市販製品で概ね100〜5000mg/L程度である。   Here, when adding the organic coagulant | flocculant of this invention to sludge, you may use together an inorganic flocculant. Examples of the inorganic flocculant include, but are not limited to, a sulfate band, polyaluminum chloride, aluminum chloride, ferric chloride, ferrous sulfate, and a mixture thereof. The amount of the inorganic flocculant added is not particularly limited, and may be adjusted according to the properties of the sludge, but is generally about 100 to 5000 mg / L for a sludge slurry to be treated with a normal commercial product.

なお、本発明の有機凝結剤及び無機凝集剤を汚泥に添加する順序に特に限定はなく、無機凝集剤を添加した後に本発明の有機凝結剤を添加してもよく、また、汚泥に本発明の有機凝結剤を添加した後無機凝集剤を添加してもよく、さらに、本発明の有機凝結剤及び無機凝集剤を同時に添加してもよい。   The order of adding the organic coagulant and inorganic flocculant of the present invention to the sludge is not particularly limited, and the organic coagulant of the present invention may be added after the inorganic flocculant is added, and the present invention is applied to sludge. After adding the organic coagulant, an inorganic flocculant may be added, and further, the organic coagulant of the present invention and the inorganic flocculant may be added simultaneously.

本発明の有機凝結剤及び必要に応じて無機凝集剤を汚泥に添加した後、汚泥を必要に応じて、pHを3〜7程度に調整する。   After adding the organic coagulant of this invention and the inorganic flocculant to sludge as needed, pH is adjusted to about 3-7 as needed.

次いで、汚泥に高分子凝集剤を添加する。高分子凝集剤に特に限定はなく、汚泥処理で通常使用される有機高分子凝集剤を用いることができる。例えば、ジメチルアミノエチル(メタ)アクリレートの三級塩もしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの三級塩もしくはその4級アンモニウム塩、ジアリルジメチルアンモニウムクロライド等のカチオン性モノマーからなるホモポリマー、あるいはそれらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系高分子凝集剤が挙げられる。また、ポリビニルアミンやポリアクリルアミドのホフマン分解物やマンニッヒ変性物、ポリアミジンなども挙げられる。また、ジメチルアミノエチル(メタ)アクリレートの三級塩もしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの三級塩もしくはその4級アンモニウム塩、ジアリルジメチルアンモニウムクロライド等のカチオン性モノマーと(メタ)アクリル酸、アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、マレイン酸、イタコン酸等のアニオン性モノマーとの共重合体等の両性高分子凝集剤でもよい。なお、この時、(メタ)アクリルアミド等の共重合可能なノニオン性モノマーを共重合させてもよい。さらに、N−ビニルホルムアミドやアセトアミドとアニオン性モノマーを共重合させて加水分解した両性ポリマーも挙げられる。そして、(メタ)アクリル酸ソーダのホモポリマーや(メタ)アクリル酸ソーダと(メタ)アクリルアミドとの共重合体や、これらに、アクリルアミド−2−メチルプロパンスルホン酸やビニルスルホン酸等のスルホン系モノマーを共重合させたアニオン性高分子凝集剤が挙げられる。なお、高分子凝集剤の添加量に特に限定はなく、汚泥の性状に応じて調整すればよいが、処理する汚泥スラリーに対して概ね固形分で10〜2000mg/L程度である。   Next, a polymer flocculant is added to the sludge. The polymer flocculant is not particularly limited, and an organic polymer flocculant usually used in sludge treatment can be used. For example, dimethylaminoethyl (meth) acrylate tertiary salts or quaternary ammonium salts thereof, dimethylaminopropyl (meth) acrylamide tertiary salts or quaternary ammonium salts thereof, homopolymers made of cationic monomers such as diallyldimethylammonium chloride. Examples thereof include cationic polymer flocculants such as polymers or copolymers of nonionic monomers copolymerizable with these cationic monomers. Further, Hoffman degradation products, Mannich modified products, polyamidines, and the like of polyvinylamine and polyacrylamide are also included. Further, a cationic monomer such as a tertiary salt of dimethylaminoethyl (meth) acrylate or a quaternary ammonium salt thereof, a tertiary salt of dimethylaminopropyl (meth) acrylamide or a quaternary ammonium salt thereof or diallyldimethylammonium chloride (meta ) Amphoteric polymer flocculants such as copolymers with anionic monomers such as acrylic acid, acrylamido-2-methylpropane sulfonic acid, vinyl sulfonic acid, maleic acid and itaconic acid. At this time, a copolymerizable nonionic monomer such as (meth) acrylamide may be copolymerized. Furthermore, amphoteric polymers obtained by copolymerizing N-vinylformamide or acetamide with an anionic monomer and hydrolyzing them may also be mentioned. And a homopolymer of (meth) acrylic acid soda, a copolymer of (meth) acrylic acid soda and (meth) acrylamide, and a sulfone monomer such as acrylamide-2-methylpropanesulfonic acid or vinylsulfonic acid An anionic polymer flocculant obtained by copolymerization of In addition, there is no limitation in particular in the addition amount of a polymer flocculant, and what is necessary is just to adjust according to the property of sludge, but it is about 10-2000 mg / L in solid content with respect to the sludge slurry to process.

高分子凝集剤を添加し、撹拌などして反応させて汚泥の凝集フロックを形成させた後、該凝集フロックを形成した汚泥を汚泥脱水機にかける等して脱水する。汚泥脱水機に特に制限はなく、例えば、ベルトプレス、遠心脱水機、スクリュープレス、多重円盤型など任意に選定できる。   After adding a polymer flocculant and reacting by stirring or the like to form a floc floc of sludge, the sludge on which the floc floc has been formed is dewatered by, for example, applying to a sludge dehydrator. There is no restriction | limiting in particular in sludge dehydrator, For example, a belt press, a centrifugal dehydrator, a screw press, a multiple disk type etc. can be selected arbitrarily.

なお、本発明の有機凝結剤や、高分子凝集剤に加えて、さらに、一般的な有機凝結剤を併用することもできる。一般的な有機凝結剤としては、例えば、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミン、及びこれらの混合物など、通常の汚泥脱水処理で使用されるカチオン性有機系ポリマーが挙げられる。添加量に特に限定はなく、汚泥の性状に応じて調整すればよいが、処理する汚泥スラリーに対して、概ね固形分で1〜100mg/L添加すればよい。   In addition to the organic coagulant of the present invention and the polymer flocculant, a general organic coagulant can be used in combination. Typical organic coagulants include, for example, cationic organic polymers used in ordinary sludge dewatering treatment, such as polyethyleneimine, diallyldimethylammonium chloride, ethylenediamine epichlorohydrin polycondensate, polyalkylene polyamine, and mixtures thereof. Can be mentioned. The addition amount is not particularly limited and may be adjusted according to the properties of the sludge, but it may be added in an amount of 1 to 100 mg / L as a solid content to the sludge slurry to be treated.

さらに、必要に応じて、殺菌剤、消臭剤、防食剤なども任意に併用してもよい。   Furthermore, if necessary, bactericides, deodorants, anticorrosives and the like may be used in combination.

このような汚泥脱水方法では、高カチオン密度で架橋構造を有するポリアルキレンポリアミンを含有し凝結性能に優れた本発明の有機凝結剤を用いるため、密度の高いフロックを形成することができる。したがって、脱水機による機械的脱水によって汚泥が粉砕され難くなり、汚泥内部から水分が抜け易くなる。よって、低含水率のケーキが得られる。なお、汚泥の凝集状態は、フロック径、重力ろ過性、ろ液の濁度を評価することで確認できる。また、脱水効果は、圧搾ケーキの含水率を測定することで確認できる。   In such a sludge dewatering method, since the organic coagulant of the present invention containing a polyalkylene polyamine having a high cation density and a crosslinked structure and having excellent coagulation performance is used, a floc having a high density can be formed. Therefore, it becomes difficult for the sludge to be pulverized by mechanical dehydration by the dehydrator, and moisture is easily released from the sludge. Therefore, a cake having a low water content can be obtained. In addition, the aggregation state of sludge can be confirmed by evaluating the floc diameter, gravity filterability, and turbidity of the filtrate. The dehydration effect can be confirmed by measuring the moisture content of the pressed cake.

上記では、有機凝結剤を汚泥に添加した後に、高分子凝集剤を添加する方法について説明したが、本発明の汚泥脱水方法においては、有機凝結剤及び高分子凝集剤を同時に汚泥に添加してもよい。なお、同時に添加する場合、有機凝結剤及び高分子凝集剤並びに必要に応じて添加する無機凝集剤や上記殺菌剤等を予め混合した汚泥脱水組成物とし、この汚泥脱水組成物を汚泥に添加するようにしてもよい。   In the above, the method of adding the polymer flocculant after adding the organic coagulant to the sludge has been described. However, in the sludge dewatering method of the present invention, the organic coagulant and the polymer flocculant are simultaneously added to the sludge. Also good. In addition, when adding simultaneously, it is set as the sludge dewatering composition which mixed the organic coagulant and the polymer flocculant, the inorganic flocculant added as needed, the said disinfectant, etc. beforehand, and this sludge dewatering composition is added to sludge. You may do it.

以下、本発明を実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example and a comparative example, this invention is not limited at all by this Example.

(実施例1)
固形分濃度30%のポリエチレンイミン(日本触媒製)100gを撹拌羽根、冷却管を備えた3つ口の300mLのセパラブルフラスコに入れた。次いで、撹拌下5℃以下に氷冷し、市販試薬である1,7−オクタジエンジエポキシドの10質量%アセトン溶液を0.5mL添加して30分撹拌した。次に60℃の恒温水槽につけて2時間撹拌を続けた。得られた溶液を実施例1の有機凝結剤とした。なお、得られた溶液を30質量%水溶液(蒸発残分換算)とし、25℃、30rpmでB型粘度計にて測定した回転粘度は8600(mPa・s)であった。
Example 1
100 g of polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd.) having a solid content concentration of 30% was placed in a three-necked 300 mL separable flask equipped with a stirring blade and a cooling tube. Next, the mixture was ice-cooled to 5 ° C. or lower with stirring, 0.5 mL of a 10 mass% acetone solution of 1,7-octadiene diepoxide, which is a commercially available reagent, was added, and the mixture was stirred for 30 minutes. Next, it was placed in a constant temperature water bath at 60 ° C. and stirring was continued for 2 hours. The obtained solution was used as the organic coagulant of Example 1. The obtained solution was made into a 30 mass% aqueous solution (evaporation residue conversion), and the rotational viscosity measured with a B-type viscometer at 25 ° C. and 30 rpm was 8600 (mPa · s).

(実施例2)
ジエポキシドをポリエチレングリコールジグリシジルエーテル(日油製、エピオールE−400)とし、10%アセトン溶液を0.7mL加えた以外は実施例1と同じ条件、操作にて合成した。得られた溶液を実施例2の有機凝結剤とした。また、得られた溶液を実施例1と同様の方法で測定した回転粘度は、1020(mPa・s)であった。
(Example 2)
The diepoxide was synthesized with polyethylene glycol diglycidyl ether (manufactured by NOF Corporation, Epiol E-400) under the same conditions and operation as in Example 1 except that 0.7 mL of 10% acetone solution was added. The obtained solution was used as the organic coagulant of Example 2. Moreover, the rotational viscosity which measured the obtained solution by the method similar to Example 1 was 1020 (mPa * s).

(実施例3)
ジエポキシドをビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン製、JER828)とし、10%アセトン溶液を1.3mL加えた以外は実施例1と同じ条件、操作にて合成した。得られた溶液を実施例3の有機凝結剤とした。また、得られた溶液を実施例1と同様の方法で測定した回転粘度は、2500(mPa・s)であった。
(Example 3)
The diepoxide was bisphenol A type liquid epoxy resin (manufactured by Japan Epoxy Resin, JER828) and synthesized under the same conditions and operation as in Example 1 except that 1.3 mL of 10% acetone solution was added. The obtained solution was used as the organic coagulant of Example 3. Moreover, the rotational viscosity which measured the obtained solution by the method similar to Example 1 was 2500 (mPa * s).

(実施例4)
固形分濃度を10%に調製したポリビニルアミン(三菱化学製)100gを撹拌羽根、冷却管を備えた3つ口の300mlのセパラブルフラスコに入れた。次いで、撹拌下5℃以下に氷冷し、市販試薬である1,7−オクタジエンジエポキシドの10質量%アセトン溶液を0.2mL添加して30分撹拌した。次に60℃の恒温水槽につけて2時間撹拌を続けた。得られた溶液を実施例4の有機凝結剤とした。また、得られた溶液を実施例1と同様の方法で測定した回転粘度は、1260(mPa・s)であった。
Example 4
100 g of polyvinylamine (manufactured by Mitsubishi Chemical Corporation) having a solid content concentration of 10% was placed in a three-necked 300 ml separable flask equipped with a stirring blade and a condenser tube. Next, the mixture was ice-cooled to 5 ° C. or lower with stirring, 0.2 mL of a 10 mass% acetone solution of 1,7-octadiene diepoxide, which is a commercially available reagent, was added, and the mixture was stirred for 30 minutes. Next, it was placed in a constant temperature water bath at 60 ° C. and stirring was continued for 2 hours. The obtained solution was used as the organic coagulant of Example 4. Moreover, the rotational viscosity which measured the obtained solution by the method similar to Example 1 was 1260 (mPa * s).

(比較例1)
ポリエチレンイミン(固有粘度(1N・NaCl,30℃で測定)=0.4dL/g)を比較例1の有機凝結剤とした。
(Comparative Example 1)
Polyethyleneimine (inherent viscosity (1 N · NaCl, measured at 30 ° C.) = 0.4 dL / g) was used as the organic coagulant of Comparative Example 1.

(比較例2)
ポリ−ジアリルジメチルアンモウニウムクロライド(固有粘度(1N・NaCl,30℃で測定)=0.8dL/g)を比較例2の有機凝結剤とした。
(Comparative Example 2)
Poly-diallyldimethylammonium chloride (inherent viscosity (1N · NaCl, measured at 30 ° C.) = 0.8 dL / g) was used as the organic coagulant of Comparative Example 2.

(比較例3)
ポリビニルアミン(固有粘度(1N・NaCl,30℃で測定)=0.6dL/g)を比較例3の有機凝結剤とした。
(Comparative Example 3)
Polyvinylamine (inherent viscosity (1N · NaCl, measured at 30 ° C.) = 0.6 dL / g) was used as the organic coagulant of Comparative Example 3.

(比較例4〜6)
紙パルプ工場総合排水(SS(濁質)濃度=3130mg/L、原水濁度=860NTU)500mLを入れた500mLビーカー3個をジャーテスターに設置して、各ビーカーに硫酸バンド(18重量%のAl23水溶液)を200mg/L(比較例4)、400mg/L(比較例5)、600mg/L(比較例6)となるように添加し、150rpmで1分間撹拌した。次に5%NaOHでpHを5.5に調整し、150rpmで1分間撹拌した後、高分子凝集剤P1(アクリル酸ソーダ:アクリルアミド=20:80(モル%)の共重合体、1N−NaCl,30℃で測定した固有粘度dL/g=22)を各ビーカーに1mg/Lずつ添加し、まず150rpmにて1分、次いで50rpmにて3分撹拌して、SSを凝集させた。そして、撹拌停止3分後、各上澄み液の濁度及びフロック径を測定した結果を表1に示す。なお、フロック径は目視にて測定した。この結果、濁度が1桁と清澄になる硫酸バンドの最適量は600mg/Lであった。
(Comparative Examples 4-6)
Pulp and paper mill general wastewater (SS (turbidity) concentration = 3130 mg / L, raw water turbidity = 860 NTU) 500 mL beakers containing 500 mL were placed in a jar tester, and each beaker was mixed with a sulfuric acid band (18 wt% Al 2 O 3 aqueous solution) was added at 200 mg / L (Comparative Example 4), 400 mg / L (Comparative Example 5), and 600 mg / L (Comparative Example 6), and stirred at 150 rpm for 1 minute. Next, after adjusting the pH to 5.5 with 5% NaOH and stirring at 150 rpm for 1 minute, the polymer flocculant P1 (sodium acrylate: acrylamide = 20: 80 (mol%) copolymer, 1N-NaCl). Intrinsic viscosity dL / g = 22) measured at 30 ° C. was added to each beaker in an amount of 1 mg / L and stirred at 150 rpm for 1 minute and then at 50 rpm for 3 minutes to aggregate SS. Table 3 shows the results of measuring the turbidity and floc diameter of each supernatant after 3 minutes of stirring. The floc diameter was measured visually. As a result, the optimum amount of the sulfuric acid band that clarifies the turbidity by an order of magnitude was 600 mg / L.

(実施例5)
比較例4で用いた紙パルプ工場総合排水500mLを、500mLビーカーに入れジャーテスターに設置して、ビーカーに硫酸バンド(18重量%のAl23水溶液)を400mg/L添加し、150rpmで1分撹拌した。次に、実施例1の有機凝結剤を、排水に対して蒸発残分換算で0.5mg/Lとなるように添加し、150rpmで1分間撹拌した。次いで、5%NaOHでpHを5.5に調整し、150rpmで1分間撹拌した。その後、高分子凝集剤P1を1mg/Lずつ添加し、まず150rpmにて1分、次いで50rpmにて3分撹拌して、SSを凝集させた。そして、撹拌停止3分後、上澄み液の濁度及びフロック径を測定した結果を表2に示す。
(Example 5)
500 mL of pulp and paper mill general wastewater used in Comparative Example 4 was placed in a 500 mL beaker and placed in a jar tester. A sulfuric acid band (18 wt% Al 2 O 3 aqueous solution) was added to the beaker at 400 mg / L, and 1 at 150 rpm. Stir for minutes. Next, the organic coagulant of Example 1 was added to the waste water so as to be 0.5 mg / L in terms of evaporation residue, and stirred at 150 rpm for 1 minute. The pH was then adjusted to 5.5 with 5% NaOH and stirred for 1 minute at 150 rpm. Thereafter, 1 mg / L of the polymer flocculant P1 was added, and the mixture was first stirred at 150 rpm for 1 minute and then at 50 rpm for 3 minutes to aggregate SS. Table 3 shows the results of measuring the turbidity and floc diameter of the supernatant after 3 minutes from stopping the stirring.

(実施例6〜13及び比較例7〜13)
有機凝結剤の種類及び添加率を表2で示すようにした以外は実施例5と同様の操作を行った。結果を表2に示す。
(Examples 6 to 13 and Comparative Examples 7 to 13)
The same operation as in Example 5 was performed except that the type and addition rate of the organic coagulant were as shown in Table 2. The results are shown in Table 2.

この結果、本発明の有機凝結剤を用いた実施例5〜13では、通常の未架橋の有機凝結剤を用いた比較例7〜13に比べて清澄な処理水が得られ、また、無機凝集剤の添加量の多い比較例6と比較して同程度の清澄な処理水が得られており、無機凝集剤の低減効果、除濁効果とも優れることが確認できた。   As a result, in Examples 5 to 13 using the organic coagulant of the present invention, clear treated water was obtained as compared with Comparative Examples 7 to 13 using ordinary uncrosslinked organic coagulant, and inorganic agglomeration was performed. As compared with Comparative Example 6 in which the amount of the agent added was large, clear treated water of the same degree was obtained, and it was confirmed that the inorganic coagulant reducing effect and the turbidity removing effect were excellent.

(比較例14)
ジメチルアミンとエピクロルヒドリンとの反応により得られたポリアミン(1N・NaCl,30℃で測定)=0.5dL/g)を比較例14の有機凝結剤とした。
(Comparative Example 14)
The polyamine obtained by the reaction of dimethylamine and epichlorohydrin (1N · NaCl, measured at 30 ° C.) = 0.5 dL / g) was used as the organic coagulant of Comparative Example 14.

(実施例14)
汚泥I食品工場余剰汚泥(SS濃度=1.8質量%、VSS/SS=87質量%、pH6.5、繊維分/SS=1.25質量%)200mLを入れた300mLポリビーカーに、無機凝集剤として38度ボーメの塩化第二鉄を2000mg/Lを添加し、プロペラ羽根の撹拌機にて250rpmで20秒撹拌した。次に、実施例1の有機凝結剤を、汚泥スラリーに対して蒸発残分換算で20mg/Lとなるように添加し、プロペラ羽根の撹拌機にて250rpmで20秒撹拌した。次いで、高分子凝集剤として下記表3に示すP3を150mg/L添加し、スパーテルにて180rpmで30秒撹拌を行い、汚泥を凝集させた。その時のフロック径を目視にて測定した。次に、40メッシュのナイロンろ布を敷いたブフナーロートに塩ビの円筒を置き、その中に凝集汚泥を一気に注ぎ、10秒後のろ液量、分離したろ液の清澄性を測定した。続いて、ロート上に残った汚泥を少量取り、面圧1kg/cm2にて60秒圧搾し、そのケーキを105℃で一晩乾燥させて、ケーキ含水率を求めた。結果を表4に示す。なお、ろ液の清澄性は、目視により観察し、ほとんどSS(懸濁物質)がなく透明な場合を○、わずかにSSが存在する場合を△、SSが多く濁っていた場合を×とした。
(Example 14)
Sludge I Food factory surplus sludge (SS concentration = 1.8% by mass, VSS / SS = 87% by mass, pH 6.5, fiber content / SS = 1.25% by mass) In a 300 mL poly beaker containing inorganic coagulation As an agent, 2000 mg / L of 38 ° Baume ferric chloride was added, and the mixture was stirred for 20 seconds at 250 rpm with a propeller blade stirrer. Next, the organic coagulant of Example 1 was added to the sludge slurry so as to be 20 mg / L in terms of evaporation residue, and stirred for 20 seconds at 250 rpm with a propeller blade stirrer. Next, 150 mg / L of P3 shown in Table 3 below was added as a polymer flocculant, and the mixture was stirred with a spatula at 180 rpm for 30 seconds to coagulate sludge. The floc diameter at that time was measured visually. Next, a vinyl chloride cylinder was placed on a Buchner funnel laid with a 40 mesh nylon filter cloth, and aggregated sludge was poured into it at once, and the amount of filtrate after 10 seconds and the clarity of the separated filtrate were measured. Subsequently, a small amount of sludge remaining on the funnel was taken and pressed at a surface pressure of 1 kg / cm 2 for 60 seconds, and the cake was dried overnight at 105 ° C. to determine the moisture content of the cake. The results are shown in Table 4. In addition, the clarity of the filtrate was observed by visual observation. The case where there was almost no SS (suspended substance) and was transparent was ○, the case where SS was slightly present was △, and the case where SS was cloudy was ×. .

(実施例15〜33及び比較例15〜37)
汚泥、無機凝集剤、有機凝結剤及び高分子凝集剤の種類や添加率を表4や表5で示すようにした以外は実施例14と同様の操作を行った。なお、表中、実施例を「実」と、比較例を「比」と表記した。また、汚泥IIは紙パルプ工場加圧浮上汚泥(SS濃度=2.6質量%、VSS/SS=73質量%、pH5.5、繊維分/SS=36質量%)、硫酸バンドは18重量%のAl23水溶液を用いた。結果を表4及び表5に示す。
(Examples 15 to 33 and Comparative Examples 15 to 37)
The same operation as in Example 14 was performed except that the types and addition ratios of sludge, inorganic flocculant, organic flocculant and polymer flocculant were shown in Tables 4 and 5. In the table, the examples are indicated as “actual” and the comparative examples as “ratio”. Sludge II is a pulp and paper factory pressurized floating sludge (SS concentration = 2.6 mass%, VSS / SS = 73 mass%, pH 5.5, fiber content / SS = 36 mass%), and sulfuric acid band is 18 wt%. An Al 2 O 3 aqueous solution was used. The results are shown in Tables 4 and 5.

この結果、本発明の有機凝結剤を用いた実施例14〜33では、通常の有機凝結剤を用いた比較例15〜37に比べて、フロック強度が高くなり、低含水率のケーキを得ることができることが確認できた。   As a result, in Examples 14 to 33 using the organic coagulant of the present invention, the floc strength is higher than that of Comparative Examples 15 to 37 using an ordinary organic coagulant, and a cake having a low water content is obtained. I was able to confirm.

Claims (2)

カチオン性高分子凝集剤及び両性高分子凝集剤の少なくとも一方と、一級アミノ基又は二級アミノ基を有するポリマーにジエポキシド化合物を反応させて得られるカチオン性ポリマーを含有する有機凝結剤と、無機凝集剤とを汚泥に添加した後、脱水する汚泥脱水方法であって、
前記一級アミノ基又は二級アミノ基を有するポリマーが、ポリエチレンイミン又はポリビニルアミンであり、
前記ジエポキシド化合物が、1,7−オクタジエンジエポキシド、ポリエチレングリコールジグリシジルエーテル及びビスフェノールA型液状エポキシ樹脂からなる群から選択される少なくとも1種であり、
前記カチオン性ポリマーの30質量%水溶液を25℃、30rpmでB型粘度計にて測定した回転粘度が600〜10000mPa・sであり、
前記カチオン性高分子凝集剤が、ジメチルアミノエチル(メタ)アクリレートの4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの4級アンモニウム塩、又は、ジアリルジメチルアンモニウムクロライドのカチオン性モノマーからなるホモポリマー、あるいはそれらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体であり、
前記両性高分子凝集剤が、ジメチルアミノエチル(メタ)アクリレートの4級アンモニウム塩であるカチオン性モノマーと(メタ)アクリル酸であるアニオン性モノマーとの共重合体であって、かつ該アニオン性モノマーの方が該カチオン性モノマーよりもモル%が大きいものであることを特徴とする汚泥脱水方法。
At least one of a cationic polymer flocculant and an amphoteric polymer flocculant, an organic coagulant containing a cationic polymer obtained by reacting a polymer having a primary amino group or a secondary amino group with a diepoxide compound, and inorganic flocculence A sludge dewatering method in which a sludge is added to sludge and then dehydrated.
The polymer having the primary amino group or the secondary amino group is polyethyleneimine or polyvinylamine,
The diepoxide compound is at least one selected from the group consisting of 1,7-octadiene diepoxide, polyethylene glycol diglycidyl ether and bisphenol A type liquid epoxy resin;
The rotational viscosity of a 30% by weight aqueous solution of the cationic polymer measured with a B-type viscometer at 25 ° C. and 30 rpm is 600 to 10,000 mPa · s,
A homopolymer comprising the cationic polymer flocculant comprising a quaternary ammonium salt of dimethylaminoethyl (meth) acrylate, a quaternary ammonium salt of dimethylaminopropyl (meth) acrylamide, or a cationic monomer of diallyldimethylammonium chloride, Or a copolymer of nonionic monomers copolymerizable with these cationic monomers,
The amphoteric polymer flocculant is I copolymer der the anionic monomer is a cationic monomer and (meth) acrylic acid, a quaternary ammonium salt of dimethylaminoethyl (meth) acrylate, and the anionic sludge dewatering methods towards the monomer is characterized der Rukoto having a large mole% than the cationic monomer.
前記ジエポキシド化合物の比率は、前記一級アミノ基又は二級アミノ基を有するポリマーのアミノ基に対し、0.001〜0.1モル%であることを特徴とする請求項1に記載の汚泥脱水方法。   The sludge dewatering method according to claim 1, wherein a ratio of the diepoxide compound is 0.001 to 0.1 mol% with respect to an amino group of the polymer having the primary amino group or the secondary amino group. .
JP2008245030A 2008-09-24 2008-09-24 Sludge dewatering method Expired - Fee Related JP5464315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245030A JP5464315B2 (en) 2008-09-24 2008-09-24 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245030A JP5464315B2 (en) 2008-09-24 2008-09-24 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2010075802A JP2010075802A (en) 2010-04-08
JP5464315B2 true JP5464315B2 (en) 2014-04-09

Family

ID=42206879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245030A Expired - Fee Related JP5464315B2 (en) 2008-09-24 2008-09-24 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP5464315B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659487B2 (en) * 2009-12-24 2015-01-28 三菱レイヨン株式会社 Wastewater coagulation method
JP5717422B2 (en) * 2010-11-30 2015-05-13 株式会社パイロットコーポレーション Method for producing gel composition
JP6815607B2 (en) * 2017-03-10 2021-01-20 ハイモ株式会社 Oil-containing wastewater treatment method
WO2019008822A1 (en) * 2017-07-04 2019-01-10 オルガノ株式会社 Water treatment method and water treatment device
JP6551481B2 (en) * 2017-09-11 2019-07-31 住友金属鉱山株式会社 Wet smelting method of nickel oxide ore
JP6993838B2 (en) * 2017-10-17 2022-01-14 オルガノ株式会社 Coagulation sedimentation device and coagulation sedimentation treatment method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948579A (en) * 1972-09-12 1974-05-10
JPH06328062A (en) * 1993-05-25 1994-11-29 Aikoo Kk Industrial waste treatment product and its manufacture
DE19617983A1 (en) * 1996-05-06 1997-11-13 Basf Ag Polymers containing β-hydroxyalkylvinylamine units, process for their preparation and their use
JP3702938B2 (en) * 1999-08-04 2005-10-05 栗田工業株式会社 Organic coagulant and drainage coagulation method
JP3731454B2 (en) * 2000-07-17 2006-01-05 栗田工業株式会社 Method for determining amount of coagulant injection and control device for drug injection
JP2002265569A (en) * 2001-03-07 2002-09-18 Jsr Corp Water soluble polymer and its use
JP2002265525A (en) * 2001-03-07 2002-09-18 Jsr Corp Water-soluble polymer and its use
JP4004016B2 (en) * 2001-05-22 2007-11-07 株式会社荏原製作所 Water treatment method
JP5083998B2 (en) * 2001-08-13 2012-11-28 ハイモ株式会社 Sludge dewatering agent and sludge dewatering method
JP2003236307A (en) * 2002-02-12 2003-08-26 Kansai Kako Kk Flocculating agent and method for treating sludge, and cross-liked high molecular polylysine to be used for the same
JP3871321B2 (en) * 2002-06-21 2007-01-24 ハイモ株式会社 Water-soluble polymer dispersion and method for producing the same
JP2004057927A (en) * 2002-07-29 2004-02-26 Hymo Corp Using method of water-soluble polymer dispersion
JP3947432B2 (en) * 2002-06-21 2007-07-18 ハイモ株式会社 Water-soluble polymer dispersion and method for producing the same
JP4106305B2 (en) * 2003-05-26 2008-06-25 三洋化成工業株式会社 Organic coagulants and polymer flocculants
JP4223870B2 (en) * 2003-06-26 2009-02-12 荏原エンジニアリングサービス株式会社 Water purification method
JP2005066596A (en) * 2003-08-07 2005-03-17 Tomooka Kaken Kk Organic coagulating agent and polymeric flocculating agent
JP4549135B2 (en) * 2003-09-24 2010-09-22 株式会社日本触媒 Polyalkyleneimine alkylene oxide copolymer
JP2005125214A (en) * 2003-10-23 2005-05-19 Hymo Corp Dewatering method of organic sludge
JP2005177667A (en) * 2003-12-22 2005-07-07 Hymo Corp Organic sludge dehydration method
JP4753424B2 (en) * 2005-12-08 2011-08-24 ハイモ株式会社 Organic sludge treatment method
JP2007313492A (en) * 2006-04-26 2007-12-06 Kurita Water Ind Ltd Method and apparatus for treating soluble cod component-containing water
JP4923834B2 (en) * 2006-08-10 2012-04-25 栗田工業株式会社 Method and apparatus for treating water containing soluble COD component
JP4733060B2 (en) * 2007-01-31 2011-07-27 三洋化成工業株式会社 Polymer flocculant
JP2009072754A (en) * 2007-08-29 2009-04-09 Hymo Corp Method for dehydrating sludge
JP2010089073A (en) * 2008-09-11 2010-04-22 Kurita Water Ind Ltd Organic coagulant, waste water treatment method and sludge dewatering method

Also Published As

Publication number Publication date
JP2010075802A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5464315B2 (en) Sludge dewatering method
DK1274652T3 (en) A process for the purification of water by the use of cationic dispersion polymers of low molecular weight
JP5621260B2 (en) Wastewater coagulation method
JP5621254B2 (en) Oil-containing wastewater treatment method
JP5621256B2 (en) Wastewater coagulation method
JP5364298B2 (en) Dispersant-containing water treatment method
JP2010089073A (en) Organic coagulant, waste water treatment method and sludge dewatering method
JP4937779B2 (en) Method for dewatering organic sludge
JP5659487B2 (en) Wastewater coagulation method
JP5621255B2 (en) Treatment method of inorganic waste water
JP4868127B2 (en) Organic sludge dewatering method
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP2014159018A (en) Flocculation method of oil inclusion cleaning waste water
JP7427535B2 (en) Sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
JP5709086B2 (en) Organic coagulant
JP3281891B2 (en) Sludge dewatering agent and its use
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP2009142761A (en) Water treatment method
JP2004195370A (en) Method for dehydrating digested sludge
JP2014184406A (en) Powdery organic coagulant
JPH1133563A (en) Treatment of used paper pulp waste water
JP6391501B2 (en) Sludge dewatering method using water-in-oil emulsion
JP7152359B2 (en) Water treatment agent and water treatment method
KR20170133760A (en) Coagulant-flocculant for wastewater treatment including quaternary ammonium tannate, and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5464315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees