JP5621260B2 - Wastewater coagulation method - Google Patents

Wastewater coagulation method Download PDF

Info

Publication number
JP5621260B2
JP5621260B2 JP2010002341A JP2010002341A JP5621260B2 JP 5621260 B2 JP5621260 B2 JP 5621260B2 JP 2010002341 A JP2010002341 A JP 2010002341A JP 2010002341 A JP2010002341 A JP 2010002341A JP 5621260 B2 JP5621260 B2 JP 5621260B2
Authority
JP
Japan
Prior art keywords
polymer
water
flocculant
wastewater
soluble weak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010002341A
Other languages
Japanese (ja)
Other versions
JP2011139997A (en
Inventor
清水 浩二
浩二 清水
幸範 亀谷
幸範 亀谷
修三 小出
修三 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010002341A priority Critical patent/JP5621260B2/en
Publication of JP2011139997A publication Critical patent/JP2011139997A/en
Application granted granted Critical
Publication of JP5621260B2 publication Critical patent/JP5621260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)

Description

本発明は、廃水の凝集処理方法に関し、詳しくは、無機凝集剤、水溶性弱カチオン重合体及び高分子凝集剤を使用して各種廃水を浄化する廃水の凝集処理方法に関する。   The present invention relates to a flocculation treatment method for wastewater, and more particularly to a flocculation treatment method for purifying various wastewaters using an inorganic flocculant, a water-soluble weak cationic polymer, and a polymer flocculant.

自動車製造工場、製鐵所、紙パルプ製造業、クリーニング、砂利産業、その他の化学工場等で発生する廃水の凝集処理としては、一般的に、硫酸バンド、ポリ塩化アルミニウム(PAC)等アルミ系ないし鉄系の無機凝集剤を添加した後に更に高分子凝集剤を添加して凝集フロックを生成させ、次いで、凝集沈殿又は凝集浮上法で処理する方法が採用されている。そして、浄化された処理水は、河川や下水に放流されるのが一般的である。   As agglomeration treatment of wastewater generated in automobile manufacturing factories, steel mills, pulp and paper manufacturing industry, cleaning, gravel industry, other chemical factories, etc., generally aluminum-based or sulfuric acid band, polyaluminum chloride (PAC) etc. A method is employed in which after adding an iron-based inorganic flocculant, a polymer flocculant is further added to form a floc floc and then treated by a flocculent precipitation or a flocculent levitation method. The purified treated water is generally discharged into rivers and sewage.

ところで、放流水質の規制強化に伴い、処理装置の改良や廃水処理方法の改善により、水質の向上が図られており、無機凝集剤添加量の増加が不可欠となっている。ところが、無機凝集剤の使用量を増加させると、薬品コストの増加、発生汚泥量の増加並びに発生汚泥処理コストが増大することになる。また、無機凝集剤の力だけでは、廃水中の低分子COD成分の充分な除去が難しいため、放流される処理水の水質に不安を残す。そして、この不安を解消すべく後段に高度処理を行う場合では、当該高度処理工程に対する負荷が高くなってしまう。   By the way, with the stricter regulation of the discharged water quality, the water quality is improved by improving the treatment apparatus and the wastewater treatment method, and it is indispensable to increase the amount of inorganic flocculant added. However, when the amount of the inorganic flocculant used is increased, the chemical cost is increased, the amount of generated sludge is increased, and the generated sludge treatment cost is increased. Moreover, since it is difficult to sufficiently remove the low-molecular-weight COD component in the wastewater only by the power of the inorganic flocculant, there remains anxiety about the quality of the treated water discharged. In the case where advanced processing is performed at a later stage in order to eliminate this anxiety, the load on the advanced processing step becomes high.

上記のような状況下で処理水の水質を維持・向上しつつ、無機凝集剤使用量の低減を目的にカチオン性凝集剤の一種である有機凝結剤の適用が進められている。有機凝結剤は、分子内に多数のカチオン基を有する高分子電解質であるので、無機凝集剤と同様に被処理水中の懸濁物質の荷電を中和する目的で使用される。しかも、有機凝結剤は、無機凝集剤よりもカチオンの電荷密度が高いために、その凝結作用は無機凝集剤よりはるかに大きいという特徴を持っている。また、有機凝結剤は懸濁物質を中和するだけでなく、負に帯電しているリグニンスルホン酸、フミン酸等の溶解物質と反応して不溶性塩を形成する作用があり色度及びCODの減少効果も期待される。   Under the circumstances as described above, application of an organic coagulant, which is a kind of cationic coagulant, has been promoted for the purpose of reducing the amount of inorganic coagulant used while maintaining and improving the quality of treated water. Since the organic coagulant is a polyelectrolyte having a large number of cationic groups in the molecule, it is used for the purpose of neutralizing the charge of the suspended substance in the water to be treated, like the inorganic coagulant. In addition, since the organic coagulant has a higher charge density of the cation than the inorganic coagulant, the coagulation action is much larger than that of the inorganic coagulant. Organic coagulants not only neutralize suspended substances but also react with negatively charged dissolved substances such as lignin sulfonic acid and humic acid to form insoluble salts. A reduction effect is also expected.

現在使用されている有機凝結剤の代表的なものとしては、アルキルアミン・エピクロルヒドリン縮合物、アルキレンジクロライドとポリアルキレンポリアミンの縮合物、ジシアンジアミド・ホルマリン縮合物、ジメチルジアリルアンモニウムクロライド重合体等低分子量、強カチオン密度の水溶性ポリマーが挙げられる。更に、新規な有機凝結剤として色々な重合体及び廃水処理方法が提案されている。   Typical organic coagulants currently used are low molecular weight, strong compounds such as alkylamine / epichlorohydrin condensate, alkylene dichloride and polyalkylene polyamine condensate, dicyandiamide / formalin condensate, and dimethyldiallylammonium chloride polymer. Examples thereof include water-soluble polymers having a cation density. Furthermore, various polymers and waste water treatment methods have been proposed as novel organic coagulants.

例えば、固有粘度0.002〜0.5dl/gのアルキルアミン−エピクロロヒドリン縮合物、固有粘度0.01〜0.5dl/gのポリジメチルジアリルアンモニウムハライド及び固有粘度0.05〜1.0dl/gのポリジメチルアミノアルキル(メタ)アクリレートの内、何れかの荷電調整剤を添加した後に高分子凝集剤を使用して凝集処理する脱墨排水の処理方法(特許文献1)、無機凝集剤とポリメタアクリル酸エステル系のカチオン高分子凝集剤及びアニオン系高分子凝集剤を使用する処理方法(特許文献2)が提案されている。   For example, an alkylamine-epichlorohydrin condensate having an intrinsic viscosity of 0.002 to 0.5 dl / g, polydimethyldiallylammonium halide having an intrinsic viscosity of 0.01 to 0.5 dl / g, and an intrinsic viscosity of 0.05 to 1. A deinking wastewater treatment method (Patent Document 1), in which any charge control agent is added in 0 dl / g of polydimethylaminoalkyl (meth) acrylate and then agglomeration treatment is performed using a polymer flocculant (Patent Document 1), inorganic agglomeration And a treatment method using a polymethacrylate ester cationic polymer flocculant and an anionic polymer flocculant (Patent Document 2) have been proposed.

しかしながら、上記の従来技術は、カチオン密度の高い水溶性ポリマーを使用する点で共通しており、効果を発揮することもあるが、種々の廃水に対し、無機凝集剤の使用量を削減し、良好な処理水質を安定的に得るには至っていない。   However, the above prior art is common in that it uses a water-soluble polymer having a high cation density, and may have an effect, but for various wastewaters, the amount of inorganic flocculant used is reduced, It has not yet been possible to stably obtain good treated water quality.

特開平10−118660号公報JP-A-10-118660 特開2004−249182号公報JP 2004-249182 A

従って、廃水の凝集処理において使用される有機凝集剤に関しては、(1)無機凝集剤の使用量をより削減できること、(2)良好な凝集フロックを形成し、固液分離性に優れること、(3)良好な処理水質(COD、油分、SS等)が得られること、(4)実装置における適正な反応条件の設定が容易で、安定していること、(5)処理コストがより低く出来ること等が求められている。   Therefore, regarding the organic flocculant used in the flocculation treatment of wastewater, (1) the amount of inorganic flocculant used can be further reduced, (2) good floc flocs are formed, and solid-liquid separability is excellent ( 3) Good treatment water quality (COD, oil content, SS, etc.) can be obtained, (4) Appropriate reaction conditions in the actual apparatus can be set easily and stably, and (5) Treatment costs can be further reduced. That is required.

本発明は、上記実情に鑑みなされたものであり、その目的は、廃水の凝集分離処理において、無機凝集剤の使用量を削減し、処理コストを削減すると共に、良好な水質を得ることが出来る廃水処理技術を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to reduce the amount of the inorganic flocculant used in the flocculation / separation treatment of the wastewater, reduce the processing cost, and obtain good water quality. To provide wastewater treatment technology.

本発明者らは、上記の目的を達成すべく凝結機構について鋭意検討した結果、次のような意外な知見を得た。すなわち、従来技術における有機凝結剤の作用はその強カチオン性による荷電中和作用を主体にしたものであった。ところが、特定の弱カチオン性のポリマーは、荷電中和の他に吸着作用を持つため、無機凝集剤と併用することによる相乗効果により優れた凝結作用を有する。従って、水溶性弱カチオン重合体の使用により、無機凝集剤の使用量を大幅に削減できると共に、良好な処理水質(COD、濁度、SS等)が安定して得られる。   As a result of intensive studies on the condensation mechanism in order to achieve the above object, the present inventors have obtained the following surprising findings. That is, the action of the organic coagulant in the prior art is mainly based on the charge neutralization action due to its strong cationic property. However, a specific weakly cationic polymer has an adsorbing action in addition to charge neutralization, and therefore has an excellent coagulation action due to a synergistic effect when used in combination with an inorganic flocculant. Therefore, by using the water-soluble weak cationic polymer, the amount of the inorganic flocculant used can be greatly reduced, and good treated water quality (COD, turbidity, SS, etc.) can be stably obtained.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、製紙廃水に無機凝集剤(A)及び水溶性弱カチオン重合体(B)を同時に又は任意の順序で添加した後、次いで、高分子凝集剤(C)を添加して凝集フロックを生成させ、固液分離する廃水の凝集処理方法であって、水溶性弱カチオン重合体(B)が、カチオン性モノマー単位としてジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、ノニオン性モノマー単位としてアクリルアミドを必須成分とし、これらの合計含有量が90重量%以上であり且つカチオン性モノマー単位の含有量が5〜30重量%であり、しかも、固有粘度が1〜18dl/gの重合体であり、かつ高分子凝集剤(C)の構成成分及びその比率がアクリル酸/アクリルアミド=1/99〜15/85(重量%)の重合体であるアニオン性高分子凝集剤であり、しかも、無機凝集剤(A)の添加量が50〜100mg/l、水溶性弱カチオン重合体(B)の添加量が0.5〜10mg/lであることを特徴とする製紙廃水の凝集処理方法に存する。 The present invention has been completed based on the above findings, and the gist thereof is that the inorganic flocculant (A) and the water-soluble weak cationic polymer (B) are added to papermaking wastewater simultaneously or in any order, Subsequently, a polymer flocculant (C) is added to form agglomeration floc and solid-liquid separation is a wastewater flocculation treatment method, wherein the water-soluble weak cationic polymer (B) is dimethylamino as a cationic monomer unit. Ethyl (meth) acrylate methyl chloride quaternary salt, acrylamide as an essential component as a nonionic monomer unit, the total content thereof is 90% by weight or more, and the content of the cationic monomer unit is 5 to 30% by weight Moreover, it is a polymer having an intrinsic viscosity of 1 to 18 dl / g, and the constituents and ratio of the polymer flocculant (C) are acrylic acid / acrylamide = 1/99 to 1 / 85 Ri anionic polymeric flocculant der is a polymer of (% by weight), moreover, the addition of the addition amount of the inorganic coagulant (A) is 50 to 100 mg / l, a water-soluble weak cation polymer (B) the amount resides in the aggregation treatment method of the papermaking waste water, wherein 0.5 to 10 mg / l der Rukoto.

本発明の処理方法によれば、無機凝集剤の使用量を削減し、良好な凝集フロックを形成して固液分離性に優れ、良好な水質の処理水を得ることが出来る。   According to the treatment method of the present invention, it is possible to reduce the amount of the inorganic flocculant used, to form a good flocculent floc and to have excellent solid-liquid separability and to obtain a good quality water.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で対象となる廃水としては、製紙工業、染色工業、自動車工業、金属加工工業、製鉄工業、食品工業、砂利採取、半導体及びクリーニング業より発生する廃水等が例示される。中でも製紙工業より発生する排水の凝集処理に特に効果的である。   Examples of the waste water targeted by the present invention include waste water generated from the paper industry, dyeing industry, automobile industry, metal processing industry, iron industry, food industry, gravel collection, semiconductor and cleaning industry. In particular, it is particularly effective for aggregating wastewater generated from the paper industry.

本発明で使用する無機凝集剤(A)としては、一般的に市販されてアルミ系ないし鉄系の無機凝集剤が挙げられる。具体的には、アルミ系無機凝集剤としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化アルミが例示できる。また、鉄系無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄等が例示できる。   As the inorganic flocculant (A) used in the present invention, generally available are aluminum-based or iron-based inorganic flocculants. Specifically, examples of the aluminum-based inorganic flocculant include aluminum sulfate (sulfate band), polyaluminum chloride (PAC), and aluminum chloride. Examples of the iron-based inorganic flocculant include ferric chloride and polyiron sulfate.

本発明で使用する水溶性弱カチオン重合体(B)は、カチオン性モノマー単位としてジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、ノニオン性モノマー単位としてアクリルアミドを必須成分とし、これらの合計含有量が90重量%以上であり且つカチオン性モノマー単位の含有量が5〜30重量%であり、しかも、固有粘度が1〜18dl/gの重合体である。   The water-soluble weak cationic polymer (B) used in the present invention has dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt as a cationic monomer unit, acrylamide as a nonionic monomer unit as an essential component, and a total content thereof. Is a polymer having a cationic monomer unit content of 5 to 30% by weight and an intrinsic viscosity of 1 to 18 dl / g.

上記モノマー単位を必須成分として含めば、他のカチオン性モノマー単位、例えば、ジアルキルアミノアルキル(メタ)アクリレート類の中和塩ないし四級塩、或いは他のノニオン性モノマー単位、例えば、メタアクリルアミド、N,N−ジメチル(メタ)アクリルアミド等を1種または2種以上を更に使用することも出来る。   If the monomer unit is included as an essential component, other cationic monomer units such as neutralized or quaternary salts of dialkylaminoalkyl (meth) acrylates, or other nonionic monomer units such as methacrylamide, N , N-dimethyl (meth) acrylamide or the like can be further used alone or in combination.

本発明において前記のカチオン性モノマー単位の含有量は重要であり、この含有量が5重量%未満の場合は無機凝集剤使用量の削減効果が不十分であり、30重量%超過の場合は凝集力が弱くなり処理水の水質が低下する。   In the present invention, the content of the cationic monomer unit is important. When the content is less than 5% by weight, the effect of reducing the amount of the inorganic flocculant used is insufficient. The strength becomes weaker and the quality of treated water decreases.

水溶性弱カチオン重合体(B)の重合方法は、沈殿重合、塊状重合、分散重合、水溶液重合等が挙げられる。一例として水溶液重合法による製造方法について以下に述べる。   Examples of the polymerization method of the water-soluble weak cationic polymer (B) include precipitation polymerization, bulk polymerization, dispersion polymerization, and aqueous solution polymerization. As an example, a manufacturing method using an aqueous solution polymerization method will be described below.

先ず、所定量のジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩と、アクリルアミドと、イオン交換水とを計量し、所定の温度に調節した後、密閉可能な断熱容器に仕込む。次いで、窒素ガスで溶存酸素を置換し、重合開始剤、連載移動剤等の薬品を添加する。重合開始剤としては、公知の一般的なアゾ開始剤、レドックス系開始剤等を使用することが出来る。   First, a predetermined amount of dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt, acrylamide, and ion-exchanged water are weighed and adjusted to a predetermined temperature, and then charged into a heat-insulating container that can be sealed. Next, the dissolved oxygen is replaced with nitrogen gas, and chemicals such as a polymerization initiator and a continuous transfer agent are added. As the polymerization initiator, known general azo initiators, redox initiators, and the like can be used.

重合の進行に伴い重合温度が上昇するが、温度がピークに達した後、1時間熟成し、反応容器より重合ゲルを取り出す。ミートチョッパー等により重合ゲルを細断し、送風乾燥機で80℃の温度で乾燥する。乾燥ポリマーを粉砕機で0.5〜1mm程度の粒径になるよう粉砕し水溶性弱カチオン系重合体を得る。   As the polymerization proceeds, the polymerization temperature rises, but after the temperature reaches its peak, it is aged for 1 hour, and the polymer gel is taken out from the reaction vessel. The polymer gel is shredded with a meat chopper and dried at a temperature of 80 ° C. with a blower dryer. The dried polymer is pulverized with a pulverizer to a particle size of about 0.5 to 1 mm to obtain a water-soluble weak cationic polymer.

水溶性弱カチオン重合体(B)の固有粘度は、1〜18dl/gであるが、好ましくは3〜15dl/g、更に好ましくは5.0〜12.0dl/gである。固有粘度が1.0dl/g未満の場合は、凝集力が弱くなり処理水の水質が低下する。また、18.0dl/g超過の場合は、反応性が悪くなり、凝集フロックは粗大のなるものの、凝集フロックの沈降性が悪化し、処理水の水質も低下する。上記の固有粘度は、1N硝酸ナトリウム水溶液中、温度30℃で測定した値である。   The intrinsic viscosity of the water-soluble weak cationic polymer (B) is 1 to 18 dl / g, preferably 3 to 15 dl / g, more preferably 5.0 to 12.0 dl / g. When the intrinsic viscosity is less than 1.0 dl / g, the cohesive force becomes weak and the quality of the treated water is lowered. Moreover, when it exceeds 18.0 dl / g, the reactivity becomes worse and the aggregated flocs become coarse, but the sedimentation of the aggregated flocs deteriorates and the quality of the treated water also decreases. The intrinsic viscosity is a value measured at a temperature of 30 ° C. in a 1N sodium nitrate aqueous solution.

本発明における水溶性弱カチオン重合体(B)には、粘性の低下や反応性の向上のために固体酸を添加することが出来る。固体酸としては、スルファミン酸、酸性亜硫酸ソーダ等が一般的に使用される。   A solid acid can be added to the water-soluble weak cationic polymer (B) in the present invention in order to reduce viscosity or improve reactivity. As the solid acid, sulfamic acid, acidic sodium sulfite and the like are generally used.

本発明で使用する高分子凝集剤(C)は、特に制限されず、無機凝集剤(A)及び水溶性弱カチオン重合体(B)を添加した廃水に対し、最適な種類を選択すればよい。例えばアニオン性高分子凝集剤、ノニオン性高分子凝集剤などを使用することが出来る。   The polymer flocculant (C) used in the present invention is not particularly limited, and an optimum type may be selected for the waste water to which the inorganic flocculant (A) and the water-soluble weak cationic polymer (B) are added. . For example, an anionic polymer flocculant, a nonionic polymer flocculant, etc. can be used.

アニオン性高分子凝集剤としては、例えば、ポリアクリル酸ソーダ、ポリアクリルアミドの部分加水分解物、アクリルアミドとアクリル酸ソーダの共重合物、2−アクリルアミド−2メチルプロパンスルホン酸の重合物またはアクリルアミド等との共重合物等が挙げられる。ノニオン性高分子凝集剤としては、例えば、アクリルアミドの重合物または他のノニオン性モノマーとの共重合物等が挙げられる。高分子凝集剤(C)の固有粘度は、特に制限されないが、通常15dl/g以上である。   Examples of the anionic polymer flocculant include polyacrylic acid soda, partially hydrolyzed polyacrylamide, a copolymer of acrylamide and sodium acrylate, a polymer of 2-acrylamide-2methylpropanesulfonic acid, acrylamide, and the like. And the like. Examples of nonionic polymer flocculants include polymers of acrylamide or copolymers with other nonionic monomers. The intrinsic viscosity of the polymer flocculant (C) is not particularly limited, but is usually 15 dl / g or more.

本発明においては、廃水に無機凝集剤(A)及び水溶性弱カチオン重合体(B)を同時に又は任意の順序で添加した後、次いで、高分子凝集剤(C)を添加する。具体的には、2槽設置し、各薬剤をそれぞれ別々の槽に添加して機械攪拌する方法、同一の槽に添加位置をずらして添加して機械攪拌する方法、片方の薬剤を廃水ラインに添加し、混合槽に導いて他方の薬剤を添加して機械攪拌する方法、各薬剤を廃水ラインに添加した後更に位置をずらして添加してライン混合する方法などが考えられる。これらの中では、2槽設置しそれぞれ別々の槽に添加して機械攪拌する方法が好ましい。また、ライン混合の場合は十分な乱流状態であることが必要であり、不十分な場合にはラインミキサー等の設置も有効である。   In the present invention, the inorganic flocculant (A) and the water-soluble weak cationic polymer (B) are added to the wastewater simultaneously or in any order, and then the polymer flocculant (C) is added. Specifically, two tanks are installed, each chemical is added to a separate tank and mechanically stirred, the addition position is shifted to the same tank and mechanically stirred, and one chemical is added to the wastewater line. A method of adding, guiding to the mixing tank and adding the other drug and mechanically stirring, a method of adding each drug to the wastewater line and further adding a shifted position to mix the lines, etc. are conceivable. In these, the method of installing 2 tanks and adding each to a separate tank and carrying out mechanical stirring is preferable. Further, in the case of line mixing, it is necessary that the turbulent flow is sufficient, and when it is insufficient, installation of a line mixer or the like is also effective.

各薬剤の添加量は、廃水の種類、SS、濁度等の水質により変動する。無機凝集剤(A)の添加量は、通常50〜600ppm、水溶性弱カチオン重合体(B)の添加量は、通常0.5〜10mg/lであり、高分子凝集剤(C)の添加量は、0.1〜10ppmである。また、無機凝集剤(A)及び水溶性弱カチオン重合体(B)を同時に又は任意の順序で添加した後、次いで、高分子凝集剤(C)を添加する際の間隔(攪拌混合時間)は例えば30秒〜3分程度である。凝集生成したフロックの固液分離は、常法に従って行うことが出来る。   The amount of each chemical added varies depending on the water quality such as the type of wastewater, SS, and turbidity. The amount of the inorganic flocculant (A) added is usually 50 to 600 ppm, the amount of the water-soluble weak cationic polymer (B) is usually 0.5 to 10 mg / l, and the polymer flocculant (C) is added. The amount is 0.1-10 ppm. Moreover, after adding an inorganic flocculant (A) and a water-soluble weak cationic polymer (B) simultaneously or in arbitrary orders, the space | interval (stirring mixing time) at the time of adding a polymer flocculant (C) is then set. For example, it is about 30 seconds to 3 minutes. Solid-liquid separation of the flocs produced by agglomeration can be performed according to a conventional method.

以下、本発明を実施例および比較例によって更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例において採用した各測定方法は次の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example at all unless the summary is exceeded. In addition, each measuring method employ | adopted in the following examples is as follows.

(1)高分子凝集剤の固有粘度:
固有粘度は、1N硝酸ナトリウム水溶液中、温度30℃の条件で、ウベローデ希釈型毛細管粘度計を使用し、定法に基づき測定した(高分子学会編、「新版高分子辞典」、朝倉書店,p.107)。
(1) Intrinsic viscosity of the polymer flocculant:
Intrinsic viscosity was measured based on a conventional method using a Ubbelohde dilution type capillary viscometer in a 1N sodium nitrate aqueous solution at a temperature of 30 ° C. (edited by the Society of Polymer Science, “New Edition Polymer Dictionary”, Asakura Shoten, p. 107).

(2)フロック径:
凝集フロックのフロック径は、目視により全体の平均を測定した。
(2) Flock diameter:
The average floc diameter of the aggregated floc was measured visually.

(3)沈降時間:
高分子凝集剤の所定量を添加し、所定時間攪拌混合した後に攪拌を停止する。そして、生成した凝集フロックが500mlのビーカーの底に沈降する迄の時間を測定した。
(3) Settling time:
A predetermined amount of the polymer flocculant is added, and after stirring for a predetermined time, stirring is stopped. And the time until the produced | generated aggregation floc settles in the bottom of a 500 ml beaker was measured.

(4)上澄液濁度(SS):
濁度は、JIS K 0101に基づき測定した。
(4) Supernatant turbidity (SS):
Turbidity was measured based on JIS K 0101.

(5)上澄液COD:
CODは、JIS K 0101に基づき測定した。
(5) Supernatant COD:
COD was measured based on JIS K 0101.

なお、SS及びCODは、フロック粒径、沈降時間を測定した後、2分間静置し、表面から3cmの深さより処理水を採取して測定した。   SS and COD were measured by measuring the floc particle size and settling time, and then allowing to stand for 2 minutes, collecting treated water from a depth of 3 cm from the surface.

実施例1〜10:
廃水としてN製紙工場の総合廃水を採取して使用した。廃水の性状はpH=7.5、SS=320mg/l、COD=390mg/lであった。
Examples 1-10:
The total wastewater from the N paper mill was collected and used as wastewater. The properties of the wastewater were pH = 7.5, SS = 320 mg / l, COD = 390 mg / l.

先ず、500mlのビーカーに廃水を500ml採取し、無機凝集剤としてPACを添加し、150rpmの回転数で1分間攪拌、混合した。無機凝集剤は水で10倍に希釈して使用した。   First, 500 ml of waste water was collected in a 500 ml beaker, PAC was added as an inorganic flocculant, and the mixture was stirred and mixed at a rotation speed of 150 rpm for 1 minute. The inorganic flocculant was diluted 10 times with water and used.

次いで、表1に示す水溶性弱カチオン重合体を表2に示す条件で添加し、150rpmの回転数で1分間攪拌、混合した。水溶性弱カチオン重合体は0.1〜0.3重量%の水溶液として使用した。   Subsequently, the water-soluble weak cationic polymer shown in Table 1 was added on the conditions shown in Table 2, and it stirred and mixed for 1 minute at the rotation speed of 150 rpm. The water-soluble weak cationic polymer was used as a 0.1 to 0.3% by weight aqueous solution.

次いで、表1に示す高分子凝集剤を表2に示す条件で添加し、100rpmの回転数で2分間攪拌し、凝集フロックを形成させた。高分子凝集剤は0.1〜0.3重量%の水溶液として使用した。凝集性能試験の結果を表2に示す。   Next, the polymer flocculant shown in Table 1 was added under the conditions shown in Table 2, and the mixture was stirred for 2 minutes at a rotation speed of 100 rpm to form an aggregate floc. The polymer flocculant was used as a 0.1 to 0.3% by weight aqueous solution. The results of the aggregation performance test are shown in Table 2.

比較例1〜7:
表1に示す水溶性重合体を使用し又は使用せずに表2に示す条件で薬物を添加し、上記と同様の試験条件で凝集性能試験を実施した。結果を表2に示す。
Comparative Examples 1-7:
The drug was added under the conditions shown in Table 2 with or without using the water-soluble polymer shown in Table 1, and the aggregation performance test was performed under the same test conditions as described above. The results are shown in Table 2.

実施例11〜14:
廃水としてF製紙会社の総合廃水を採取して使用した。廃水の性状はpH=6.8、SS=256mg/l、濁度=450NTU、COD=96mg/lであった。
Examples 11-14:
The waste water from the F paper company was collected and used. The properties of the wastewater were pH = 6.8, SS = 256 mg / l, turbidity = 450 NTU, COD = 96 mg / l.

先ず、500mlのビーカーに廃水を500ml採取し、表1に示す水溶性弱カチオン重合体を表3に示す条件で添加し、150rpmの回転数で1分間攪拌、混合した。水溶性弱カチオン重合体は0.1〜0.3重量%の水溶液として使用した。   First, 500 ml of waste water was collected in a 500 ml beaker, and the water-soluble weak cationic polymer shown in Table 1 was added under the conditions shown in Table 3, and the mixture was stirred and mixed for 1 minute at a rotation speed of 150 rpm. The water-soluble weak cationic polymer was used as a 0.1 to 0.3% by weight aqueous solution.

次いで、無機凝集剤としてバンドを添加し、150rpmの回転数で1分間攪拌、混合した。無機凝集剤は水で10倍に希釈して使用した。   Next, a band was added as an inorganic flocculant, and the mixture was stirred and mixed for 1 minute at a rotation speed of 150 rpm. The inorganic flocculant was diluted 10 times with water and used.

次いで、表1に示す高分子凝集剤を表3に示す条件で添加し、100rpmの回転数で2分間攪拌し、凝集フロックを形成させた。高分子凝集剤は0.1〜0.3重量%の水溶液として使用した。凝集性能試験の結果を表3に示す。   Next, the polymer flocculant shown in Table 1 was added under the conditions shown in Table 3, and stirred for 2 minutes at a rotation speed of 100 rpm to form agglomerated floc. The polymer flocculant was used as a 0.1 to 0.3% by weight aqueous solution. The results of the aggregation performance test are shown in Table 3.

比較例8〜11;
表1に示す水溶性重合体を使用し又は使用せずに表3に示す条件で薬物を添加し、上記と同様の試験条件で凝集性能試験を実施した。結果を表3に示す。
Comparative Examples 8-11;
A drug was added under the conditions shown in Table 3 with or without using the water-soluble polymer shown in Table 1, and an aggregation performance test was performed under the same test conditions as described above. The results are shown in Table 3.

表2から次のことが分かる。   Table 2 shows the following.

実施例1〜は、良好な凝集性能を示し、処理水の濁度が良好である。特に、水溶性弱カチオン重合体(B)の固有粘度が好ましい範囲である時実施例1〜8は、実施例9(固有粘度が低い)及び実施例10(固有粘度が高い)に比し、凝集フロックの沈降性および処理水の濁度の点でも優れる。   Examples 1 to show good coagulation performance and good turbidity of treated water. In particular, when the intrinsic viscosity of the water-soluble weak cationic polymer (B) is in a preferred range, Examples 1 to 8 are compared to Example 9 (low intrinsic viscosity) and Example 10 (high intrinsic viscosity), It is excellent also in the sedimentation property of the aggregation floc and the turbidity of treated water.

比較例1は、メチルアミノエチル(メタ)アクリレート塩化メチル4級塩(DME)の組成が本願発明で規定する範囲より低い共重合体(B1)を使用した例であるが、フロックが小さく、沈降性、処理水の濁度ともに劣る。比較例2は、DMEの組成が本願発明で規定する範囲より高い共重合体(B2)を使用した例であるが、比較例1と同様に、フロックが小さく、沈降性が劣り、処理水の濁度が劣る。比較例3は、水溶性弱カチオン重合体としてジメチルジアリルアンモニウムクロライド重合物を使用した例であるが、実施例に比し、フロックが小さく、沈降性が劣り、処理水の濁度が大幅に劣る。比較例4は、無機凝集剤及び水溶性弱カチオン重合体を添加した後、高分子凝集剤は添加しなかった例であるが、フロックが非常に小さく、沈降性、処理水の濁度とも非常に劣る。比較例5及び6は、水溶性弱カチオン重合体を使用せず、無機凝集剤と高分子凝集剤を使用した例であるが、PAC50mg/lではPACの添加量不足で凝集性が悪く、150mg/lの添加量で実施例と同程度に凝集したが、処理水濁度が実施例に比較して劣る。比較例7は、無機凝集剤を使用せず、水溶性弱カチオン重合体と高分子凝集剤を使用した例であるが、フロックが小さく、沈降速度及び処理水の濁度とも実施例より劣る。   Comparative Example 1 is an example in which a copolymer (B1) having a composition of methylaminoethyl (meth) acrylate methyl chloride quaternary salt (DME) lower than the range specified in the present invention was used, but the floc was small and the sedimentation was carried out. Both inferior in nature and turbidity of treated water. Comparative Example 2 is an example in which the copolymer (B2) having a DME composition higher than the range specified in the present invention was used. Like Comparative Example 1, the floc was small, the sedimentation property was inferior, and treated water was used. Turbidity is inferior. Comparative Example 3 is an example in which dimethyldiallylammonium chloride polymer is used as a water-soluble weak cationic polymer, but compared to the examples, the floc is small, the sedimentation is inferior, and the turbidity of treated water is significantly inferior. . Comparative Example 4 is an example in which the inorganic flocculant and the water-soluble weak cationic polymer were added, but the polymer flocculant was not added. However, the floc was very small, the sedimentation property, and the turbidity of the treated water were extremely low. Inferior to Comparative Examples 5 and 6 are examples in which a water-soluble weak cationic polymer was not used, and an inorganic flocculant and a polymer flocculant were used. However, in PAC 50 mg / l, the coagulability was poor due to insufficient addition of PAC, and 150 mg Although it aggregated to the same extent as an Example with the addition amount of / l, a process water turbidity is inferior compared with an Example. Comparative Example 7 is an example in which an inorganic flocculant is not used and a water-soluble weak cationic polymer and a polymer flocculant are used, but the floc is small and the sedimentation rate and the turbidity of treated water are inferior to those of the examples.

表3から次のことが分かる。   Table 3 shows the following.

実施例11〜14は、良好な凝集性能を示し、処理水の濁度およびCODが良好である。   Examples 11 to 14 show good aggregation performance, and the turbidity and COD of treated water are good.

比較例8は、DMEの組成が本願発明で規定する範囲より低い共重合体(B1)を使用した例であるが、フロック粒径と沈降性は若干劣る程度であるものの、処理水の濁度とCODが大幅に劣る。比較例9は、DMEの組成が本願発明で規定する範囲より高い共重合体(B2)を使用した例であるが、比較例8と同様に、フロック粒径と沈降性は同程度であるものの、処理水の濁度とCODが劣る。比較例10は、水溶性カチオン重合体としてジメチルジアリルアンモニウムクロライド重合物を使用した例であるが、フロックが小さく、沈降性が劣り、処理水の濁度とCODも劣る。比較例11は、水溶性弱カチオン重合体を使用せず、無機凝集剤と高分子凝集剤を使用した例であるが、無機凝集剤の使用量を実施例11〜14の3倍にすることにより、フロックの大きさは実施例と同程度となるものの、沈降性、処理水の濁度およびCODとも実施例より劣る。   Comparative Example 8 is an example in which the copolymer (B1) having a DME composition lower than the range specified in the present invention was used, but the floc particle size and sedimentation were slightly inferior, but the turbidity of the treated water And COD is significantly inferior. Comparative Example 9 is an example in which a copolymer (B2) having a DME composition higher than the range specified in the present invention was used, but as in Comparative Example 8, the floc particle size and sedimentation were similar. The turbidity and COD of treated water are inferior. Comparative Example 10 is an example in which a dimethyldiallylammonium chloride polymer is used as the water-soluble cationic polymer, but the floc is small, the sedimentation property is inferior, and the turbidity and COD of the treated water are also inferior. Comparative Example 11 is an example using an inorganic flocculant and a polymer flocculant without using a water-soluble weak cationic polymer, but the amount of the inorganic flocculant used is three times that of Examples 11-14. Thus, although the size of the floc is about the same as that of the example, the sedimentation, turbidity of treated water, and COD are inferior to those of the example.

Claims (2)

製紙廃水に無機凝集剤(A)及び水溶性弱カチオン重合体(B)を同時に又は任意の順序で添加した後、次いで、高分子凝集剤(C)を添加して凝集フロックを生成させ、固液分離する廃水の凝集処理方法であって、水溶性弱カチオン重合体(B)が、カチオン性モノマー単位としてジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、ノニオン性モノマー単位としてアクリルアミドを必須成分とし、これらの合計含有量が90重量%以上であり且つカチオン性モノマー単位の含有量が5〜30重量%であり、しかも、固有粘度が1〜18dl/gの重合体であり、かつ高分子凝集剤(C)の構成成分及びその比率がアクリル酸/アクリルアミド=1/99〜15/85(重量%)の重合体であるアニオン性高分子凝集剤であり、しかも、無機凝集剤(A)の添加量が50〜100mg/l、水溶性弱カチオン重合体(B)の添加量が0.5〜10mg/lであることを特徴とする製紙廃水の凝集処理方法。 After adding the inorganic flocculant (A) and the water-soluble weak cationic polymer (B) to papermaking wastewater simultaneously or in an arbitrary order, the polymer flocculant (C) is then added to produce agglomerated flocs. A method for aggregating wastewater to be liquid-separated, wherein the water-soluble weak cationic polymer (B) contains dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt as a cationic monomer unit and acrylamide as a nonionic monomer unit. A polymer having a total content of 90% by weight or more, a content of cationic monomer units of 5 to 30% by weight, and an intrinsic viscosity of 1 to 18 dl / g, and a polymer. components and a polymeric anionic polymeric flocculant der the ratio of acrylic acid / acrylamide = 1 / 99-15 / 85 (weight%) of the coagulant (C) is, Duck, aggregation added amount of the additive amount is 50 to 100 mg / l, a water-soluble weak cationic polymerization of the inorganic coagulant (A) (B) of paper waste, wherein 0.5 to 10 mg / l der Rukoto Processing method. 水溶性弱カチオン重合体(B)の固有粘度が3〜15dl/gである請求項1記載の廃水の凝集処理方法。   The method for coagulating wastewater according to claim 1, wherein the water-soluble weak cationic polymer (B) has an intrinsic viscosity of 3 to 15 dl / g.
JP2010002341A 2010-01-07 2010-01-07 Wastewater coagulation method Active JP5621260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002341A JP5621260B2 (en) 2010-01-07 2010-01-07 Wastewater coagulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002341A JP5621260B2 (en) 2010-01-07 2010-01-07 Wastewater coagulation method

Publications (2)

Publication Number Publication Date
JP2011139997A JP2011139997A (en) 2011-07-21
JP5621260B2 true JP5621260B2 (en) 2014-11-12

Family

ID=44456244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002341A Active JP5621260B2 (en) 2010-01-07 2010-01-07 Wastewater coagulation method

Country Status (1)

Country Link
JP (1) JP5621260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634345B2 (en) 2016-11-16 2023-04-25 Organo Corporation Waste water treatment method and waste water treatment apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733677B2 (en) * 2010-12-02 2015-06-10 三菱レイヨン株式会社 Wastewater treatment agent
JP5874360B2 (en) * 2011-12-05 2016-03-02 栗田工業株式会社 Method and apparatus for flocculation treatment of silt-containing water
JP5952593B2 (en) * 2012-03-02 2016-07-13 Mtアクアポリマー株式会社 Wastewater treatment method
JP5878409B2 (en) * 2012-03-09 2016-03-08 Mtアクアポリマー株式会社 Wastewater treatment method using organic coagulant
WO2014038537A1 (en) * 2012-09-10 2014-03-13 栗田工業株式会社 Water treatment method and apparatus
JP6287009B2 (en) * 2013-10-01 2018-03-07 栗田工業株式会社 Method and apparatus for treating wastewater containing inorganic ions
JP7117101B2 (en) * 2017-12-26 2022-08-12 オルガノ株式会社 Water treatment method and device
CN115502181A (en) * 2022-10-21 2022-12-23 中海油田服务股份有限公司 Weak curing agent, and preparation method, use method and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668711B2 (en) * 1988-07-29 1997-10-27 ダイヤフロック株式会社 Paper and pulp wastewater coagulation treatment method
JP3937102B2 (en) * 1996-10-22 2007-06-27 栗田工業株式会社 Deinking wastewater treatment method
JP3702938B2 (en) * 1999-08-04 2005-10-05 栗田工業株式会社 Organic coagulant and drainage coagulation method
JP3731454B2 (en) * 2000-07-17 2006-01-05 栗田工業株式会社 Method for determining amount of coagulant injection and control device for drug injection
JP2002355681A (en) * 2001-05-31 2002-12-10 Hymo Corp Treatment method for used paper manufacturing wastewater
JP2004075784A (en) * 2002-08-13 2004-03-11 Mitsubishi Rayon Co Ltd Water-soluble polymer
JP4015574B2 (en) * 2003-03-07 2007-11-28 栗田工業株式会社 Coating paper manufacturing waste liquid treatment method
JP4021439B2 (en) * 2003-12-26 2007-12-12 三洋化成工業株式会社 Polymer flocculant
JP4616108B2 (en) * 2005-07-22 2011-01-19 三洋化成工業株式会社 Organic coagulant and wastewater or sludge treatment
JP5512068B2 (en) * 2006-03-24 2014-06-04 三菱レイヨン株式会社 Water treatment method
JP4786569B2 (en) * 2006-03-29 2011-10-05 三洋化成工業株式会社 Organic coagulant
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP5528660B2 (en) * 2007-05-31 2014-06-25 三洋化成工業株式会社 Polymer flocculant
JP5228520B2 (en) * 2008-02-19 2013-07-03 栗田工業株式会社 Coagulation sedimentation method
JP5659487B2 (en) * 2009-12-24 2015-01-28 三菱レイヨン株式会社 Wastewater coagulation method
JP5621256B2 (en) * 2009-12-24 2014-11-12 三菱レイヨン株式会社 Wastewater coagulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634345B2 (en) 2016-11-16 2023-04-25 Organo Corporation Waste water treatment method and waste water treatment apparatus

Also Published As

Publication number Publication date
JP2011139997A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5621260B2 (en) Wastewater coagulation method
Sahu et al. Review on chemical treatment of industrial waste water
JP5621254B2 (en) Oil-containing wastewater treatment method
JP5621256B2 (en) Wastewater coagulation method
WO2014038537A1 (en) Water treatment method and apparatus
JP5659487B2 (en) Wastewater coagulation method
JP5364298B2 (en) Dispersant-containing water treatment method
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
CN114314783A (en) Flocculating agent for catalytic cracking flue gas desulfurization sewage treatment
JP5621255B2 (en) Treatment method of inorganic waste water
JP5172372B2 (en) Sludge dewatering method
JP5464315B2 (en) Sludge dewatering method
JP4868127B2 (en) Organic sludge dewatering method
JP5145823B2 (en) Organic flocculant and wastewater flocculation treatment method using the chemical
Ghosh et al. High performance polymeric flocculant based on hydrolyzed polyacrylamide grafted tamarind kernel polysaccharide (Hyd. TKP-g-PAM)
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP5843428B2 (en) Coagulation treatment method for colored wastewater
JP5952593B2 (en) Wastewater treatment method
JP6919116B2 (en) How to treat rice-washed wastewater
JP5866096B2 (en) Wastewater treatment method
JP5733677B2 (en) Wastewater treatment agent
JP4828152B2 (en) Sewage treatment method
JP4795290B2 (en) How to remove phosphorus
JP5834707B2 (en) Treatment method of organic sludge
JP2017217652A (en) Method for treating rice-washing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250