JP5733677B2 - Wastewater treatment agent - Google Patents

Wastewater treatment agent Download PDF

Info

Publication number
JP5733677B2
JP5733677B2 JP2010269676A JP2010269676A JP5733677B2 JP 5733677 B2 JP5733677 B2 JP 5733677B2 JP 2010269676 A JP2010269676 A JP 2010269676A JP 2010269676 A JP2010269676 A JP 2010269676A JP 5733677 B2 JP5733677 B2 JP 5733677B2
Authority
JP
Japan
Prior art keywords
polymer
water
wastewater treatment
examples
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010269676A
Other languages
Japanese (ja)
Other versions
JP2012115790A (en
Inventor
茂 田辺
茂 田辺
恭裕 加進
恭裕 加進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010269676A priority Critical patent/JP5733677B2/en
Publication of JP2012115790A publication Critical patent/JP2012115790A/en
Application granted granted Critical
Publication of JP5733677B2 publication Critical patent/JP5733677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、廃水処理剤に関し、詳しくは、各種廃水に対し優れた凝集効果を示し、取り扱いが容易な廃水処理剤に関する。   The present invention relates to a wastewater treatment agent, and more particularly, to a wastewater treatment agent that exhibits an excellent flocculation effect for various wastewaters and is easy to handle.

自動車製造工場、製鐵所、紙パルプ製造業、クリーニング、砂利産業、その他の化学工場などで発生する産業廃水、下水・し尿処理場の返水、及び生物処理水の凝集処理においては、一般的に、硫酸バンド(以下「バンド」と記す)、ポリ塩化アルミニウム(以下「PAC」と記す)等の無機凝集剤を添加した後に更に高分子凝集剤を添加して凝集フロックを生成させ、凝集沈殿又は凝集浮上法により処理する方法が採用されている。そして、浄化された処理水は、河川や下水に放流されるのが一般的である。   Common in industrial wastewater generated in automobile manufacturing plants, steel mills, pulp and paper manufacturing, cleaning, gravel industry, other chemical factories, sewage and human waste treatment plants, and coagulation treatment of biologically treated water In addition, after adding an inorganic flocculant such as sulfuric acid band (hereinafter referred to as “band”), polyaluminum chloride (hereinafter referred to as “PAC”) and the like, a polymer flocculant is further added to generate an aggregate floc, Or the method of processing by the coagulation flotation method is employ | adopted. The purified treated water is generally discharged into rivers and sewage.

ところで、放流水質の規制強化に対し、処理装置の改良や廃水処理方法の改善により、水質の向上が図られており、無機凝集剤使用量の増加が不可欠となっている。ところが、無機凝集剤の使用量を増加させると、薬品コストの増加、発生汚泥量の増加並びに発生汚泥処理コストが増大することになる。また、無機凝集剤の力だけでは、処理水のSSは関してはは満足できても、COD、濁度、色度などにおいて充分満足できる効果が得られない場合が多くある。   By the way, with respect to stricter regulations on the quality of discharged water, the quality of water has been improved by improving treatment equipment and wastewater treatment methods, and it has become essential to increase the amount of inorganic flocculant used. However, when the amount of the inorganic flocculant used is increased, the chemical cost is increased, the amount of generated sludge is increased, and the generated sludge treatment cost is increased. Further, even if the strength of the inorganic flocculant is sufficient, the SS of the treated water can be satisfied, but there are many cases where a sufficiently satisfactory effect in COD, turbidity, chromaticity and the like cannot be obtained.

上記のような状況下で処理水の水質を維持・向上しつつ、無機凝集剤使用量の低減を目的に水溶性カチオン重合体の一種である有機凝結剤の適用が進められている。ところが、有機凝結剤を適用した場合、無機凝集剤、有機凝結剤、高分子凝集剤と3種類の薬剤を使用するため、新たに有機凝結剤用の装置を設置すると共に運転管理が煩雑となるという問題がある。特に、無機凝集剤と有機凝結剤の添加比率が廃水の種類により異なるため、運転管理が一層煩雑となっている。 Under the circumstances as described above, application of an organic coagulant, which is a kind of water-soluble cationic polymer, has been promoted for the purpose of reducing the amount of inorganic flocculant while maintaining and improving the quality of treated water. However, when an organic coagulant is applied, an inorganic coagulant, an organic coagulant, and a polymer coagulant are used, so that a new apparatus for the organic coagulant is installed and operation management becomes complicated. There is a problem. In particular, since the addition ratio of the inorganic flocculant and the organic coagulant varies depending on the type of wastewater, operation management is further complicated.

上記のような状況下で無機凝集剤と有機凝結剤を配合した一液型の廃水処理剤が提案されている。例えば、ポリ塩化アルミニウム(PAC)とジアリルジメチルアンモニウムクロライド重合体(DADMAC)を配合した薬剤を使用する染色廃水の処理方法が提案されている(特許文献1)。また、PACとDADMACの混合物を使用する土木泥水の処理方法が提案されている(特許文献2)。更には、ポリアリルアミンと鉄又はアルミニウムの塩素化合物を配合した凝集剤が提案されている(特許文献3)。この凝集剤は、特に染色廃水の凝集処理に優れた効果を示すとされている。 Under the circumstances as described above, a one-component waste water treatment agent containing an inorganic flocculant and an organic coagulant has been proposed. For example, a treatment method for dyeing wastewater using a drug containing polyaluminum chloride (PAC) and diallyldimethylammonium chloride polymer (DADMAC) has been proposed (Patent Document 1). Moreover, the processing method of the civil engineering mud water which uses the mixture of PAC and DADMAC is proposed (patent document 2). Furthermore, a flocculant in which polyallylamine and a chlorine compound of iron or aluminum are blended has been proposed (Patent Document 3). This flocculant is said to exhibit an excellent effect particularly in the flocculation treatment of dyeing wastewater.

しかしながら、上記の薬剤は、何れも、使い勝手が良く、ある程度の効果はあるものの、凝集性能、処理コスト等の点で充分に満足できるとはいえない。   However, although all of the above-mentioned drugs are easy to use and have some effects, they cannot be said to be sufficiently satisfactory in terms of aggregation performance, processing cost, and the like.

特開平6−182350号公報JP-A-6-182350 特開平6−182353号公報JP-A-6-182353 特開平7−313804号公報JP-A-7-313804

本発明は、上記実情に鑑みなされたものであり、その目的は、各種廃水に対し優れた凝集効果を示し、取り扱いが容易で且つ薬剤添加量が削減し処理コストの削減可能な廃水処理剤を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a wastewater treatment agent that exhibits an excellent coagulation effect with respect to various types of wastewater, is easy to handle, reduces the amount of chemicals added, and can reduce treatment costs. It is to provide.

本発明者は、鋭意検討を重ねた結果、ジアルキルアミノアルキルメタクリレート塩化メチル4級塩を主成分とする特定の水溶性ポリマーと無機凝集剤とを配合することにより、先行技術で提案された前記の廃水処理剤よりも凝集効果および処理水の水質に優れた廃水処理剤が得られるとの知見を得、本発明に至った。   As a result of extensive studies, the inventor of the present invention proposed the above-mentioned proposal in the prior art by blending a specific water-soluble polymer mainly composed of a dialkylaminoalkyl methacrylate methyl chloride quaternary salt and an inorganic flocculant. The present inventors have obtained knowledge that a wastewater treatment agent having a better coagulation effect and a better quality of treated water than a wastewater treatment agent can be obtained, leading to the present invention.

すなわち、本発明の要旨は、固有粘度が0.01〜4.0でジアルキルアミノアルキルメタクリレート塩化メチル4級塩を90重量%を超える割合で含み(メタ)アクリルアミドを含まない水溶性ポリマーと鉄又はアルミ系の無機凝集剤から成り、水溶性ポリマーと無機凝集剤の配合比率が重量比として0.05/100〜10/100であることを特徴とする廃水処理剤に存する。 That is, the gist of the present invention is that an intrinsic viscosity of 0.01 to 4.0 and a dialkylaminoalkyl methacrylate methyl chloride quaternary salt in a proportion exceeding 90% by weight and a water-soluble polymer not containing (meth) acrylamide and iron or The wastewater treatment agent is characterized by comprising an aluminum-based inorganic flocculant, and the mixing ratio of the water-soluble polymer and the inorganic flocculant is 0.05 / 100 to 10/100 as a weight ratio.

本発明の廃水処理剤は、一般的に市販されている無機凝集剤と同様の取り扱い性を有し、各種廃水に対し優れた凝集効果を示し、且つ薬剤添加量が削減し廃水処理コストを削減できる。   The wastewater treatment agent of the present invention has the same handleability as that of generally marketed inorganic flocculants, exhibits excellent flocculation effects on various wastewaters, and reduces the amount of chemicals added to reduce wastewater treatment costs. it can.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の廃水処理剤の一成分は、水溶性ポリマーであり、ジアルキルアミノアルキルメタクリレート塩化メチル4級塩を主成分とし、且つ(メタ)アクリルアミドモノマーを含まない重合体である。   One component of the wastewater treatment agent of the present invention is a water-soluble polymer, which is a polymer mainly composed of a dialkylaminoalkyl methacrylate methyl chloride quaternary salt and does not contain a (meth) acrylamide monomer.

ジアルキルアミノアルキルメタクリレート塩化メチル4級塩としては、以下の化学式(I)で表されるジメチルアミノエチルメタアクリレート塩化メチル4級塩が好ましい。   As the dialkylaminoalkyl methacrylate methyl chloride quaternary salt, dimethylaminoethyl methacrylate methyl chloride quaternary salt represented by the following chemical formula (I) is preferable.

Figure 0005733677
Figure 0005733677

本発明で使用する水溶性ポリマーとしては、ジメチルアミノエチルメタアクリレート塩化メチル4級塩の単独重合体が好ましいが、凝結性能、溶液安定性、取り扱い性などに悪影響を及ぼさない範囲で他の単量体を共重合させても構わない。   As the water-soluble polymer used in the present invention, a homopolymer of dimethylaminoethyl methacrylate methyl chloride quaternary salt is preferable, but other monomers are used as long as they do not adversely affect the setting performance, solution stability, handleability, and the like. The body may be copolymerized.

共重合可能なモノマーとしては、(メタ)アクリルアミドモノマー以外のモノマーであり、例えば、ジメチルアミノエチルメタアクリレートの硫酸塩、ジメチルアミノエチルメタアクリレートのベンジルクロライド4級塩、ジメチルアミノエチルアクリレート塩化メチル4級塩などのカチオン性モノマー及びアクリロニトリル、メタクリル酸メチル等のノニオン性モノマーが挙げられる。他の共重合可能なモノマーとの共重合比率は、特に制限されないが、10重量%以下が好ましい。   Examples of the copolymerizable monomer include monomers other than (meth) acrylamide monomers, such as dimethylaminoethyl methacrylate sulfate, dimethylaminoethyl methacrylate benzyl chloride quaternary salt, dimethylaminoethyl acrylate methyl chloride quaternary. Examples thereof include cationic monomers such as salts and nonionic monomers such as acrylonitrile and methyl methacrylate. The copolymerization ratio with other copolymerizable monomers is not particularly limited, but is preferably 10% by weight or less.

なお、(メタ)アクリルアミドを共重合した重合体は、無機凝集剤と配合した場合に経時的に増粘するという欠点がある。その理由は、強酸性下での経時的な架橋反応によるものと推定される。特に、硫酸塩系無機凝集剤に配合した場合は増粘度合いが激しい傾向がある。   In addition, the polymer which copolymerized (meth) acrylamide has the fault of thickening with time, when mix | blending with an inorganic flocculant. The reason is estimated to be due to the cross-linking reaction over time under strong acidity. In particular, when blended with a sulfate-based inorganic flocculant, the viscosity increase tends to be intense.

本発明で使用する水溶性ポリマーの固有粘度は、0.01〜4.0であり、好ましくは0.03〜2.5である。固有粘度は、通常の方法に従い、1N硝酸ナトリウム水溶液中、温度30℃で測定した値を意味する。固有粘度が上記の範囲外の場合は、廃水処理剤として使用した際、凝集性、処理水の濁度および色度が劣る。   The intrinsic viscosity of the water-soluble polymer used in the present invention is 0.01 to 4.0, preferably 0.03 to 2.5. The intrinsic viscosity means a value measured at a temperature of 30 ° C. in a 1N sodium nitrate aqueous solution according to a normal method. When the intrinsic viscosity is outside the above range, when used as a wastewater treatment agent, the cohesiveness, turbidity and chromaticity of treated water are inferior.

本発明で使用する水溶性ポリマーの形状は、特に限定されず、粉末、液体の何れの形状でも構わない。また、その重合方法は、沈殿重合、塊状重合、分散重合、水溶液重合などが挙げられるが、特に限定されるものではない。一例として水溶液重合法による製造方法について以下に述べる。   The shape of the water-soluble polymer used in the present invention is not particularly limited, and any shape of powder and liquid may be used. The polymerization method includes precipitation polymerization, bulk polymerization, dispersion polymerization, aqueous solution polymerization and the like, but is not particularly limited. As an example, a manufacturing method using an aqueous solution polymerization method will be described below.

先ず、所定量のジメチルアミノエチルメタクリレート塩化メチル4級塩、イオン交換水を計量し、所定のpH、温度に調節した後に密閉可能な断熱容器に仕込む。次に、窒素ガスで溶存酸素を置換し、重合開始剤、連載移動剤などの薬品を添加する。重合開始剤としては、公知の一般的なアゾ開始剤、レドックス系開始剤などを使用することが出来る。重合の進行に伴い重合温度が上昇するが、温度がピークに達した後、1時間熟成し、反応容器より重合ゲルを取り出す。重合ゲルをミートチョッパー等により細断し、送風乾燥機で80℃の温度で乾燥する。乾燥ポリマーを0.5〜1mm程度の粒径になるように粉砕し、粉末の水溶性ポリマーを得る。   First, a predetermined amount of dimethylaminoethyl methacrylate methyl chloride quaternary salt and ion-exchanged water are weighed, adjusted to a predetermined pH and temperature, and then charged into an airtight container that can be sealed. Next, the dissolved oxygen is replaced with nitrogen gas, and chemicals such as a polymerization initiator and a continuous transfer agent are added. As the polymerization initiator, known general azo initiators, redox initiators, and the like can be used. As the polymerization proceeds, the polymerization temperature rises, but after the temperature reaches its peak, it is aged for 1 hour, and the polymer gel is taken out from the reaction vessel. The polymer gel is chopped with a meat chopper or the like and dried at a temperature of 80 ° C. with a blow dryer. The dried polymer is pulverized to a particle size of about 0.5 to 1 mm to obtain a powdered water-soluble polymer.

本発明の廃水処理剤の他の一成分は、鉄又はアルミ系の無機凝集剤である。アルミ系無機凝集剤としては、バンド、PAC、塩化アルミ等が例示できる。また、鉄系の無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄などが例示できる。無機凝集剤は、塩化物でも硫酸塩でも構わないが、塩化物の方が有機凝結剤を配合した際の粘度が低いために取り扱い性に優れる。   Another component of the wastewater treatment agent of the present invention is an iron or aluminum inorganic flocculant. Examples of the aluminum-based inorganic flocculant include band, PAC, and aluminum chloride. Examples of the iron-based inorganic flocculant include ferric chloride and polyiron sulfate. The inorganic flocculant may be chloride or sulfate, but chloride is superior in handleability because of its lower viscosity when an organic coagulant is blended.

水溶性ポリマーと無機凝集剤の配合比率は、重量比として、0.05/100〜10/100、好ましくは0.1/100〜5/100である。配合比率が上記の範囲未満の場合は、処理水の濁度および色度が無機凝集剤の単独使用の場合と同程度となり、水溶性ポリマーの配合の効果が発揮されない。また、配合比率が上記の範囲を超える場合は、凝集性が悪化し、濁度および色度が悪化する。更には、廃水処理剤の粘度が高く取り扱い性も悪化する。   The mixing ratio of the water-soluble polymer and the inorganic flocculant is 0.05 / 100 to 10/100, preferably 0.1 / 100 to 5/100, as a weight ratio. When the blending ratio is less than the above range, the turbidity and chromaticity of the treated water are almost the same as when the inorganic flocculant is used alone, and the effect of blending the water-soluble polymer is not exhibited. Moreover, when a mixture ratio exceeds said range, aggregability will deteriorate and turbidity and chromaticity will deteriorate. Furthermore, the viscosity of the wastewater treatment agent is high and the handleability is also deteriorated.

本発明の廃水処理剤の調製方法の一例は次の通りである。   An example of the method for preparing the wastewater treatment agent of the present invention is as follows.

1.水溶性ポリマーが粉体の場合:
攪拌機を具備した容器に水と無機凝集剤を投入し、攪拌しながら水溶性ポリマーの粉体を加え、30〜60分程度攪拌して水に無機凝集剤と水溶性ポリマーとを溶解させ、本発明の廃水処理剤を得る。
1. When water-soluble polymer is powder:
Water and an inorganic flocculant are added to a container equipped with a stirrer, and a water-soluble polymer powder is added while stirring. The mixture is stirred for about 30 to 60 minutes to dissolve the inorganic flocculant and the water-soluble polymer in water. An inventive wastewater treatment agent is obtained.

2.水溶性ポリマーが液体の場合:
上記と同様にして本発明の廃水処理剤を得る。ただし、形状が液体の場合は水溶性ポリマーが無機凝集剤に容易に溶解するため、攪拌時間は短く、数分以内で充分である。
2. If the water-soluble polymer is liquid:
The wastewater treatment agent of the present invention is obtained in the same manner as above. However, when the shape is liquid, since the water-soluble polymer is easily dissolved in the inorganic flocculant, the stirring time is short, and a few minutes is sufficient.

また、コンテナー、ローリー等に無機凝集剤を充填する場合は、予め、コンテナー、ローリー等に液体の水溶性ポリマーを投入しておき、その後に無機凝集剤を充填して本発明の廃水処理剤を調製することも出来る。この場合、無機凝集剤の充填を先に行ってもよい。
充填後コンテナーに投入することも可能である。更に、無機凝集剤を客先の貯槽に投入する際に液体の水溶性ポリマーを投入して混合することも可能である。
In addition, when the container, lorry, etc. are filled with the inorganic flocculant, the liquid water-soluble polymer is put in the container, lorry, etc. in advance, and then the inorganic flocculant is filled with the wastewater treatment agent of the present invention. It can also be prepared. In this case, the inorganic flocculant may be filled first.
It is also possible to put into a container after filling. Further, when the inorganic flocculant is introduced into the customer storage tank, it is also possible to introduce and mix a liquid water-soluble polymer.

本発明の廃水処理剤は無機凝集剤を使用する一般的な廃水処理方法と同様の方法で使用すればよい。具体的には、廃水に本発明の廃水処理剤を添加して混合した後、必要に応じpH調節を行い、高分子凝集剤を加えて凝集フロックを形成させ、沈殿処理或いは浮上処理により固液分離して処理水を得る。高分子凝集剤としては、従来公知のアニオン系、ノニオン系、カチオン系、両性系の何れの種類であってもよい。例えば、アニオン性高分子凝集剤としては、例えば、ポリアクリル酸ソーダ、ポリアクリルアミドの部分加水分解物、アクリルアミドとアクリル酸ソーダの共重合物、2−アクリルアミド−2メチルプロパンスルホン酸の重合物またはアクリルアミド等との共重合物等が挙げられる。ノニオン性高分子凝集剤としては、例えば、アクリルアミドの重合物または他のノニオン性モノマーとの共重合物等が挙げられる。   The wastewater treatment agent of the present invention may be used in the same manner as a general wastewater treatment method using an inorganic flocculant. Specifically, after adding and mixing the wastewater treatment agent of the present invention to wastewater, the pH is adjusted as necessary, and a polymer flocculant is added to form agglomeration flocs, which are solid-liquid by precipitation treatment or flotation treatment. Separate to obtain treated water. The polymer flocculant may be any of conventionally known anionic, nonionic, cationic and amphoteric types. For example, examples of the anionic polymer flocculant include sodium polyacrylate, partial hydrolyzate of polyacrylamide, copolymer of acrylamide and sodium acrylate, polymer of 2-acrylamide-2methylpropanesulfonic acid, or acrylamide. And the like, and the like. Examples of nonionic polymer flocculants include polymers of acrylamide or copolymers with other nonionic monomers.

本発明の廃水処理剤は、自動車製造工場、製鐵所、紙パルプ製造業、クリーニング、砂利産業、その他の化学工場などで発生する産業廃水、下水・し尿処理場の返水、生物処理水の凝集処理などにおいて従来の無機凝集剤の替わりに幅広く使用される。   The wastewater treatment agent of the present invention is used for industrial wastewater generated in automobile manufacturing factories, steel mills, paper pulp manufacturing industry, cleaning, gravel industry, other chemical factories, sewage / human waste treatment plant return water, biological treatment water. It is widely used in place of conventional inorganic flocculants in agglomeration treatment.

以下、本発明を実施例および比較例によって更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例において採用した各測定方法は次の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example at all unless the summary is exceeded. In addition, each measuring method employ | adopted in the following examples is as follows.

(1)高分子凝集剤の固有粘度:
固有粘度は、1N硝酸ナトリウム水溶液中、温度30℃の条件で、ウベローデ希釈型毛細管粘度計を使用し、定法に基づき測定した(高分子学会編、「新版高分子辞典」、朝倉書店,p.107)。
(1) Intrinsic viscosity of the polymer flocculant:
Intrinsic viscosity was measured based on a conventional method using a Ubbelohde dilution type capillary viscometer in a 1N sodium nitrate aqueous solution at a temperature of 30 ° C. (edited by the Society of Polymer Science, “New Edition Polymer Dictionary”, Asakura Shoten, p. 107).

(2)フロック径:
凝集フロックのフロック径は、目視により全体の平均を測定した。
(2) Flock diameter:
The average floc diameter of the aggregated floc was measured visually.

(3)沈降時間:
高分子凝集剤の所定量を添加し、所定時間攪拌混合した後に攪拌を停止する。そして、生成した凝集フロックが500mlのビーカーの底に沈降する迄の時間を測定した。
(3) Settling time:
A predetermined amount of the polymer flocculant is added, and after stirring for a predetermined time, stirring is stopped. And the time until the produced | generated aggregation floc settles in the bottom of a 500 ml beaker was measured.

(4)上澄液濁度(SS):
沈降時間を測定した後、2分間静置し、表面から3cmの深さより処理水を採取して測定した。工場排水試験法JIS K 0102に基づき測定した。
(4) Supernatant turbidity (SS):
After measuring the sedimentation time, the sample was allowed to stand for 2 minutes, and treated water was collected from a depth of 3 cm from the surface and measured. Measured based on the factory wastewater test method JIS K 0102.

(5)上澄液色度:
沈降時間を測定した後、2分間静置し、表面から3cmの深さより処理水を採取して測定した。工場排水試験法JIS K 0102に基づき、透過光測定方法で測定した。測定値は420nmの透過率(%)で示した。
(5) Supernatant chromaticity:
After measuring the sedimentation time, the sample was allowed to stand for 2 minutes, and treated water was collected from a depth of 3 cm from the surface and measured. Based on the factory wastewater test method JIS K 0102, the measurement was performed by the transmitted light measurement method. The measured value was shown by transmittance (%) at 420 nm.

試験例1:
各重合体が各種無機凝集剤に溶解するか否かを調査した。使用した重合体を表1に示す。
試験結果を表2に示す。
Test Example 1:
It was investigated whether each polymer dissolved in various inorganic flocculants. The polymers used are shown in Table 1.
The test results are shown in Table 2.

表1中、ジアリルジメチルアンモニウムクロライド系重合物はダイヤニトリックス社製(表品名CHP795M)、アルキルアミン・エピクロロヒドリン縮合物はダイヤニトリックス社製(表品名K601)、ジシアンジアミド系重合物はダイヤニトリックス社製(表品名K415)、ポリエチレンイミンはダイヤニトリックス社製(表品名K409)及びポリビニルアミジンはダイヤニトリックス社製(表品名KP7000)を使用した。   In Table 1, diallyldimethylammonium chloride-based polymer is manufactured by Daianitrix (table name CHP795M), alkylamine / epichlorohydrin condensate is manufactured by Daianitrix (table name K601), and dicyandiamide-based polymer is manufactured by Daianitrix (table). Product name K415), polyethyleneimine used by Daianitrix (table name K409), and polyvinylamidine used by Daianitrix (table name KP7000).

表2に示した溶解性の試験方法は以下の通りである。   The solubility test methods shown in Table 2 are as follows.

1.重合体が粉体の場合:
500mlのガラス製ビーカーに無機凝集剤を500g量り採る。攪拌しながら重合体5gを加え、60分間攪拌溶解する。60分攪拌後、液全量を100メッシュの篩に開け篩上の不溶物重量を量る。不溶解物の重量が10g未満を○(溶解)、10g以上を×(溶解不可)と表す。
1. If the polymer is a powder:
Weigh 500 g of the inorganic flocculant into a 500 ml glass beaker. While stirring, 5 g of polymer is added and dissolved by stirring for 60 minutes. After stirring for 60 minutes, the total amount of the liquid is opened on a 100-mesh sieve and the weight of insoluble matter on the sieve is measured. When the weight of the insoluble material is less than 10 g, “O” (dissolved) and 10 g or more are represented as “X” (dissolvable).

2.重合体が液体の場合:
500mlのガラス製ビーカーに無機凝集剤を500g量り採る。重合体を純分換算で5g投入し、3分間攪拌する。目視で不溶物が析出しなければ○(溶解)、析出すれば×(溶解不可)と表す。
2. If the polymer is liquid:
Weigh 500 g of the inorganic flocculant into a 500 ml glass beaker. 5 g of the polymer is added in terms of pure content and stirred for 3 minutes. If the insoluble matter does not precipitate visually, it is indicated as “◯” (dissolved), and if it is precipitated, it is indicated as “x” (not soluble).

Figure 0005733677
Figure 0005733677

Figure 0005733677
Figure 0005733677

表2に示すように、本発明で使用するジメチルアミノエチルメタクリレート塩化メチル4級塩系水溶性ポリマーは鉄系、アルミ系の無機凝集剤に溶解する。しかし、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体でも固有粘度が本発明で規定した範囲より高い重合体は硫酸塩系無機凝集剤である硫酸バンドには溶解不可である。また、AAmを共重合した重合体、ジシアンジアミド系重合物ポリエチレンイミン及びポリビニルアミジンも溶解性が悪い。   As shown in Table 2, the dimethylaminoethyl methacrylate methyl chloride quaternary salt water-soluble polymer used in the present invention is dissolved in an iron-based or aluminum-based inorganic flocculant. However, even a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer cannot dissolve in a sulfate band which is a sulfate inorganic flocculant if its intrinsic viscosity is higher than the range specified in the present invention. In addition, a polymer obtained by copolymerizing AAm, a dicyandiamide-based polymer polyethyleneimine, and polyvinylamidine have poor solubility.

試験例2(廃水処理剤の安定性試験):
重合体と無機凝集剤を調合した廃水処理剤を室温で暗所に保存し、経時的な粘度変化を測定し、溶液安定性を調査した。溶液粘度は(株)東京計器社製のB型粘度を使用して測定した。結果を表3に示す。
Test Example 2 (Wastewater treatment agent stability test):
A wastewater treatment agent prepared by mixing a polymer and an inorganic flocculant was stored in a dark place at room temperature, a change in viscosity over time was measured, and the solution stability was investigated. The solution viscosity was measured using B-type viscosity manufactured by Tokyo Keiki Co., Ltd. The results are shown in Table 3.

Figure 0005733677
Figure 0005733677

表3中の試験例2−1〜2−10に示すように、本発明で使用する水溶性ポリマーは、無機凝集剤の種類によらず4週間後の粘度増加率が10%程度であり安定している。そして、試験例2−11〜2−12に示すように、本発明で規定する範囲内において配合比を変えても4週間後の粘度増加率が10%程度であり安定している。   As shown in Test Examples 2-1 to 2-10 in Table 3, the water-soluble polymer used in the present invention has a viscosity increase rate of about 10% after 4 weeks regardless of the type of the inorganic flocculant and is stable. doing. As shown in Test Examples 2-11 to 2-12, even if the blending ratio is changed within the range defined in the present invention, the viscosity increase rate after 4 weeks is about 10% and is stable.

比較試験例2−1及び比較試験例2−2に示すように、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体であっても固有粘度が本願発明で規定する範囲より高い場合は、粘度増加率が高く不安である。また、比較試験例2−3及び比較試験例2−4に示すように、AAmを含有する重合体を使用した場合および原料組成の異なる重合体を使用した場合も粘度増加率が高く不安である。また、比較試験例2−5に示すように、DADMAC系重合体を使用した場合は、4週間後の粘度増加率がPACとの併用において、25%、硫酸バンドとの併用において56%であり、大幅に粘度が増加する。   As shown in Comparative Test Example 2-1 and Comparative Test Example 2-2, even if it is a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer, if the intrinsic viscosity is higher than the range specified in the present invention, the viscosity increase rate Is high and uneasy. Moreover, as shown in Comparative Test Example 2-3 and Comparative Test Example 2-4, when using a polymer containing AAm and when using a polymer having a different raw material composition, the viscosity increase rate is high and uneasy. . As shown in Comparative Test Example 2-5, when a DADMAC polymer was used, the rate of increase in viscosity after 4 weeks was 25% in combination with PAC and 56% in combination with sulfate band. , Greatly increase the viscosity.

実施例1〜5及び比較例1〜7:
Aダストコントロール用品のリース会社におけるモップ及びマット洗浄廃水を採取して凝集試験を実施した。廃水の性状は、pH=8.9、SS=350mg/l、420nmの透過率=2%であった。
Examples 1-5 and Comparative Examples 1-7:
A mop and mat washing waste water from a leasing company for A dust control products was collected and subjected to a coagulation test. The properties of the wastewater were pH = 8.9, SS = 350 mg / l, and transmittance at 420 nm = 2%.

先ず、500mlのビーカーに廃水を500ml採取し、各種廃水処理剤或いはPACを添加し、150rpmの回転数で1分間攪拌、混合した後、pH5.5に調節した。次いで、高分子凝集剤としてアニオン系の高分子凝集剤A1(ダイヤニトリックス社製、表品名AP741B)を添加し、更に、100rpmの回転数で1分間攪拌して凝集フロックを形成させた。フロック径、凝集フロックの沈降時間、処理水の濁度および色度を測定した。結果を表4に示す。   First, 500 ml of waste water was collected in a 500 ml beaker, various waste water treatment agents or PAC were added, and the mixture was stirred and mixed at a rotation speed of 150 rpm for 1 minute, and then adjusted to pH 5.5. Next, an anionic polymer flocculant A1 (manufactured by Daianitrix, name of product AP741B) was added as a polymer flocculant, and the mixture was further stirred for 1 minute at a rotation speed of 100 rpm to form an aggregate floc. The floc diameter, the sedimentation time of the aggregated floc, the turbidity and chromaticity of the treated water were measured. The results are shown in Table 4.

Figure 0005733677
Figure 0005733677

実施例1〜5に示すように、本発明の廃水処理剤は、何れも、凝集性が良好であり、濁度および色度が共に良好な処理水を得ることが出来る。   As shown in Examples 1 to 5, all of the wastewater treatment agents of the present invention have good cohesiveness and can provide treated water with good turbidity and chromaticity.

比較例1及び2に示すように、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体であっても固有粘度が本発明で規定する範囲より高い場合は、凝集フロック径と沈降時間は問題ないが、処理水の濁度と色度が実施例より大幅に劣り、特に色度においてPACを使用した比較例7より劣る。   As shown in Comparative Examples 1 and 2, when the intrinsic viscosity is higher than the range specified in the present invention even with a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer, the aggregated floc diameter and sedimentation time are not a problem. The turbidity and chromaticity of treated water are significantly inferior to those of the examples, and in particular, inferior to Comparative Example 7 using PAC in chromaticity.

比較例3及び4に示すように、AAmを含有する重合体、原料組成の異なる重合体を使用した場合は、凝集フロック径と沈降時間は問題ないが、処理水の濁度と色度が実施例より大幅に劣る。   As shown in Comparative Examples 3 and 4, when a polymer containing AAm or a polymer having a different raw material composition is used, there is no problem with the aggregated floc diameter and sedimentation time, but the turbidity and chromaticity of the treated water are not affected. Much worse than the example.

比較例5及び6に示すように、DADMAC或いはアルキルアミン・エピクロロヒドリン縮合物を使用した場合は、PACを使用した比較例7よりは良好な結果であるが、実施例に比較すると色度が大幅に劣る。   As shown in Comparative Examples 5 and 6, when DADMAC or an alkylamine / epichlorohydrin condensate was used, the results were better than Comparative Example 7 using PAC, but the chromaticity was higher than that of Examples. Is significantly inferior.

比較例7に示すように、PACを使用した場合は、実施例と比較し、処理水の濁度および色度が大幅に劣る。   As shown in Comparative Example 7, when PAC is used, the turbidity and chromaticity of the treated water are significantly inferior to those of Examples.

実施例6〜12及び比較例8〜15:
N下水処理場の返流水(余剰汚泥の遠心濃縮分離液)を使用して凝集試験を実施した。廃水の性状は、pH=6.9、濁度(NTU)=287であった。
Examples 6-12 and Comparative Examples 8-15:
The agglomeration test was carried out using the return water from N wastewater treatment plant (centrifugal concentrate of excess sludge). The properties of the wastewater were pH = 6.9 and turbidity (NTU) = 287.

先ず、500mlのビーカーに廃水を500ml採取し、各種廃水処理剤或いはPACを添加し、150rpmの回転数で1分間攪拌、混合した後、pH5.5に調節した。次いで、高分子凝集剤としてアニオン系の高分子凝集剤A2(ダイヤニトリックス社製、表品名AP120C)を添加し、更に、100rpmの回転数で1分間攪拌して凝集フロックを形成させた。フロック径、凝集フロックの沈降時間、処理水の濁度を測定した。結果を表5に示す。   First, 500 ml of waste water was collected in a 500 ml beaker, various waste water treatment agents or PAC were added, and the mixture was stirred and mixed at a rotation speed of 150 rpm for 1 minute, and then adjusted to pH 5.5. Next, an anionic polymer flocculant A2 (manufactured by Daianitrix Co., Ltd., product name AP120C) was added as a polymer flocculant, and further stirred for 1 minute at a rotation speed of 100 rpm to form a floc floc. The floc diameter, the sedimentation time of the aggregated floc, and the turbidity of the treated water were measured. The results are shown in Table 5.

Figure 0005733677
Figure 0005733677

実施例6〜9に示すように、本発明の廃水処理剤(配合比:1/100)は、何れも、凝集性および処理水の濁度が共に良好である。また、実施例10〜12に示すように、本発明の廃水処理剤(配合比:0.1/100〜2/100)は、何れも、凝集性および処理水の濁度が共に良好である。上記の何れの配合比ともPACを使用した比較例7より優れるものの、0.1以下及び2以上の配合比ではDADMACを使用した比較例5と同程度の処理性能である。   As shown in Examples 6 to 9, all of the wastewater treatment agents (formulation ratio: 1/100) of the present invention have good cohesiveness and turbidity of treated water. In addition, as shown in Examples 10 to 12, the wastewater treatment agent (mixing ratio: 0.1 / 100 to 2/100) of the present invention has good cohesiveness and turbidity of treated water. . Any of the above blending ratios is superior to Comparative Example 7 using PAC, but the blending ratios of 0.1 or less and 2 or more are comparable to those of Comparative Example 5 using DADMAC.

比較例8及び9に示すように、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体であっても固有粘度が本発明で規定する範囲より高い場合は、凝集フロック径および沈降時間は問題ないが、処理水の濁度が実施例より大幅に劣る。   As shown in Comparative Examples 8 and 9, even if it is a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer, if the intrinsic viscosity is higher than the range specified in the present invention, the aggregated floc diameter and sedimentation time are not a problem. The turbidity of treated water is significantly inferior to the examples.

比較例10及び11に示すように、AAmを含有する重合体、原料組成の異なる重合体を使用した場合も、凝集フロック径および沈降時間は問題ないが、処理水の濁度が実施例より大幅に劣る。   As shown in Comparative Examples 10 and 11, even when a polymer containing AAm and a polymer having different raw material compositions were used, there was no problem with the aggregated floc diameter and settling time, but the turbidity of the treated water was significantly higher than in the examples. Inferior to

比較例12及び13に示すように、DADMAC或いはアルキルアミン・エピクロロヒドリン縮合物を使用した場合は、PACを使用した比較例7よりは良好な結果であるが、実施例に比較すると濁度が劣る。   As shown in Comparative Examples 12 and 13, when DADMAC or an alkylamine / epichlorohydrin condensate was used, the result was better than Comparative Example 7 using PAC, but turbidity compared to Examples. Is inferior.

比較例14示すように、PACを使用した場合は、実施例に比較すると処理水の濁度が大幅に劣る。また、比較例15に示すように、PAC添加量を50%増加して600mg/l添加した場合、処理水の濁度は比較例14に比較して向上するが、実施例より劣る。   As shown in Comparative Example 14, when PAC is used, the turbidity of treated water is significantly inferior compared to the Examples. Moreover, as shown in Comparative Example 15, when the PAC addition amount is increased by 50% and 600 mg / l is added, the turbidity of the treated water is improved as compared with Comparative Example 14, but is inferior to the Examples.

実施例13〜17及び比較例16〜20:
実施例6〜12と同じN下水処理場の返流水(余剰汚泥の遠心濃縮分離液)を使用して凝集試験を実施した。
Examples 13-17 and Comparative Examples 16-20:
The coagulation test was carried out using the return water (centrifugal concentrate of excess sludge) from the same N sewage treatment plant as in Examples 6-12.

先ず、500mlのビーカーに廃水を500ml採取し、各種廃水処理剤或いは各種無機凝集剤を添加し、150rpmの回転数で1分間攪拌、混合した後、pH5.5に調節した。次いで、高分子凝集剤としてアニオン系の高分子凝集剤A2(ダイヤニトリックス社製、表品名AP120C)を添加し、更に、100rpmの回転数で1分間攪拌して凝集フロックを形成させた。フロック径、凝集フロックの沈降時間、処理水の濁度を測定した。結果を表6に示す。   First, 500 ml of wastewater was collected in a 500 ml beaker, various wastewater treatment agents or various inorganic flocculants were added, and the mixture was stirred and mixed at a rotation speed of 150 rpm for 1 minute, and then adjusted to pH 5.5. Next, an anionic polymer flocculant A2 (manufactured by Daianitrix Co., Ltd., product name AP120C) was added as a polymer flocculant, and further stirred for 1 minute at a rotation speed of 100 rpm to form a floc floc. The floc diameter, the sedimentation time of the aggregated floc, and the turbidity of the treated water were measured. The results are shown in Table 6.

Figure 0005733677
Figure 0005733677

実施例13〜15に示すように、本発明の廃水処理剤は、何れも、凝集性および処理水濁度が共に良好である。   As shown in Examples 13 to 15, all of the wastewater treatment agents of the present invention have good cohesiveness and treated water turbidity.

実施例16及び17に示すように、本発明における水溶性ポリマーとしてK2を使用し、無機凝集剤として、塩化アルミ(実施例16)又は塩化第二鉄(実施例17)を使用した場合、何れも、硫酸バンド或いはPACを使用した結果と同様に良好結果を得ることが出来る。   As shown in Examples 16 and 17, when K2 is used as the water-soluble polymer in the present invention and aluminum chloride (Example 16) or ferric chloride (Example 17) is used as the inorganic flocculant, Also, good results can be obtained in the same manner as the results using sulfuric acid band or PAC.

比較例16に示すように、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体であっても固有粘度が本発明で規定する範囲より高い場合、また、比較例17に示すように、DADMACを使用した場合は、凝集フロック径、沈降時間及び処理水の濁度とも実施例25〜27より劣る。   As shown in Comparative Example 16, even in the case of a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer, DADMAC was used as shown in Comparative Example 17 when the intrinsic viscosity was higher than the range specified in the present invention. In this case, the aggregated floc diameter, the sedimentation time, and the turbidity of the treated water are inferior to those of Examples 25 to 27.

比較例18は硫酸バンド、比較例19は塩化アルミ、比較例20は塩化第二鉄を使用した場合であるが、それぞれ、K2を配合した廃水処理剤の実施例14、15、16に比較し、凝集フロック径、沈降時間及び処理水の濁度とも大幅に劣る。   Comparative Example 18 is a case where sulfuric acid band is used, Comparative Example 19 is a case where aluminum chloride is used, and Comparative Example 20 is a case where ferric chloride is used. Compared to Examples 14, 15, and 16 of the wastewater treatment agent containing K2, respectively. In addition, the aggregate floc diameter, the sedimentation time, and the turbidity of the treated water are greatly inferior.

実施例18〜23及び比較例21〜27:
T製紙会社の工場廃水(マシーン/DIP混合廃水)を使用して凝集試験を実施した。廃水の性状はpH=8.4、濁度(NTU)=107であった。
Examples 18-23 and Comparative Examples 21-27:
Coagulation tests were performed using T paper company factory wastewater (machine / DIP mixed wastewater). The properties of the wastewater were pH = 8.4 and turbidity (NTU) = 107.

先ず、500mlのビーカーに廃水を500ml採取し、廃水処理剤或いは塩化アルミを添加し、150rpmの回転数で1分間攪拌、混合した。次いで、高分子凝集剤としてアニオン系の高分子凝集剤A3(ダイヤニトリックス社製、表品名AP805C)を添加し、更に、100rpmの回転数で1分間攪拌して凝集フロックを形成させた。フロック径、凝集フロックの沈降時間、処理水の濁度を測定した。結果を表7に示す。   First, 500 ml of waste water was collected in a 500 ml beaker, a waste water treatment agent or aluminum chloride was added, and the mixture was stirred and mixed for 1 minute at a rotation speed of 150 rpm. Next, an anionic polymer flocculant A3 (manufactured by Daianitrix, product name AP805C) was added as a polymer flocculant, and the mixture was further stirred for 1 minute at a rotation speed of 100 rpm to form an aggregate floc. The floc diameter, the sedimentation time of the aggregated floc, and the turbidity of the treated water were measured. The results are shown in Table 7.

Figure 0005733677
Figure 0005733677

実施例18〜20に示すように、本発明の廃水処理剤(配合比1/100)は、何れも、凝集性および処理水濁度が共に良好である。実施例21〜23に示すように、本発明の廃水処理剤(配合比0.1/100〜2/100)は、何れも、凝集性および処理水濁度が共に良好である。上記の何れの配合比とも、塩化アルミ(比較例26)、DADMAC(比較例24)及びアルキルアミン・エピクロロヒドリン縮合物(比較例25)より優れている。   As shown in Examples 18 to 20, each of the wastewater treatment agents (formulation ratio 1/100) of the present invention has good cohesiveness and treated water turbidity. As shown in Examples 21 to 23, the wastewater treatment agent (mixing ratio 0.1 / 100 to 2/100) of the present invention has good cohesiveness and treated water turbidity. Any of the above blending ratios is superior to aluminum chloride (Comparative Example 26), DADMAC (Comparative Example 24), and alkylamine / epichlorohydrin condensate (Comparative Example 25).

比較例21及び22に示すように、ジメチルアミノエチルメタクリレート塩化メチル4級塩重合体であっても固有粘度が本発明で規定する範囲より高い場合は、凝集フロック径および沈降時間は問題ないが、処理水の濁度が実施例より大幅に劣る。   As shown in Comparative Examples 21 and 22, when the intrinsic viscosity is higher than the range specified in the present invention even with a dimethylaminoethyl methacrylate methyl chloride quaternary salt polymer, the aggregated floc diameter and sedimentation time are not a problem. The turbidity of treated water is significantly inferior to the examples.

比較例23及び24に示すように、AAmを含有する重合体、原料組成の異なる重合体を使用した場合は、凝集フロック径、沈降時間は問題ないが、処理水の濁度が実施例より大幅に劣る。   As shown in Comparative Examples 23 and 24, when a polymer containing AAm and a polymer having a different raw material composition were used, there was no problem with the aggregate floc diameter and the sedimentation time, but the turbidity of the treated water was significantly higher than in the examples. Inferior to

比較例25及び26に示すように、配合する重合体としてDADMAC或いはアルキルアミン・エピクロロヒドリン縮合物使用した場合は、塩化アルミを使用した比較例26よりは良好な結果であるが、実施例に比較すると濁度が劣る。   As shown in Comparative Examples 25 and 26, when DADMAC or an alkylamine / epichlorohydrin condensate was used as a polymer to be blended, the results were better than Comparative Example 26 using aluminum chloride. Compared to turbidity is inferior.

比較例27に示すように、塩化アルミを使用した場合は、凝集フロック径および沈降時間は問題ないが、処理水の濁度が実施例より大幅に劣る。   As shown in Comparative Example 27, when aluminum chloride is used, there is no problem with the aggregate floc diameter and settling time, but the turbidity of the treated water is significantly inferior to that of the example.

Claims (2)

固有粘度が0.01〜4.0でジアルキルアミノアルキルメタクリレート塩化メチル4級塩を90重量%を超える割合で含み(メタ)アクリルアミドを含まない水溶性ポリマーと鉄又はアルミ系の無機凝集剤から成り、水溶性ポリマーと無機凝集剤の配合比率が重量比として0.05/100〜10/100であることを特徴とする廃水処理剤。 It consists of a water-soluble polymer having an intrinsic viscosity of 0.01 to 4.0 and a methyl chloride quaternary salt of dialkylaminoalkyl methacrylate exceeding 90% by weight and containing no (meth) acrylamide and an iron or aluminum inorganic flocculant. A wastewater treatment agent, wherein the mixing ratio of the water-soluble polymer and the inorganic flocculant is 0.05 / 100 to 10/100 as a weight ratio. 水溶性ポリマーがジメチルアミノエチルメタクリレート塩化メチル4級塩の単独重合体である請求項1に記載の廃水処理剤。   The wastewater treatment agent according to claim 1, wherein the water-soluble polymer is a homopolymer of dimethylaminoethyl methacrylate methyl chloride quaternary salt.
JP2010269676A 2010-12-02 2010-12-02 Wastewater treatment agent Active JP5733677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269676A JP5733677B2 (en) 2010-12-02 2010-12-02 Wastewater treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269676A JP5733677B2 (en) 2010-12-02 2010-12-02 Wastewater treatment agent

Publications (2)

Publication Number Publication Date
JP2012115790A JP2012115790A (en) 2012-06-21
JP5733677B2 true JP5733677B2 (en) 2015-06-10

Family

ID=46499298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269676A Active JP5733677B2 (en) 2010-12-02 2010-12-02 Wastewater treatment agent

Country Status (1)

Country Link
JP (1) JP5733677B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949206B2 (en) * 2012-06-25 2016-07-06 栗田工業株式会社 Cooling water blow water treatment method and treatment apparatus
JP6138085B2 (en) * 2014-05-22 2017-05-31 黒崎白土工業株式会社 Radioactive cesium-containing wastewater treatment agent

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670893A (en) * 1979-11-09 1981-06-13 Norihiko Base Treatment of muddy water
US4800039A (en) * 1987-03-05 1989-01-24 Calgon Corporation Flocculation of suspended solids from aqueous solutions
JPH02144103A (en) * 1988-11-14 1990-06-01 Calgon Corp Aggregation of suspended solids from aqueous solution
JPH02194803A (en) * 1989-01-23 1990-08-01 Taki Chem Co Ltd Flocculant
JPH06277674A (en) * 1993-03-29 1994-10-04 Ipposha Oil Ind Co Ltd Treatment process for waste coating material containing water and one-pack type waste coating material containing water treatment agent
JP3001029B2 (en) * 1993-07-12 2000-01-17 多木化学株式会社 Flocculant
JP3305688B2 (en) * 1999-11-01 2002-07-24 興南化学工業株式会社 Polymer flocculant, method for producing the same, and method for dehydrating organic sludge
JP4029021B2 (en) * 2002-10-02 2008-01-09 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method
JP4382533B2 (en) * 2003-03-07 2009-12-16 三洋化成工業株式会社 Polymer flocculant
JP4175194B2 (en) * 2003-06-26 2008-11-05 東亞合成株式会社 Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP4498762B2 (en) * 2004-01-29 2010-07-07 友岡化研株式会社 Organic coagulants and polymer flocculants
JP4021418B2 (en) * 2004-02-20 2007-12-12 三洋化成工業株式会社 Organic coagulants and polymer flocculants
JP4616108B2 (en) * 2005-07-22 2011-01-19 三洋化成工業株式会社 Organic coagulant and wastewater or sludge treatment
JP4521830B2 (en) * 2005-12-20 2010-08-11 多木化学株式会社 Flocculant for wastewater treatment
JP4786558B2 (en) * 2007-01-16 2011-10-05 三洋化成工業株式会社 Polymer flocculant
JP5528660B2 (en) * 2007-05-31 2014-06-25 三洋化成工業株式会社 Polymer flocculant
JP5621254B2 (en) * 2009-12-24 2014-11-12 三菱レイヨン株式会社 Oil-containing wastewater treatment method
JP5621256B2 (en) * 2009-12-24 2014-11-12 三菱レイヨン株式会社 Wastewater coagulation method
JP5621255B2 (en) * 2009-12-24 2014-11-12 三菱レイヨン株式会社 Treatment method of inorganic waste water
JP5621260B2 (en) * 2010-01-07 2014-11-12 三菱レイヨン株式会社 Wastewater coagulation method

Also Published As

Publication number Publication date
JP2012115790A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
RU2205847C2 (en) Polymer compositions, their manufacture and use
AU744694B2 (en) Thickening of aqueous mineral suspensions
JP5621260B2 (en) Wastewater coagulation method
JP4004016B2 (en) Water treatment method
JP5621256B2 (en) Wastewater coagulation method
Yang et al. Fabrication and characterization of poly (ferric chloride)-polyamine flocculant and its application to the decolorization of reactive dyes
JP5659487B2 (en) Wastewater coagulation method
JP5733677B2 (en) Wastewater treatment agent
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP5589430B2 (en) Treatment method of inorganic waste water
CN101522582B (en) Method of dewatering sewage sludge
JPH08141315A (en) Treatment method for turbid water
JP5843428B2 (en) Coagulation treatment method for colored wastewater
Yang et al. Synthesis and application of polyferric chloride–poly (epichlorohydrin–dimethylamine) composites using different crosslinkers
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP2020065985A (en) Textile dyeing waste water treatment method and textile dyeing waste water treatment agent kit
JP3633726B2 (en) Sludge treatment method
JPH0278499A (en) Treatment of sludge
JPH0938700A (en) Treatment of organic sludge
JP2014158993A (en) Flocculation method of oil inclusion cleaning waste water
JP2013248583A (en) Flocculant and wastewater treatment method
JP2668711B2 (en) Paper and pulp wastewater coagulation treatment method
JP2011062634A (en) Flocculant for service water and method for treating raw water for service water
JP2003033604A (en) Waste water treatment agent
JP6919116B2 (en) How to treat rice-washed wastewater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5733677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150405

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250