JP5834707B2 - Treatment method of organic sludge - Google Patents

Treatment method of organic sludge Download PDF

Info

Publication number
JP5834707B2
JP5834707B2 JP2011212504A JP2011212504A JP5834707B2 JP 5834707 B2 JP5834707 B2 JP 5834707B2 JP 2011212504 A JP2011212504 A JP 2011212504A JP 2011212504 A JP2011212504 A JP 2011212504A JP 5834707 B2 JP5834707 B2 JP 5834707B2
Authority
JP
Japan
Prior art keywords
metal salt
amidine
flocculant
added
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011212504A
Other languages
Japanese (ja)
Other versions
JP2013071060A (en
Inventor
元樹 白石
元樹 白石
茂 田辺
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011212504A priority Critical patent/JP5834707B2/en
Publication of JP2013071060A publication Critical patent/JP2013071060A/en
Application granted granted Critical
Publication of JP5834707B2 publication Critical patent/JP5834707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は有機質汚泥の処理方法に関する。   The present invention relates to a method for treating organic sludge.

従来、下水、し尿処理場及び食品工業等の有機性廃水より生じる有機質汚泥は、高分子凝集剤を用いてスクリューデカンター(遠心脱水機)、スクリュープレス型脱水機、ベルトプレス等で脱水処理した後、埋め立て或いは焼却処分されている。有機質汚泥の脱水には、汚泥の性状に応じカチオン性高分子凝集剤が広く用いられている。このようなカチオン性高分子凝集剤としては、例えば、ポリジアルキルアミノアルキル(メタ)アクリレートの塩又は第4級アンモニウム塩、ポリジアルキルアミノアルキル(メタ)アクリルアミドの塩又は第4級アンモニウム塩、ポリ(メタ)アクリルアミドのマンニッヒ変性物又はその第4級アンモニウム塩等のアクリル系カチオン性高分子が使用されている。   Conventionally, organic sludge generated from organic wastewater such as sewage, human waste treatment plant and food industry is dehydrated with a screw decanter (centrifugal dehydrator), screw press type dehydrator, belt press, etc. using a polymer flocculant. Landfilled or incinerated. For dewatering organic sludge, cationic polymer flocculants are widely used depending on the properties of the sludge. Examples of such cationic polymer flocculants include polydialkylaminoalkyl (meth) acrylate salts or quaternary ammonium salts, polydialkylaminoalkyl (meth) acrylamide salts or quaternary ammonium salts, poly ( An acrylic cationic polymer such as a Mannich modified product of meth) acrylamide or a quaternary ammonium salt thereof is used.

しかしながら、近年、下水道の整備などにより、汚泥発生量が増加し、汚泥中の有機物量の増加、腐敗等による汚泥性状の悪化が進んできている。そのために、現在、主として使用されている上記のようなカチオン性高分子凝集剤では、十分な処理が行えない場合が増えてきている。特に、汚泥性状の悪化により脱水ケーキ含水率が高くなると、脱水ケーキの焼却処分費が高くなり含水率を低下させる脱水処理方法或いは高分子凝集剤が求められている。   However, in recent years, the amount of sludge generated has increased due to the development of sewers, etc., and the sludge properties have deteriorated due to an increase in the amount of organic matter in the sludge, decay and the like. For this reason, the cationic polymer flocculants as described above, which are mainly used at present, are increasingly unable to perform sufficient treatment. In particular, when the moisture content of the dehydrated cake is increased due to the deterioration of the sludge properties, the cost for incineration of the dehydrated cake is increased, and a dehydration method or a polymer flocculant that lowers the moisture content is required.

含水ケーキの含水率を低下させる脱水処理方法として、有機質汚泥に高分子凝集剤を添加混合後、次いで無機凝結剤を添加混合して脱水処理する方法(特許文献1)や、有機質汚泥に無機凝集剤を添加混合後、次いで両性系高分子凝集剤を添加混合し脱水処理する方法(特許文献2)が提案されている。しかしながら、これらの方法では、脱水ケーキの含水率は低下するものの、汚泥に大量の無機凝集剤を添加するため、汚泥pHの低下による腐食及び脱水ケーキを償却した場合の焼却灰の増加、焼却灰中の鉄、アルミ等金属類が増加する問題がある。   As a dehydration treatment method for reducing the moisture content of the water-containing cake, after adding and mixing the polymer flocculant to the organic sludge and then adding and mixing the inorganic coagulant (Patent Document 1), the organic sludge is inorganic agglomerated. There has been proposed a method (Patent Document 2) in which an amphoteric polymer flocculant is added and mixed and then dehydrated after the agent is added and mixed. However, in these methods, although the moisture content of the dewatered cake is reduced, a large amount of inorganic flocculant is added to the sludge. There is a problem that the number of metals such as iron and aluminum increases.

また、含水ケーキの含水率を低下させる脱水剤として、アミジン環構造単位を含むカチオン性高分子凝集剤(以後「アミジン系高分子凝集剤」という)が提案されている(特許文献3)。アミジン系高分子凝集剤は、有機質汚泥の脱水に対して優れた脱水性能を有しているが、対象とする有機質汚泥の性状によっては、脱水分離液が激しく発泡して周囲を汚染したり、発泡により処理能力が低下し、充分な効果が得られないことがあり、発泡を抑制する方法が望まれている。   Further, as a dehydrating agent for reducing the water content of the water-containing cake, a cationic polymer flocculant containing an amidine ring structural unit (hereinafter referred to as “amidine-based polymer flocculant”) has been proposed (Patent Document 3). Amidine-based polymer flocculants have excellent dewatering performance for organic sludge dewatering, but depending on the nature of the target organic sludge, the dehydrated separation liquid foams violently and contaminates the surroundings, A processing capability is reduced by foaming, and a sufficient effect may not be obtained, and a method for suppressing foaming is desired.

因に、脱水分離液の発泡原因は次のように考えられる。すなわち、有機質汚泥に添加されたカチオン系高分子凝集剤の大部分は有機質汚泥と反応してフロックを形成し脱水ケーキと共に系外に排出されるが一部は脱水分離液中に残留し、脱水分離液の発泡の一因となる。一般的に使用されるアミノアルキル(メタ)アクリレート系カチオン凝集剤に比べアミジン系高分子凝集剤はポリマー構造等の原因で激しく発泡すると考えられる。   The cause of foaming of the dehydrated separation liquid is considered as follows. That is, most of the cationic polymer flocculant added to the organic sludge reacts with the organic sludge to form a floc and is discharged out of the system together with the dehydrated cake, but a part remains in the dehydrated separation liquid. This contributes to foaming of the separation liquid. Compared to the commonly used aminoalkyl (meth) acrylate cationic flocculants, amidine polymer flocculants are thought to foam more vigorously due to polymer structure and the like.

脱水分離液の発泡を抑制する方法としては、高分子凝集剤に消泡剤としてシリコーンオイルを添加する方法(特許文献4)や、高分子凝集剤に消泡剤として低級アルコール系消泡剤や有機極性化合物系消泡剤を添加する方法(特許文献5)が提案されている。しかしながら、有機化合物系の消泡剤は高価であり、経済的な負担となる。   As a method for suppressing foaming of the dehydrated separation liquid, a method of adding silicone oil as an antifoaming agent to a polymer flocculant (Patent Document 4), a lower alcohol-based antifoaming agent as an antifoaming agent, A method of adding an organic polar compound-based antifoaming agent (Patent Document 5) has been proposed. However, the organic compound-based antifoaming agent is expensive and is an economic burden.

特開2002−166300号公報JP 2002-166300 A 特開昭63−158200号公報JP 63-158200 A 特開平5−192513号公報JP-A-5-192513 特開昭62−53800号公報JP-A-62-53800 特開昭61−245806号公報JP-A 61-245806

本発明の目的は、アミジン系高分子凝集剤を用いた有機質汚泥の処理方法において、有機質汚泥の凝集性や脱水性を損なうことなく、脱水分離液の発泡を抑制し、周囲への汚染や汚泥処理性能の低下を防止し、効率的な脱水処理を行うことが出来る、有機質汚泥の処理方法を提供することにある。   An object of the present invention is to treat organic sludge using an amidine-based polymer flocculant, and suppress the foaming of the dehydrated separation liquid without impairing the cohesiveness and dewatering property of the organic sludge. An object of the present invention is to provide an organic sludge treatment method capable of preventing a reduction in treatment performance and performing an efficient dehydration treatment.

本発明者らは、凝集・脱水処理に悪影響を及ぼすことなく、脱水分離液中に残留するアミジン系高分子凝集剤を減少させることができる技術の検討を行った結果、次のような知見を得た。すなわち、有機質汚泥にアミジン系高分子凝集剤を添加混合した後、多価陰イオンのアルカリ土類金属塩を添加混合することにより、液中に残留するアミジン凝集剤と多価陰イオンがイオン錯体を形成し不溶化して脱水ケーキと共に除去され、脱水分離液の発泡が抑制される。   As a result of studying a technique capable of reducing the amidine-based polymer flocculant remaining in the dehydrated separation liquid without adversely affecting the flocculation / dehydration treatment, the inventors have obtained the following knowledge. Obtained. That is, an amidine polymer flocculant is added to and mixed with organic sludge, and then an alkaline earth metal salt of a polyvalent anion is added and mixed so that the amidine flocculant remaining in the liquid and the polyvalent anion are ion complexed. Is formed and insolubilized and removed together with the dehydrated cake, and foaming of the dehydrated separation liquid is suppressed.

因に、一価の陰イオン塩では錯体が形成されず、発泡抑制効果は得られない。また、アミジン系高分子凝集剤を有機質汚泥に添加混合する前に多価陰イオンのアルカリ金属塩を添加混合した場合には効果がない。また、アミジン系高分子凝集剤以外の一般的なアミノアルキル(メタ)アクリレート系カチオン凝集剤の場合にも効果はない。更に、多価陰イオン塩としてアルカリ金属でなく、無機凝集剤として用いられる、ポリ硫酸鉄、硫酸アルミ等の金属塩は、発泡の抑制効果はあるが、凝集フロックを細かく破壊するため、凝集・脱水処理に悪影響を与える為、好ましくない。   Incidentally, the monovalent anionic salt does not form a complex, and the foaming suppression effect cannot be obtained. Further, there is no effect when an alkali metal salt of a polyvalent anion is added and mixed before the amidine polymer flocculant is added to and mixed with the organic sludge. Further, there is no effect in the case of a general aminoalkyl (meth) acrylate cationic flocculant other than the amidine polymer flocculant. Furthermore, metal salts such as polyiron sulfate and aluminum sulfate, which are used as inorganic flocculants instead of alkali metals as polyvalent anion salts, have the effect of suppressing foaming, but break down the flocs finely. Since it has a bad influence on a dehydration process, it is not preferable.

本発明は、前記の知見に基づき完成されたものであり、その要旨は、有機質汚泥にアミジン系高分子凝集剤を添加混合後、更に多価陰イオンのアルカリ金属塩を添加混合し液中に残留するアミジン凝集剤と多価陰イオンのイオン錯体を形成させた後に脱水処理することを特徴とする有機質汚泥の処理方法に存する。 The present invention has been completed on the basis of the above findings, and the gist thereof is that after adding and mixing an amidine polymer flocculant to organic sludge, an alkali metal salt of a polyvalent anion is further added and mixed in the liquid. The present invention resides in a method for treating organic sludge, characterized in that a dehydration treatment is performed after forming an ion complex of the remaining amidine flocculant and a polyvalent anion .

本発明によりアミジン系高分子凝集剤を用いる有機質汚泥の処理方法において脱水効果を損なうことなく脱水分離液の発泡を抑制することが可能になる。   The present invention makes it possible to suppress foaming of the dehydrated separation liquid without impairing the dewatering effect in the organic sludge treatment method using the amidine polymer flocculant.

以下、本発明を詳細に説明する。本発明で用いられるアミジン系高分子凝集剤は、下記一般式(1)で表されるアミジン構成単位及び/又は下記一般式(2)で表されるアミジン構成単位を含有する。   Hereinafter, the present invention will be described in detail. The amidine polymer flocculant used in the present invention contains an amidine structural unit represented by the following general formula (1) and / or an amidine structural unit represented by the following general formula (2).

Figure 0005834707
(ただし、一般式(1)、(2)中、R、Rは、それぞれ独立に水素原子又はメチル基であり、Xは陰イオンである。)
Figure 0005834707
(However, in general formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.)

アミジン系高分子凝集剤は、例えば、特許第2624089号報に記載された方法によって製造することができる。具体的には、N−ビニルホルムアミド及びアクリロニトリルを共重合し、合成した共重合体を塩酸酸性下、加水分解及びその後の熱処理により分子内側鎖の一級アミノ基とシアノ基が環化しアミジン環を形成する。アミジン系高分子凝集剤の分子量(重量平均分子量)は、通常10万〜500万、好ましくは100万〜500万である。分子量が10万未満では凝集力が低下し、一方、500万超の分子量の重合体を商業ベースで生産することは現在のところ難しい。   The amidine polymer flocculant can be produced, for example, by the method described in Japanese Patent No. 2624089. Specifically, N-vinylformamide and acrylonitrile are copolymerized, and the synthesized copolymer is hydrolyzed under hydrochloric acid acidity, followed by heat treatment and the primary amino group and cyano group of the inner chain of the molecule are cyclized to form an amidine ring. To do. The molecular weight (weight average molecular weight) of the amidine polymer flocculant is usually 100,000 to 5,000,000, preferably 1,000,000 to 5,000,000. A molecular weight of less than 100,000 reduces cohesion, while it is currently difficult to produce a polymer with a molecular weight greater than 5 million on a commercial basis.

アミジン系高分子凝集剤は、単独で使用してもよく、両性高分子凝集剤及び或いはアミノアルキル(メタ)アクリレート系カチオン凝集剤と混合使用しても構わない。   The amidine polymer flocculant may be used alone or in combination with an amphoteric polymer flocculant and / or an aminoalkyl (meth) acrylate cationic flocculant.

本発明において用いられる両性高分子凝集剤とは、分子内にアニオン性基として、カルボキシル基、スルホン酸基を有し、カチオン性基として、第三級アミン、その中和塩、四級塩等を有する高分子凝集剤をいい、これらのイオン成分の他にノニオン性成分が含まれているものであってもよい。   The amphoteric polymer flocculant used in the present invention has a carboxyl group, a sulfonic acid group as an anionic group in the molecule, and a tertiary amine, a neutralized salt thereof, a quaternary salt, etc. as a cationic group. In addition to these ionic components, non-ionic components may be included.

両性高分子凝集剤に用いられるカチオン性モノマー単位としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、アリルジメチルアミン若しくはこれらの中和塩、四級塩等が挙げられ、また、ノニオン性のモノマー単位としては、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等を挙げることができる。いずれの単量体も、単独又は2種以上を使用することができる。両性高分子凝集剤の分子量は、通常、数百万以上であり、特に限定されるものではない。   Cationic monomer units used in amphoteric polymer flocculants include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, allyldimethylamine or these And nonionic monomer units include (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like. Any of these monomers can be used alone or in combination of two or more. The molecular weight of the amphoteric polymer flocculant is usually several million or more and is not particularly limited.

本発明において用いられるアミノアルキル(メタ)アクリレート系カチオン凝集剤とはアミノアルキル(メタ)アクリレート系カチオン単量体単独或いはノニオン性単量体との共重合により得られる重合体である。   The aminoalkyl (meth) acrylate cationic flocculant used in the present invention is a polymer obtained by copolymerizing an aminoalkyl (meth) acrylate cationic monomer alone or with a nonionic monomer.

アミノアルキル(メタ)アクリレート系カチオン単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート及びジエチルアミノ−2−ヒドロキシプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートの塩酸塩及び硫酸塩等の3級塩;ジアルキルアミノアルキル(メタ)アクリレートの塩化メチル付加物等のハロゲン化アルキル付加物及び塩化ベンジル等のハロゲン化アリール付加物等の4級塩;N,N−ジメチル(メタ)アクリルアミド等のジアルキル(メタ)アクリルアミド等の塩酸塩及び硫酸塩等の3級塩;ジアルキル(メタ)アクリルアミドの塩化メチル付加物等のハロゲン化アルキル付加物及び塩化ベンジル付加物等のハロゲン化アリール付加物等の4級塩が挙げられる。いずれの単量体も、単独又は2種以上を使用することができる。   As aminoalkyl (meth) acrylate cationic monomers, hydrochloric acid of dialkylaminoalkyl (meth) acrylate such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate and diethylamino-2-hydroxypropyl (meth) acrylate Tertiary salts such as salts and sulfates; quaternary salts such as alkyl halide adducts such as methyl chloride adducts of dialkylaminoalkyl (meth) acrylates and aryl halide adducts such as benzyl chloride; N, N-dimethyl Dialkyl (meth) acrylamides such as (meth) acrylamide hydrochlorides and tertiary salts such as sulfates; Halogenated alkyl halides such as methyl chloride adducts of dialkyl (meth) acrylamides and halogenated benzyl chloride adducts Aryl adduct, etc. Include the grade salt. Any of these monomers can be used alone or in combination of two or more.

本発明で用いられる両性凝集剤、アミノアルキル(メタ)アクリレート系カチオン凝集剤の重合方法は、沈殿重合、塊状重合、分散重合、水溶液重合等が挙げられるが、特に限定されるものではない。   The polymerization method of the amphoteric flocculant and aminoalkyl (meth) acrylate cationic flocculant used in the present invention includes precipitation polymerization, bulk polymerization, dispersion polymerization, aqueous solution polymerization and the like, but is not particularly limited.

アミノアルキル(メタ)アクリレート系カチオン凝集剤におけるカチオン当量値Cvは、特に制限されず、アミジン系高分子凝集剤との混合比を調整することにより良好な脱水性能を得ることができる。また、凝集剤の分子量を示す極限粘度[η]は、5dl/g以上が適当であり、[η]が高いほど大きく強いフロックになり良好な脱水処理が可能となる。[η]が5ml/g未満ではフロックが小さく弱くなり遠心脱水及びスクリュープレス脱水における脱水性が悪化するので好ましくない。   The cation equivalent value Cv in the aminoalkyl (meth) acrylate cationic flocculant is not particularly limited, and good dehydrating performance can be obtained by adjusting the mixing ratio with the amidine polymer flocculant. In addition, the intrinsic viscosity [η] indicating the molecular weight of the flocculant is appropriately 5 dl / g or more, and the higher [η], the larger the flocs and the better the dehydration process. If [η] is less than 5 ml / g, the flocs are small and weak, and the dehydrating properties in centrifugal dehydration and screw press dehydration are deteriorated, which is not preferable.

アミジン系高分子凝集剤と両性高分子凝集剤及び或いはアミノアルキル(メタ)アクリレート系カチオン凝集剤との混合比率は、特に制限されないが、アミジン系高分子凝集剤の比率が50%以上であることが好ましい。また、配合する両性凝集剤及びアミノアルキル(メタ)アクリレート系カチオン凝集剤は1種類でも複数の種類を配合しても構わない。アミジン系高分子凝集剤の添加量は、特に制限されず、汚泥性状に対応した適切な添加量を添加することが好ましい。   The mixing ratio of the amidine polymer flocculant and the amphoteric polymer flocculant and / or the aminoalkyl (meth) acrylate cationic flocculant is not particularly limited, but the ratio of the amidine polymer flocculant is 50% or more. Is preferred. Moreover, the amphoteric flocculant and the aminoalkyl (meth) acrylate cationic flocculant to be blended may be one kind or plural kinds. The addition amount of the amidine polymer flocculant is not particularly limited, and it is preferable to add an appropriate addition amount corresponding to the sludge properties.

本発明において、高分子凝集剤の他に、溶解性を向上、溶解液の保存安定性向上の目的で固体酸を加えても構わない。固体酸としてはスルファミン酸、酸性亜硫酸ソーダ等が挙げられる。   In the present invention, in addition to the polymer flocculant, a solid acid may be added for the purpose of improving the solubility and improving the storage stability of the solution. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.

本発明で使用する、多価陰イオンのアルカリ金属塩としては、硫酸ナトリウム(亡硝)、硫酸カリウム等硫酸塩、リン酸ナトリウム等リン酸塩、炭酸ナトリウム等炭酸塩を挙げることができる。また、使用する多価陰イオンのアルカリ金属塩は、単独でも、複数の薬剤を併用使用しても構わない。   Examples of the alkali metal salt of a polyvalent anion used in the present invention include sodium sulfate (a dead glass), sulfate such as potassium sulfate, phosphate such as sodium phosphate, and carbonate such as sodium carbonate. Moreover, the alkali metal salt of the polyvalent anion to be used may be used alone or in combination with a plurality of drugs.

多価陰イオンのアルカリ金属塩は水に溶解して使用する。溶解濃度は、特に制限されず、溶解可能な範囲の濃度で用いれば構わない。多価陰イオンのアルカリ金属塩の添加量は、残留するアミジン系高分子凝集剤の量にもよるが、一般的には有機質汚泥に対し300mg/L以上が好ましい。上限は、特に制限されず、過剰に添加しても特に不具合はないが、経済性を考慮すると2,000mg/L以下が好ましい。   The alkali metal salt of polyvalent anion is used by dissolving in water. The dissolution concentration is not particularly limited, and may be used within a concentration range in which dissolution is possible. The addition amount of the alkali metal salt of the polyvalent anion is generally preferably 300 mg / L or more based on the organic sludge, although it depends on the amount of the remaining amidine polymer flocculant. The upper limit is not particularly limited, and even if added in excess, there is no particular problem, but in consideration of economy, it is preferably 2,000 mg / L or less.

多価陰イオンのアルカリ金属塩の添加順序は、有機質汚泥にアミジン系高分子凝集剤を添加混合した後に添加混合することが必須である。アミジン系高分子凝集剤より先に添加した場合は脱水分離液の発泡抑制効果が発現しない。斯かる多段添加の方法としては、複数槽設置し、各凝集剤をそれぞれ別々の槽に添加して機械攪拌する方法、同一の槽に添加位置をずらして添加して機械攪拌する方法、廃水ラインに添加してライン混合する場合は位置をずらして添加する方法などが考えられる。   The order of addition of the alkali metal salt of the polyvalent anion is essential to be added and mixed after adding and mixing the amidine polymer flocculant to the organic sludge. When added prior to the amidine polymer flocculant, the foaming suppression effect of the dehydrated separation liquid does not appear. As a method of such multi-stage addition, a plurality of tanks are installed, each flocculant is added to separate tanks and mechanically stirred, the addition position is shifted to the same tank and mechanically stirred, waste water line In the case of adding to the mixture and mixing the lines, a method of adding by shifting the position can be considered.

以下、本発明を実施例および比較例によって更に詳細に説明するが、これらは本発明を何ら限定するものではない。尚、実施例の脱水処理試験において高分子凝集剤は表1に示すものを0.3重量%水溶液として使用した。また、以下の実施例及び比較例において、各特性の測定は以下の方法で行った。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, these do not limit this invention at all. In the dehydration test of the examples, the polymer flocculants shown in Table 1 were used as 0.3 wt% aqueous solutions. In the following examples and comparative examples, each characteristic was measured by the following method.

<測定、評価方法>
(1)TS濃度(蒸発残留物):定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)。
(2)VTS値(強熱減量):定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p297)。
(3)凝集フロック平均粒径:目視により測定した。
(4)脱水分離液の発泡性:
◎:多価陰イオンアルカリ金属塩無添加の発泡量に対し50%以上削減
○:多価陰イオンアルカリ金属塩無添加の発泡量に対し20〜40%削減
×:多価陰イオンアルカリ金属塩無添加の発泡量に対し同〜10%削減程度
<Measurement and evaluation method>
(1) TS concentration (evaporation residue): Measured based on a standard method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297)”.
(2) VTS value (ignition loss): Measured based on an ordinary method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p297”).
(3) Aggregated floc average particle diameter: measured visually.
(4) Foamability of dehydrated separation liquid:
A: Reduced by 50% or more with respect to the amount of foaming without addition of a polyvalent anionic alkali metal salt. ○: Reduction by 20 to 40% with respect to the amount of foaming without addition of a polyvalent anionic alkali metal salt. About 10% reduction compared to the amount of additive-free foam

Figure 0005834707
Figure 0005834707

実施例1〜11:
pH7.4、TS1.6%、VTS63.2%の下水消化汚泥を用い次の手順で脱水試験を行った。
Examples 1-11:
A dehydration test was conducted using sewage digested sludge having a pH of 7.4, a TS of 1.6%, and a VTS of 63.2% according to the following procedure.

(1)500mlのビーカーに上記汚泥を300ml採取する。
(2)アミジン系高分子凝集剤を所定量添加し、スパチュラで約200rpmの攪拌速度で30秒間攪拌混合する。
(3)更に多価陰イオンアルカリ金属塩を所定量添加し、同様の回転数で10秒間秒間攪拌混合する。
(4)凝集汚泥を濾布を敷いたヌッチェにあけて濾過し、濾液量を測定し、脱水性を評価する。
(5)脱水分離液100mlを300mlのガラス製メスシリンダーの採り、エアストーンにて0.2L/分の送風量にて30秒間空気を注入し、発泡した泡の量を測定する。
(1) Collect 300 ml of the sludge in a 500 ml beaker.
(2) A predetermined amount of amidine polymer flocculant is added, and mixed with a spatula for 30 seconds at a stirring speed of about 200 rpm.
(3) Further, a predetermined amount of a polyvalent anionic alkali metal salt is added and stirred and mixed for 10 seconds at the same rotational speed.
(4) The aggregated sludge is filtered through a Nutsche lined with a filter cloth, and the amount of filtrate is measured to evaluate the dewaterability.
(5) Take 100 ml of dehydrated separation liquid in a 300 ml glass graduated cylinder, inject air with an air stone at an air flow rate of 0.2 L / min for 30 seconds, and measure the amount of foam.

脱水試験結果を表2に示す。実施例1〜11は、何れも、形成フロックの粒子径、濾水性に悪影響を及ぼすことなく、脱水分離液の発泡を抑制できる結果であった。   Table 2 shows the results of the dehydration test. Each of Examples 1 to 11 was a result of suppressing the foaming of the dehydrated separation liquid without adversely affecting the particle diameter of the formed floc and the drainage.

比較例1:
比較例1は多価陰イオンアルカリ金属塩を添加しない以外は実施例1と同様に行った。脱水分離液は発泡大であった。
Comparative Example 1:
Comparative Example 1 was carried out in the same manner as Example 1 except that no polyvalent anionic alkali metal salt was added. The dehydrated separation liquid was large in foaming.

比較例2、3:
比較例2、3は多価陰イオンアルカリ金属塩に代えて一価の陰イオンアルカリ金属塩を添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Examples 2 and 3:
In Comparative Examples 2 and 3, a monovalent anionic alkali metal salt was added instead of the polyvalent anionic alkali metal salt. There was no foam suppression effect of the dehydrated separation liquid.

比較例4:
比較例4は多価陰イオンアルカリ金属塩に代えて多価陰イオン金属塩であるポリ硫酸鉄(PS)を添加した。脱水分離液の発泡は良好に抑制されるが、凝集フロックが小さく、濾水性が悪化し、実施例より劣る結果となった。
Comparative Example 4:
In Comparative Example 4, polysulfuric acid iron (PS), which is a polyvalent anionic metal salt, was added in place of the polyvalent anionic alkali metal salt. Foaming of the dehydrated separation liquid was satisfactorily suppressed, but the aggregated floc was small, the drainage was deteriorated, and the results were inferior to those of the examples.

比較例5:
比較例5は多価陰イオンアルカリ金属塩に代えて一価の陰イオン金属塩であるポリ塩化アルミニウム(PAC)を添加した。脱水分離液の発泡抑制、濾水性とも実施例より劣る結果となった。
Comparative Example 5:
In Comparative Example 5, polyaluminum chloride (PAC), which is a monovalent anion metal salt, was added in place of the polyvalent anion alkali metal salt. Both the suppression of foaming of the dehydrated separation liquid and the drainage were inferior to the examples.

比較例6:
比較例6はアミジン系高分子凝集剤に代えて一般的なアミノアルキル(メタ)アクリレート系カチオン凝集剤を用い且つ多価陰イオンアルカリ金属塩を添加した。脱水分離液の発泡抑制効果はなく、凝集フロックが小さく、濾水性が劣る結果となった。
Comparative Example 6:
In Comparative Example 6, a general aminoalkyl (meth) acrylate cationic flocculant was used instead of the amidine polymer flocculant, and a polyvalent anionic alkali metal salt was added. There was no foaming suppression effect of the dehydrated separation liquid, and the aggregation floc was small, resulting in poor drainage.

比較例7:
比較例7は多価陰イオンアルカリ金属塩をアミジン系高分子凝集剤を添加混合する前に添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Example 7:
In Comparative Example 7, the polyvalent anionic alkali metal salt was added before the amidine polymer flocculant was added and mixed. There was no foam suppression effect of the dehydrated separation liquid.

Figure 0005834707
Figure 0005834707

表2、及び後述の表3、表4中の添加物の種類の符号の意義は次の通りである。

Figure 0005834707
The meanings of the signs of the types of additives in Table 2 and Tables 3 and 4 described below are as follows.
Figure 0005834707

実施例12〜14:
pH5.5、TS2.7%、VTS79.8%の下水混合生汚泥を用い実施例1と同様の手順で脱水試験を行った。そして、使用する凝集剤をアミジン系高分子凝集剤(P1)/DME系高分子凝集剤(K3)=50/50重量%とする以外は実施例1と同様に脱水試験を行った。結果を表3に示す。実施例12〜14は、何れも、形成フロックの粒子径、濾水性に悪影響を及ぼすことなく脱水分離液の発泡を抑制できる結果であった。
Examples 12-14:
A dehydration test was conducted in the same procedure as in Example 1 using sewage mixed raw sludge having a pH of 5.5, TS 2.7%, and VTS 79.8%. A dehydration test was performed in the same manner as in Example 1 except that the flocculant used was amidine polymer flocculant (P1) / DME polymer flocculant (K3) = 50/50 wt%. The results are shown in Table 3. Each of Examples 12 to 14 was a result of suppressing foaming of the dehydrated separation liquid without adversely affecting the particle diameter of the formed floc and the drainage.

比較例8:
比較例8は多価陰イオンアルカリ金属塩を添加しない以外は実施例12と同様に行った。形成フロックの粒子径、濾水性は良好であるが、脱水分離液は発泡大であった。
Comparative Example 8:
Comparative Example 8 was carried out in the same manner as Example 12 except that no polyvalent anionic alkali metal salt was added. The formed floc had a good particle size and drainage, but the dehydrated separation liquid had a large foam.

比較例9、10:
比較例9、10は多価陰イオンアルカリ金属塩に代えて一価の陰イオンアルカリ金属塩を添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Examples 9 and 10:
In Comparative Examples 9 and 10, a monovalent anionic alkali metal salt was added instead of the polyvalent anionic alkali metal salt. There was no foam suppression effect of the dehydrated separation liquid.

比較例11:
比較例11は多価陰イオンアルカリ金属塩に代えて多価陰イオン金属塩であるポリ硫酸鉄(PS)を添加した。脱水分離液の発泡は良好に抑制されるが、凝集フロックが小さく、濾水性が悪化し、実施例より劣る結果となった。
Comparative Example 11:
In Comparative Example 11, polyiron sulfate (PS), which is a polyvalent anionic metal salt, was added instead of the polyvalent anionic alkali metal salt. Foaming of the dehydrated separation liquid was satisfactorily suppressed, but the aggregated floc was small, the drainage was deteriorated, and the results were inferior to those of the examples.

比較例12:
比較例12は多価陰イオンアルカリ金属塩に代えて一価の陰イオン金属塩であるポリ塩化アルミニウム(PC)を添加した。脱水分離液の発泡抑制性、濾水性とも実施例より劣る結果となった。
Comparative Example 12:
In Comparative Example 12, polyaluminum chloride (PC), which is a monovalent anionic metal salt, was added in place of the polyvalent anionic alkali metal salt. Both the foaming suppression and drainage of the dehydrated separation liquid were inferior to those of the examples.

比較例13:
比較例13は多価陰イオンアルカリ金属塩を高分子凝集剤を添加混合する前に添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Example 13:
In Comparative Example 13, the polyvalent anionic alkali metal salt was added before the polymer flocculant was added and mixed. There was no foam suppression effect of the dehydrated separation liquid.

Figure 0005834707
Figure 0005834707

実施例15〜17:
pH6.3、TS0.9%、VTS86.5%の食品余剰汚泥を用い実施例1と同様の手順で脱水試験を行った。
Examples 15-17:
A dehydration test was carried out in the same procedure as in Example 1 using food surplus sludge having a pH of 6.3, TS 0.9%, and VTS 86.5%.

脱水試験結果を表4に示す。実施例15〜17は、何れも、形成フロックの粒子径、濾水性に悪影響を及ぼすことなく、脱水分離液の発泡を抑制できる結果であった。   Table 4 shows the results of the dehydration test. Each of Examples 15 to 17 was a result that the foaming of the dehydrated separation liquid could be suppressed without adversely affecting the particle size and the drainage of the formed floc.

比較例14:
比較例14は多価陰イオンアルカリ金属塩を添加しない以外は実施例15と同様に行った。形成フロックの粒子径、濾水性は良好であるが、脱水分離液は発泡大であった。
Comparative Example 14:
Comparative Example 14 was carried out in the same manner as Example 15 except that no polyvalent anionic alkali metal salt was added. The formed floc had a good particle size and drainage, but the dehydrated separation liquid had a large foam.

比較例15、16:
比較例15、16は多価陰イオンアルカリ金属塩に代えて一価の陰イオンアルカリ金属塩を添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Examples 15 and 16:
In Comparative Examples 15 and 16, a monovalent anionic alkali metal salt was added instead of the polyvalent anionic alkali metal salt. There was no foam suppression effect of the dehydrated separation liquid.

比較例17:
比較例17は多価陰イオンアルカリ金属塩に代えて多価陰イオン金属塩であるポリ硫酸鉄(PS)を添加した。脱水分離液の発泡は良好に抑制されるが、凝集フロックが小さく、濾水性が悪化し、実施例より劣る結果となった。
Comparative Example 17:
In Comparative Example 17, polyiron sulfate (PS), which is a polyvalent anionic metal salt, was added instead of the polyvalent anionic alkali metal salt. Foaming of the dehydrated separation liquid was satisfactorily suppressed, but the aggregated floc was small, the drainage was deteriorated, and the results were inferior to those of the examples.

比較例18:
比較例18は多価陰イオンアルカリ金属塩に代えて一価の陰イオン金属塩であるポリ塩化アルミニウム(PC)を添加した。脱水分離液の発泡抑制性、濾水性とも実施例より劣る結果となった。
Comparative Example 18:
In Comparative Example 18, polyaluminum chloride (PC), which is a monovalent anion metal salt, was added instead of the polyvalent anion alkali metal salt. Both the foaming suppression and drainage of the dehydrated separation liquid were inferior to those of the examples.

比較例19:
比較例19は多価陰イオンアルカリ金属塩を高分子凝集剤を添加混合する前に添加した。脱水分離液の発泡抑制効果はなかった。
Comparative Example 19:
In Comparative Example 19, the polyvalent anionic alkali metal salt was added before the polymer flocculant was added and mixed. There was no foam suppression effect of the dehydrated separation liquid.

Figure 0005834707
Figure 0005834707

Claims (2)

有機質汚泥にアミジン系高分子凝集剤を添加混合後、更に多価陰イオンのアルカリ金属塩を添加混合し液中に残留するアミジン凝集剤と多価陰イオンのイオン錯体を形成させた後に脱水処理することを特徴とする有機質汚泥の処理方法。 Addition and mixing of amidine polymer flocculant to organic sludge, and then add and mix polyvalent anion alkali metal salt to form an ion complex of amidine flocculant and polyanion remaining in the liquid, followed by dehydration treatment A method for treating organic sludge. 多価陰イオンが、硫酸イオン、リン酸イオン及び炭酸イオンの群から選択される少なくとも1種である請求項1に記載の有機質汚泥の処理方法。   The method for treating organic sludge according to claim 1, wherein the polyvalent anion is at least one selected from the group consisting of sulfate ion, phosphate ion and carbonate ion.
JP2011212504A 2011-09-28 2011-09-28 Treatment method of organic sludge Active JP5834707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212504A JP5834707B2 (en) 2011-09-28 2011-09-28 Treatment method of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212504A JP5834707B2 (en) 2011-09-28 2011-09-28 Treatment method of organic sludge

Publications (2)

Publication Number Publication Date
JP2013071060A JP2013071060A (en) 2013-04-22
JP5834707B2 true JP5834707B2 (en) 2015-12-24

Family

ID=48475995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212504A Active JP5834707B2 (en) 2011-09-28 2011-09-28 Treatment method of organic sludge

Country Status (1)

Country Link
JP (1) JP5834707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303945B2 (en) * 2014-09-16 2018-04-04 三菱ケミカル株式会社 Solid-liquid separation method in membrane separation activated sludge treatment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150844A (en) * 1978-05-16 1979-11-27 Kobe Steel Ltd Dehydration of sludge
JPS56141809A (en) * 1980-04-03 1981-11-05 Kurita Water Ind Ltd Flocculant composition
JP3975490B2 (en) * 1996-05-16 2007-09-12 栗田工業株式会社 Sludge dewatering method
JP2000246264A (en) * 1998-02-25 2000-09-12 Hymo Corp Method for treating coating booth washing water

Also Published As

Publication number Publication date
JP2013071060A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5621260B2 (en) Wastewater coagulation method
AU2012215865C1 (en) Method and apparatus for sludge flocculation
JP5621256B2 (en) Wastewater coagulation method
JP5621254B2 (en) Oil-containing wastewater treatment method
JP2011131167A (en) Flocculation treatment method of waste water
JP5117228B2 (en) Sewage sludge treatment method
JP5042057B2 (en) Sludge dewatering method
JP5621255B2 (en) Treatment method of inorganic waste water
JP2009183888A (en) Sludge dehydration method
JP5834707B2 (en) Treatment method of organic sludge
JP5145823B2 (en) Organic flocculant and wastewater flocculation treatment method using the chemical
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP2006297228A (en) Method of treating livestock wastewater
JP5929073B2 (en) Treatment method of organic sludge
JP4684980B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
CN102617777A (en) Cation gel breaker for waste drilling fluid and preparation method thereof
JPH0771679B2 (en) Sludge dehydrator
CN113896306B (en) Polymeric aluminum ferric chloride flocculant and preparation method thereof
JP2000015300A (en) Dehydration of sludge
JP3633726B2 (en) Sludge treatment method
JP5843428B2 (en) Coagulation treatment method for colored wastewater
JP3064878B2 (en) Organic sludge treatment
JP2014158993A (en) Flocculation method of oil inclusion cleaning waste water
JP2668711B2 (en) Paper and pulp wastewater coagulation treatment method
JP4795290B2 (en) How to remove phosphorus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R151 Written notification of patent or utility model registration

Ref document number: 5834707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250