JP7427535B2 - Sludge dewatering method - Google Patents

Sludge dewatering method Download PDF

Info

Publication number
JP7427535B2
JP7427535B2 JP2020101460A JP2020101460A JP7427535B2 JP 7427535 B2 JP7427535 B2 JP 7427535B2 JP 2020101460 A JP2020101460 A JP 2020101460A JP 2020101460 A JP2020101460 A JP 2020101460A JP 7427535 B2 JP7427535 B2 JP 7427535B2
Authority
JP
Japan
Prior art keywords
sludge
polymer flocculant
dewatering
added
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020101460A
Other languages
Japanese (ja)
Other versions
JP2021194574A (en
Inventor
歩 加藤
雅人 都司
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2020101460A priority Critical patent/JP7427535B2/en
Publication of JP2021194574A publication Critical patent/JP2021194574A/en
Application granted granted Critical
Publication of JP7427535B2 publication Critical patent/JP7427535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、汚泥の脱水方法に関する。 The present invention relates to a method for dewatering sludge.

下水処理、屎尿処理およびその他の各種産業廃水処理等において発生する有機性汚泥は難脱水性のものが多く、このような有機性汚泥に汚泥脱水剤を添加して脱水処理して得られる脱水ケーキの含水率は高い場合が多い。含水率が高い脱水ケーキを焼却処理する際の焼却燃料の増加や最終処分量の増大等、処分費、環境負荷の点等から、得られる脱水ケーキの含水率のさらなる低減が望まれている。 Organic sludge generated in sewage treatment, human waste treatment, and other various industrial wastewater treatments is often difficult to dewater, and a dehydrated cake obtained by adding a sludge dehydrating agent to such organic sludge and dehydrating it. often has a high moisture content. It is desired to further reduce the moisture content of the obtained dehydrated cake due to the increased amount of incinerated fuel and increased final disposal amount when incinerating a dehydrated cake with a high moisture content, disposal costs, environmental burden, etc.

従来、有機性汚泥を凝集処理して脱水する際に用いられているカチオン性高分子凝集剤としては、例えばジメチルアミノエチルメタクリレート系、ジメチルアミノエチルアクリレート系、ポリアミジン系が用いられていたが、さらなる脱水効果の改善のために、特許文献1~3に示すような提案がなされている。 Conventionally, the cationic polymer flocculants used when coagulating and dewatering organic sludge have been, for example, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, and polyamidine. In order to improve the dehydration effect, proposals as shown in Patent Documents 1 to 3 have been made.

特許文献1,2には、カチオン性界面活性剤および高分子凝集剤を添加し、脱水処理を行うことが記載されている。 Patent Documents 1 and 2 describe adding a cationic surfactant and a polymer flocculant to perform dehydration treatment.

特許文献3には、有機性汚泥に酵素を添加し、さらに界面活性剤、アルカリ土類金属化合物またはアルカリ金属化合物を添加し、脱水処理を行うことが記載されている。 Patent Document 3 describes that an enzyme is added to organic sludge, and a surfactant, an alkaline earth metal compound, or an alkali metal compound is further added to perform dehydration treatment.

このような問題に対して、従来の汚泥脱水剤はいずれも十分に満足し得るものとは言えず、例えば特許文献1,2に記載されている方法では、カチオン性界面活性剤を添加することにより脱水ケーキの含水率をある程度低減することが可能だが、高価なカチオン性界面活性剤を多量に添加する必要があるため、現実的ではない。特許文献3に記載されている方法では、高価な酵素を必要とすることに加えて、酵素自体を低温保存する必要があるため、取り扱いが難しいといった問題がある。 None of the conventional sludge dewatering agents can be said to be fully satisfactory in dealing with such problems; for example, the methods described in Patent Documents 1 and 2 do not require the addition of a cationic surfactant. Although it is possible to reduce the water content of the dehydrated cake to some extent, it is not practical because it requires adding a large amount of expensive cationic surfactant. The method described in Patent Document 3 requires an expensive enzyme and also requires the enzyme itself to be stored at a low temperature, making it difficult to handle.

特開昭61-204098号公報Japanese Unexamined Patent Publication No. 61-204098 特開昭61-204100号公報Japanese Unexamined Patent Publication No. 61-204100 特開平10-080698号公報Japanese Patent Application Publication No. 10-080698

本発明の目的は、難脱水性の有機性汚泥についても効率的に脱水処理して低含水率の脱水ケーキを得ることができる汚泥の脱水方法を提供することにある。 An object of the present invention is to provide a sludge dewatering method that can efficiently dehydrate even difficult-to-dewater organic sludge to obtain a dehydrated cake with a low water content.

本発明は、有機性汚泥に対して、カチオン性界面活性剤と、2価金属塩と、を添加し、その後、カチオン性高分子凝集剤を添加して脱水する方法であって、前記カチオン性界面活性剤が、下記一般式(1)によって示されるアルキル第4級アンモニウム塩、下記一般式(2)によって示されるアルキルジメチルベンジルアンモニウム塩、および下記一般式(3)によって示されるアルキルピリジニウム塩のうちの少なくとも1つである、汚泥の脱水方法である。 The present invention provides a method for dewatering organic sludge by adding a cationic surfactant and a divalent metal salt, and then adding a cationic polymer flocculant to the organic sludge. The surfactant is an alkyl quaternary ammonium salt represented by the following general formula (1), an alkyldimethylbenzylammonium salt represented by the following general formula (2), and an alkylpyridinium salt represented by the following general formula (3). At least one of them is a sludge dewatering method.

(1)
(R~Rは、独立して炭素数1~20のアルキル基、Xは、Cl、Br、I、またはOHである。)
(2)
(Rは、炭素数4~24のアルキル基、Xは、Cl、Br、I、またはOHである。)
(3)
(Rは、炭素数6~20のアルキル基、Xは、Cl、Br、I、またはOHである。)
(1)
(R 1 to R 4 are independently an alkyl group having 1 to 20 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)
(2)
(R is an alkyl group having 4 to 24 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)
(3)
(R is an alkyl group having 6 to 20 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)

前記汚泥の脱水方法において、前記2価金属塩が、塩化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、塩化カルシウム、水酸化カルシウム、炭酸カルシウム、硫酸カルシウム、塩化第1鉄、水酸化鉄(II)、硫酸第1鉄、塩化バリウム、水酸化バリウム、炭酸バリウム、硫酸バリウムのうちの少なくとも1つであることが好ましい。 In the sludge dewatering method, the divalent metal salt is magnesium chloride, magnesium hydroxide, magnesium carbonate, magnesium sulfate, calcium chloride, calcium hydroxide, calcium carbonate, calcium sulfate, ferrous chloride, iron hydroxide (II ), ferrous sulfate, barium chloride, barium hydroxide, barium carbonate, and barium sulfate.

前記汚泥の脱水方法において、前記カチオン性高分子凝集剤を添加した後、さらにアニオン性高分子凝集剤を添加することが好ましい。 In the sludge dewatering method, it is preferable to further add an anionic polymer flocculant after adding the cationic polymer flocculant.

本発明により、難脱水性の有機性汚泥についても効率的に脱水処理して低含水率の脱水ケーキを得ることができる汚泥の脱水方法を提供することができる。 According to the present invention, it is possible to provide a sludge dewatering method that can efficiently dehydrate even difficult-to-dewater organic sludge to obtain a dehydrated cake with a low water content.

参考例1における、界面活性剤の添加量(%対SS)に対する脱水ケーキの含水率(%)を示すグラフである。2 is a graph showing the water content (%) of a dehydrated cake with respect to the amount of surfactant added (% vs. SS) in Reference Example 1.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る汚泥の脱水方法は、有機性汚泥に対して、カチオン性界面活性剤と、2価金属塩と、を添加し、その後、カチオン性高分子凝集剤を添加して脱水する方法である。 A sludge dewatering method according to an embodiment of the present invention includes adding a cationic surfactant and a divalent metal salt to organic sludge, and then adding a cationic polymer flocculant to dewater the organic sludge. This is the way to do it.

本発明の実施形態に係る汚泥の脱水方法は、有機性汚泥に対して、カチオン性界面活性剤と、2価金属塩と、を添加し、その後、カチオン性高分子凝集剤を添加し、さらにアニオン性高分子凝集剤を添加して脱水する方法である。 A sludge dewatering method according to an embodiment of the present invention includes adding a cationic surfactant and a divalent metal salt to organic sludge, then adding a cationic polymer flocculant, and then adding a cationic surfactant and a divalent metal salt. This is a method of dehydration by adding an anionic polymer flocculant.

例えば、まず有機性汚泥にカチオン性界面活性剤および2価金属塩を添加した後、撹拌を行い、次いでカチオン性高分子凝集剤を添加混合することにより、有機性汚泥の凝集フロックを形成し、得られた凝集物を固液分離すればよい。また、例えば、まず有機性汚泥にカチオン性界面活性剤および2価金属塩を添加した後、撹拌を行い、次いでカチオン性高分子凝集剤を添加混合し、その後、アニオン性高分子凝集剤を添加混合することにより、有機性汚泥の凝集フロックを形成し、得られた凝集物を固液分離してもよい。なお、カチオン性界面活性剤および2価金属塩の添加順序は、どちらが先でもよい。 For example, first, a cationic surfactant and a divalent metal salt are added to organic sludge, followed by stirring, and then a cationic polymer flocculant is added and mixed to form a coagulated floc of organic sludge, The obtained aggregate may be subjected to solid-liquid separation. Also, for example, first, a cationic surfactant and a divalent metal salt are added to organic sludge, followed by stirring, then a cationic polymer flocculant is added and mixed, and then an anionic polymer flocculant is added. By mixing, flocs of organic sludge are formed, and the resulting flocs may be subjected to solid-liquid separation. Note that the cationic surfactant and the divalent metal salt may be added in any order.

本実施形態に係る汚泥脱水剤および汚泥の脱水方法によって、難脱水性の有機性汚泥についても効率的に脱水処理して低含水率の脱水ケーキを得ることができる。また、低添加量のカチオン性界面活性剤で低含水率の脱水ケーキを得ることが可能となる。 By using the sludge dehydrating agent and the sludge dehydrating method according to the present embodiment, even organic sludge that is difficult to dewater can be efficiently dehydrated to obtain a dehydrated cake with a low water content. Furthermore, it is possible to obtain a dehydrated cake with a low water content by adding a small amount of cationic surfactant.

カチオン性界面活性剤としては、下記一般式(1)によって示されるアルキル第4級アンモニウム塩、下記一般式(2)によって示されるアルキルジメチルベンジルアンモニウム塩、下記一般式(3)によって示されるアルキルピリジニウム塩、塩化ベンゼトニウム等が挙げられる。 Examples of cationic surfactants include alkyl quaternary ammonium salts represented by the following general formula (1), alkyldimethylbenzyl ammonium salts represented by the following general formula (2), and alkylpyridinium salts represented by the following general formula (3). Examples include salts, benzethonium chloride, and the like.

(1)
(R~Rは、例えば、独立して直鎖または分岐の炭素数1~20のアルキル基であり、直鎖または分岐の炭素数1~18のアルキル基が好ましい。Xは、例えば、Cl、Br、I、またはOHであり、Cl、Brが好ましい。)
(1)
(R 1 to R 4 are, for example, independently a straight chain or branched alkyl group having 1 to 20 carbon atoms, preferably a straight chain or branched alkyl group having 1 to 18 carbon atoms . , Cl , Br , I , or OH , with Cl and Br being preferred).

(2)
(Rは、例えば、直鎖または分岐の炭素数4~24のアルキル基であり、直鎖または分岐の炭素数6~18のアルキル基が好ましい。Xは、例えば、Cl、Br、I、またはOHであり、Cl、Brが好ましい。)
(2)
(R is, for example, a straight chain or branched alkyl group having 4 to 24 carbon atoms, preferably a straight chain or branched alkyl group having 6 to 18 carbon atoms. X - is, for example, Cl - , Br - , I - or OH - , with Cl - and Br - being preferred.)

(3)
(Rは、例えば、直鎖または分岐の炭素数6~20のアルキル基であり、直鎖または分岐の炭素数6~15のアルキル基が好ましい。Xは、例えば、Cl、Br、I、またはOHであり、Cl、Brが好ましい。)
(3)
(R is, for example, a straight chain or branched alkyl group having 6 to 20 carbon atoms, preferably a straight chain or branched alkyl group having 6 to 15 carbon atoms. X - is, for example, Cl - , Br - , I - or OH - , with Cl - and Br - being preferred.)

これらのうち、汚泥の脱水効果が高い等の点から、上記一般式(1)によって示されるアルキル第4級アンモニウム塩、上記一般式(2)によって示されるアルキルジメチルベンジルアンモニウム塩、および上記一般式(3)によって示されるアルキルピリジニウム塩のうちの少なくとも1つであることが好ましい。 Among these, alkyl quaternary ammonium salts represented by the above general formula (1), alkyldimethylbenzyl ammonium salts shown by the above general formula (2), and the above general formula At least one of the alkylpyridinium salts represented by (3) is preferred.

2価金属塩としては、マグネシウム、カルシウム、鉄、バリウム、ストロンチウム、ラジウム等の塩化物、臭化物、ヨウ化物、水酸化物、炭酸塩、硫酸塩等が挙げられる。これらのうち、汚泥の脱水効果が高い等の点から、塩化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、塩化カルシウム、水酸化カルシウム、炭酸カルシウム、硫酸カルシウム、塩化第1鉄、水酸化鉄(II)、硫酸第1鉄、塩化バリウム、水酸化バリウム、炭酸バリウム、硫酸バリウムのうちの少なくとも1つであることが好ましい。 Examples of divalent metal salts include chlorides, bromides, iodides, hydroxides, carbonates, and sulfates of magnesium, calcium, iron, barium, strontium, radium, and the like. Among these, magnesium chloride, magnesium hydroxide, magnesium carbonate, magnesium sulfate, calcium chloride, calcium hydroxide, calcium carbonate, calcium sulfate, ferrous chloride, iron hydroxide ( II), ferrous sulfate, barium chloride, barium hydroxide, barium carbonate, and barium sulfate.

カチオン性高分子凝集剤としては、ポリアミジン、ジメチルアミノエチルメタクリレート系高分子凝集剤(DAM)、ジメチルアミノエチルアクリレート系高分子凝集剤(DAA)、ベンジルクロライド系高分子凝集剤(BC)、エピクロロヒドリン・ジメチルアミン縮合物、ジシアンジアミン・ホルムアルデヒド縮合物等が挙げられ、汚泥の脱水効果が高い等の点から、ポリアミジン、ジメチルアミノエチルメタクリレート系高分子凝集剤(DAM)、ジメチルアミノエチルアクリレート系高分子凝集剤(DAA)が好ましい。ジメチルアミノエチルメタクリレート系高分子凝集剤(DAM)は、ジメチルアミノエチルメタクリレートの単独重合体、ジメチルアミノエチルメタクリレートの四級化物の単独重合体、ジメチルアミノエチルメタクリレートとアクリルアミドとの共重合体、およびジメチルアミノエチルメタクリレートの四級化物とアクリルアミドとの共重合体のうちの少なくとも1つを含む凝集剤である。ジメチルアミノエチルアクリレート系高分子凝集剤(DAA)は、ジメチルアミノエチルアクリレートの単独重合体、ジメチルアミノエチルアクリレートの四級化物の単独重合体、ジメチルアミノエチルアクリレートとアクリルアミドとの共重合体、ジメチルアミノエチルアクリレートの四級化物とアクリルアミドとの共重合体のうちの少なくとも1つを含む凝集剤である。 Cationic polymer flocculants include polyamidine, dimethylaminoethyl methacrylate polymer flocculant (DAM), dimethylaminoethyl acrylate polymer flocculant (DAA), benzyl chloride polymer flocculant (BC), epichloro Examples include hydrin/dimethylamine condensate, dicyandiamine/formaldehyde condensate, etc. Polyamidine, dimethylaminoethyl methacrylate-based polymer flocculants (DAM), dimethylaminoethyl acrylate, etc. due to their high sludge dewatering effect. Preferred are polymeric flocculants (DAA). Dimethylaminoethyl methacrylate-based polymer flocculants (DAM) include homopolymers of dimethylaminoethyl methacrylate, homopolymers of quaternized dimethylaminoethyl methacrylate, copolymers of dimethylaminoethyl methacrylate and acrylamide, and dimethylaminoethyl methacrylate. A flocculant containing at least one copolymer of a quaternized product of aminoethyl methacrylate and acrylamide. Dimethylaminoethyl acrylate-based polymer flocculants (DAA) are homopolymers of dimethylaminoethyl acrylate, homopolymers of quaternized dimethylaminoethyl acrylate, copolymers of dimethylaminoethyl acrylate and acrylamide, and dimethylaminoethyl acrylate. A flocculant containing at least one copolymer of a quaternized product of ethyl acrylate and acrylamide.

(xは、例えば、0~200000、yは、例えば、50~120000である。)
ジメチルアミノエチルメタクリレート系高分子凝集剤(DAM)
(x is, for example, 0 to 200,000, and y is, for example, 50 to 120,000.)
Dimethylaminoethyl methacrylate polymer flocculant (DAM)

(xは、例えば、0~200000、yは、例えば、50~120000である。)
ジメチルアミノエチルアクリレート系高分子凝集剤(DAA)
(x is, for example, 0 to 200,000, and y is, for example, 50 to 120,000.)
Dimethylaminoethyl acrylate polymer flocculant (DAA)

アニオン性高分子凝集剤としては、ポリアクリルアミド系(アクリルアミドとアクリル酸塩との共重合物)、メタアクリル酸系等が挙げられ、コスト等の点から、ポリアクリルアミド系が好ましい。 Examples of the anionic polymer flocculant include polyacrylamide type (copolymer of acrylamide and acrylate), methacrylic acid type, etc. Polyacrylamide type is preferable from the point of view of cost and the like.

カチオン性高分子凝集剤の重量平均分子量は、特に制限はないが、1万~1500万の範囲であることが好ましく、10万~1000万の範囲であることがより好ましい。カチオン性高分子凝集剤の重量平均分子量が1万未満であると、汚泥が十分に凝集しない場合があり、1500万を超えると、高分子凝集剤自体が水を抱水し、十分に含水率が低下しない場合がある。 The weight average molecular weight of the cationic polymer flocculant is not particularly limited, but is preferably in the range of 10,000 to 15 million, more preferably in the range of 100,000 to 10 million. If the weight average molecular weight of the cationic polymer flocculant is less than 10,000, the sludge may not flocculate sufficiently, and if it exceeds 15 million, the polymer flocculant itself will hold water, resulting in a sufficient water content. may not decrease.

アニオン性高分子凝集剤の重量平均分子量は、特に制限はないが、100万~4000万の範囲であることが好ましく、500万~3000万の範囲であることがより好ましい。アニオン性高分子凝集剤の重量平均分子量が100万未満であると、汚泥が十分に凝集しない場合があり、4000万を超えると、アニオン性高分子凝集剤自体が水を抱水し、十分に含水率が低下しない場合がある。 The weight average molecular weight of the anionic polymer flocculant is not particularly limited, but is preferably in the range of 1 million to 40 million, more preferably in the range of 5 million to 30 million. If the weight average molecular weight of the anionic polymer flocculant is less than 1 million, the sludge may not flocculate sufficiently, and if it exceeds 40 million, the anionic polymer flocculant itself will hold water and the sludge may not coagulate sufficiently. The moisture content may not decrease.

本実施形態に係る汚泥脱水剤において、カチオン性界面活性剤の添加量は、汚泥のSS量に対して0.1~50質量%の範囲であることが好ましく、0.5~30質量%の範囲であることがより好ましい。カチオン性界面活性剤の添加量が汚泥のSS量に対して0.1質量%未満であると、脱水効果が十分に発揮されない場合があり、50質量%を超えると、カチオン性界面活性剤のコスト面で不利になる場合がある。 In the sludge dewatering agent according to the present embodiment, the amount of the cationic surfactant added is preferably in the range of 0.1 to 50% by mass, and 0.5 to 30% by mass based on the SS amount of the sludge. It is more preferable that the range is within the range. If the amount of cationic surfactant added is less than 0.1% by mass based on the SS amount of sludge, the dehydration effect may not be sufficiently exhibited, and if it exceeds 50% by mass, the amount of cationic surfactant This may be disadvantageous in terms of cost.

本実施形態に係る汚泥脱水剤において、2価金属塩の添加量は、汚泥のSS量に対して0.5~100質量%の範囲であることが好ましく、1~50質量%の範囲であることがより好ましい。2価金属塩の添加量が汚泥のSS量に対して0.5質量%未満であると、脱水効果が十分に発揮されない場合があり、100質量%を超えると、2価金属塩自体が汚泥となるため、汚泥廃棄量が増加する場合がある。 In the sludge dewatering agent according to the present embodiment, the amount of divalent metal salt added is preferably in the range of 0.5 to 100% by mass, and in the range of 1 to 50% by mass, based on the SS amount of the sludge. It is more preferable. If the amount of divalent metal salt added is less than 0.5% by mass based on the SS amount of sludge, the dewatering effect may not be sufficiently exhibited, and if it exceeds 100% by mass, the divalent metal salt itself will be added to the sludge. Therefore, the amount of sludge disposed of may increase.

本実施形態に係る汚泥脱水剤において、カチオン性高分子凝集剤の添加量は、汚泥のSS量に対して0.1~10質量%の範囲であることが好ましく、0.5~5質量%の範囲であることがより好ましい。カチオン性高分子凝集剤の添加量が汚泥のSS量に対して0.1質量%未満であると、汚泥の脱水効果が得られない場合があり、10質量%を超えると、汚泥の凝集フロックが形成されない場合がある。アニオン性高分子凝集剤を添加する場合、アニオン性高分子凝集剤の添加量は、汚泥のSS量に対して0.01~2質量%の範囲であることが好ましく、0.05~1質量%の範囲であることがより好ましい。アニオン性高分子凝集剤の添加量が汚泥のSS量に対して0.01質量%未満であると、アニオン性高分子凝集剤の不足により汚泥が凝集しない場合があり、2質量%を超えると、アニオン性高分子凝集剤の過多により水に粘性が生じ、汚泥が十分に脱水されない場合がある。 In the sludge dewatering agent according to the present embodiment, the amount of the cationic polymer flocculant added is preferably in the range of 0.1 to 10% by mass, and 0.5 to 5% by mass based on the SS amount of the sludge. It is more preferable that it is in the range of . If the amount of the cationic polymer flocculant added is less than 0.1% by mass based on the SS amount of the sludge, the sludge dewatering effect may not be obtained, and if it exceeds 10% by mass, the sludge will coagulate flocs. may not be formed. When adding an anionic polymer flocculant, the amount of the anionic polymer flocculant added is preferably in the range of 0.01 to 2% by mass, and 0.05 to 1% by mass based on the SS amount of the sludge. % range is more preferable. If the amount of anionic polymer flocculant added is less than 0.01% by mass based on the SS amount of sludge, the sludge may not flocculate due to the lack of anionic polymer flocculant, and if it exceeds 2% by mass, , Too much anionic polymer flocculant causes water to become viscous, and sludge may not be sufficiently dehydrated.

脱水の対象となる汚泥は、有機性汚泥を含み、さらに無機性汚泥を含んでもよい。有機性汚泥は、下水処理、屎尿処理およびその他の各種産業廃水処理等の有機物を含む排水の処理において発生する汚泥であり、無機性汚泥は、無機物を含む排水の処理において発生する汚泥である。 The sludge to be dehydrated includes organic sludge and may further include inorganic sludge. Organic sludge is sludge generated in the treatment of wastewater containing organic matter, such as sewage treatment, human waste treatment, and various other industrial wastewater treatments, and inorganic sludge is sludge generated in the treatment of wastewater containing inorganic matter.

本実施形態に係る汚泥の脱水方法において、カチオン性界面活性剤と、2価金属塩と、カチオン性高分子凝集剤と、を含む汚泥脱水剤として製剤化し、この汚泥脱水剤を汚泥に対して添加して脱水してもよい。例えば、カチオン性界面活性剤と2価金属塩とを含む製剤と、カチオン性高分子凝集剤を含む製剤と、の2剤を含む汚泥脱水剤とすればよい。また、例えば、カチオン性界面活性剤と2価金属塩とを含む製剤と、カチオン性高分子凝集剤を含む製剤と、アニオン性高分子凝集剤を含む製剤と、の3剤を含む汚泥脱水剤とすればよい。 In the sludge dewatering method according to the present embodiment, a sludge dehydrating agent containing a cationic surfactant, a divalent metal salt, and a cationic polymer flocculant is formulated, and this sludge dehydrating agent is applied to the sludge. It may be added and dehydrated. For example, the sludge dewatering agent may contain two agents: a formulation containing a cationic surfactant and a divalent metal salt, and a formulation containing a cationic polymer flocculant. Also, for example, a sludge dewatering agent containing three agents: a formulation containing a cationic surfactant and a divalent metal salt, a formulation containing a cationic polymer flocculant, and a formulation containing an anionic polymer flocculant. And it is sufficient.

汚泥の脱水の際の温度は、特に制限はないが、例えば、10~40℃の範囲とすればよい。 The temperature during dehydration of sludge is not particularly limited, but may be, for example, in the range of 10 to 40°C.

汚泥の脱水の際のpHは、特に制限はないが、例えば、pH3~pH10の範囲とすればよい。 The pH during dehydration of sludge is not particularly limited, but may be in the range of pH 3 to pH 10, for example.

汚泥の脱水の際に、カチオン性界面活性剤、2価金属塩、カチオン性高分子凝集剤、アニオン性高分子凝集剤の他に、無機凝集剤、有機凝結剤、合成繊維等を添加してもよい。 When dewatering sludge, in addition to cationic surfactants, divalent metal salts, cationic polymer flocculants, anionic polymer flocculants, inorganic flocculants, organic coagulants, synthetic fibers, etc. are added. Good too.

固液分離の方法としては、特に制限はないが、例えば、自然沈降分離、膜分離、ベルトプレス脱水機、スクリュープレス脱水機、遠心脱水機、フィルタープレス脱水機、多重円盤脱水機、真空脱水機、電気浸透脱水機等が挙げられる。 There are no particular limitations on the method of solid-liquid separation, but examples include natural sedimentation separation, membrane separation, belt press dehydrator, screw press dehydrator, centrifugal dehydrator, filter press dehydrator, multiple disk dehydrator, vacuum dehydrator. , electroosmotic dehydrator, etc.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[汚泥性状]
本実施例および比較例において処理対象とする汚泥は生物処理により発生した余剰汚泥を含む有機性汚泥である。
[Sludge properties]
In the present examples and comparative examples, the sludge to be treated is organic sludge containing surplus sludge generated by biological treatment.

処理対象とした有機性汚泥について、下水試験法に基づいて、導電率(EC)、蒸発残留物、蒸発残留物(TS)の強熱減量(VTS)、浮遊(懸濁)物質(SS)、浮遊物質(SS)の強熱減量(VSS)を測定した。今回用いた有機性汚泥A~Dの性状を表1に示す。 Regarding the organic sludge to be treated, electrical conductivity (EC), evaporation residue, loss on ignition (VTS) of evaporation residue (TS), suspended solids (SS), The loss on ignition (VSS) of suspended solids (SS) was measured. Table 1 shows the properties of the organic sludge A to D used this time.

<参考例1、参考比較例1>
表1に示す性状の汚泥A(300mL)を容量500mLのビーカーに採り、それに界面活性剤の水溶液を所定量加え、1時間撹拌した。次に0.3質量%水溶液のポリジメチルアミノエチルメタクリレート系のカチオン性高分子凝集剤を所定量加え、よく撹拌した。最後にポリアクリルアミド系のアニオン性高分子凝集剤を加え、よく撹拌し、汚泥フロックを形成した。
<Reference Example 1, Reference Comparative Example 1>
Sludge A (300 mL) having the properties shown in Table 1 was placed in a 500 mL beaker, a predetermined amount of an aqueous surfactant solution was added thereto, and the mixture was stirred for 1 hour. Next, a predetermined amount of a 0.3% by mass aqueous solution of polydimethylaminoethyl methacrylate-based cationic polymer flocculant was added and stirred well. Finally, a polyacrylamide-based anionic polymer flocculant was added and thoroughly stirred to form sludge flocs.

次いで、汚泥フロックを手絞りにより脱水し、脱水ケーキを形成した。その脱水ケーキを温度105℃で終夜(12時間)乾燥した後、脱水ケーキ中の水分量を計測してケーキ含水率(質量%)とした。結果を表2、図1に示す。 The sludge flocs were then dehydrated by hand squeezing to form a dehydrated cake. After drying the dehydrated cake at a temperature of 105° C. overnight (12 hours), the amount of water in the dehydrated cake was measured and determined as the cake moisture content (mass %). The results are shown in Table 2 and Figure 1.

カチオン性界面活性剤を添加した参考例1-1~1-13では、カチオン性界面活性剤の添加と共に脱水性能が大きく向上した。中でも、塩化ベンザルコニウムを添加した系が最も脱水性能が良いことが確認できた。一方で、両性界面活性剤を添加した参考比較例1-1~1-4では、脱水性能の向上はほとんどなかった。また、アニオン性界面活性剤を添加した参考比較例1-5~1-7では凝集フロックが形成せず、含水率を測定することができなかった。 In Reference Examples 1-1 to 1-13 in which a cationic surfactant was added, the dehydration performance was greatly improved with the addition of the cationic surfactant. Among them, it was confirmed that the system to which benzalkonium chloride was added had the best dehydration performance. On the other hand, in Reference Comparative Examples 1-1 to 1-4 in which an amphoteric surfactant was added, there was almost no improvement in dehydration performance. Further, in Reference Comparative Examples 1-5 to 1-7 in which an anionic surfactant was added, agglomerated flocs were not formed and the water content could not be measured.

以上の結果より、カチオン性の界面活性剤を添加することにより脱水性能が向上することが確認できた。 From the above results, it was confirmed that the dehydration performance was improved by adding a cationic surfactant.

<実施例1、比較例1>
汚泥Aの代わりに汚泥Bを用いたこと、界面活性剤とともに金属塩を添加する以外は参考例1と同様に実験を実施した。結果を表3に示す。
<Example 1, Comparative Example 1>
An experiment was carried out in the same manner as in Reference Example 1, except that sludge B was used instead of sludge A, and a metal salt was added together with a surfactant. The results are shown in Table 3.

塩化カルシウムを添加していない比較例1-1と比べて、実施例1-1,1-2では、塩化ベンザルコニウムと塩化カルシウムを併用することにより、脱水性能が大きく向上することが確認できた。 Compared to Comparative Example 1-1 in which calcium chloride was not added, in Examples 1-1 and 1-2, it was confirmed that the dehydration performance was greatly improved by using benzalkonium chloride and calcium chloride together. Ta.

<実施例2、比較例2>
実施例2-1に関しては、実施例1と同様に実験を実施した。実施例2-2に関しては、金属塩として炭酸カルシウムを用いる以外は、実施例2-3に関しては、金属塩として水酸化カルシウムを用いる以外は実施例1と同様に実験を実施した。
<Example 2, Comparative Example 2>
Regarding Example 2-1, the experiment was conducted in the same manner as in Example 1. Regarding Example 2-2, the experiment was carried out in the same manner as in Example 1, except that calcium carbonate was used as the metal salt, and for Example 2-3, except that calcium hydroxide was used as the metal salt.

比較例2-1に関しては、表1に示す性状の有機性汚泥300mLを容量500mLのビーカーに採り、0.3質量%水溶液のカチオン性高分子凝集剤を所定量加え、よく撹拌した。最後にアニオン性高分子凝集剤を加え、よく撹拌し、汚泥フロックを形成した。 Regarding Comparative Example 2-1, 300 mL of organic sludge having the properties shown in Table 1 was placed in a 500 mL beaker, a predetermined amount of a 0.3% by mass aqueous cationic polymer flocculant was added, and the mixture was thoroughly stirred. Finally, an anionic polymer flocculant was added and thoroughly stirred to form sludge flocs.

次いで、汚泥フロックを手絞りにより脱水し、脱水ケーキを形成した。その脱水ケーキを温度105℃で終夜(12時間)乾燥した後、脱水ケーキ中の水分量を計測してケーキ含水率とした。結果を表4に示す。 The sludge flocs were then dehydrated by hand squeezing to form a dehydrated cake. After drying the dehydrated cake overnight (12 hours) at a temperature of 105° C., the amount of water in the dehydrated cake was measured and determined as the cake moisture content. The results are shown in Table 4.

実施例2-1~2-3では、対イオンの異なるカルシウム塩を用いて実験を実施した。その結果、どのカルシウム塩を添加しても脱水性能の向上が認められたが、中でも塩化カルシウムと水酸化カルシウムの脱水性能が良好であることが確認できた。 In Examples 2-1 to 2-3, experiments were conducted using calcium salts with different counterions. As a result, it was found that dehydration performance improved no matter which calcium salt was added, but it was confirmed that calcium chloride and calcium hydroxide had particularly good dehydration performance.

<実施例3、比較例3>
実施例3-1~3-8に関しては、2価金属の種類を変えた以外は実施例1と同様に実験を実施した。
<Example 3, Comparative Example 3>
Regarding Examples 3-1 to 3-8, experiments were carried out in the same manner as in Example 1 except that the type of divalent metal was changed.

比較例3-1~3-4に関しては、界面活性剤を添加していないこと以外は実施例1と同様に実験を実施した。結果を表5に示す。 Regarding Comparative Examples 3-1 to 3-4, experiments were conducted in the same manner as in Example 1 except that no surfactant was added. The results are shown in Table 5.

実施例3-1~3-8では、2価金属の種類を変えて実験を実施した。その結果、どの2価の金属塩でも大幅に脱水性能が向上することが明らかとなった。またMgCl<CaCl<FeCl<BaClの順で脱水性能が向上することがわかった。 In Examples 3-1 to 3-8, experiments were conducted with different types of divalent metals. As a result, it was revealed that any divalent metal salt can significantly improve dehydration performance. It was also found that the dehydration performance improved in the order of MgCl 2 <CaCl 2 <FeCl 2 <BaCl 2 .

<比較例4>
比較例4-1に関しては、汚泥Cを用いたこと、界面活性剤を添加していないこと以外は実施例1と同様に実験を実施した。比較例4-2に関しては、汚泥Cを用いたこと、金属塩を添加していないこと以外は実施例1と同様に実験を実施した。比較例4-3に関しては、汚泥Cを用いたこと以外は参考例1と同様に実験を実施した。結果を表6に示す。
<Comparative example 4>
Regarding Comparative Example 4-1, the experiment was carried out in the same manner as in Example 1, except that sludge C was used and no surfactant was added. Regarding Comparative Example 4-2, the experiment was carried out in the same manner as in Example 1, except that sludge C was used and no metal salt was added. Regarding Comparative Example 4-3, the experiment was carried out in the same manner as Reference Example 1 except that Sludge C was used. The results are shown in Table 6.

比較例4-3では、1価の金属塩であるNaClとカチオン性界面活性剤である塩化ベンザルコニウムを添加して脱水試験を行ったが、脱水性能の向上は見られず、界面活性剤単独である比較例4-2と比較すると、脱水性能は悪化してしまった。以上より、1価の金属塩を添加すると、脱水性能が悪化することが確認できた。 In Comparative Example 4-3, a dehydration test was conducted by adding NaCl, a monovalent metal salt, and benzalkonium chloride, a cationic surfactant, but no improvement in dehydration performance was observed, and the surfactant Compared to Comparative Example 4-2, in which only one sample was used, the dehydration performance deteriorated. From the above, it was confirmed that the addition of a monovalent metal salt deteriorates the dehydration performance.

<実施例5、比較例5>
実施例5-1~5-4に関しては、カチオン性界面活性剤の種類を変え、汚泥Bを用いたこと以外は実施例1と同様に実験を実施した。
<Example 5, Comparative Example 5>
Regarding Examples 5-1 to 5-4, experiments were conducted in the same manner as in Example 1 except that the type of cationic surfactant was changed and sludge B was used.

比較例5-1に関しては、汚泥Bを用いたこと以外は比較例2-1と同様に実験を実施した。結果を表7に示す。 Regarding Comparative Example 5-1, the experiment was conducted in the same manner as Comparative Example 2-1 except that sludge B was used. The results are shown in Table 7.

実施例5-1~5-4では、カチオン性界面活性剤の種類を変えて実験を実施した。その結果、塩化ベンザルコニウムに限らず臭化セチルトリメチルアンモニウムでも金属塩併用による脱水性の構造が確認できた。 In Examples 5-1 to 5-4, experiments were conducted using different types of cationic surfactants. As a result, we confirmed that not only benzalkonium chloride but also cetyltrimethylammonium bromide has a dehydrating structure when used in combination with a metal salt.

<実施例6、比較例6>
実施例6-1~6-4に関しては、塩化ベンザルコニウムおよび塩化カルシウムの添加濃度を変え、汚泥Dを用いたこと以外は実施例1と同様に実験を実施した。
<Example 6, Comparative Example 6>
Regarding Examples 6-1 to 6-4, experiments were conducted in the same manner as in Example 1 except that the concentrations of benzalkonium chloride and calcium chloride were changed and sludge D was used.

比較例6-1に関しては、汚泥Dを用いたこと以外は比較例2-1と同様に実験を実施した。結果を表8に示す。 Regarding Comparative Example 6-1, the experiment was conducted in the same manner as Comparative Example 2-1 except that sludge D was used. The results are shown in Table 8.

実施例6-1~6-4では、塩化ベンザルコニウムおよび塩化カルシウムの添加濃度を変えて実験を実施した。その結果、塩化ベンザルコニウムの添加量がごく少量であっても、塩化カルシウムを添加することにより脱水性能が向上することが確認できた。 In Examples 6-1 to 6-4, experiments were conducted by changing the concentrations of benzalkonium chloride and calcium chloride. As a result, it was confirmed that even if the amount of benzalkonium chloride added was very small, the dehydration performance was improved by adding calcium chloride.

このように、実施例の汚泥の脱水方法によって、難脱水性の有機性汚泥についても効率的に脱水処理して低含水率の脱水ケーキを得ることができた。 As described above, by the sludge dewatering method of the example, it was possible to efficiently dehydrate even difficult-to-dewater organic sludge to obtain a dehydrated cake with a low water content.

Claims (3)

有機性汚泥に対して、カチオン性界面活性剤と、2価金属塩と、を添加し、その後、カチオン性高分子凝集剤を添加して脱水する方法であって、
前記カチオン性界面活性剤が、下記一般式(1)によって示されるアルキル第4級アンモニウム塩、下記一般式(2)によって示されるアルキルジメチルベンジルアンモニウム塩、および下記一般式(3)によって示されるアルキルピリジニウム塩のうちの少なくとも1つであることを特徴とする汚泥の脱水方法。
(1)
(R ~R は、独立して炭素数1~20のアルキル基、X は、Cl 、Br 、I 、またはOH である。)
(2)
(Rは、炭素数4~24のアルキル基、X は、Cl 、Br 、I 、またはOH である。)
(3)
(Rは、炭素数6~20のアルキル基、X は、Cl 、Br 、I 、またはOH である。)
A method of adding a cationic surfactant and a divalent metal salt to organic sludge, and then adding a cationic polymer flocculant for dehydration , the method comprising:
The cationic surfactant is an alkyl quaternary ammonium salt represented by the following general formula (1), an alkyldimethylbenzyl ammonium salt represented by the following general formula (2), and an alkyl represented by the following general formula (3). A method for dewatering sludge, characterized in that the sludge is at least one of pyridinium salts .
(1)
(R 1 to R 4 are independently an alkyl group having 1 to 20 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)
(2)
(R is an alkyl group having 4 to 24 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)
(3)
(R is an alkyl group having 6 to 20 carbon atoms, and X - is Cl - , Br - , I - , or OH - .)
請求項1に記載の汚泥の脱水方法であって、
前記2価金属塩が、塩化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、塩化カルシウム、水酸化カルシウム、炭酸カルシウム、硫酸カルシウム、塩化第1鉄、水酸化鉄(II)、硫酸第1鉄、塩化バリウム、水酸化バリウム、炭酸バリウム、硫酸バリウムのうちの少なくとも1つであることを特徴とする汚泥の脱水方法。
The sludge dewatering method according to claim 1 ,
The divalent metal salt is magnesium chloride, magnesium hydroxide, magnesium carbonate, magnesium sulfate, calcium chloride, calcium hydroxide, calcium carbonate, calcium sulfate, ferrous chloride, iron (II) hydroxide, ferrous sulfate, A method for dewatering sludge, characterized in that the sludge is at least one of barium chloride, barium hydroxide, barium carbonate, and barium sulfate.
請求項1または2に記載の汚泥の脱水方法であって、
前記カチオン性高分子凝集剤を添加した後、さらにアニオン性高分子凝集剤を添加することを特徴とする汚泥の脱水方法。
The sludge dewatering method according to claim 1 or 2 ,
A method for dewatering sludge, characterized in that after adding the cationic polymer flocculant, an anionic polymer flocculant is further added.
JP2020101460A 2020-06-11 2020-06-11 Sludge dewatering method Active JP7427535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101460A JP7427535B2 (en) 2020-06-11 2020-06-11 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101460A JP7427535B2 (en) 2020-06-11 2020-06-11 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2021194574A JP2021194574A (en) 2021-12-27
JP7427535B2 true JP7427535B2 (en) 2024-02-05

Family

ID=79196823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101460A Active JP7427535B2 (en) 2020-06-11 2020-06-11 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP7427535B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120464A (en) 2014-12-25 2016-07-07 三菱レイヨン株式会社 Sludge dewatering method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613099A (en) * 1979-07-10 1981-02-07 Nichireki Chem Ind Co Ltd Treating method of sludge
JPS61181600A (en) * 1984-04-25 1986-08-14 Sanyo Chem Ind Ltd Aid for dehydrating sludge and its method
JPS6174700A (en) * 1984-09-20 1986-04-16 Kyoritsu Yuki Kogyo Kenkyusho:Kk Dehydrating method of organic sewage
JP3222247B2 (en) * 1993-02-12 2001-10-22 ハイモ株式会社 Sludge dewatering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120464A (en) 2014-12-25 2016-07-07 三菱レイヨン株式会社 Sludge dewatering method

Also Published As

Publication number Publication date
JP2021194574A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
JP2011131164A (en) Method for treating oil-containing waste water
JP2011139997A (en) Coagulation treatment method for waste water
JP2011131166A (en) Method for flocculating waste water
JP2008194550A (en) Method for dewatering organic sludge
JP5464315B2 (en) Sludge dewatering method
JP7427535B2 (en) Sludge dewatering method
JP5273723B2 (en) Processing method of livestock sludge
KR20140088576A (en) Sludge dewatering with dual polymer conditioning
JP2014159018A (en) Flocculation method of oil inclusion cleaning waste water
JP3064878B2 (en) Organic sludge treatment
JP2000015300A (en) Dehydration of sludge
JP7427534B2 (en) Sludge dewatering method
JP4816374B2 (en) Coagulation method of high water content sludge
JP3709825B2 (en) Sludge dewatering method
JP2004195370A (en) Method for dehydrating digested sludge
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
CN113896306A (en) Polyaluminum ferric chloride flocculant and preparation method thereof
JP3222247B2 (en) Sludge dewatering method
JP3772287B2 (en) Sludge dewatering method
JP2006015209A (en) Dehydration method of digested sewage sludge
JP6755503B2 (en) Dehydration method of organic sludge
JP6028826B2 (en) Flocculant for waste water treatment and waste water agglomeration method
JP2004167465A (en) Sludge dehydrating agent
JP2020037091A (en) Method for treating oil-containing wastewater using water-soluble polymer and inorganic porous body
JP3520784B2 (en) Sludge coagulation treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240124

R150 Certificate of patent or registration of utility model

Ref document number: 7427535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150