JP2008246372A - Waste water treatment method - Google Patents

Waste water treatment method Download PDF

Info

Publication number
JP2008246372A
JP2008246372A JP2007090840A JP2007090840A JP2008246372A JP 2008246372 A JP2008246372 A JP 2008246372A JP 2007090840 A JP2007090840 A JP 2007090840A JP 2007090840 A JP2007090840 A JP 2007090840A JP 2008246372 A JP2008246372 A JP 2008246372A
Authority
JP
Japan
Prior art keywords
water
polymer fine
fine particles
treatment
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090840A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
茂 佐藤
Yasuhiko Watanabe
康彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007090840A priority Critical patent/JP2008246372A/en
Publication of JP2008246372A publication Critical patent/JP2008246372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment method by which suspended solids and dissoluble COD (chemical oxygen demand) contained in waste water discharged from public waste water sludge treatment facilities such as a sewage treatment plant and a night soil treatment plant and industrial waste water discharged from general plants such printing plants, chemical plants, semiconductor plants, food plants and paper-pulp plants can be efficiently removed. <P>SOLUTION: The waste water treatment method is provided for adding the particulates of a cationic or nonionic polymer swelling in water and not substantially dissolved in water to water water, and after flocculation reaction, performing solid-liquid separation, wherein the liquid containing the polymer particulates is treated by a homogenizer for ≥30 s, and is added to the waste water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排水処理方法に関する。さらに詳しくは、本発明は、下水処理場、し尿処理場などの公共の排水汚泥処理施設から排出される排水や、印刷工場、化学工場、半導体工場、食品工場、紙・パルプ工場などの一般工場から排出される工場排水に含まれる懸濁物質や溶解性COD成分を、効率的に除去することができる排水処理方法に関する。   The present invention relates to a wastewater treatment method. More specifically, the present invention relates to wastewater discharged from public wastewater sludge treatment facilities such as sewage treatment plants and human waste treatment plants, and general factories such as printing factories, chemical factories, semiconductor factories, food factories, and paper and pulp factories. The present invention relates to a wastewater treatment method that can efficiently remove suspended substances and soluble COD components contained in factory wastewater discharged from the factory.

地球環境保護、人の健康確保の面から、年々排水処理に係わる規制が地球規模で厳しくなってきている。特に、河川放流、閉鎖水域への放流については、水質管理項目の規制値の見直しなど、国及び各地方自治体での動きが活発になってきている。水質規制の対象物質には、毒性、有害性のある物質以外に、湖沼や海域の富栄養化の原因であるりん、窒素、BOD成分などがあり、化学物質汚染の指標となるCODは、特に重要な規制管理項目である。   From the viewpoint of protecting the global environment and ensuring human health, regulations relating to wastewater treatment are becoming stricter on a global scale year by year. In particular, regarding river discharge and discharge into closed water areas, movements in the national and local governments have become active, such as reviewing the regulatory values for water quality management items. Substances subject to water quality regulations include, in addition to toxic and harmful substances, phosphorus, nitrogen and BOD components that cause eutrophication in lakes and marine areas. COD, which is an indicator of chemical pollution, It is an important regulatory management item.

従来より、工場排水などに含まれる溶解性COD成分を処理する技術としては、活性汚泥法などの生物処理、凝集沈殿処理や加圧浮上処理が一般的である。しかし、生物処理の場合は処理装置に広大な面積が必要であるために、凝集沈殿や加圧浮上により処理する場合が多い。凝集沈殿処理や加圧浮上処理は、無機凝集剤の荷電中和作用により、主に負電荷を帯びている懸濁物質やアニオン性の溶解性COD成分を除去する方法であり、印刷工場、半導体工場、食品工場、紙・パルプ工場などの多くの工場排水で問題となっているノニオン性界面活性剤などのノニオン性主体の溶解性COD成分を除去することは困難である。   Conventionally, biological treatment such as an activated sludge method, coagulation sedimentation treatment, and pressurized flotation treatment are generally used as a technique for treating a soluble COD component contained in factory effluent. However, in the case of biological treatment, since a large area is required for the treatment apparatus, the treatment is often performed by coagulation sedimentation or pressurized flotation. The coagulation-precipitation treatment and the pressure levitation treatment are methods that mainly remove negative suspended substances and anionic soluble COD components by charge neutralization of inorganic coagulants. It is difficult to remove a nonionic-based soluble COD component such as a nonionic surfactant, which is a problem in many industrial wastewaters such as factories, food factories, and paper / pulp factories.

処理の難しいノニオン性も含め、水中から溶解性COD成分を除去する技術としては、これまで以下の方法が一般的に取られている。しかし、それぞれの方法には、なお解決すべき課題が残されている。   As a technique for removing soluble COD components from water, including nonionic properties that are difficult to treat, the following methods have been generally employed. However, each method still has problems to be solved.

(1)活性炭処理、紫外線照射、オゾン処理、硫酸第一鉄と過酸化水素を組み合わせたフェントン処理などの物理化学的手法(非特許文献1)。これらの物理化学的手法は、薬剤コストや電気代が嵩むために、広く普及しているとは言いがたい。特に、懸濁物質が共存する場合にはその影響が大きく、活性炭吸着塔の閉塞、紫外線照射効率の低下、オゾンや薬剤の消耗を招きやすい。 (1) Physicochemical methods such as activated carbon treatment, ultraviolet irradiation, ozone treatment, Fenton treatment combining ferrous sulfate and hydrogen peroxide (Non-patent Document 1). These physicochemical methods cannot be said to be widespread due to increased drug costs and electricity costs. In particular, when suspended substances coexist, the influence is great, and the activated carbon adsorption tower is blocked, the ultraviolet irradiation efficiency is lowered, and ozone and chemicals are easily consumed.

(2)処理対象液に紫外線を照射して含有される有機物を分解して有機酸としたのち、イオン交換樹脂カラムに通す方法(特許文献1)。排水が懸濁物質を含んでいると、紫外線照射効率が低下するともに、容易にイオン交換樹脂カラムの閉塞を起こす。したがって、ろ過や沈降分離などの前処理設備が別途に必要で、設備投資の面でも課題がある。 (2) A method in which an organic substance contained in a liquid to be treated is irradiated with ultraviolet rays to decompose it into an organic acid, and then passed through an ion exchange resin column (Patent Document 1). When the wastewater contains suspended substances, the efficiency of ultraviolet irradiation decreases and the ion exchange resin column is easily clogged. Therefore, pretreatment facilities such as filtration and sedimentation separation are separately required, and there is a problem in terms of capital investment.

(3)膜処理を行う方法(特許文献2)。排水が懸濁物質を含んでいると、容易に膜装置の閉塞を起こす。ろ過や沈降分離などの前処理設備が必要で、設備投資の面でも課題がある。 (3) A method of performing a film treatment (Patent Document 2). If the drainage contains suspended matter, it will easily clog the membrane device. Pretreatment facilities such as filtration and sedimentation separation are necessary, and there are also problems in terms of capital investment.

(4)それ自身凝集性を高めてフロックを容易に生成させる親水性の粘土鉱物などの加重剤を排水に添加したのち、凝集沈殿処理する排水処理を安定的に効率よく行う方法(特許文献3)。粘土鉱物は薬剤自体が低価格であるという利点はあるものの、処理効率が低く、汚泥量が増加し、処理経費が増大する。 (4) A method of stably and efficiently performing a wastewater treatment for coagulating sedimentation after adding a weighting agent such as a hydrophilic clay mineral that enhances cohesiveness and easily generates flocs to the wastewater (Patent Document 3) ). Although the clay mineral has the advantage that the chemical itself is low in price, the treatment efficiency is low, the amount of sludge increases, and the treatment cost increases.

(5)水中で膨潤し実質的に水に溶解しないカチオン性ポリマー微粒子を水に添加するでんぷん含有水の処理方法(特許文献4)。水中で膨潤したポリマー微粒子であるために、重合条件、共存イオンなどの水質の影響を大きく受け、膨潤した微粒子の粒子径や表面積が一定しないために、凝集効果が安定しない。 (5) A method for treating starch-containing water, wherein cationic polymer fine particles that swell in water and do not substantially dissolve in water are added to water (Patent Document 4). Since the polymer fine particles are swollen in water, they are greatly influenced by water quality such as polymerization conditions and coexisting ions, and the particle diameter and surface area of the swollen fine particles are not constant, so that the aggregation effect is not stable.

山本信行、促進酸化法、化学工業、30巻9号、335−338(2002)Nobuyuki Yamamoto, Accelerated Oxidation Process, Chemical Industry, Vol. 30, No. 9, 335-338 (2002) 特開2000−317445号公報JP 2000-317445 A 特開2001−276825号公報JP 2001-276825 A 特開2003−245504号公報JP 2003-245504 A 特公平7−83869号公報Japanese Patent Publication No. 7-83869

本発明は、下水処理場、し尿処理場などの公共の排水汚泥処理施設から排出される排水や、印刷工場、化学工場、半導体工場、食品工場、紙・パルプ工場などの一般工場から排出される工場排水に含まれる懸濁物質や溶解性COD成分を、効率的に除去することができる排水処理方法を提供することを目的としてなされたものである。   The present invention is discharged from public wastewater sludge treatment facilities such as sewage treatment plants and human waste treatment plants, and from general factories such as printing factories, chemical factories, semiconductor factories, food factories, and paper and pulp factories. The object of the present invention is to provide a wastewater treatment method capable of efficiently removing suspended substances and soluble COD components contained in factory wastewater.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、水中で膨潤し実質的に水に溶解しないカチオン性又はノニオン性ポリマー微粒子を排水に添加し、凝集処理し、固液分離する排水処理方法において、該ポリマー微粒子を含む液をホモジナイザーでの処理を30秒以上行って排水に添加することにより、凝集処理により得られるフロックの径が増大し、上澄液の濁度とCODMnが減少することを見いだし、この知見に基づいて本発明を完成するに至った。 As a result of intensive research to solve the above-mentioned problems, the present inventors have added cationic or nonionic polymer fine particles that swell in water and do not substantially dissolve in water to the wastewater, agglomeration treatment, solid liquid In the wastewater treatment method to be separated, the liquid containing the polymer fine particles is treated with a homogenizer for 30 seconds or more and added to the wastewater, whereby the floc diameter obtained by the coagulation treatment is increased, and the turbidity of the supernatant is increased. It has been found that COD Mn decreases, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1)水中で膨潤し実質的に水に溶解しないカチオン性又はノニオン性ポリマー微粒子を排水に添加し、凝集反応後、固液分離する排水処理方法において、該ポリマー微粒子を含む液をホモジナイザーでの処理を30秒以上行って排水に添加することを特徴とする排水処理方法、
(2)水中で膨潤し実質的に水に溶解しないポリマー微粒子が、カチオン性ポリマー微粒子である(1)記載の排水処理方法、及び、
(3)カチオン性ポリマー微粒子が、2官能性モノマーを架橋剤とし、第四級アンモニウム塩モノマーを含む1種以上のモノマーからなる重合体である(2)記載の排水処理方法、
を提供するものである。
That is, the present invention
(1) In a wastewater treatment method in which cationic or nonionic polymer fine particles that swell in water and do not substantially dissolve in water are added to wastewater, and after agglomeration reaction, solid-liquid separation is performed. A wastewater treatment method characterized in that the treatment is performed for 30 seconds or more and added to wastewater;
(2) The wastewater treatment method according to (1), wherein the polymer fine particles that swell in water and do not substantially dissolve in water are cationic polymer fine particles, and
(3) The wastewater treatment method according to (2), wherein the cationic polymer fine particle is a polymer comprising a bifunctional monomer as a cross-linking agent and one or more monomers including a quaternary ammonium salt monomer.
Is to provide.

本発明の排水処理方法により、下水処理場、し尿処理場などの公共の排水汚泥処理施設から排出される排水や、化学工場、印刷工場、半導体工場、食品工場、紙・パルプ工場などから排出される工場排水などを処理すると、排水中に含まれる懸濁物質や溶解性COD成分を、安定して効率的に除去することができる。また、無機凝集剤を使用する排水処理に本発明方法を適用することにより、無機凝集剤の使用量を低減し、産業廃棄物である汚泥量を削減し、処分費用の低減とともに地球環境保護に大きく貢献することができる。   By the wastewater treatment method of the present invention, wastewater discharged from public wastewater sludge treatment facilities such as sewage treatment plants and human waste treatment plants, and discharged from chemical factories, printing factories, semiconductor factories, food factories, paper and pulp factories, etc. If the factory wastewater is treated, suspended substances and soluble COD components contained in the wastewater can be stably and efficiently removed. In addition, by applying the method of the present invention to wastewater treatment using inorganic flocculants, the amount of inorganic flocculants used is reduced, the amount of sludge that is industrial waste is reduced, and disposal costs are reduced and the global environment is protected. It can contribute greatly.

本発明の排水処理方法においては、水中で膨潤し実質的に水に溶解しないカチオン性又はノニオン性ポリマー微粒子を排水に添加し、凝集処理し、固液分離する排水処理方法において、該ポリマー微粒子を含む液をホモジナイザーで30秒以上処理して排水に添加する。本発明方法は、下水処理場、し尿処理場などの公共の排水汚泥処理施設から排出される排水や、化学工場、印刷工場、半導体工場、食品工場、紙・パルプ工場などから排出される工場排水などに適用して、排水中に含まれる懸濁物質や溶解性COD成分を、安定して効率的に除去することができる。   In the wastewater treatment method of the present invention, in the wastewater treatment method in which cationic or nonionic polymer fine particles that swell in water and do not substantially dissolve in water are added to the wastewater, agglomeration treatment is performed, and solid-liquid separation is performed. The liquid containing is treated with a homogenizer for 30 seconds or more and added to the waste water. The method of the present invention includes wastewater discharged from public wastewater sludge treatment facilities such as sewage treatment plants and human waste treatment plants, and factory wastewater discharged from chemical factories, printing factories, semiconductor factories, food factories, paper and pulp factories, etc. For example, suspended substances and soluble COD components contained in waste water can be stably and efficiently removed.

本発明方法に用いる実質的に水に溶解しないカチオン性ポリマーとしては、例えば、アミン、第四級アンモニウム塩などのカチオン性モノマーと多官能性モノマーの共重合体、N−ビニルホルムアミドとアクリロニトリルと多官能性モノマーの共重合体の加水分解、環化反応によるアミジン構造を有するポリマー、キトサンなどを挙げることができる。これらの中で、一級アミン、二級アミン、三級アミン、それらの塩、第四級アンモニウム塩などのカチオン性モノマーと多官能性モノマーとの共重合体を好適に用いることができる。カチオン性モノマーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートの酸塩若しくは第四級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの酸塩若しくは第四級アンモニウム塩、ジアリルジメチルアンモニウムクロリドなどを挙げることができる。ポリマーを実質的に水に溶解しない微粒子とするために用いる多官能性モノマーとしては、例えば、メチレンビスアクリルアミドなどのジビニルモノマーなどを挙げることができる。   Examples of the cationic polymer that is substantially insoluble in water used in the method of the present invention include a copolymer of a cationic monomer such as amine or quaternary ammonium salt and a polyfunctional monomer, N-vinylformamide, acrylonitrile, and many. Examples thereof include a polymer having an amidine structure by hydrolysis and a cyclization reaction of a copolymer of a functional monomer, and chitosan. Among these, a copolymer of a cationic monomer such as a primary amine, secondary amine, tertiary amine, a salt thereof, or a quaternary ammonium salt and a polyfunctional monomer can be preferably used. Examples of the cationic monomer include dimethylaminoethyl (meth) acrylate acid salt or quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide acid salt or quaternary ammonium salt, diallyldimethylammonium chloride, and the like. Can do. Examples of the polyfunctional monomer used for making the polymer into fine particles that are substantially insoluble in water include divinyl monomers such as methylenebisacrylamide.

本発明方法においては、カチオン性ポリマー微粒子として、共重合可能なモノマーとの共重合体を用いることもできる。共重合可能なモノマーとしては、例えば、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸、それらのアルカリ金属塩などのアニオン性モノマー、(メタ)アクリルアミド、N−イソプロピルアクリルアミド、ジメチルアクリルアミド、アクリロニトリル、スチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレートなどのノニオン性モノマーなどを挙げることができる。   In the method of the present invention, a copolymer with a copolymerizable monomer can also be used as the cationic polymer fine particles. Examples of the copolymerizable monomer include anionic monomers such as (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkali metal salts thereof, (meth) acrylamide, N-isopropylacrylamide, and dimethylacrylamide. And nonionic monomers such as acrylonitrile, styrene, methyl (meth) acrylate, and ethyl (meth) acrylate.

本発明方法に用いる実質的に水に溶解しないノニオン性ポリマーとしては、例えば、(メタ)アクリルアミド、N−イソプロピルアクリルアミド、ジメチルアクリルアミド、アクリロニトリル、スチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、重合体度2〜20程度のポリオキシエチレン単位を有する(メタ)アクリレート、アリルエーテル、ビニルエーテルなどの重合体を挙げることができる。カチオン性ポリマー微粒子と同じく、実質的に水に溶解しない微粒子とするために、架橋剤としてメチレンビスアクリルアミドなどのジビニルモノマーを共重合させることが好ましい。   Nonionic polymers that are substantially insoluble in water used in the method of the present invention include, for example, (meth) acrylamide, N-isopropylacrylamide, dimethylacrylamide, acrylonitrile, styrene, methyl (meth) acrylate, ethyl (meth) acrylate, heavy Examples thereof include polymers such as (meth) acrylates, allyl ethers and vinyl ethers having a polyoxyethylene unit having a degree of coalescence of about 2 to 20. As with the cationic polymer fine particles, it is preferable to copolymerize a divinyl monomer such as methylenebisacrylamide as a cross-linking agent in order to obtain fine particles that are substantially insoluble in water.

水中で膨潤し実質的に水に溶解しないカチオン性又はノニオン性ポリマー微粒子を含む液としては、例えば、逆相エマルション液体、サスペンション状の分散液体などを挙げることができる。逆相(W/O)エマルションポリマー液体としては、例えば、架橋構造を有するカチオン性ポリマー、水、炭化水素液体、界面活性剤の重量比20〜40:20〜40:20〜40:2〜20であり、架橋構造を有するカチオン性ポリマーと水の合計量が全体重量に対して40〜60重量%である液体を挙げることができる。架橋剤として、エマルション共重合させるメチレンビスアクリルアミドなどの多官能性モノマーの量は、全モノマーに対して0.0001〜0.1モル%であることが好ましく、この量によって、ポリマー微粒子の膨潤度すなわち水中での粒子径を調整することができる。   Examples of the liquid containing cationic or nonionic polymer fine particles that swell in water and do not substantially dissolve in water include a reversed-phase emulsion liquid and a suspension-like dispersion liquid. As a reverse phase (W / O) emulsion polymer liquid, for example, a cationic polymer having a crosslinked structure, water, a hydrocarbon liquid, and a surfactant in a weight ratio of 20 to 40:20 to 40:20 to 40: 2 to 20 And a liquid in which the total amount of the cationic polymer having a crosslinked structure and water is 40 to 60% by weight based on the total weight. The amount of the polyfunctional monomer such as methylene bisacrylamide to be copolymerized as an emulsion as the cross-linking agent is preferably 0.0001 to 0.1 mol% with respect to the total monomer, and this amount determines the degree of swelling of the polymer fine particles. That is, the particle diameter in water can be adjusted.

逆相エマルション液体に用いる炭化水素液体としては、例えば、イソヘキサンなどのイソパラフィン、n−ヘキサン、ケロシン、鉱物油など脂肪族系の炭化水素液体などを挙げることができる。界面活性剤としては、例えは、HLB7〜10の高級脂肪族(C10〜20)アルコールのポリオキシエチレンエーテル、高級脂肪酸(C10〜22)のポリオキシエチレンエステルなどを挙げることができる。高級アルコールのポリオキシエチレンエーテルとしては、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコールなどのポリオキシエチレン(3〜10モル)エーテルなどを挙げることができる。高級脂肪酸のポリオキシエチレンエステルとしては、例えば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸などのポリオキシエチレン(3〜10モル)エステルなどを挙げることができる。   Examples of the hydrocarbon liquid used for the reversed phase emulsion liquid include isoparaffins such as isohexane, aliphatic hydrocarbon liquids such as n-hexane, kerosene, and mineral oil. Examples of the surfactant include polyoxyethylene ethers of higher aliphatic (C10-20) alcohols having an HLB of 7 to 10, polyoxyethylene esters of higher fatty acids (C10 to 22), and the like. Examples of the polyoxyethylene ether of higher alcohol include polyoxyethylene (3 to 10 mol) ethers such as lauryl alcohol, cetyl alcohol, stearyl alcohol, and oleyl alcohol. Examples of higher fatty acid polyoxyethylene esters include polyoxyethylene (3 to 10 mol) esters such as lauric acid, palmitic acid, stearic acid, and oleic acid.

本発明方法において、逆相エマルション液体、サスペンション状の分散液体中での膨潤していない微粒子の粒子径は100μm以下であることが好ましく、0.1〜10μmであることがより好ましい。本発明方法において、水中で膨潤する水不溶性のポリマー微粒子を排水に添加する際は、微粒子の表面積を大きくするために、撹拌処理を行って微粒子を膨潤させる。膨潤した微粒子の平均粒子径は、10〜200μmであることが好ましく、10〜50μmであることがより好ましい。微粒子の粒子径は、市販の粒度分布計を用いて計測することができる。   In the method of the present invention, the particle diameter of the unswelled fine particles in the reversed-phase emulsion liquid or the suspension-like dispersion liquid is preferably 100 μm or less, more preferably 0.1 to 10 μm. In the method of the present invention, when water-insoluble polymer fine particles that swell in water are added to waste water, a stirring treatment is performed to swell the fine particles in order to increase the surface area of the fine particles. The average particle diameter of the swollen fine particles is preferably 10 to 200 μm, and more preferably 10 to 50 μm. The particle diameter of the fine particles can be measured using a commercially available particle size distribution meter.

本発明方法においては、ポリマー微粒子を含む液を、ホモジナイザーで30秒以上処理する。ホモジナイザーとしては、高速ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー等が挙げられ、投げ込み型、ラインミキサー型、パッチ式の密閉容器型のいずれをも用いることができるが、連続的に処理を行うためには、投げ込み型かラインミキサー型であることが好ましい。ホモジナイザーで処理する液は、ポリマー製品液体の原液でもよく、またポリマー微粒子濃度として0.1〜10重量%に水で希釈調製した水分散液でもよい。ホモジナイザーによる処理時間は、30秒以上であり、より好ましくは30秒〜15分である。処理時間が30秒未満であると、処理の効果が得られないおそれがある。処理時間が15分を超えると、作業効率が低下するおそれがある。高速ホモジナイザーを用いた場合、ホモジナイザーの回転数は、通常3,000rpm以上であることが好ましく、4,000rpm以上であることがより好ましく、5,000rpm以上であることがさらに好ましい。ホモジナイザーの回転数が3,000rpm未満であると、ポリマー微粒子を含む液にかかる剪断力が不足して、撹拌の効果が得られないおそれがある。   In the method of the present invention, a liquid containing polymer fine particles is treated with a homogenizer for 30 seconds or more. Examples of the homogenizer include a high-speed homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, and the like. Preferably, it is a throwing type or a line mixer type. The liquid to be treated with the homogenizer may be a stock solution of a polymer product liquid, or an aqueous dispersion diluted with water to a polymer fine particle concentration of 0.1 to 10% by weight. The processing time by the homogenizer is 30 seconds or more, and more preferably 30 seconds to 15 minutes. If the processing time is less than 30 seconds, the processing effect may not be obtained. If the processing time exceeds 15 minutes, work efficiency may be reduced. When a high-speed homogenizer is used, the rotation speed of the homogenizer is usually preferably 3,000 rpm or more, more preferably 4,000 rpm or more, and further preferably 5,000 rpm or more. If the rotational speed of the homogenizer is less than 3,000 rpm, the shearing force applied to the liquid containing the polymer fine particles is insufficient, and the stirring effect may not be obtained.

本発明方法においては、ホモジナイザーによる処理を行ったポリマー微粒子を含む液の排水への添加方法に特に制限はなく、ポリマー製品原液をそのまま添加することができ、あるいは、希釈して添加することもできる。ポリマー製品原液を希釈して添加する方が、排水中での微粒子の分散性がよく、効率的に作用し、効果が良好であり、取り扱い性も良好であるために、希釈して添加することが好ましい。ポリマー製品原液の希釈は、ホモジナイザーによる処理の前後いずれにおいても行うことができる。希釈された液は、ポリマー微粒子濃度として0.1〜10重量%であることが好ましい。   In the method of the present invention, there is no particular limitation on the method of adding the liquid containing polymer fine particles treated with the homogenizer to the waste water, and the polymer product stock solution can be added as it is, or it can be diluted and added. . It is better to dilute and add the polymer stock solution because it has better dispersibility of fine particles in wastewater, works efficiently, has better effect, and has better handleability. Is preferred. The dilution of the polymer product stock solution can be performed either before or after the treatment with the homogenizer. The diluted liquid preferably has a polymer fine particle concentration of 0.1 to 10% by weight.

本発明方法により処理する対象となる排水としては、例えば、印刷工場、半導体工場、食品工場、紙・パルプ工場、化学工場などから排出される工場排水や、し尿処理場、下水処理場からの処理水、さらに浄水や用水などを挙げることができる。本発明方法の適用により、これらに含まれる溶解性COD成分を、特に効率的に除去することができる。溶解性COD成分は、糖類、タンパク質などの天然由来のもの、界面活性剤や工業原料や化学品由来のもの、食品由来のもの、それらの分解物など多岐にわたるが、本発明方法は、特に限定はなく、それらのいずれに対しても有効に処理することができる。溶解性COD成分のアニオン性、カチオン性、ノニオン性などのイオン性にも限定はなく、いずれに対しても有効に処理することができる。   Examples of wastewater to be treated by the method of the present invention include, for example, industrial wastewater discharged from printing factories, semiconductor factories, food factories, paper / pulp factories, chemical factories, treatment from human waste treatment plants, and sewage treatment plants. Water, purified water and irrigation water can be mentioned. By applying the method of the present invention, the soluble COD component contained therein can be removed particularly efficiently. Soluble COD components range from natural sources such as saccharides and proteins, surfactants and industrial materials and chemicals, foods, and their degradation products, but the method of the present invention is particularly limited. It can be effectively processed for any of them. There is no limitation on the ionicity of the soluble COD component such as anionic property, cationic property, and nonionic property, and any of these can be effectively treated.

本発明の排水処理方法において、凝集処理及び固液分離処理の方法に特に制限はなく、凝集沈殿処理、加圧浮上処理などを挙げることができる。処理対象となる排水に無機凝集剤を添加したのち、水酸化ナトリウム、水酸化カルシウム、硫酸などを用いてpH調整を行い、最後に有機系高分子凝集剤を用いて懸濁物をフロック化することができる。また、必要に応じて有機凝結剤を併用することもできる。ホモジナイザーにより撹拌処理されたポリマー微粒子を含む液の添加は、無機凝集剤の添加前、無機凝集剤添加後のpH調整前、無機凝集剤添加後のpH調整後のいずれかを任意に選定することができる。   In the wastewater treatment method of the present invention, there are no particular limitations on the methods of the agglomeration treatment and the solid-liquid separation treatment, and examples thereof include an agglomeration precipitation treatment and a pressurized flotation treatment. After adding an inorganic flocculant to the wastewater to be treated, adjust the pH using sodium hydroxide, calcium hydroxide, sulfuric acid, etc., and finally flocculate the suspension using an organic polymer flocculant. be able to. Moreover, an organic coagulant can also be used together as needed. For the addition of the liquid containing polymer fine particles stirred by a homogenizer, any of before the addition of the inorganic flocculant, before the pH adjustment after the addition of the inorganic flocculant, and after the pH adjustment after the addition of the inorganic flocculant should be arbitrarily selected. Can do.

本発明方法に用いる無機凝集剤に特に制限はなく、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄などを挙げることができる。無機凝集剤の添加量に特に制限はなく、処理対象とする排水の性状に応じて適宜選定することができるが、概ね固形分として500〜5,000mg/Lであることが好ましい。本発明方法に用いる有機凝結剤に特に制限はなく、例えば、ポリエチレンイミン、エチレンジアミン−エピクロルヒドリン重合物、ポリアルキレンポリアミン、ジアリルジメチルアンモニウムクロリドやジメチルアミノエチル(メタ)アクリレートの第四級アンモニウム塩を構成モノマーとする重合体などのカチオン性有機系ポリマーなどを挙げることができる。有機凝結剤の添加量に特に制限はなく、処理対象とする排水の性状に応じて適宜選定することができるが、概ね固形分として1〜100mg/Lであることが好ましい。   There is no restriction | limiting in particular in the inorganic flocculent used for this invention method, For example, a sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate etc. can be mentioned. There is no restriction | limiting in particular in the addition amount of an inorganic flocculant, Although it can select suitably according to the property of the waste_water | drain to process, It is preferable that it is generally 500-5,000 mg / L as solid content. The organic coagulant used in the method of the present invention is not particularly limited, and examples thereof include polyethyleneimine, ethylenediamine-epichlorohydrin polymer, polyalkylene polyamine, diallyldimethylammonium chloride and quaternary ammonium salt of dimethylaminoethyl (meth) acrylate. And a cationic organic polymer such as a polymer. There is no restriction | limiting in particular in the addition amount of an organic coagulant, Although it can select suitably according to the property of the waste_water | drain to process, It is preferable that it is 1-100 mg / L in general as solid content.

本発明方法に用いる有機高分子凝集剤に特に制限はなく、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合体、それらのアルカリ金属塩などのアニオン系高分子凝集剤、ポリ(メタ)アクリルアミドなどのノニオン系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレート若しくはその第四級アンモニウム塩や、ジメチルアミノプロピル(メタ)アクリルアミド若しくはその第四級アンモニウム塩などのカチオン性モノマーからなるホモポリマー、あるいは、それらのカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体などのカチオン系高分子凝集剤などを挙げることができる。有機高分子凝集剤の添加量に特に制限はなく、処理対象とする排水の性状に応じて適宜選定することができるが、概ね固形分として1〜20mg/Lであることが好ましい。   The organic polymer flocculant used in the method of the present invention is not particularly limited, and examples thereof include poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and an anionic polymer such as an alkali metal salt thereof. Molecular flocculants, nonionic polymer flocculants such as poly (meth) acrylamide, dimethylaminoethyl (meth) acrylate or quaternary ammonium salts thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salts thereof, etc. Examples thereof include cationic polymer flocculants such as homopolymers composed of cationic monomers, or copolymers of nonionic monomers copolymerizable with these cationic monomers. There is no restriction | limiting in particular in the addition amount of an organic polymer flocculant, Although it can select suitably according to the property of the waste water made into a process target, It is preferable that it is 1-20 mg / L in general as solid content.

本発明の排水処理方法においては、必要に応じて、殺菌剤、消臭剤、消泡剤、防食剤などの他の薬剤を併用することができる。本発明方法においては、必要に応じて、紫外線照射処理、オゾン処理、膜処理、生物処理などの他の処理方法を併用することができる。本発明方法の効果は、処理水について、濁度測定、CODMnやCODCrなどの測定を行うことにより確認することができる。 In the wastewater treatment method of the present invention, other chemicals such as bactericides, deodorants, antifoaming agents, and anticorrosives can be used in combination as necessary. In the method of the present invention, other treatment methods such as ultraviolet irradiation treatment, ozone treatment, membrane treatment and biological treatment can be used in combination as necessary. The effect of the method of the present invention can be confirmed by measuring turbidity, COD Mn , COD Cr and the like for treated water.

本発明の排水処理方法においては、カチオン性又はノニオン性ポリマー微粒子を含む液を排水へ添加する前にホモジナイザーによって処理することにより、排水処理効果が向上するが、これは粒子径がより均一になり効率的に官能基が作用するようになること、ポリマー微粒子表面が剪断力を受けることにより、ポリマー分子鎖の一部がほぐれて官能基が露出しやすくなること、界面活性剤やパラフィンなどで覆われていたポリマー微粒子表面が活性化されることなどによると考えられる。処理対象とする排水にイオン性のポリマー微粒子を添加して溶解性COD成分を吸着させ、凝集処理によって処理対象とする排水中の懸濁物質も同時に分離除去することができる。本発明方法によれば、溶解性COD除去のために活性炭塔でよく起こる閉塞トラブルが全くなく、効率的に排水処理を行うことができる。アニオン性の溶解性COD成分に対しては、ポリマー微粒子のカチオン性の官能基のイオン結合作用により、また、ノニオン性の溶解性COD成分に対しては、ノニオン性の官能基による水素結合、疎水結合作用により、効果的に濁度を低下し、溶解性COD成分を除去することができる。   In the wastewater treatment method of the present invention, the wastewater treatment effect is improved by treating with a homogenizer before adding a liquid containing cationic or nonionic polymer fine particles to the wastewater, but this makes the particle diameter more uniform. The functional group comes to work efficiently, the surface of the polymer fine particle is subjected to shearing force, part of the polymer molecular chain is loosened and the functional group is easily exposed, and the surface is covered with a surfactant or paraffin. This is thought to be due to the activated surface of the fine polymer particles. By adding ionic polymer fine particles to the wastewater to be treated to adsorb the soluble COD component, suspended substances in the wastewater to be treated can be separated and removed simultaneously by the coagulation treatment. According to the method of the present invention, there is no blockage trouble that often occurs in the activated carbon tower for removing soluble COD, and wastewater treatment can be performed efficiently. For anionic soluble COD components, the ionic bonding action of the cationic functional group of the polymer fine particles, and for nonionic soluble COD components, hydrogen bonding by the nonionic functional group, hydrophobicity The binding action can effectively reduce turbidity and remove soluble COD components.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
重合例1
撹拌機、ジムロート冷却管、窒素導入管及び温度計を備えた、4つ口セパラブルフラスコに、HLB9.5の高級アルコールポリオキシエチレンエーテル48gを混合したケロシン165gを仕込み、窒素雰囲気下で強く撹拌しながら、ジメチルアミノエチルアクリレートの塩化メチル四級化物の65重量%水溶液190g、メチレンビスアクリルアミド0.01g及び水85gの混合物をゆっくりと添加した。フラスコ内を50℃に保ち、開始剤として、アゾビスイソブチロニトリルの10重量%アセトン溶液0.65gを添加して、50℃のまま8時間、窒素雰囲気下、撹拌しながら重合を行った。反応生成物は、水に入れても水溶性ポリマーとして溶解しない、不溶性のポリマー微粒子ゲルであった。
得られたポリマー微粒子の平均粒子径は0.7μmであり、濃度は30重量%であった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Polymerization example 1
A four-necked separable flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube and a thermometer was charged with 165 g of kerosene mixed with 48 g of higher alcohol polyoxyethylene ether of HLB 9.5 and stirred vigorously in a nitrogen atmosphere. While stirring, a mixture of 190 g of a 65% by weight aqueous solution of methyl chloride quaternized with dimethylaminoethyl acrylate, 0.01 g of methylenebisacrylamide and 85 g of water was slowly added. The inside of the flask was kept at 50 ° C., and 0.65 g of a 10 wt% acetone solution of azobisisobutyronitrile was added as an initiator, and polymerization was carried out while stirring at 50 ° C. for 8 hours in a nitrogen atmosphere. . The reaction product was an insoluble polymer fine-particle gel that did not dissolve as a water-soluble polymer when placed in water.
The obtained polymer fine particles had an average particle size of 0.7 μm and a concentration of 30% by weight.

実施例1
紙・パルプ工場の総合排水の処理を行った。この排水のJIS K 0102 17.にしたがって測定したCODMnは480mgO/Lであり、JIS K 0101 9.3に準じ、ホルマジン標準液を用いて測定した散乱光濁度は86NTUであった。
重合例1で得られたカチオン性ポリマー微粒子を含む液を、高速ホモジナイザー[(株)マイクロテック・ニチオン、ヒスコトロン(商品名)、NS−60型]を用いて回転数5,000rpmで30秒間撹拌した。
排水500mLを入れた500mLビーカー4個をジャーテスターに取り付け、各ビーカーに液体硫酸バンド[Al238重量%]400mg/Lを添加して150rpmで3分間撹拌したのち、上記のカチオン性ポリマー微粒子を含む撹拌処理された液を、ポリマー微粒子の濃度が2mg/Lとなるように添加して3分間撹拌した。次いで10重量%水酸化ナトリウム水溶液を滴下して、pHが6.8〜7.2の範囲になるように調整し、続いて高分子凝集剤[20モル%加水分解ポリアクリルアミド、1モル/L塩化ナトリウム水溶液を溶媒として30℃で測定した固有粘度21.5dl/g]2mg/Lを添加して150rpmで1分間撹拌したのち、さらに50rpmで3分間撹拌した。
生成したフロックの粒子径を目視により観察し、上澄液の濁度をJIS K 0101 9.3に準じ、ホルマジン標準液を用いて測定し、CODMnをJIS K 0102 17.にしたがって測定した。フロック粒子径は7mmであり、濁度は14NTUであり、CODMnは198mgO/Lであった。
添加するカチオン性ポリマー微粒子の添加量を5mg/L、10mg/L又は50mg/Lとして、同じ操作を繰り返した。ポリマー微粒子添加量5mg/Lのとき、フロック粒子径は7mm、濁度は12NTU、CODMnは180mgO/Lであった。ポリマー微粒子添加量10mg/Lのとき、フロック粒子径は8mm、濁度は9NTU、CODMnは165mgO/Lであった。ポリマー微粒子添加量50mg/Lのとき、フロック粒子径は8mm、濁度は8NTU、CODMnは155mgO/Lであった。
Example 1
The wastewater from the pulp and paper mill was treated. COD Mn measured according to JIS K 0102 17. of this waste water was 480 mgO / L, and the scattered light turbidity measured using a formazine standard solution was 86 NTU according to JIS K 0101 9.3.
The liquid containing the cationic polymer fine particles obtained in Polymerization Example 1 was stirred for 30 seconds at a rotational speed of 5,000 rpm using a high-speed homogenizer [Microtec Nithion, Hiscotron (trade name), NS-60 type]. did.
Four 500 mL beakers containing 500 mL of waste water are attached to a jar tester, and after adding 400 mg / L of liquid sulfuric acid band [Al 2 O 3 8% by weight] to each beaker and stirring at 150 rpm for 3 minutes, the above cationic polymer The stirring-treated liquid containing fine particles was added so that the concentration of the polymer fine particles was 2 mg / L and stirred for 3 minutes. Subsequently, 10% by weight aqueous sodium hydroxide solution was added dropwise to adjust the pH to be in the range of 6.8 to 7.2, followed by polymer flocculant [20 mol% hydrolyzed polyacrylamide, 1 mol / L. After adding 2 mg / L of intrinsic viscosity 21.5 dl / g measured at 30 ° C. using a sodium chloride aqueous solution as a solvent, the mixture was stirred at 150 rpm for 1 minute, and further stirred at 50 rpm for 3 minutes.
The particle size of the generated floc was visually observed, the turbidity of the supernatant was measured using a formazine standard solution according to JIS K 0101 9.3, and COD Mn was measured according to JIS K 0102 17. The floc particle diameter was 7 mm, the turbidity was 14 NTU, and COD Mn was 198 mgO / L.
The same operation was repeated with the addition amount of the cationic polymer fine particles added being 5 mg / L, 10 mg / L or 50 mg / L. When the polymer fine particle addition amount was 5 mg / L, the floc particle diameter was 7 mm, the turbidity was 12 NTU, and COD Mn was 180 mgO / L. When the polymer fine particle addition amount was 10 mg / L, the floc particle diameter was 8 mm, the turbidity was 9 NTU, and COD Mn was 165 mgO / L. When the polymer fine particle addition amount was 50 mg / L, the floc particle diameter was 8 mm, the turbidity was 8 NTU, and COD Mn was 155 mgO / L.

実施例2
重合例1で得られたカチオン性ポリマー微粒子を含む液のホモジナイザーを用いる撹拌条件を、回転数5,000rpm、撹拌時間5分間とした以外は、実施例1と同じ操作を行った。
ポリマー微粒子添加量2mg/Lのとき、フロック粒子径は7mm、濁度は16NTU、CODMnは190mgO/Lであり、ポリマー微粒子添加量5mg/Lのとき、フロック粒子径は7mm、濁度は11NTU、CODMnは186mgO/Lであり、ポリマー微粒子添加量10mg/Lのとき、フロック粒子径は7mm、濁度は8NTU、CODMnは172mgO/Lであり、ポリマー微粒子添加量50mg/Lのとき、フロック粒子径は8mm、濁度は7NTU、CODMnは162mgO/Lであった。
実施例3
重合例1で得られたカチオン性ポリマー微粒子を含む液のホモジナイザーを用いる撹拌条件を、回転数10,000rpm、撹拌時間5分間とした以外は、実施例1と同じ操作を行った。
ポリマー微粒子添加量2mg/Lのとき、フロック粒子径は7mm、濁度は17NTU、CODMnは189mgO/Lであり、ポリマー微粒子添加量5mg/Lのとき、フロック粒子径は7mm、濁度は9NTU、CODMnは186mgO/Lであり、ポリマー微粒子添加量10mg/Lのとき、フロック粒子径は7mm、濁度は9NTU、CODMnは170mgO/Lであり、ポリマー微粒子添加量50mg/Lのとき、フロック粒子径は8mm、濁度は7NTU、CODMnは159mgO/Lであった。
実施例1〜3の結果を、第1表に示す。
Example 2
The same operation as in Example 1 was carried out except that the stirring conditions using the homogenizer of the liquid containing the cationic polymer fine particles obtained in Polymerization Example 1 were set at 5,000 rpm and the stirring time was 5 minutes.
When the polymer fine particle addition amount is 2 mg / L, the floc particle diameter is 7 mm, the turbidity is 16 NTU, and COD Mn is 190 mg O / L. When the polymer fine particle addition amount is 5 mg / L, the flock particle diameter is 7 mm and the turbidity is 11 NTU. COD Mn is 186 mgO / L, when the polymer fine particle addition amount is 10 mg / L, the floc particle diameter is 7 mm, the turbidity is 8 NTU, COD Mn is 172 mgO / L, and when the polymer fine particle addition amount is 50 mg / L, The floc particle diameter was 8 mm, the turbidity was 7 NTU, and COD Mn was 162 mgO / L.
Example 3
The same operation as in Example 1 was performed except that the stirring conditions using the homogenizer of the liquid containing the cationic polymer fine particles obtained in Polymerization Example 1 were set at 10,000 rpm and the stirring time was 5 minutes.
When the polymer fine particle addition amount is 2 mg / L, the floc particle diameter is 7 mm, the turbidity is 17 NTU, and COD Mn is 189 mg O / L. When the polymer fine particle addition amount is 5 mg / L, the flock particle diameter is 7 mm and the turbidity is 9 NTU. COD Mn is 186 mgO / L, when the polymer fine particle addition amount is 10 mg / L, the floc particle diameter is 7 mm, the turbidity is 9 NTU, COD Mn is 170 mgO / L, and when the polymer fine particle addition amount is 50 mg / L, The floc particle diameter was 8 mm, the turbidity was 7 NTU, and COD Mn was 159 mgO / L.
The results of Examples 1 to 3 are shown in Table 1.

Figure 2008246372
Figure 2008246372

比較例1
排水に、カチオン性ポリマー微粒子を含む液を添加しない以外は、実施例1と同じ操作を行った。
フロック粒子径は6mm、濁度は22NTU、CODMnは210mgO/Lであった。
比較例2
重合例1で得られたカチオン性ポリマー微粒子を含む液のホモジナイザーを用いる撹拌条件を、回転数5,000rpm、撹拌時間15秒間とした以外は、実施例1と同じ操作を行った。
ポリマー微粒子添加量2mg/Lのとき、フロック粒子径は6mm、濁度は18NTU、CODMnは198mgO/Lであり、ポリマー微粒子添加量5mg/Lのとき、フロック粒子径は7mm、濁度は15NTU、CODMnは190mgO/Lであり、ポリマー微粒子添加量10mg/Lのとき、フロック粒子径は7mm、濁度は15NTU、CODMnは189mgO/Lであり、ポリマー微粒子添加量50mg/Lのとき、フロック粒子径は8mm、濁度は14NTU、CODMnは185mgO/Lであった。
比較例3
重合例1で得られたカチオン性ポリマー微粒子を含む液のホモジナイザーを用いる撹拌条件を、回転数10,000rpm、撹拌時間15秒間とした以外は、実施例1と同じ操作を行った。
ポリマー微粒子添加量2mg/Lのとき、フロック粒子径は6mm、濁度は19NTU、CODMnは195mgO/Lであり、ポリマー微粒子添加量5mg/Lのとき、フロック粒子径は7mm、濁度は16NTU、CODMnは182mgO/Lであり、ポリマー微粒子添加量10mg/Lのとき、フロック粒子径は8mm、濁度は14NTU、CODMnは182mgO/Lであり、ポリマー微粒子添加量50mg/Lのとき、フロック粒子径は8mm、濁度は14NTU、CODMnは181mgO/Lであった。
Comparative Example 1
The same operation as in Example 1 was performed except that the liquid containing cationic polymer fine particles was not added to the waste water.
The floc particle diameter was 6 mm, the turbidity was 22 NTU, and COD Mn was 210 mgO / L.
Comparative Example 2
The same operation as in Example 1 was performed except that the stirring conditions using the homogenizer of the liquid containing the cationic polymer fine particles obtained in Polymerization Example 1 were set to 5,000 rpm and the stirring time was 15 seconds.
When the polymer fine particle addition amount is 2 mg / L, the floc particle diameter is 6 mm, the turbidity is 18 NTU, and COD Mn is 198 mg O / L. When the polymer fine particle addition amount is 5 mg / L, the flock particle diameter is 7 mm and the turbidity is 15 NTU. COD Mn is 190 mg O / L, when the polymer fine particle addition amount is 10 mg / L, the floc particle diameter is 7 mm, the turbidity is 15 NTU, COD Mn is 189 mg O / L, and when the polymer fine particle addition amount is 50 mg / L, The floc particle diameter was 8 mm, the turbidity was 14 NTU, and COD Mn was 185 mgO / L.
Comparative Example 3
The same operation as in Example 1 was performed except that the stirring conditions using the homogenizer of the liquid containing the cationic polymer fine particles obtained in Polymerization Example 1 were set at 10,000 rpm and the stirring time was 15 seconds.
When the polymer fine particle addition amount is 2 mg / L, the floc particle diameter is 6 mm, the turbidity is 19 NTU, and COD Mn is 195 mg O / L. When the polymer fine particle addition amount is 5 mg / L, the flock particle diameter is 7 mm and the turbidity is 16 NTU. , COD Mn is 182 mgO / L, when the polymer fine particle addition amount is 10 mg / L, the floc particle diameter is 8 mm, the turbidity is 14 NTU, COD Mn is 182 mgO / L, and when the polymer fine particle addition amount is 50 mg / L, The floc particle diameter was 8 mm, the turbidity was 14 NTU, and COD Mn was 181 mgO / L.

比較例4
重合例1で得られたカチオン性ポリマー微粒子を含む液の撹拌処理液の代わりに、通常のカチオン性水溶性ポリマーであるジメチルアミノエチルアクリレートの塩化メチル四級化物のホモポリマーを用いた以外は、実施例1と同じ操作を行った。
ポリマー添加量2mg/Lのとき、フロック粒子径は6mm、濁度は22NTU、CODMnは210mgO/Lであり、ポリマー添加量5mg/Lのとき、フロック粒子径は6mm、濁度は20NTU、CODMnは210mgO/Lであり、ポリマー添加量10mg/Lのとき、フロック粒子径は7mm、濁度は19NTU、CODMnは200mgO/Lであり、ポリマー添加量50mg/Lのとき、フロック粒子径は7mm、濁度は18NTU、CODMnは198mgO/Lであった。
比較例5
重合例1で得られたカチオン性ポリマー微粒子を含む液の撹拌処理液の代わりに、粉末活性炭[栗田工業(株)、クリコール(登録商標)WD−514、密度0.35kg/L]を用いた以外は、実施例1と同じ操作を行った。
活性炭添加量2mg/Lのとき、フロック粒子径は6mm、濁度は21NTU、CODMnは210mgO/Lであり、活性炭添加量5mg/Lのとき、フロック粒子径は6mm、濁度は21NTU、CODMnは206mgO/Lであり、活性炭添加量10mg/Lのとき、フロック粒子径は7mm、濁度は18NTU、CODMnは202mgO/Lであり、活性炭添加量50mg/Lのとき、フロック粒子径は7mm、濁度は18NTU、CODMnは199mgO/Lであった。
比較例1〜5の結果を、第2表に示す。
Comparative Example 4
Instead of the stirring treatment liquid of the liquid containing the cationic polymer fine particles obtained in Polymerization Example 1, a homopolymer of methyl chloride quaternized product of dimethylaminoethyl acrylate, which is a normal cationic water-soluble polymer, was used. The same operation as in Example 1 was performed.
When the polymer addition amount is 2 mg / L, the floc particle diameter is 6 mm, the turbidity is 22 NTU, and COD Mn is 210 mgO / L. When the polymer addition amount is 5 mg / L, the flock particle diameter is 6 mm, the turbidity is 20 NTU, COD Mn is 210 mgO / L. When the amount of polymer added is 10 mg / L, the floc particle diameter is 7 mm, the turbidity is 19 NTU, COD Mn is 200 mgO / L, and when the amount of polymer added is 50 mg / L, the floc particle diameter is 7 mm, turbidity was 18 NTU, and COD Mn was 198 mgO / L.
Comparative Example 5
Instead of the stirring treatment liquid containing the cationic polymer fine particles obtained in Polymerization Example 1, powdered activated carbon [Kurita Industry Co., Ltd., Cricol (registered trademark) WD-514, density 0.35 kg / L] was used. The same operation as in Example 1 was performed except for the above.
When the amount of activated carbon added is 2 mg / L, the floc particle diameter is 6 mm, the turbidity is 21 NTU, and COD Mn is 210 mgO / L. When the amount of activated carbon is 5 mg / L, the floc particle diameter is 6 mm, the turbidity is 21 NTU, COD Mn is 206 mgO / L, when activated carbon addition amount is 10 mg / L, floc particle diameter is 7 mm, turbidity is 18 NTU, COD Mn is 202 mgO / L, and when activated carbon addition amount is 50 mg / L, floc particle diameter is 7 mm, turbidity was 18 NTU, and COD Mn was 199 mgO / L.
The results of Comparative Examples 1 to 5 are shown in Table 2.

Figure 2008246372
Figure 2008246372

第1〜2表に見られるように、排水処理剤として、非水溶性のカチオン性ポリマー微粒子を含む液を、ホモジナイザーを用いて回転数5,000rpm又は10,000rpmで30秒間又は5分間撹拌処理した液を用いた実施例1〜3では、硫酸バンドと高分子凝集剤以外の排水処理剤を用いない比較例1に比べて、上澄水の濁度とCODMnが効果的に低下している。これに対して、同じ非水溶性のカチオン性ポリマー微粒子を含む液を、ホモジナイザーを用いて回転数5,000rpm又は10,000rpmで撹拌処理しても、撹拌時間が15秒間である比較例2〜3と、排水処理剤として通常のカチオン性水溶性ポリマーを用いた比較例4と、粉末活性炭を用いた比較例5では、上澄水の濁度とCODMnの低下の効果は少ない。この結果から、非水溶性カチオン性ポリマー微粒子を含む液の撹拌処理により、ポリマー微粒子が活性化され、排水処理効果が向上したことは明らかである。 As can be seen in Tables 1 and 2, a liquid containing water-insoluble cationic polymer fine particles as a waste water treatment agent is stirred for 30 seconds or 5 minutes at a rotational speed of 5,000 rpm or 10,000 rpm using a homogenizer. In Examples 1 to 3 using the obtained liquid, the turbidity and COD Mn of the supernatant water are effectively reduced as compared with Comparative Example 1 in which the wastewater treatment agent other than the sulfuric acid band and the polymer flocculant is not used. . On the other hand, even if the liquid containing the same water-insoluble cationic polymer fine particles is stirred at a rotational speed of 5,000 rpm or 10,000 rpm using a homogenizer, the stirring time is 15 seconds. 3 and Comparative Example 4 using a normal cationic water-soluble polymer as a wastewater treatment agent and Comparative Example 5 using powdered activated carbon have little effect of lowering the turbidity and COD Mn of the supernatant water. From this result, it is clear that the polymer fine particles were activated by the stirring treatment of the liquid containing the water-insoluble cationic polymer fine particles, and the wastewater treatment effect was improved.

本発明の排水処理方法により、下水処理場、し尿処理場などの公共の排水汚泥処理施設から排出される排水や、化学工場、印刷工場、半導体工場、食品工場、紙・パルプ工場などから排出される工場排水などを処理すると、排水中に含まれる懸濁物質や溶解性COD成分を、安定して効率的に除去することができる。また、無機凝集剤を使用する排水処理に本発明方法を適用することにより、無機凝集剤の使用量を低減し、産業廃棄物である汚泥量を削減し、処分費用の低減とともに地球環境保護に大きく貢献することができる。   By the wastewater treatment method of the present invention, wastewater discharged from public wastewater sludge treatment facilities such as sewage treatment plants and human waste treatment plants, and discharged from chemical factories, printing factories, semiconductor factories, food factories, paper and pulp factories, etc. If the factory wastewater is treated, suspended substances and soluble COD components contained in the wastewater can be stably and efficiently removed. In addition, by applying the method of the present invention to wastewater treatment using inorganic flocculants, the amount of inorganic flocculants used is reduced, the amount of sludge that is industrial waste is reduced, and disposal costs are reduced and the global environment is protected. It can contribute greatly.

Claims (3)

水中で膨潤し実質的に水に溶解しないカチオン性又はノニオン性ポリマー微粒子を排水に添加し、凝集反応後、固液分離する排水処理方法において、該ポリマー微粒子を含む液をホモジナイザーでの処理を30秒以上行って排水に添加することを特徴とする排水処理方法。   In a wastewater treatment method in which cationic or nonionic polymer fine particles that swell in water and do not substantially dissolve in water are added to wastewater, and after agglomeration reaction, the liquid containing the polymer fine particles is treated with a homogenizer. A wastewater treatment method characterized by being added to wastewater after being performed for at least 2 seconds. 水中で膨潤し実質的に水に溶解しないポリマー微粒子が、カチオン性ポリマー微粒子である請求項1記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the polymer fine particles which swell in water and do not substantially dissolve in water are cationic polymer fine particles. カチオン性ポリマー微粒子が、2官能性モノマーを架橋剤とし、第四級アンモニウム塩モノマーを含む1種以上のモノマーからなる重合体である請求項2記載の排水処理方法。   The wastewater treatment method according to claim 2, wherein the cationic polymer fine particles are a polymer composed of one or more monomers including a quaternary ammonium salt monomer using a bifunctional monomer as a crosslinking agent.
JP2007090840A 2007-03-30 2007-03-30 Waste water treatment method Pending JP2008246372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090840A JP2008246372A (en) 2007-03-30 2007-03-30 Waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090840A JP2008246372A (en) 2007-03-30 2007-03-30 Waste water treatment method

Publications (1)

Publication Number Publication Date
JP2008246372A true JP2008246372A (en) 2008-10-16

Family

ID=39971957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090840A Pending JP2008246372A (en) 2007-03-30 2007-03-30 Waste water treatment method

Country Status (1)

Country Link
JP (1) JP2008246372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131167A (en) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk Flocculation treatment method of waste water
CN103058339A (en) * 2013-01-25 2013-04-24 徐献荣 Multifunctional integral sewage purifier and using method thereof
KR101282985B1 (en) * 2008-11-04 2013-07-05 쿠리타 고교 가부시키가이샤 Filtration apparatus and water treatment equipment
CN105236544A (en) * 2015-09-28 2016-01-13 江苏永葆环保科技股份有限公司 Preparation method of modified poly(iron chloride)
WO2016190388A1 (en) * 2015-05-27 2016-12-01 三菱レイヨン株式会社 Wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282985B1 (en) * 2008-11-04 2013-07-05 쿠리타 고교 가부시키가이샤 Filtration apparatus and water treatment equipment
JP2011131167A (en) * 2009-12-24 2011-07-07 Daiyanitorikkusu Kk Flocculation treatment method of waste water
CN103058339A (en) * 2013-01-25 2013-04-24 徐献荣 Multifunctional integral sewage purifier and using method thereof
WO2016190388A1 (en) * 2015-05-27 2016-12-01 三菱レイヨン株式会社 Wastewater treatment method
CN105236544A (en) * 2015-09-28 2016-01-13 江苏永葆环保科技股份有限公司 Preparation method of modified poly(iron chloride)

Similar Documents

Publication Publication Date Title
Hameed et al. A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant
Sahu et al. Review on chemical treatment of industrial waste water
Ibrahim et al. Colour removal from biologically treated landfill leachate with tannin-based coagulant
JP5364298B2 (en) Dispersant-containing water treatment method
Aziz et al. Effects of using Tamarindus indica Seeds as a natural coagulant aid in landfill leachate treatment
JPWO2007119720A1 (en) Sludge or wastewater treatment method
Hassan et al. Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum
JP2008246372A (en) Waste water treatment method
JP2009154095A (en) Water treatment method
Seid-Mohammadi et al. Removal of humic acid from synthetic water using chitosan as coagulant aid in electrocoagulation process for Al and Fe electrodes
KR101980478B1 (en) Manufacturing method of inorganic coagulants used acid waste water for treatment an activated clay
JP5099315B2 (en) Method for treating humic-containing water
JP2007313492A (en) Method and apparatus for treating soluble cod component-containing water
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP5348369B2 (en) Water treatment method
Jabin et al. Role of Polyelectrolytes in the Treatment of Water and Wastewater
JP2008006382A (en) Method of treating oil-containing waste water
Ukiwe et al. Assessment of polyacrylamide and aluminum sulphate coagulants in turbidity removal in wastewater
JP3064878B2 (en) Organic sludge treatment
KR101088148B1 (en) Electrical neutralization of colloidal particles with speed control how water
Marey Composite of chitosan and Bentonite as coagulant agents in removing turbidity from Ismailia canal as water treatment plant.
JP4923834B2 (en) Method and apparatus for treating water containing soluble COD component
JP2009142761A (en) Water treatment method
FI130436B (en) Method for removing dissolved organic compounds from wastewater
JP4816374B2 (en) Coagulation method of high water content sludge