JP2013248584A - Method for treating drainage - Google Patents
Method for treating drainage Download PDFInfo
- Publication number
- JP2013248584A JP2013248584A JP2012126375A JP2012126375A JP2013248584A JP 2013248584 A JP2013248584 A JP 2013248584A JP 2012126375 A JP2012126375 A JP 2012126375A JP 2012126375 A JP2012126375 A JP 2012126375A JP 2013248584 A JP2013248584 A JP 2013248584A
- Authority
- JP
- Japan
- Prior art keywords
- group
- water
- dispersion
- carbon atoms
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、加圧浮上処理方法に関するものであり、詳しくは特定のカチオン性単量体あるいは特定のカチオン性単量体および非イオン性単量体からなる単量体混合物を、分散剤として塩水溶液に可溶な水溶性高分子を共存させ該塩水溶液中にて撹拌下、分散重合した水溶性高分子微粒子からなる分散液を希釈せず分散液の状態で排水に添加するか、または該分散液と希釈水とを混合し生成した不完全溶解混合物を添加し、混合し凝集させた後、固液分離することを特徴とする排水の処理方法に関する。 The present invention relates to a pressurized flotation method, and more specifically, a specific cationic monomer or a monomer mixture composed of a specific cationic monomer and a nonionic monomer as a dispersant. A water-soluble polymer soluble in an aqueous solution is allowed to coexist with stirring in the aqueous salt solution, and a dispersion composed of the dispersion-polymerized water-soluble polymer fine particles is added to the waste water in the form of a dispersion without dilution, or the The present invention relates to a wastewater treatment method characterized by adding an incompletely dissolved mixture formed by mixing a dispersion and dilution water, mixing and agglomerating, and then solid-liquid separation.
放流水質の規制強化に伴い、処理装置の改良や廃水処理方法の改善により、水質の向上が図られており、無機凝集剤添加量の増加が不可欠となっている。ところが、無機凝集剤の使用量を増加させると、薬品コストの増加、発生汚泥量の増加並びに発生汚泥処理コストが増大することになる。また、廃水中には色々なコロイド物質及び溶解性有機物が含まれるため、廃水の種類によっては単に無機凝集剤の添加量を増やしても処理水の水質に不安が残る場合がある。例えば産業上の製造工程で排水を発生させる業種としては、自動車製造工場、製鐵所、紙パルプ製造業、クリーニング、砂利産業、その他の化学工場などがあるが、一般的に凝集処理としては、硫酸バンド、ポリ塩化アルミニウム(PAC)等アルミ系ないし鉄系の無機凝集剤を添加した後に更に高分子凝集剤を添加して凝集フロックを生成させ、次いで、凝集沈殿又は凝集浮上法で処理する方法が採用されている。 Along with stricter regulations on the quality of discharged water, water quality has been improved by improving treatment equipment and wastewater treatment methods, and increasing the amount of inorganic flocculant added is essential. However, when the amount of the inorganic flocculant used is increased, the chemical cost is increased, the amount of generated sludge is increased, and the generated sludge treatment cost is increased. In addition, since various kinds of colloidal substances and soluble organic substances are contained in the wastewater, depending on the type of the wastewater, there is a case where the water quality of the treated water remains uneasy even if the amount of the inorganic flocculant is simply increased. For example, industrial industries that generate wastewater in industrial manufacturing processes include automobile manufacturing factories, steel mills, pulp and paper manufacturing industries, cleaning, gravel industries, and other chemical factories. A method of adding a polymeric flocculant after adding an inorganic or iron-based inorganic flocculant such as sulfate band, polyaluminum chloride (PAC), etc. to produce agglomerated flocs, and then treating by agglomeration precipitation or agglomeration flotation method Is adopted.
処理水の水質を維持・向上するためには無機凝集剤使用量を増加させなければならならないが、一方ではコストアップの制約もあり、新たな処方開発が求められている。その目的のため有機凝結剤の適用が進められている。有機凝結剤は、分子内に多数のカチオン基を有する高分子電解質であるので、無機凝集剤と同様に被処理水中の懸濁物質の荷電を中和する目的で使用される。しかも、有機凝結剤は、無機凝集剤よりもカチオンの電荷密度が高いために、その凝結作用は無機凝集剤よりはるかに大きいという特徴を持っている。また、有機凝結剤は懸濁物質を中和するだけでなく、負に帯電しているフミン酸等の溶解物質と反応して不溶性塩を形成する作用があり色度及びCODの減少効果も期待される。 In order to maintain and improve the quality of treated water, the amount of inorganic flocculant used must be increased, but on the other hand, there are restrictions on cost increase, and new formulation development is required. For this purpose, organic coagulants are being applied. Since the organic coagulant is a polyelectrolyte having a large number of cationic groups in the molecule, it is used for the purpose of neutralizing the charge of the suspended substance in the water to be treated, like the inorganic coagulant. In addition, since the organic coagulant has a higher charge density of the cation than the inorganic coagulant, the coagulation action is much larger than that of the inorganic coagulant. Organic coagulants not only neutralize suspended substances, but also react with negatively charged dissolved substances such as humic acid to form insoluble salts, and are expected to reduce chromaticity and COD. Is done.
上記のように無機凝集剤使用は、スラッジ量の増加を発生させ、有機凝結剤の使用は種々の利点を有しながらもコストアップの要因を含んでいるが、その改良処方も検討されている。特許文献1は、無機凝集剤を使用しなくても有機性懸濁粒子の存在下では、有機性懸濁粒子が数100μmの径が大きい気泡への付着の媒介剤として作用し、原水中の微細な懸濁粒子が気泡界面に強く付着し、清澄な処理水を分離できるという処方を開示している。特許文献2は、含油廃水の浮上分離処理において、有機凝結剤と高分子凝集剤を併用する処方を開示している。この処方の適用によって、処理水中の油分を削減することが可能になり、更に汚泥発生量がされるとことに加え、加圧脱水における脱水性が向上し、汚泥圧入速度の向上と脱水ケーキ含水率が低下し、トータルの廃水処理コストが大幅に低減するとしている。また引用文献3は、凝集剤によって形成されたフロックと泡との付着性が優れるとし、凝集剤として分子内に疎水基を有する水溶性高分子を使用する処方を開示する。凝集剤の添加法として明細書および実施例とも希釈した溶液として排水に添加する方法が開示されている。また明細書中に分散液を直接注入するとの記載があるが、どのような分散液か、どのような添加法か具体的な記載はない。 As described above, the use of an inorganic flocculant causes an increase in the amount of sludge, and the use of an organic coagulant has various advantages but also includes a cost increase factor. . Patent Document 1 discloses that in the presence of organic suspended particles without using an inorganic flocculant, the organic suspended particles act as a mediator of adhesion to bubbles having a large diameter of several hundreds of μm. A formulation is disclosed in which fine suspended particles adhere strongly to the air bubble interface and clear treated water can be separated. Patent Document 2 discloses a prescription in which an organic coagulant and a polymer flocculant are used in combination in the floating separation treatment of oil-containing wastewater. By applying this formulation, it becomes possible to reduce the oil content in the treated water, and in addition to the generation of sludge, the dewaterability in pressure dewatering is improved, the sludge press-in speed is increased, and the water content of the dehydrated cake is increased. The rate declines and the total wastewater treatment costs are said to be significantly reduced. Reference 3 discloses a prescription using a water-soluble polymer having a hydrophobic group in the molecule as a flocculant, assuming that the adhesion between flocs and bubbles formed by the flocculant is excellent. As a method for adding the flocculant, both the specification and the examples disclose a method of adding to a waste water as a diluted solution. In addition, there is a description that the dispersion liquid is directly injected in the specification, but there is no specific description about what kind of dispersion liquid and what kind of addition method.
以上先行文献を見てきたように、浮上分離における課題というのは、処理効率を向上させるため無機凝集剤を単独で使用、あるいは有機凝集剤や有機凝結剤と無機凝集剤を併用する処方があるが、スラッジ量が増加する。一方、有機凝結剤の単独、あるいは有機凝結剤と有機凝集剤を併用する処方は、コストのアップや二液処方による装置の増加、あるいは操作の煩雑さが発生するという問題がある。したがって本発明の課題は、排水の浮上分離処理、あるいは排水の沈降分離処理において凝集効果を向上させることにより、有機高分子凝集剤を使用してもコストがアップせず、また無機凝集剤を使用しないか、極力低添加量に抑制することによりスラッジ量が増加しない排水の処理方法を提供することにある。 As described above, the problems in flotation separation include the use of an inorganic flocculant alone or an organic flocculant or a combination of an organic flocculant and an inorganic flocculant in order to improve processing efficiency. However, the amount of sludge increases. On the other hand, a prescription using an organic coagulant alone or a combination of an organic coagulant and an organic coagulant has a problem that costs increase, an apparatus increases due to a two-component prescription, and complicated operation occurs. Therefore, the object of the present invention is to improve the agglomeration effect in the floating separation treatment of wastewater or the sedimentation separation treatment of wastewater, so that the cost does not increase even if an organic polymer flocculant is used, and an inorganic flocculant is used. Or providing a method for treating wastewater in which the amount of sludge is not increased by suppressing the amount to be added as low as possible.
本発明者らは鋭意検討した結果、以下に述べる発明に到達した。すなわち下記一般式(1)で表される単量体あるいは下記一般式(2)で表される単量体および非イオン性単量体からなる単量体あるいは単量体混合物を、分散剤として塩水溶液に可溶な水溶性高分子を共存させ該塩水溶液中にて撹拌下、分散重合した水溶性高分子微粒子からなる分散液を、希釈溶解せず分散液の状態で排水に添加し、凝集させた後、固液分離することを特徴とする排水の処理方法に関する。
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキルあるいはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、炭素数7〜20のアルキル基あるいはアリール基であり、R2、R3、R4は同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基を表わす。X1 −は陰イオンをそれぞれ表わす。
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、ヒドロキシアルキル基あるいは炭素数7〜20のアルキル基あるいはアリール基であり、X2 −は陰イオンをそれぞれ表わす。
R8は水素、メチル基またはカルボキシメチル基、QはSO3 −、C6H4SO3 −、CONHC(CH3)2CH2SO3 −、C6H4COO−あるいはCOO−、
R9は水素またはCOO−Y1 +は水素イオンまたは陽イオンをそれぞれ表す。
As a result of intensive studies, the present inventors have reached the invention described below. That is, a monomer represented by the following general formula (1) or a monomer or monomer mixture composed of a monomer represented by the following general formula (2) and a nonionic monomer is used as a dispersant. A dispersion composed of water-soluble polymer fine particles dispersed and polymerized with stirring in the aqueous salt solution in the presence of a water-soluble polymer coexisting in the aqueous salt solution is added to the wastewater in the state of the dispersion without being diluted and dissolved. The present invention relates to a wastewater treatment method characterized by solid-liquid separation after aggregation.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkyl group or aryl group having 7 to 20 carbon atoms R 2 , R 3 and R 4 may be the same or different. A represents oxygen or NH, and B represents an alkylene group having 2 to 4 carbon atoms or a hydroxyalkylene group. X 1 − represents an anion, respectively.
General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, an alkyl group having 7 to 20 carbon atoms, or an aryl group, and X 2 − represents an anion. .
R 8 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 − , C 6 H 4 SO 3 − , CONHC (CH 3 ) 2 CH 2 SO 3 − , C 6 H 4 COO − or COO − ,
R 9 represents hydrogen or COO − Y 1 + represents a hydrogen ion or a cation, respectively.
前記不完全溶解混合物が、前記分散液と希釈水を混合し不完全溶解混合物とした後、2〜60秒以内に排水に添加することが好ましい。さらに前記固液分離は、浮上処理あるいは沈降処理により実施される。 The incompletely dissolved mixture is preferably added to the wastewater within 2 to 60 seconds after the dispersion and dilution water are mixed to form an incompletely dissolved mixture. Further, the solid-liquid separation is performed by a floating process or a sedimentation process.
本発明の排水の処理方法は、塩水溶液中水溶性高分子微粒子からなる分散液を希釈せず分散液の状態で排水に添加、混合し凝集させた後、固液分離するか、あるいは前記分散液に希釈水を混合し、生成した不完全溶解混合物を排水に添加、混合し凝集させた後固液分離することを特徴とする。本発明の処理方法によれば、無機凝集剤が無添加、あるいは極力低添加量に抑制することによりスラッジ量が増加せず、有機高分子凝集剤の使用量が通常の溶解濃度0.5〜0.2質量%にて添加する場合より、低減することが可能である。 The wastewater treatment method of the present invention is a method of adding a dispersion composed of water-soluble polymer fine particles in an aqueous salt solution to the wastewater in a dispersion state without diluting, mixing and aggregating, and then separating the solid or liquid, or the dispersion Diluted water is mixed with the liquid, and the resulting incompletely dissolved mixture is added to the waste water, mixed and agglomerated, followed by solid-liquid separation. According to the treatment method of the present invention, the inorganic flocculant is not added, or the amount of sludge is not increased by suppressing the addition amount to the lowest possible level, and the amount of the organic polymer flocculant used is a normal dissolution concentration of 0.5 to It can be reduced compared with the case of adding at 0.2% by mass.
本発明で用いるカチオン性あるいは両性水溶性高分子の微粒子からなる分散液は、以下に説明する方法によって製造することができる。例えばナトリウムやカリウムのようなアルカリ金属イオンやアンモニウムイオンとハロゲン化物イオン、硫酸イオン、硝酸イオン、リン酸イオンなどとの塩を使用するが、多価陰イオンとの塩がより好ましい。これら塩類の塩濃度としては、7質量%〜飽和濃度まで使用する。この中に水溶性高分子であり、かつ前記塩類水溶液にも溶解する水溶性高分子を分散剤として塩類水溶液に添加する。 A dispersion composed of fine particles of a cationic or amphoteric water-soluble polymer used in the present invention can be produced by the method described below. For example, a salt of an alkali metal ion such as sodium or potassium or an ammonium ion and a halide ion, sulfate ion, nitrate ion, phosphate ion or the like is used, and a salt with a polyvalent anion is more preferable. The salt concentration of these salts is 7 mass% to saturated concentration. A water-soluble polymer that is a water-soluble polymer and is also soluble in the salt aqueous solution is added to the salt aqueous solution as a dispersant.
重合する単量体としては、カチオン性単量体としてジメチルアミノエチル(メタ)アクリレート等、ジアリルアルキルアミン等の3級塩、塩化メチル等のハロゲン化アルキル等、あるいは塩化ベンジルなどのハロゲン化アリール化合物による4級化物等があげられ、これらのカチオン性ビニル系単量体は1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。具体的な例として一般式(1)は、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドを塩化ベンジルあるいは炭素数7〜20のアルキル基あるいはアリール基を有するハロゲン化物による四級化物である。その例として(メタ)アクリロイルオキシエチルベンジルジメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルベンジルジメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルベンジルジメチルアンモニウム塩化物などである。あるいは(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミン等の塩化メチルや塩化エチルなど低級アルキル基のハロゲン化物による四級化物である。例えば(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物がある。また一般式(2)であらわされる単量体は、ジアリルメチルアンモニウム塩化物、ジアリルジメチルアンモニウム塩化物などがある。 The monomer to be polymerized is a cationic monomer such as dimethylaminoethyl (meth) acrylate, tertiary salts such as diallylalkylamine, alkyl halides such as methyl chloride, or halogenated aryl compounds such as benzyl chloride. These cationic vinyl monomers can be used alone or in combination of two or more. As a specific example, the general formula (1) is a quaternary compound of dimethylaminoethyl (meth) acrylate or dimethylaminopropyl (meth) acrylamide with a benzyl chloride or a halide having an alkyl or aryl group having 7 to 20 carbon atoms. It is a monster. Examples thereof include (meth) acryloyloxyethylbenzyldimethylammonium chloride, (meth) acryloyloxy-2-hydroxypropylbenzyldimethylammonium chloride, (meth) acryloylaminopropylbenzyldimethylammonium chloride, and the like. Alternatively, it is a quaternized product of a halide of a lower alkyl group such as methyl chloride or ethyl chloride such as dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, and methyldiallylamine. Examples include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium chloride, and (meth) acryloylaminopropyltrimethylammonium chloride. Examples of the monomer represented by the general formula (2) include diallylmethylammonium chloride and diallyldimethylammonium chloride.
また必用に応じて共重合されるノニオン性単量体としては、アクリルアミド、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルピロリドン、N、N−ジメチルアクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、2−ヒドロキシエチル(メタ)アクリレ−ト等があげられる。 Nonionic monomers copolymerized as necessary include acrylamide, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N, N-dimethylacrylamide, acrylonitrile, diacetone acrylamide, 2-hydroxy Examples thereof include ethyl (meth) acrylate.
本発明においては両性水性高分子を使用することができる。前記カチオン性単量体とともに、アニオン性単量体として(メタ)アクリル酸あるいはそのナトリウム塩等のアルカリ金属塩またはアンモニウム塩、マレイン酸あるいはそのアルカリ金属塩、アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸あるいはそのアルカリ金属塩またはアンモニウム塩等があげられる。 In the present invention, an amphoteric aqueous polymer can be used. Along with the cationic monomer, an anionic monomer such as (meth) acrylic acid or an alkali metal salt or ammonium salt thereof such as sodium salt, maleic acid or alkali metal salt thereof, acrylamido-2-methylpropanesulfonic acid, etc. Examples thereof include acrylamide alkanesulfonic acid or an alkali metal salt or ammonium salt thereof.
分散剤として使用する水溶性高分子は、カチオン性あるいは非イオン性が好ましい。カチオン性高分子は、前記カチオン性単量体の重合体あるいはアクリルアミド、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルピロリドン、N、N−ジメチルアクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、2−ヒドロキシエチル(メタ)アクリレートなどとの共重合物
である。また前記非イオン性単量体の重合物も使用することができる。これら
水溶性高分子の分子量は、5、000から300万、好ましくは5万から200万である。また、非イオン性高分子の分子量としては、1,000〜100万であり、好ましくは1,000〜50万である。これら水溶性高分子の単量体に対する添加量は、重合時1/100〜15/100であり、好ましくは2/100〜1/10である。
The water-soluble polymer used as the dispersant is preferably cationic or nonionic. The cationic polymer is a polymer of the cationic monomer or acrylamide, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N, N-dimethylacrylamide, acrylonitrile, diacetone acrylamide, 2-hydroxyethyl. It is a copolymer with (meth) acrylate or the like. Moreover, the polymer of the said nonionic monomer can also be used. The molecular weight of these water-soluble polymers is 5,000 to 3 million, preferably 50,000 to 2 million. The molecular weight of the nonionic polymer is 1,000 to 1,000,000, preferably 1,000 to 500,000. The amount of the water-soluble polymer added to the monomer is 1/100 to 15/100 during polymerization, and preferably 2/100 to 1/10.
分散重合時の温度は、5〜40℃であり、好ましくは15〜30℃である。40℃より高くすると重合の制御は難しく、急激な温度上昇や重合液の塊状化などが起きて、高重合度で安定な分散液は生成しない。 The temperature during dispersion polymerization is 5 to 40 ° C, preferably 15 to 30 ° C. When the temperature is higher than 40 ° C., it is difficult to control the polymerization, and a rapid temperature rise or agglomeration of the polymerization solution occurs, so that a stable dispersion with a high degree of polymerization is not generated.
使用する開始は、2、2−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]ニ塩化水素化物、あるいは4、4−アゾビス(4−メトキシ−2、4ジメチル)バレロニトリルなどのアゾ系重合開始剤でも使用できるが、添加量を多くしなければ開始しにくい。そのため重合系の温度が多少でも上昇してくると、重合速度が加速され制御しにくい。従って添加量が少量で、低温で開始可能なレドックス系開始剤を使用する。この開始剤の添加量は、重合開始時、単量体当たり10〜50ppm、好ましくは10〜30ppm添加する。通常単量体濃度が低い場合、この開始剤添加量と温度では、重合は開始しない。しかし、本発明では、塩水溶液中の分散重合法を用いるので単量体濃度は20〜35重量%であり、比較的高濃度のため開始するものと推定される。しかし、添加量レベルが低いため一度の添加では、重合率が低くなる。そのため数回に分けて添加することが好ましい。添加回数としては、2〜5回、好ましくは2〜3回である。 The starting use is 2,2-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, or 4,4-azobis (4-methoxy-2,4dimethyl) valero. Although an azo polymerization initiator such as nitrile can be used, it is difficult to start unless the addition amount is increased. For this reason, if the temperature of the polymerization system rises somewhat, the polymerization rate is accelerated and difficult to control. Therefore, a redox initiator that can be started at a low temperature with a small addition amount is used. The amount of the initiator added is 10 to 50 ppm, preferably 10 to 30 ppm per monomer at the start of polymerization. Usually, when the monomer concentration is low, polymerization does not start at this initiator addition amount and temperature. However, in the present invention, since the dispersion polymerization method in an aqueous salt solution is used, the monomer concentration is 20 to 35% by weight, and it is estimated that the monomer concentration starts with a relatively high concentration. However, since the addition level is low, the polymerization rate is lowered by one addition. Therefore, it is preferable to add in several times. As addition frequency, it is 2-5 times, Preferably it is 2-3 times.
レドックス系開始剤としては、酸化性物質と還元性物質を組み合わせる。酸化性物質の例としては、ペルオクソ二硫酸アンモニウム、ペルオクソ二硫酸カリウム、過酸化水素などであり、還元性物質の例としては、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、チオ硫酸ナトリウム、シュウ酸ナトリウム、トリエタノ−ルアミンあるいはテトラメチルエチレンジアミンなどであるが、このうちペルオクソ二硫酸アンモニウムと亜硫酸水素ナトリウムの組み合わせが最も好ましい。このようにして、比較的低温で、開始剤の添加量レベルを低く抑えることにより、重合速度を制御し高重合度で安定した高分子分散液を製造することができる。 As a redox initiator, an oxidizing substance and a reducing substance are combined. Examples of oxidizing substances are ammonium peroxodisulfate, potassium peroxodisulfate, hydrogen peroxide, etc. Examples of reducing substances are sodium sulfite, sodium bisulfite, ferrous sulfate, sodium thiosulfate, oxalic acid Sodium, triethanolamine, tetramethylethylenediamine, and the like, among which the combination of ammonium peroxodisulfate and sodium bisulfite is most preferable. In this way, by suppressing the addition level of the initiator at a relatively low temperature, it is possible to produce a polymer dispersion that controls the polymerization rate and is stable at a high degree of polymerization.
上記方法によって製造し、本発明に使用する塩水溶液中に分散した微粒子からなる水溶性高分子の分子量は300万〜2000万であり、好ましくは500万〜1500万である。 The molecular weight of the water-soluble polymer produced by the above method and comprising fine particles dispersed in the aqueous salt solution used in the present invention is 3 million to 20 million, preferably 5 million to 15 million.
本発明におけるカチオン性あるいは両性水溶性高分子の塩水溶液粘度(4%食塩水中に高分子濃度が0.5%になるように完全溶解したときの粘度を25℃において回転粘度計にて測定)は5mPa・S以上、60mPa・S以下、好ましくは10mPa・S以上、30mPa・S以下であればその効果を発揮することができる。これを重量平均分子量で表わせば200万〜1500万であり、好ましくは300万〜1000万であり、更に好ましくは300万〜700万である。 Viscosity of aqueous salt solution of cationic or amphoteric water-soluble polymer in the present invention (measured with a rotational viscometer at 25 ° C. when completely dissolved in 4% saline so that the polymer concentration is 0.5%) If it is 5 mPa · S or more and 60 mPa · S or less, preferably 10 mPa · S or more and 30 mPa · S or less, the effect can be exhibited. Expressing this in terms of weight average molecular weight, it is 2 million to 15 million, preferably 3 million to 10 million, and more preferably 3 million to 7 million.
本発明の分散重合法により製造された分散液からなるカチオン性あるいは両性水溶性高分子は、水溶液重合法、油中水型エマルジョン重合法、油中水型分散重合法により製造されたアニオン性高分子などに較べ、水に溶解した場合の見かけ粘度が非常に低い。たとえば、アクリロイルオキシエチルトリメチルアンモニウムクロリドとアクリルアミドを20/80のモル比で含有する共重合体の場合、分子量約600万で0.2質量%の水溶液の粘度は、油中水型エマルジョン重合法による重合物では、600〜700mPa・sであるのに対し、本発明で使用する分散重合法により製造された分散液からなるカチオン性水溶性高分子は、30〜50mPa・sである。これは重合時共存させる無機塩類の影響もあるが、しかしこれらの影響を差し引いても、これだけでは説明できない。この現象は、塩水溶液中で生成した高分子を析出させながら重合していることも原因していると推定されるが、詳細な機構は未解明である。そのため、見かけ粘度が低いということは、それだけ処理を目的とした水中での分散性が良く、凝集機能を十分発揮できることを意味する。 The cationic or amphoteric water-soluble polymer comprising the dispersion produced by the dispersion polymerization method of the present invention is an anionic polymer produced by an aqueous solution polymerization method, a water-in-oil emulsion polymerization method, or a water-in-oil dispersion polymerization method. Compared to molecules, the apparent viscosity when dissolved in water is very low. For example, in the case of a copolymer containing acryloyloxyethyltrimethylammonium chloride and acrylamide in a molar ratio of 20/80, the viscosity of an aqueous solution having a molecular weight of about 6 million and 0.2% by mass is determined by a water-in-oil emulsion polymerization method. In the polymer, it is 600 to 700 mPa · s, whereas the cationic water-soluble polymer made of the dispersion produced by the dispersion polymerization method used in the present invention is 30 to 50 mPa · s. This is also due to the influence of inorganic salts coexisting during polymerization, but even if these effects are subtracted, this cannot be explained by itself. This phenomenon is presumed to be caused by polymerizing while precipitating the polymer produced in the aqueous salt solution, but the detailed mechanism is unclear. Therefore, that the apparent viscosity is low means that the dispersibility in water for the purpose of the treatment is good and the coagulation function can be sufficiently exhibited.
このことを本発明の排水の処理方法と関連付けて考察してみると以下のようになると考えられる。塩水溶液中高分子分散液を排水に添加すると、溶解液粘性が低いため排水中に拡散していき、凝集反応が連続的に起きる。この時、粉末凝集剤や油中水型エマルジョンを使用するのであれば、溶解液の粘性が高く凝集剤粒子の周りは高粘性のゲル状物が生成し、排水の凝集槽に攪拌機などが設置されていてもこれ以上凝集剤成分は拡散していかない。また水で希釈し完全な溶解液を添加した場合との違いを考察してみると以下のように考えられる。
溶解液を添加した場合、凝集剤成分の拡散は速い。しかし、排水の単位容積中の凝集剤成分の濃度としては低い。すると一定の大きさの凝集フロックに成長するまでの時間は、それだけ長くなると推定される。また低濃度の凝集剤成分が分散している懸濁粒子を集め生成した凝集フロックは、ふわふわした強度の弱いものになることが予想される。また有効に使用される凝集剤成分の効率の低い。一方、塩水溶液中分散液を構成する高分子微粒子からなる凝集剤が直接、排水中に添加され表面から溶解していくと、局部的に凝集剤成分が高濃度になり、急速な懸濁粒子の凝集が起きると考えられる。このようにして生成した凝集フロックは、強度的にも高く、凝集剤成分の効率も高いと考えられる。さらに高濃度であれば高分子鎖の絡み合いも残り見かけ上巨大分子となり、凝集性能を向上させる。
Considering this in connection with the wastewater treatment method of the present invention, it is considered as follows. When a polymer dispersion in a salt solution is added to wastewater, the viscosity of the solution is low, so that it diffuses into the wastewater and agglomeration occurs continuously. At this time, if a powder flocculant or water-in-oil emulsion is used, the viscosity of the solution is high and a highly viscous gel is generated around the flocculant particles. However, the flocculant component does not diffuse any more. Further, considering the difference from the case of diluting with water and adding a complete solution, it can be considered as follows.
When the dissolution solution is added, the diffusion of the flocculant component is fast. However, the concentration of the flocculant component in the unit volume of the waste water is low. Then, it is estimated that the time until growing into a coagulated floc of a certain size becomes longer. In addition, the aggregated floc produced by collecting suspended particles in which a low concentration of the flocculant component is dispersed is expected to be fluffy and weak. Moreover, the efficiency of the flocculant component used effectively is low. On the other hand, when the flocculant composed of polymer fine particles constituting the dispersion in salt solution is directly added to the wastewater and dissolved from the surface, the concentration of the flocculant component becomes high locally and rapid suspended particles It is thought that aggregation occurs. Aggregated flocs produced in this way are considered to be high in strength and high in efficiency of the flocculant component. Furthermore, if the concentration is high, the entanglement of the polymer chains will remain and apparently become macromolecules, improving the aggregation performance.
本発明においては、分散液に希釈水を混合し、生成した不完全溶解混合物を排水に添加しても効率よく凝集反応を起こすことができる。不完全溶解混合物は、
凝集剤成分の高分子微粒子と高濃度溶解液の混合物と考えれば、上記の説明に当てはまると考えられる。従って塩水溶液中分散液と希釈水の混合比も重要な要素になり、塩水溶液中分散液と希釈水は質量で1:1〜1:20、より好ましくは1:2〜1:15である。1:20より質量比が高いと凝集剤成分が拡散しすぎ完全な溶解液を添加した場合と同様な効果になってしまう。1:1より質量比が低い場合は、塩水溶液中分散液が希釈水と混合した時点で粗大粒子を発生させ好ましくない。従って高分子微粒子よりなる分散液の濃度が20質量%であるならば、塩水溶液中分散液と希釈水が1:1の場合は、分散液の平均的な濃度が10質量%で添加、塩水溶液中分散液と希釈水が1:20の場合は、分散液の平均的な濃度が1.0質量%で添加されることになる。
In the present invention, the agglomeration reaction can be efficiently caused by mixing dilution water with the dispersion and adding the resulting incompletely dissolved mixture to the waste water. Incompletely dissolved mixture is
If considered as a mixture of the polymer fine particles of the flocculant component and the high-concentration solution, it is considered that the above explanation is applicable. Therefore, the mixing ratio of the dispersion in salt water and dilution water is also an important factor, and the dispersion in salt water and dilution water is from 1: 1 to 1:20, more preferably from 1: 2 to 1:15 by mass. . When the mass ratio is higher than 1:20, the flocculant component is excessively diffused, and the same effect as when a complete solution is added is obtained. When the mass ratio is lower than 1: 1, it is not preferable because coarse particles are generated when the dispersion in the aqueous salt solution is mixed with the dilution water. Therefore, if the concentration of the dispersion composed of polymer fine particles is 20% by mass, when the dispersion in the aqueous salt solution and the dilution water are 1: 1, the average concentration of the dispersion is added at 10% by mass. When the dispersion in the aqueous solution and the dilution water are 1:20, the average concentration of the dispersion is added at 1.0% by mass.
本発明においては不完全溶解混合物の溶解状態を、分散液と希釈水が混合物として存在する時間で定義する。すなわち分散液と希釈水を混合し不完全溶解混合物とした後、2〜60秒以内に排水に添加することによって溶解状態を限定している。これによって塩水溶液中分散液を構成する高分子微粒子が完全には溶解せず、一部粒子状のまま排水に添加されることのほうが、全量分散液の状態で添加されるより更に効率的であることを表している。分散液と希釈水を混合し不完全溶解混合物で存在する時間が2秒以内であると溶解状態が低すぎ、60秒以上であると溶解が完全に近くなり、不完全溶解混合物の効果は低下する。従って混合物として保つ時間は2〜60秒以内であり、好ましくは3秒〜40以内である。 In the present invention, the dissolution state of the incompletely dissolved mixture is defined as the time during which the dispersion and dilution water exist as a mixture. In other words, after the dispersion and dilution water are mixed to form an incompletely dissolved mixture, the dissolved state is limited by adding to the waste water within 2 to 60 seconds. As a result, the fine polymer particles constituting the dispersion in the aqueous salt solution are not completely dissolved, and it is more efficient to add them to the wastewater in the form of a part of the particles than to add them in the state of the total dispersion. It represents something. If the dispersion and dilution water are mixed and the time that exists in the incompletely dissolved mixture is within 2 seconds, the dissolved state is too low, and if it is longer than 60 seconds, the dissolution is nearly complete and the effect of the incompletely dissolved mixture is reduced. To do. Accordingly, the time for keeping the mixture is within 2 to 60 seconds, and preferably within 3 seconds to 40 seconds.
本発明で排水に添加する不完全溶解混合物は、溶解装置など大掛かりな設備は必要ない。分散液と希釈水を配管途中で合流させることにより混合し、前記に規定した時間内に排水に添加する。あるいは希釈水を流しているオープンの溝状な水路に分散液を滴下させることにより混合し、その後排水に添加するなど
攪拌機は不必要か、あるいは弱い攪拌によって分散液と希釈水を混合する程度でよい。攪拌が強いと高分子分散粒子が溶解してしまい、本発明の効果が発現しにくくなる。
The incompletely dissolved mixture added to the waste water in the present invention does not require a large facility such as a dissolution apparatus. The dispersion and dilution water are mixed together in the middle of the pipe and mixed, and added to the wastewater within the time specified above. Alternatively, mixing is performed by dropping the dispersion into an open grooved water channel in which dilution water is flowing, and then added to the drainage, or a stirrer is not required, or the dispersion and dilution water are mixed by weak stirring. Good. If the stirring is strong, the polymer dispersed particles are dissolved, and the effects of the present invention are hardly exhibited.
本発明で使用する水溶液中にて撹拌下、分散重合した分散液からなる水溶性高分子の添加量は、排水の種類や固液分離の装置によって適宜決めていくことが必要であるが、染色排水のような場合を除けば、おおよそ対排水1〜100mg/Lであり、好ましくは2〜50mg/Lである。また無機凝集剤を併用すると、CODや色度を減少させることが可能な場合があるが、その場合はスラッジ量が増加することに留意する。更に酸やアルカリを添加し排水のpHを必要に応じて調製し、固液分離の効率を向上させることもできる。 The amount of the water-soluble polymer composed of the dispersion polymerized by dispersion polymerization in the aqueous solution used in the present invention needs to be appropriately determined depending on the type of waste water and the solid-liquid separation device. Except for the case of wastewater, the amount is approximately 1 to 100 mg / L, preferably 2 to 50 mg / L for wastewater. Moreover, when an inorganic flocculant is used together, it may be possible to reduce COD and chromaticity, but in that case, it should be noted that the amount of sludge increases. Furthermore, acid or alkali can be added to adjust the pH of the wastewater as necessary, thereby improving the efficiency of solid-liquid separation.
本発明は、塩水溶液中にて撹拌下、分散重合した水溶性高分子微粒子からなる分散液を希釈せず分散液の状態で排水に添加、混合し凝集させた後、固液分離することを特徴とする排水の処理方法であるが、排水の懸濁物質の種類によって沈殿処理あるいは浮上処理が可能である。食品排水や古紙製造排水のように懸濁物質の密度が比較的低いものは、浮上処理が適し、砂利洗浄排水のような懸濁物質の密度が比較的高いものは、沈殿処理が適している。 In the present invention, a dispersion composed of water-soluble polymer fine particles dispersed and polymerized with stirring in an aqueous salt solution is added to wastewater in the state of a dispersion without being diluted, mixed and aggregated, and then solid-liquid separated. Although it is a featured wastewater treatment method, it can be settled or floated depending on the type of suspended matter in the wastewater. Flotation treatment is suitable for those with relatively low density of suspended solids such as food wastewater and waste paper manufacturing wastewater, and precipitation treatment is suitable for those with relatively high suspended solids density such as gravel washing wastewater. .
(実施例)以下、実施例および比較例によって本発明をさらに詳しく説明する。本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。 (Examples) The present invention will now be described in more detail with reference to examples and comparative examples. The present invention is not limited to the following examples as long as the gist thereof is not exceeded.
(塩水溶液中高分子分散液の合成)
攪拌機、還流冷却管、温度計および窒素導入管を備えた4つ口500mlセパラブルフラスコに脱イオン水150.7g、硫酸アンモニウム110.8g、80%質量%アクリロイルオキシエチルトリメチルアンモニウムクロリド29.1g、50質量%アクリルアミド153.4g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウムクロリド20質量%60g(対単量体12質量%)をそれぞれ加え、均一になるまで攪拌した。その後pHを4.3に調節し攪拌しながら窒素導入管より窒素を導入し溶存酸素の除去を行う。この間恒温水槽により25℃に内部温度を調整する。窒素導入30分後、1質量%2、2−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]ニ塩化水素化物1g(対単量体、それぞれ100ppm)添加し重合を開始させた。重合開始1時間後、反応物液が増粘するのが観察されたが、分散粒子が析出し始めた。重合開始後6時間たったところで前記開始剤を50ppm追加し、さらに12時間重合を継続させ反応を終了した。この試作品を試料−1とする。この試料−1のアクリロイルオキシエチルトリメチルアンモニウムクロリド/アクリルアミドのモル比は10/90であり、単量体濃度20質量%、粘度は450mPa・sであった。なお、顕微鏡観察の結果、3〜20μmの粒子であることが判明した。また静的光散乱法による重量平均分子量を測定した。同様な操作によって試料−2〜試料−10を製造した。結果を表1に示す。
(Synthesis of polymer dispersion in salt solution)
In a four-neck 500 ml separable flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube, 150.7 g of deionized water, 110.8 g of ammonium sulfate, 29.1 g of 80% by mass acryloyloxyethyltrimethylammonium chloride, 50 153.4% by mass of acrylamide and 20% by mass of 60% by mass of acryloyloxyethyltrimethylammonium chloride (12% by mass of monomer) as a dispersant were added and stirred until uniform. Thereafter, the pH is adjusted to 4.3 and nitrogen is introduced from the nitrogen introduction tube while stirring to remove dissolved oxygen. During this time, the internal temperature is adjusted to 25 ° C. using a constant temperature water bath. 30 minutes after introduction of nitrogen, 1% by mass of 2,2-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride (1 g relative to monomer, 100 ppm each) was added for polymerization. Started. One hour after the start of polymerization, the reaction liquid was observed to thicken, but dispersed particles began to precipitate. After 6 hours from the start of polymerization, 50 ppm of the initiator was added, and the polymerization was continued for 12 hours to complete the reaction. This prototype is designated as Sample-1. Sample 1 had an acryloyloxyethyltrimethylammonium chloride / acrylamide molar ratio of 10/90, a monomer concentration of 20% by mass, and a viscosity of 450 mPa · s. As a result of microscopic observation, the particles were found to be 3 to 20 μm. The weight average molecular weight was measured by a static light scattering method. Samples 2 to 10 were produced in the same manner. The results are shown in Table 1.
(表1)
DMQ;アクリロイルオキシエチルトリメチルアンモニウムクロリド、
DMC;メタクリロイルオキシエチルトリメチルアンモニウムクロリド、
ABZ;アクリロイルオキシエチルベンジルジメチルアンモニウムクロリド、
DD;ジアリルジメチルアンモニウムクロリド、AAC;アクリル酸、
AAM;アクリルアミド、分散液粘性;mP・s、
(Table 1)
DMQ; acryloyloxyethyltrimethylammonium chloride,
DMC; methacryloyloxyethyltrimethylammonium chloride,
ABZ; acryloyloxyethylbenzyldimethylammonium chloride,
DD: diallyldimethylammonium chloride, AAC; acrylic acid,
AAM; acrylamide, dispersion viscosity; mP · s,
(実施例1)
食品加工排水(pH;6.53、SS;460mg/L、濁度;407NTU、COD;1400mg/L)を用い浮上処理試験を実施した。浮上処理試験は、ユーエスマシーナリイ社の浮上処理装置クロフターに適用し実施した。試験概要としては、凝集槽、加圧タンク、浮上分離槽および加圧ポンプが設置された加圧浮上処理施設において、加圧水の圧力3.5気圧、混合比20%の条件にて運転し、高分子凝集剤の薬注場所は凝集槽にて行なう。前記薬注は、塩水溶液中水溶性高分子微粒子からなる分散液1質量に対し、希釈水9質量で混合された未溶解粒子が混在する10倍に希釈した混合液を凝集槽に添加することにより実施する。添加量は、対排水液量7ppmおよび20ppmである。
排水を凝集槽にて撹拌下、前記未溶解粒子が混在する混合液を薬注ポンプにて添加し、加圧ポンプで加圧され加圧タンクにて空気を溶解した加圧水が、凝集槽にて凝集処理された排水と混合され、浮上分離槽へ導入されて固液分離を行い、浮上した凝集フロック(スカム)を分離された処理水のSS(懸濁粒子濃度)、濁度、COD(化学的酸素要求量)およびSV(スラッジボリューム)の各数値を測定する。結果を表2に示す。
Example 1
A flotation treatment test was performed using food processing wastewater (pH; 6.53, SS; 460 mg / L, turbidity: 407 NTU, COD; 1400 mg / L). The levitation treatment test was carried out by applying to the levitation treatment equipment crafter of USM SC. As an outline of the test, in a pressurized flotation treatment facility in which a coagulation tank, a pressurized tank, a flotation separation tank and a pressure pump are installed, the pressurized water is operated at a pressure of 3.5 atm and a mixing ratio of 20%. The place where the molecular flocculant is poured is in a coagulation tank. The chemical injection is to add to the agglomeration tank a 10-fold diluted liquid mixture containing undissolved particles mixed with 9 mass of dilution water with respect to 1 mass of the dispersion composed of water-soluble polymer fine particles in an aqueous salt solution. To implement. The amount added is 7 ppm and 20 ppm with respect to the amount of drainage liquid.
While the waste water is stirred in the coagulation tank, the liquid mixture containing the undissolved particles is added by a chemical pump, and the pressurized water pressurized by the pressure pump and dissolved in the pressure tank is Mixed with coagulated wastewater, introduced into a flotation separation tank for solid-liquid separation, and floated agglomerate floc (scum) is separated from the treated water SS (suspended particle concentration), turbidity, COD (chemical (Oxygen demand) and SV (sludge volume). The results are shown in Table 2.
(比較例1)
試料−1、試料−3および試料−8をそれぞれ0.5質量%に溶解し実施例1と同様な操作にて排水に添加し沈降分離試験を実施した。結果を表2に示す。
(Comparative Example 1)
Sample-1, Sample-3, and Sample-8 were each dissolved in 0.5% by mass and added to waste water in the same manner as in Example 1 to perform a sedimentation separation test. The results are shown in Table 2.
(表2)
SS;mg/L、濁度;NTU、COD;mg/L、SV;%
添加量;対液ppm
(Table 2)
SS; mg / L, turbidity; NTU, COD; mg / L, SV;%
Addition amount; ppm against liquid
表2を見て分かるように、分散液1質量に対し、希釈水9質量で混合された未溶解粒子が混在する10倍に希釈した分散液にて添加した試験では、対液7ppmで良好な浮上分離効果が発現しているが、通常の溶解液にして添加した試験では、対液20ppmまで添加しないと同等な効果が発現していない。 As can be seen from Table 2, in a test in which the dispersion was diluted 10 times with 1 mass of the dispersion mixed with undissolved particles mixed with 9 mass of dilution water, it was good at 7 ppm against the liquid. Although the floating separation effect is exhibited, in the test added as a normal solution, the equivalent effect is not exhibited unless the solution is added up to 20 ppm.
(実施例2)
製紙工場より採取した古紙パルプ製造排水(pH7.20、SS1150mg/L、濁度845NTU、COD620mg/L)を用い、試作した塩水溶液中高分子分散液、試料−1〜試料−10に関して沈降分離試験を実施した。
1000mLのビーカーに上記排水1000mLを採取した。一方、表1の試料−1を10g採取し、攪拌棒により弱く攪拌しながら90gの希釈水を添加し、未溶解粒子が混在する6倍に希釈した混合液を前記排水に対液10ppmおよび30ppm添加し、ジャーテスターを用いて200rpmにて120秒攪拌し、100rpmにて60秒攪拌した後60秒間静置し、上澄み液のSS(懸濁粒子)濃度、濁度、COD濃度、SV(スラッジボリューム)値を測定した。結果を表3に示す。
(Example 2)
Using a waste paper pulp wastewater (pH 7.20, SS 1150 mg / L, turbidity 845 NTU, COD 620 mg / L) collected from a paper mill, a sedimentation separation test was conducted on a prototype polymer dispersion in salt aqueous solution, Sample-1 to Sample-10. Carried out.
1000 mL of the waste water was collected in a 1000 mL beaker. On the other hand, 10 g of Sample-1 in Table 1 was sampled, 90 g of diluted water was added with weak stirring with a stir bar, and a 6-fold diluted mixed solution containing undissolved particles was added to the wastewater at 10 ppm and 30 ppm. Added, stirred at 200 rpm for 120 seconds using a jar tester, stirred at 100 rpm for 60 seconds, and then allowed to stand for 60 seconds. The supernatant liquid SS (suspended particle) concentration, turbidity, COD concentration, SV (sludge) Volume) value was measured. The results are shown in Table 3.
(比較例2)
試料−1、試料−3および試料−8をそれぞれ0.5質量%に溶解し実施例2と同様な操作にて排水に添加し沈降分離試験を実施した。結果を表3に示す。
(Comparative Example 2)
Sample-1, Sample-3, and Sample-8 were each dissolved in 0.5% by mass and added to waste water in the same manner as in Example 2 to perform a sedimentation separation test. The results are shown in Table 3.
(表3)
SS;mg/L、濁度;NTU、COD;mg/L、SV;%
添加量;対液ppm
(Table 3)
SS; mg / L, turbidity; NTU, COD; mg / L, SV;%
Addition amount; ppm against liquid
表3を見て分かるように、分散液1質量に対し、希釈水9質量で混合された未溶解粒子が混在する10倍に希釈した分散液にて添加した試験では、対液10ppmで良好な浮上分離効果が発現しているが、通常の溶解液にして添加した試験では、対液30ppmまで添加しないと同等な効果が発現していない。 As can be seen from Table 3, in a test in which the dispersion was diluted 10 times with 1 mass of the dispersion and mixed with undissolved particles mixed with 9 mass of the dilution water, 10 ppm against the solution was good. Although the floating separation effect is exhibited, in the test added as a normal solution, the equivalent effect is not exhibited unless the solution is added up to 30 ppm.
Claims (5)
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキルあるいはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、炭素数7〜20のアルキル基あるいはアリール基であり、R2、R3、R4は同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基を表わす。X1 −は陰イオンをそれぞれ表わす。
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、ヒドロキシアルキル基あるいは炭素数7〜20のアルキル基あるいはアリール基であり、X2 −は陰イオンをそれぞれ表わす。
R8は水素、メチル基またはカルボキシメチル基、QはSO3 −、C6H4SO3 −、CONHC(CH3)2CH2SO3 −、C6H4COO−あるいはCOO−、
R9は水素またはCOO−Y1 +は水素イオンまたは陽イオンをそれぞれ表す。 A monomer represented by the following general formula (1), a monomer represented by the following general formula (2), or a monomer mixture comprising the monomer and a nonionic monomer is used as a dispersant. A water-soluble polymer soluble in an aqueous salt solution coexists with stirring in the aqueous salt solution, and a dispersion composed of dispersion-polymerized water-soluble polymer fine particles is added to the wastewater in the form of a dispersion without being diluted, mixed and agglomerated After that, a method for treating waste water, wherein solid-liquid separation is performed.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkyl group or aryl group having 7 to 20 carbon atoms R 2 , R 3 and R 4 may be the same or different. A represents oxygen or NH, and B represents an alkylene group having 2 to 4 carbon atoms or a hydroxyalkylene group. X 1 − represents an anion, respectively.
General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, an alkyl group having 7 to 20 carbon atoms, or an aryl group, and X 2 − represents an anion. .
R 8 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 − , C 6 H 4 SO 3 − , CONHC (CH 3 ) 2 CH 2 SO 3 − , C 6 H 4 COO − or COO − ,
R 9 represents hydrogen or COO − Y 1 + represents a hydrogen ion or a cation, respectively.
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキルあるいはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、炭素数7〜20のアルキル基あるいはアリール基であり、R2、R3、R4は同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基を表わす。X1 −は陰イオンをそれぞれ表わす。
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、ヒドロキシアルキル基あるいは炭素数7〜20のアルキル基あるいはアリール基であり、X2 −は陰イオンをそれぞれ表わす。
R8は水素、メチル基またはカルボキシメチル基、QはSO3 −、C6H4SO3 −、CONHC(CH3)2CH2SO3 −、C6H4COO−あるいはCOO−、
R9は水素またはCOO−Y1 +は水素イオンまたは陽イオンをそれぞれ表す。 A monomer represented by the following general formula (1), a monomer represented by the following general formula (2), or a monomer mixture comprising the monomer and a nonionic monomer is used as a dispersant. A water-soluble polymer soluble in a salt aqueous solution is allowed to coexist, and the mixture is diluted with a dispersion composed of water-soluble polymer fine particles that have been dispersion-polymerized under stirring in the salt aqueous solution. A method for treating waste water, comprising adding, mixing and aggregating, followed by solid-liquid separation.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkyl group or aryl group having 7 to 20 carbon atoms R 2 , R 3 and R 4 may be the same or different. A represents oxygen or NH, and B represents an alkylene group having 2 to 4 carbon atoms or a hydroxyalkylene group. X 1 − represents an anion, respectively.
General formula (2)
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group, an alkyl group having 7 to 20 carbon atoms, or an aryl group, and X 2 − represents an anion. .
R 8 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 − , C 6 H 4 SO 3 − , CONHC (CH 3 ) 2 CH 2 SO 3 − , C 6 H 4 COO − or COO − ,
R 9 represents hydrogen or COO − Y 1 + represents a hydrogen ion or a cation, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012126375A JP2013248584A (en) | 2012-06-01 | 2012-06-01 | Method for treating drainage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012126375A JP2013248584A (en) | 2012-06-01 | 2012-06-01 | Method for treating drainage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013248584A true JP2013248584A (en) | 2013-12-12 |
Family
ID=49847802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012126375A Pending JP2013248584A (en) | 2012-06-01 | 2012-06-01 | Method for treating drainage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013248584A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190445A1 (en) * | 2014-06-09 | 2015-12-17 | 日鉄住金環境株式会社 | Polymer aggregator and method for removing matter suspended in water using said aggregator |
JP2015231923A (en) * | 2014-06-09 | 2015-12-24 | 日鉄住金環境株式会社 | Manufacturing method of granulated blast furnace slag and granulated blast furnace slag obtained by the same |
JP2016013541A (en) * | 2014-06-09 | 2016-01-28 | 日鉄住金環境株式会社 | High polymer coagulant |
JP2016013540A (en) * | 2014-06-09 | 2016-01-28 | 日鉄住金環境株式会社 | Removal processing method of suspended substances in water |
JP2017159193A (en) * | 2016-03-07 | 2017-09-14 | ハイモ株式会社 | Wastewater treatment method by water-soluble polymer dispersion liquid |
JP2019001679A (en) * | 2017-06-14 | 2019-01-10 | 日鉄住金環境株式会社 | Method of producing water-granulated slag |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08290161A (en) * | 1995-04-19 | 1996-11-05 | Hymo Corp | Pressure floating agent and pressure treatment |
JPH0978482A (en) * | 1995-09-14 | 1997-03-25 | Hymo Corp | Agent for recovering valuables in white water |
JPH1171583A (en) * | 1997-06-25 | 1999-03-16 | Hymo Corp | Polymer dispersion and its use |
JP2000042570A (en) * | 1998-07-29 | 2000-02-15 | Toyota Motor Corp | Recovering device for unadhered paint dregs of painting booth |
JP2001253920A (en) * | 2000-03-10 | 2001-09-18 | Hymo Corp | Method of producing cationic water-soluble polymer and its use |
JP2002249503A (en) * | 2000-12-18 | 2002-09-06 | Hymo Corp | Dispersion of amphoteric water-solble polymer |
JP2002355682A (en) * | 2001-05-31 | 2002-12-10 | Hymo Corp | Treatment method for used paper wastewater |
-
2012
- 2012-06-01 JP JP2012126375A patent/JP2013248584A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08290161A (en) * | 1995-04-19 | 1996-11-05 | Hymo Corp | Pressure floating agent and pressure treatment |
JPH0978482A (en) * | 1995-09-14 | 1997-03-25 | Hymo Corp | Agent for recovering valuables in white water |
JPH1171583A (en) * | 1997-06-25 | 1999-03-16 | Hymo Corp | Polymer dispersion and its use |
JP2000042570A (en) * | 1998-07-29 | 2000-02-15 | Toyota Motor Corp | Recovering device for unadhered paint dregs of painting booth |
JP2001253920A (en) * | 2000-03-10 | 2001-09-18 | Hymo Corp | Method of producing cationic water-soluble polymer and its use |
JP2002249503A (en) * | 2000-12-18 | 2002-09-06 | Hymo Corp | Dispersion of amphoteric water-solble polymer |
JP2002355682A (en) * | 2001-05-31 | 2002-12-10 | Hymo Corp | Treatment method for used paper wastewater |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015190445A1 (en) * | 2014-06-09 | 2015-12-17 | 日鉄住金環境株式会社 | Polymer aggregator and method for removing matter suspended in water using said aggregator |
JP2015231923A (en) * | 2014-06-09 | 2015-12-24 | 日鉄住金環境株式会社 | Manufacturing method of granulated blast furnace slag and granulated blast furnace slag obtained by the same |
JP2016013541A (en) * | 2014-06-09 | 2016-01-28 | 日鉄住金環境株式会社 | High polymer coagulant |
JP2016013540A (en) * | 2014-06-09 | 2016-01-28 | 日鉄住金環境株式会社 | Removal processing method of suspended substances in water |
JP2017159193A (en) * | 2016-03-07 | 2017-09-14 | ハイモ株式会社 | Wastewater treatment method by water-soluble polymer dispersion liquid |
JP2019001679A (en) * | 2017-06-14 | 2019-01-10 | 日鉄住金環境株式会社 | Method of producing water-granulated slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4141141B2 (en) | Anionic and nonionic dispersion polymers for purification and dehydration | |
US20090137720A1 (en) | Flocculant composition and method for manufacturing the same | |
JP2013248584A (en) | Method for treating drainage | |
JP5364298B2 (en) | Dispersant-containing water treatment method | |
JP5621254B2 (en) | Oil-containing wastewater treatment method | |
JP5621256B2 (en) | Wastewater coagulation method | |
JP2000500387A (en) | High performance polymer flocculant | |
JP2011131167A (en) | Flocculation treatment method of waste water | |
JP5145823B2 (en) | Organic flocculant and wastewater flocculation treatment method using the chemical | |
JP6134940B2 (en) | Coagulation treatment method for oil-containing cleaning wastewater | |
JP3702938B2 (en) | Organic coagulant and drainage coagulation method | |
JP2011131165A (en) | Treatment method for inorganic substance-suspended waste water | |
JP2009154081A (en) | Sludge dehydration method | |
JP2009106825A (en) | Sludge dehydration method | |
JP2009072754A (en) | Method for dehydrating sludge | |
JP2008221172A (en) | Sludge dehydrating agent, and sludge dehydrating method | |
JP6085990B2 (en) | Coagulation treatment method for oil-containing cleaning wastewater | |
JP5952593B2 (en) | Wastewater treatment method | |
González et al. | Flocculation efficiency of blends of short and long chain polyelectrolytes | |
JP6815607B2 (en) | Oil-containing wastewater treatment method | |
Leng et al. | Composite flocculants based on magnesium salt–polydiallyldimethylammonium chloride: Characterization and flocculation behaviour | |
JP3633726B2 (en) | Sludge treatment method | |
JP2013248583A (en) | Flocculant and wastewater treatment method | |
JP5866096B2 (en) | Wastewater treatment method | |
JP2004290823A (en) | Sludge dehydration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160701 |