JP2015044149A - Flocculation treatment method, flocculation treatment device and water treatment apparatus - Google Patents

Flocculation treatment method, flocculation treatment device and water treatment apparatus Download PDF

Info

Publication number
JP2015044149A
JP2015044149A JP2013176183A JP2013176183A JP2015044149A JP 2015044149 A JP2015044149 A JP 2015044149A JP 2013176183 A JP2013176183 A JP 2013176183A JP 2013176183 A JP2013176183 A JP 2013176183A JP 2015044149 A JP2015044149 A JP 2015044149A
Authority
JP
Japan
Prior art keywords
aqueous solution
water
flocculant
treated
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013176183A
Other languages
Japanese (ja)
Inventor
聡之 石井
Satoyuki Ishii
聡之 石井
沖代 賢次
Kenji Okishiro
賢次 沖代
佐々木 洋
Hiroshi Sasaki
佐々木  洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013176183A priority Critical patent/JP2015044149A/en
Priority to AU2014208195A priority patent/AU2014208195A1/en
Priority to US14/448,260 priority patent/US20150060367A1/en
Priority to ZA2014/05683A priority patent/ZA201405683B/en
Priority to CN201410376554.1A priority patent/CN104418419A/en
Publication of JP2015044149A publication Critical patent/JP2015044149A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flocculation treatment method, a flocculation treatment device and a water treatment apparatus where an aqueous solution sufficiently dissolved with a flocculant is added into water to be treated and highly efficient flocculation treatment can be realized.SOLUTION: A flocculation treatment device comprises: a flocculant aqueous solution storage tank 1 with an agitator 5 to store a flocculant aqueous solution; a particle size distribution measuring device 50 to measure the particle size distribution of the flocculant aqueous solution in the flocculant aqueous solution storage tank 1; a flocculation tank 11 to form an aggregate by mixing the water to be treated with the added flocculant aqueous solution; an aggregate removal part 9 to remove the aggregate from aggregate-containing treatment water; and a controlling unit 6 to control the agitator 5 so that a median diameter in the particle size distribution of the flocculant aqueous solution based on the measured particle size distribution is 1.0 μm or less.

Description

本発明は、被処理水へ凝集剤を添加し凝集物を形成する凝集処理方法、凝集処理装置及び凝集処理装置を搭載した水処理装置に関する。   The present invention relates to an aggregating method, an aggregating apparatus, and a water treatment apparatus equipped with the aggregating apparatus, in which an aggregating agent is added to water to be treated to form an aggregate.

河川水などの自然水から飲料水や用水を製造する浄水技術は、凝集沈殿法などの化学的手法及び砂ろ過法などの物理的手法が考えられてきた。   As for water purification technology for producing drinking water and irrigation water from natural water such as river water, chemical methods such as a coagulation sedimentation method and physical methods such as a sand filtration method have been considered.

一方、近年、中東やアジアなどを初めとした世界各国で水不足が課題となっている。これに対応するため、海水を脱塩して飲料水や用水を製造する海水淡水化技術が注目され、実用化され始めている。海水淡水化の方法としては、海水を加熱して水分を蒸発させ、蒸気を冷却することにより、淡水を得る蒸発法が行われてきた。しかし、蒸発法は、エネルギー効率が悪く、コストがかかるため、より効率的な手法が望まれている。現在では、逆浸透膜(RO膜)を用いた膜ろ過により脱塩し、淡水を得る逆浸透法が主流になり始めている。RO膜の汚染防止には、RO膜に海水を通す前に、濁質物質、有機物等を除去する適切な前処理を行う必要がある。前処理の方法としては、浄水処理と同様に、限外ろ過膜(UF)や精密ろ過膜(MF)による膜ろ過、活性炭などの吸着剤の利用、凝集剤の使用などが検討されている。   On the other hand, in recent years, water shortages have become an issue in countries around the world, including the Middle East and Asia. In order to cope with this, seawater desalination technology for desalinating seawater to produce drinking water and irrigation water has attracted attention and has been put into practical use. As a seawater desalination method, an evaporation method for obtaining fresh water by heating seawater to evaporate water and cooling steam has been performed. However, since the evaporation method is inferior in energy efficiency and costly, a more efficient method is desired. At present, a reverse osmosis method in which fresh water is obtained by desalting by membrane filtration using a reverse osmosis membrane (RO membrane) is becoming mainstream. In order to prevent contamination of the RO membrane, it is necessary to perform an appropriate pretreatment for removing turbid substances, organic substances and the like before passing seawater through the RO membrane. As a pretreatment method, as in the case of water purification treatment, membrane filtration using an ultrafiltration membrane (UF) or microfiltration membrane (MF), use of an adsorbent such as activated carbon, use of a flocculant, and the like are being studied.

排水処理や浄水処理における代表的な凝集剤としては、ポリ塩化アルミニウム(PAC)や塩化鉄などの多価の金属イオン(陽イオン)を利用した無機系凝集剤、多価イオンを有する水溶性の高分子を利用した高分子凝集剤(高分子凝集剤)などがある。これらは、水中に含まれる電荷を帯びた不純物を凝集沈殿により除去する。なお、無機系及び有機系のうち一方の凝集剤を適用しても十分な効果が得られない場合、無機系及び有機系の凝集剤を併用することにより、凝集効果を高めることができる場合がある。   Typical flocculants in wastewater treatment and water purification are inorganic flocculants using polyvalent metal ions (cations) such as polyaluminum chloride (PAC) and iron chloride, and water-soluble polyvalent ions. There are polymer flocculants using polymers (polymer flocculants) and the like. These remove the charged impurities contained in the water by coagulation precipitation. In addition, when a sufficient effect cannot be obtained even if one of the inorganic and organic flocculating agents is applied, the flocculating effect may be enhanced by using the inorganic and organic flocculating agents in combination. is there.

特許文献1には、高分子凝集剤を使用する際、水溶液とする装置が記載されており、溶解した高分子凝集剤水溶液の濃度を計測する機構を有する装置が開示されている。
特許文献2には、海水や河川水などの水中の不純物除去する際、有機系凝集剤及び無機系凝集剤を同時又はこの順に添加し、pH調整を実施する不純物の凝集方法が開示されている。
Patent Document 1 describes an apparatus that uses an aqueous solution when a polymer flocculant is used, and discloses an apparatus that has a mechanism for measuring the concentration of a dissolved aqueous polymer flocculant solution.
Patent Document 2 discloses a method for agglomerating impurities in which an organic flocculant and an inorganic flocculant are added simultaneously or in this order when removing impurities in water such as seawater and river water, and pH adjustment is performed. .

特許文献3には、海水淡水化において、pH調整剤を使用しpHを調整した後、ほう素除去用の凝集剤を添加するほう素除去方法が開示されている。   Patent Document 3 discloses a boron removal method of adding a flocculant for boron removal after adjusting pH using a pH adjuster in seawater desalination.

特開2002−136809号公報JP 2002-136809 A 特開2008−264723号公報JP 2008-264723 A 特開平10−225682号広報JP 10-225682 A

しかしながら、特許文献1ないし特許文献3のいずれにおいても、凝集剤水溶液中の粒径分布を測定する機能は備えておらず、凝集剤が水溶液中において十分に溶解しているか判断できない。従って、仮に、凝集剤が高分子凝集剤の場合、溶解が不十分な凝集剤水溶液を添加し凝集処理を行うと凝集効率が低下し必要以上に凝集剤を消費することとなる。   However, none of Patent Documents 1 to 3 has a function of measuring the particle size distribution in the aqueous flocculant solution and cannot determine whether the flocculant is sufficiently dissolved in the aqueous solution. Therefore, if the flocculant is a polymer flocculant, if an aqueous flocculant solution that is insufficiently dissolved is added to perform the flocculant treatment, the flocculant efficiency is reduced and the flocculant is consumed more than necessary.

本発明は、十分に溶解した凝集剤水溶液を被処理水に添加とし、高効率な凝集処理を実現可能な凝集処理方法、凝集処理装置並びに水処理装置を提供する。   The present invention provides a coagulation treatment method, a coagulation treatment apparatus and a water treatment apparatus capable of realizing a highly efficient coagulation treatment by adding a sufficiently dissolved coagulant aqueous solution to the water to be treated.

上記課題を解決するため、本発明は、不純物を含む被処理水に1種もしくは複数種の凝集剤水溶液を添加し凝集物を形成し、形成された凝集物を除去することで被処理水中の不純物を除去する凝集処理方法であって、凝集剤水溶液の粒径分布におけるメジアン径を1.0μm以下としたことを特徴とする。   In order to solve the above problems, the present invention adds one or more aqueous flocculant solutions to the water to be treated containing impurities to form agglomerates, and removes the formed agglomerates. An aggregating treatment method for removing impurities, wherein the median diameter in the particle size distribution of the aggregating agent aqueous solution is 1.0 μm or less.

また、本発明は、攪拌機を備え凝集剤水溶液を貯留する凝集剤水溶液貯蓄槽と、前記凝集剤水溶液貯蓄槽内の凝集剤水溶液の粒径分布を測定する粒径分布測定装置と、被処理水と添加される前記凝集剤水溶液とを混合し凝集物を形成する凝集槽と、前記凝集物を含む処理水から前記凝集物を除去する凝集物除去部と、測定される粒径分布に基づき前記凝集剤水溶液の粒径分布におけるメジアン径を1.0μm以下となるよう前記撹拌機を制御する制御部を設けたことを特徴とする。   The present invention also includes a flocculant aqueous solution storage tank that includes a stirrer and stores a flocculant aqueous solution, a particle size distribution measuring device that measures the particle size distribution of the flocculant aqueous solution in the flocculant aqueous solution storage tank, and water to be treated. And an aggregating tank that mixes the aqueous flocculant solution to be added to form an aggregate, an aggregate removal unit that removes the aggregate from the treated water containing the aggregate, and the particle size distribution based on the measured particle size distribution A controller for controlling the agitator is provided so that the median diameter in the particle size distribution of the flocculant aqueous solution is 1.0 μm or less.

本発明によれば、十分に溶解された凝集剤水溶液を被処理水へ添加でき、高効率な凝集処理を実現可能な凝集処理方法、凝集処理装置及び水処理装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the coagulant | flocculant aqueous solution fully melt | dissolved can be added to to-be-processed water, and the coagulation process method, coagulation process apparatus, and water treatment apparatus which can implement | achieve highly efficient coagulation process can be provided.

例えば、凝集剤として高分子凝集剤を用いた場合、均一に被処理水中に分散することができ、凝集処理効率を向上できることから、凝集処理工程における薬剤を低減でき、水処理装置の運転コスト低減が可能である。   For example, when a polymer flocculant is used as the flocculant, it can be uniformly dispersed in the water to be treated, and the flocculation treatment efficiency can be improved. Therefore, chemicals in the flocculation treatment process can be reduced, and the operating cost of the water treatment apparatus can be reduced. Is possible.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明に係る凝集処理部を有する水処理装置の全体構成図である。It is a whole block diagram of the water treatment apparatus which has the aggregation process part which concerns on this invention. 本発明に係る凝集処理部を有する水処理装置の他の全体構成図である。It is another whole block diagram of the water treatment apparatus which has a coagulation process part which concerns on this invention. 本発明に係る凝集処理部を有する水処理装置の他の全体構成図である。It is another whole block diagram of the water treatment apparatus which has a coagulation process part which concerns on this invention. 本発明に係る凝集処理部を有する水処理装置の他の全体構成図である。It is another whole block diagram of the water treatment apparatus which has a coagulation process part which concerns on this invention. 粒径分布と不純物の捕捉との関係を説明する図である。It is a figure explaining the relationship between a particle size distribution and trapping of impurities. 各実施例の粒径分布と処理水質との関係を説明する図である。It is a figure explaining the relationship between the particle size distribution and treated water quality of each Example. 各比較例の粒径分布と処理水質との関係を説明する図である。It is a figure explaining the relationship between the particle size distribution of each comparative example, and a treated water quality. 酸性糖除去率と目詰まり(ろ過圧)の上昇速度との関係を示す図である。It is a figure which shows the relationship between an acidic sugar removal rate and the raise speed | rate of clogging (filtration pressure).

以下、本発明の一実施形態に係る凝集処理方法、凝集処理装置及び水処理装置について説明する。本発明は、凝集処理に用いる高分子凝集剤水溶液の粒径分布におけるメジアン径(d50)を1.0μm以下としたことに特徴がある。ここで、メジアン径とは、紛体をある粒子径から2つに分けたとき大きい側と小さい側が等量となる粒子径をいい、一般的にd50と記載されるものである。高分子凝集剤水溶液の粒径が十分に小さく溶解した状態で注入することで、凝集剤が素早く均一に被処理水中に分散することが可能になり、高効率な凝集処理が可能になる。被処理水が海水などの高濃度塩水の場合、凝集剤水溶液のpHを酸性(pH2以下、好ましくは1以下)にしておくとなお良い。これは、凝集剤の解離状態に起因しており、アニオン性高分子を例に説明する。一般的なアニオン性高分子凝集剤が有するカルボキシル基が水中では、下記のような平衡状態で存在する。酸性領域下では、上記平衡は左に移動しカルボキシル基の解離が抑制される。つまり、高分子凝集剤水溶液を酸性にした場合、水溶液中でアニオン性高分子のカルボキシル基は未解離な状態となっており、そのまま高濃度塩水に添加した場合、被処理水中の2価イオン(Mg、Caなど)と結合することを抑制でき、瞬時に凝集物を形成することはなくなる。そのため、対象とする不純物を捕捉(トラップ)する前に凝集する高分子凝集剤を極力減らすことができ、薬剤低減、コスト低減が可能になると考えられるため望ましい。   Hereinafter, an aggregation treatment method, an aggregation treatment apparatus, and a water treatment apparatus according to an embodiment of the present invention will be described. The present invention is characterized in that the median diameter (d50) in the particle size distribution of the polymer flocculant aqueous solution used for the aggregation treatment is 1.0 μm or less. Here, the median diameter means a particle diameter in which the large side and the small side are equivalent when the powder is divided into two from a certain particle diameter, and is generally described as d50. By injecting the polymer flocculant aqueous solution in a state in which the particle diameter of the aqueous polymer flocculant solution is sufficiently small, the flocculant can be quickly and uniformly dispersed in the water to be treated, thereby enabling highly efficient flocculation. When the water to be treated is high-concentration salt water such as seawater, the pH of the flocculant aqueous solution is preferably made acidic (pH 2 or lower, preferably 1 or lower). This is due to the dissociated state of the flocculant, and will be described by taking an anionic polymer as an example. A carboxyl group possessed by a general anionic polymer flocculant is present in the following equilibrium state in water. Under the acidic region, the equilibrium moves to the left and the dissociation of the carboxyl group is suppressed. In other words, when the aqueous polymer flocculant solution is acidified, the carboxyl group of the anionic polymer is in an undissociated state in the aqueous solution, and when added to high-concentration salt water as it is, divalent ions ( (Mg, Ca, etc.) can be suppressed, and aggregates are not formed instantaneously. Therefore, the polymer flocculant that aggregates before trapping (trapping) the target impurities can be reduced as much as possible, which is desirable because it is considered that the drug can be reduced and the cost can be reduced.

Figure 2015044149
Figure 2015044149

図1は本発明に係る凝集処理部を有する水処理装置の全体構成図である。以下では水処理装置として海水淡水化装置の場合を例に説明するが、これに限られるものではなく、工業用排水の処理装置、生活排水などの下水処理装置であっても同様に適用されるものである。また、図1では、水の流れを実線矢印で、信号線(制御線)を点線で示している。   FIG. 1 is an overall configuration diagram of a water treatment apparatus having a coagulation treatment unit according to the present invention. In the following, the case of a seawater desalination apparatus will be described as an example of the water treatment apparatus. However, the present invention is not limited to this, and the present invention is similarly applied to sewage treatment apparatuses such as industrial wastewater treatment equipment and domestic wastewater. Is. In FIG. 1, the flow of water is indicated by solid arrows, and the signal line (control line) is indicated by a dotted line.

図1に示されるように、本発明の水処理装置は、凝集剤水溶液貯蓄槽1、被処理水である海水の水質を測定する第1の水質検査部7、被処理水に高分子凝集剤水溶液を添加し凝集処理を行う凝集槽11、凝集反応後の被処理処水から凝集物を分離し除去するろ過部9、凝集物が除去された後の被処理水の水質を測定する第2の水質検査部8、凝集物が除去された被処理水から塩分を除去する逆浸透膜ユニット(以下、RO膜ユニット)10と、これらを制御する制御部60から構成される。RO膜ユニット10では、凝集物が除去された被処理水から塩化物イオン、ナトリウムイオン等のイオン類を除去する。また、ろ過部9は、例えば、沈殿槽(沈殿部)、限外ろ過部、精密ろ過部、砂ろ過槽(砂ろ過部)あるいはマルチメディアフィルタろ過部等のいずれか1つまたはこれらの組み合わせを適切に配して構成される。そして、ろ過部9は、凝集槽11内で被処理水中の不純物が凝集剤に捕捉されることにより生成された凝集物を被処理水より分離して除去する。なお、図1に示される水処理装置の全体構成において、RO膜ユニット10を除く構成を凝集処理装置と称する。   As shown in FIG. 1, the water treatment apparatus of the present invention includes a flocculant aqueous solution storage tank 1, a first water quality inspection unit 7 that measures the quality of seawater that is treated water, and a polymer flocculant that is treated water. A coagulation tank 11 for adding an aqueous solution to perform coagulation treatment, a filtration unit 9 for separating and removing aggregates from the treated water after the coagulation reaction, and a second method for measuring water quality of the water to be treated after the aggregates are removed. The water quality inspection unit 8 includes a reverse osmosis membrane unit (hereinafter, RO membrane unit) 10 that removes salt from the water to be treated from which aggregates have been removed, and a control unit 60 that controls them. The RO membrane unit 10 removes ions such as chloride ions and sodium ions from the water to be treated from which the aggregates have been removed. The filtration unit 9 is, for example, any one of a precipitation tank (precipitation part), an ultrafiltration part, a microfiltration part, a sand filtration tank (sand filtration part), a multimedia filter filtration part, or a combination thereof. Configured appropriately. And the filtration part 9 isolate | separates and removes the aggregate produced | generated when the impurity in to-be-processed water is capture | acquired by the coagulant | flocculant in the coagulation tank 11. In the overall configuration of the water treatment apparatus shown in FIG. 1, the configuration excluding the RO membrane unit 10 is referred to as an aggregating treatment apparatus.

凝集剤水溶液貯蓄槽1には、高分子凝集剤水溶液を撹拌する攪拌機5、粒径分布測定用の分岐流路20、分岐流路20に設けられ高分子凝集剤水溶液の粒径分布を測定する粒径分布測定装置50が設けられている。粒径分布測定装置50は、高分子凝集剤水溶液を通流するフローセル2、フローセル2内を流れる高分子凝集剤水溶液に対しレーザを照射するレーザ照射部3と、フローセル2を挟みレーザ照射部3に対向するよう配置された検出部4から構成されている。検出部4は、高分子凝集剤水溶液中の凝集剤にレーザが照射されることにより発生する散乱光を受光し光電変換することで散乱光強度を検出する。そして、検出部4は、この散乱光強度分布に基づいて高分子凝集剤水溶液中の凝集剤の粒子径の分布を求め凝集剤添加率制御部6に出力する。これにより、凝集剤添加率制御部6は、凝集剤水溶液貯蓄槽1内の高分子凝集剤水溶液の粒径分布におけるメジアン径(d50)を取得する。   The flocculant aqueous solution storage tank 1 is provided with a stirrer 5 for stirring the polymer flocculant aqueous solution, a branch channel 20 for measuring the particle size distribution, and a particle size distribution of the polymer flocculant aqueous solution provided in the branch channel 20. A particle size distribution measuring device 50 is provided. The particle size distribution measuring device 50 includes a flow cell 2 for flowing a polymer flocculant aqueous solution, a laser irradiation unit 3 for irradiating a polymer flocculant aqueous solution flowing in the flow cell 2 with a laser, and a laser irradiation unit 3 sandwiching the flow cell 2. It is comprised from the detection part 4 arrange | positioned so that it may oppose. The detection unit 4 detects scattered light intensity by receiving and photoelectrically converting scattered light generated by irradiating the flocculant in the polymer flocculant aqueous solution with a laser. Then, the detection unit 4 obtains the particle size distribution of the flocculant in the polymer flocculant aqueous solution based on the scattered light intensity distribution, and outputs it to the flocculant addition rate control unit 6. Thereby, the flocculant addition rate control unit 6 acquires the median diameter (d50) in the particle size distribution of the polymer flocculant aqueous solution in the flocculant aqueous solution storage tank 1.

なお、ここでは粒径分布測定装置50として、フローセル2、レーザ照射部3及び検出部4にて動的光散乱法による粒径分布を測定する場合を説明したが、この他に、例えば、レーザ回折法、画像イメージング法及び重力沈降法等の粒径分布測定法が知られている。レーザ回折法は、粒子にレーザを照射し得られる回折光及び散乱光の強度分布から粒子径を求めるものである。また、画像イメージング法は、光学顕微鏡や電子顕微鏡などで粒子の画像を取得し、その画像イメージから粒子の大きさを得るものであり、重力沈降法は、分析試料を溶媒中に均一に分散させ粒子の沈降速度から粒径分布を求めるものである。また、本発明では、フローセル2、レーザ照射部3及び検出部4にて粒径分布測定装置50を構成したがこれに限られない。例えば、レーザ照射用のファイバと、これに直交するよう近接して配置された受光用ファイバから粒径分布測定装置50を構成し、凝集剤水溶液貯蓄槽1内に設置しても良い。この場合、凝集剤水溶液貯蓄槽1に分岐流路20を設けることを必要としない。   Here, the case where the particle size distribution measuring apparatus 50 measures the particle size distribution by the dynamic light scattering method in the flow cell 2, the laser irradiation unit 3 and the detection unit 4 has been described. Particle size distribution measurement methods such as diffraction method, image imaging method, and gravity sedimentation method are known. In the laser diffraction method, the particle diameter is obtained from the intensity distribution of diffracted light and scattered light obtained by irradiating a particle with laser. Image imaging is a method in which an image of a particle is obtained with an optical microscope or an electron microscope, and the size of the particle is obtained from the image. Gravity sedimentation is a method in which an analytical sample is uniformly dispersed in a solvent. The particle size distribution is obtained from the sedimentation rate of the particles. Moreover, in this invention, although the particle size distribution measuring apparatus 50 was comprised by the flow cell 2, the laser irradiation part 3, and the detection part 4, it is not restricted to this. For example, the particle size distribution measuring device 50 may be configured from a laser irradiation fiber and a light receiving fiber disposed so as to be orthogonal to the laser irradiation fiber, and installed in the flocculant aqueous solution storage tank 1. In this case, it is not necessary to provide the branch channel 20 in the flocculant aqueous solution storage tank 1.

また、図1において、凝集槽11には攪拌機12が設けられており、モータの回転数を制御することにより撹拌羽根の速度を制御可能となっている。すなわち、撹拌強度を制御可能に構成されている。ここで、撹拌強度とは、凝集槽の容量、撹拌羽根の面積、撹拌羽根の回転数(撹拌速度)等により定まるが、容量及び撹拌羽根の面積は一定のため、撹拌羽根の回転数を制御することにより撹拌強度を制御している。   Moreover, in FIG. 1, the agitation tank 11 is provided with a stirrer 12, and the speed of the stirring blade can be controlled by controlling the number of rotations of the motor. That is, the stirring intensity can be controlled. Here, the stirring strength is determined by the capacity of the agglomeration tank, the area of the stirring blade, the rotational speed of the stirring blade (stirring speed), etc., but since the capacity and the area of the stirring blade are constant, the rotational speed of the stirring blade is controlled. Thus, the stirring intensity is controlled.

次に、図1に示す水処理装置の動作について説明する。まず、取水した被処理水の水質を第1の水質検査部7にて測定する。ここで、測定される水質としては、例えば、全有機炭素(TOC)濃度、水温、pH、濁度などがある。この時、粒径分布測定装置50により凝集剤水溶液貯蓄槽1内に貯留される高分子凝集剤水溶液の粒径分布を計測しておく。続いて、凝集槽11に被処理水を引き込んだ後、第1の水質検査部7により測定された被処理水の水質データと高分子凝集剤水溶液の粒径分布のデータに基づき、凝集剤添加率制御部6は、ポンプ13を制御し凝集剤水溶液貯蓄槽1より最適量の高分子凝集剤水溶液を凝集槽11に添加する(フィードフォワード制御)。凝集槽11内で撹拌機12により高分子凝集剤を十分に作用させた後、ろ過部9により凝集物を除去する。その後、第2の水質検査部8により凝集物が除去された後の処理水の水質を測定する。凝集剤添加率制御部6は、第2の水質検査部8により測定された水質データ及び高分子凝集剤水溶液の粒径分布データに基づきフィードバック制御でより高精度で最適な高分子凝集剤水溶液の添加量を決定し被処理水に添加する。凝集剤添加率制御部6は、予め水質データ、凝集剤水溶液の粒径分布データ及び最適な凝集剤の添加量の関係を図示しない記憶部に格納している。なお、凝集剤水溶液貯蓄槽1にpH測定機構を設け高分子凝集剤水溶液のpHを監視制御するよう構成すると共にpH調整剤を添加可能な機構を設けることがより好ましい。   Next, the operation of the water treatment apparatus shown in FIG. 1 will be described. First, the quality of the treated water taken is measured by the first water quality inspection unit 7. Here, examples of water quality to be measured include total organic carbon (TOC) concentration, water temperature, pH, and turbidity. At this time, the particle size distribution of the polymer flocculant aqueous solution stored in the flocculant aqueous solution storage tank 1 is measured by the particle size distribution measuring device 50. Subsequently, after the water to be treated is drawn into the coagulation tank 11, the coagulant is added based on the water quality data of the water measured by the first water quality inspection unit 7 and the particle size distribution data of the polymer flocculant aqueous solution. The rate control unit 6 controls the pump 13 to add an optimal amount of the polymer flocculant aqueous solution from the flocculant aqueous solution storage tank 1 to the flocculant tank 11 (feed forward control). After sufficiently allowing the polymer flocculant to act on the stirrer 12 in the agglomeration tank 11, the agglomerate is removed by the filtration unit 9. Thereafter, the quality of the treated water after the aggregate is removed is measured by the second water quality inspection unit 8. The flocculant addition rate control unit 6 is configured to provide a highly accurate and optimum polymer flocculant aqueous solution by feedback control based on the water quality data measured by the second water quality inspection unit 8 and the particle size distribution data of the polymer flocculant aqueous solution. Determine the addition amount and add to the water to be treated. The coagulant addition rate control unit 6 stores in advance a relationship between water quality data, particle size distribution data of the coagulant aqueous solution, and the optimum addition amount of the coagulant in a storage unit (not shown). More preferably, the flocculant aqueous solution storage tank 1 is provided with a pH measurement mechanism for monitoring and controlling the pH of the polymer flocculant aqueous solution and a mechanism capable of adding a pH adjuster.

凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液は、高分子凝集剤として、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤、ポリメタクリル酸凝集剤のいずれかを用いることができる。特に、酸解離定数の小さいカルボキシル基を有する高分子は、海水への添加時にイオン化する速度が遅いため、より効果的に不純物を捕捉することができる。   The polymer flocculant aqueous solution stored in the flocculant aqueous solution storage tank 1 includes a polyacrylamide flocculant, a polysulfonic acid flocculant, a polyacrylic flocculant, a polyacrylic ester flocculant, Either a polyamine flocculant or a polymethacrylic acid flocculant can be used. In particular, a polymer having a carboxyl group with a small acid dissociation constant has a low ionization rate when added to seawater, and thus can capture impurities more effectively.

ここで高分子凝集剤による被処理水中の不純物を捕捉するメカニズムについて説明する。図5は、粒径分布と不純物の捕捉との関係を説明する図である。   Here, a mechanism for capturing impurities in the water to be treated by the polymer flocculant will be described. FIG. 5 is a diagram for explaining the relationship between the particle size distribution and the trapping of impurities.

図5において、高分子凝集剤水溶液中の粒径分布におけるメジアン径(d50)が小さい場合には高分子凝集剤が十分に均一に溶解し、高分子鎖一本一本が独立して凝集槽11内の被処理水中に添加されることになる。一方、メジアン径(d50)が大きい場合には、高分子凝集剤が十分に溶解しておらず、高分子凝集剤分子同士の絡み合い等により会合体を形成した状態で凝集槽11内の被処理水中に添加されることになる。図5において、メジアン径(d50)が大きい場合と比較し小さい場合には、1高分子鎖でより被処理水中の不純物を捕捉できることにより、多くの被処理水中の不純物に作用することができ、効率の良い凝集処理が可能になる。そのため、高分子凝集剤水溶液の粒径分布を計測し適切な粒径分布であることを確認しながら凝集処理を行うことで凝集処理の高効率化を実現できる。それによって、凝集剤添加率の最適化による薬剤量低減、薬剤過剰添加による弊害のリスク低減などのメリットが得られる。   In FIG. 5, when the median diameter (d50) in the particle size distribution in the polymer flocculant aqueous solution is small, the polymer flocculant dissolves sufficiently uniformly, and each polymer chain is independently agglomerated tank. 11 to be added to the water to be treated. On the other hand, when the median diameter (d50) is large, the polymer flocculant is not sufficiently dissolved, and an aggregate is formed by entanglement of the polymer flocculant molecules and the like. Will be added to the water. In FIG. 5, when the median diameter (d50) is small compared to the case where the median diameter (d50) is large, it is possible to act on many impurities in the water to be treated by trapping impurities in the water to be treated with one polymer chain. Efficient coagulation treatment is possible. Therefore, high efficiency of the aggregation treatment can be realized by measuring the particle size distribution of the aqueous polymer flocculant solution and performing the aggregation treatment while confirming that the particle size distribution is appropriate. Thereby, merits such as reduction of the drug amount by optimizing the addition rate of the flocculant and reduction of the risk of harmful effects due to excessive addition of the drug can be obtained.

上記では高分子凝集剤に関して説明したが、無機凝集剤に関しても同様に考えられ、凝集剤水溶液のメジアン径(d50)が大きければ無機系凝集剤がイオン化しておらず、被処理水への添加前に会合体や凝集物を形成した状態になっていることが考えられ、被処理水に添加した場合の効果低減につながると考えられる。そのため、凝集剤として例えば2種類、無機凝集剤及び高分子凝集剤を用いる場合は、これら無機及び高分子凝集剤共に水溶液の粒径分布測定を行うことが望ましい。特に高分子凝集剤は影響が顕著であるので、効果が大きい。   In the above description, the polymer flocculant has been described. The same applies to the inorganic flocculant. If the median diameter (d50) of the flocculant aqueous solution is large, the inorganic flocculant is not ionized and added to the water to be treated. It is considered that aggregates and aggregates have been formed before, and this is thought to lead to reduced effects when added to the water to be treated. Therefore, for example, when two types of inorganic flocculants and polymer flocculants are used as flocculants, it is desirable to measure the particle size distribution of the aqueous solution for both these inorganic flocculants and polymer flocculants. In particular, the effect of the polymer flocculant is significant, so the effect is great.

ここで、高濃度塩水に高分子凝集剤を適用する場合に関し、アニオン性高分子凝集剤を適用した場合について説明する。式1のようにカルボキシル基が解離した状態で添加される場合、瞬時に高濃度塩水である海水中のマイクロフロックやMg、Caなどと静電的な相互作用により結合し凝集物を形成する。一方、アニオン性高分子凝集剤の水溶液のpHを低くした場合、式1における平衡が右に偏りカルボキシル基は解離していない状態で海水中に添加されることになる。その場合、上記とは異なり、凝集剤添加から凝集物形成までにタイムラグが生じ、その間アニオン性高分子はより多くのマイクロフロックを物理的に捕捉することができる。そのため、アニオン性高分子凝集剤を含む水溶液のpHを低下させておくことで凝集剤の効率を向上することができる。さらに、定常状態に達した時には、被処理水のpHにより式1の平衡定数は決定されるので、被処理水のpHも凝集効率に影響するため、高分子凝集剤を添加する場合には、pH調整剤も添加すればより効果的に凝集物を形成することが可能となる。   Here, the case where an anionic polymer flocculant is applied is demonstrated regarding the case where a polymer flocculant is applied to high concentration salt water. When the carboxyl group is added in a dissociated state as in Formula 1, it is instantaneously bound by electrostatic interaction with microfloc, Mg, Ca, etc. in seawater, which is high-concentration saltwater, to form an aggregate. On the other hand, when the pH of the aqueous solution of the anionic polymer flocculant is lowered, the equilibrium in Formula 1 is biased to the right and the carboxyl group is not dissociated and is added to seawater. In that case, unlike the above, there is a time lag from the addition of the flocculant to the formation of the aggregate, and the anionic polymer can physically capture more micro flocs during that time. Therefore, the efficiency of the flocculant can be improved by lowering the pH of the aqueous solution containing the anionic polymer flocculant. Furthermore, when the steady state is reached, since the equilibrium constant of Formula 1 is determined by the pH of the water to be treated, the pH of the water to be treated also affects the agglomeration efficiency. If a pH adjuster is also added, aggregates can be formed more effectively.

図1に示す構成では、第1の水質検査部7により取水された被処理水(海水)の水質を測定し、第2の水質検査部8により凝集物除去後の処理水の水質を測定する構成としているが、ここで水質測定について説明する。   In the configuration shown in FIG. 1, the quality of the water to be treated (seawater) taken by the first water quality inspection unit 7 is measured, and the quality of the treated water after removing the aggregates is measured by the second water quality inspection unit 8. Although it is configured, water quality measurement will be described here.

取水された被処理水に含まれる物質(全有機炭素(TOC)や濁質)をセンシングすることにより、被処理水の水質の情報(水質データ)及び処理水の水質データを得るものである。第1の水質検査部7及び第2の水質検査部8により測定される水質データを利用して、フィードバック及びフィードフォワード制御を行う。凝集剤添加率制御部6は、取水した被処理水の水質(第1の水質検査部7により測定された水質データ)に適した各種凝集剤の添加量を決定する。それにより、凝集剤添加量の最適化で最大凝集剤効率を実現することができ、凝集剤の余剰添加や不必要な汚泥の発生防止が可能となり、水処理プラントの運転コストを適正化することができる。
測定する水質データとしては上記以外にも、水温、pH、導電率、タンパク質、糖類(中性糖、酸性糖)、アデノシン三リン酸(ATP)活性などであるが、被処理水に含まれる有機成分及び無機成分でRO膜ユニット10のファウリング(目詰まり)に影響すると考えられる指標であれば測定する水質データに含めるのが良い。
By sensing substances (total organic carbon (TOC) and turbidity) contained in the treated water taken, water quality information (water quality data) and treated water quality data are obtained. Feedback and feedforward control are performed using the water quality data measured by the first water quality inspection unit 7 and the second water quality inspection unit 8. The flocculant addition rate control unit 6 determines the addition amount of various flocculants suitable for the quality of the water to be treated (water quality data measured by the first water quality inspection unit 7). As a result, the maximum flocculant efficiency can be realized by optimizing the amount of flocculant added, it is possible to prevent excessive flocculant addition and unnecessary sludge generation, and optimize the operating cost of the water treatment plant Can do.
In addition to the above, the water quality data to be measured includes water temperature, pH, conductivity, protein, saccharides (neutral sugars, acidic sugars), adenosine triphosphate (ATP) activity, etc. If it is an index considered to influence the fouling (clogging) of the RO membrane unit 10 by the component and the inorganic component, it is preferable to include in the water quality data to be measured.

なお、図1においては、凝集槽11の前段及びろ過部9の後段にそれぞれ第1の水質検査部7、第2の水質検査部8を配置しているが、これは凝集処理の最適化を精度良く実施するためであり、簡易的にはいずれか一方の水質検査部を配置し、水質評価及び凝集剤添加率制御をすることも可能である。   In FIG. 1, the first water quality inspection unit 7 and the second water quality inspection unit 8 are arranged in the front stage of the coagulation tank 11 and the rear stage of the filtration unit 9, respectively. In order to carry out with high accuracy, it is also possible to simply arrange one of the water quality inspection sections to perform water quality evaluation and control of the flocculant addition rate.

凝集剤添加率制御部6は、凝集槽11内の被処理水への高分子凝集剤水溶液の添加量の決定の他に、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液の粒径分布であるメジアン径(d50)が1.0μm以下となるよう凝集剤水溶液貯蓄槽1に設けられた攪拌機5の撹拌強度を制御する。ここで、撹拌強度とは、上述したように、槽の容量、撹拌羽根の面積、撹拌羽根の回転数(撹拌速度)等により定まるが、容量及び撹拌羽根の面積は一定のため、撹拌羽根の回転数を制御することにより撹拌強度を制御している。   The flocculant addition rate control unit 6 determines the amount of the polymer flocculant aqueous solution added to the water to be treated in the flocculence tank 11, and the polymer flocculant aqueous solution stored in the flocculant aqueous solution storage tank 1. The stirring strength of the stirrer 5 provided in the flocculant aqueous solution storage tank 1 is controlled so that the median diameter (d50), which is the diameter distribution, is 1.0 μm or less. Here, as described above, the stirring strength is determined by the capacity of the tank, the area of the stirring blade, the rotation speed of the stirring blade (stirring speed), etc., but the capacity and the area of the stirring blade are constant. The stirring intensity is controlled by controlling the rotation speed.

次に、凝集剤を2種類併用する場合の水処理装置について説明する。図2は本発明に係
る凝集処理部を有する水処理装置の他の全体構成図である。図1と同様の構成要素には同一の符号を付している。図1において説明した水処理装置に更に無機系凝集剤水溶液を貯留する第1の凝集剤水溶液貯蓄槽31と、被処理水に無機系凝集剤水溶液を添加し凝集処理を行う凝集槽21を更に設けた構成としている。以下では、無機系凝集剤水溶液を添加し凝集処理を行う凝集槽21を第1の凝集槽、高分子凝集剤水溶液を添加し凝集処理を行う凝集槽11を第2の凝集槽と称する。無機系凝集剤としては、例えば、硫酸バンド、塩化第二鉄、硫酸第二鉄、塩化アルミニウム、硫酸アルミニウム、ポリ塩化アルミなどうちいずれかを用いる。
Next, a water treatment apparatus when two types of flocculants are used in combination will be described. FIG. 2 is another overall configuration diagram of a water treatment apparatus having a coagulation treatment unit according to the present invention. Constituent elements similar to those in FIG. 1 further includes a first flocculant aqueous solution storage tank 31 for storing an inorganic flocculant aqueous solution in the water treatment apparatus described above, and a flocculant tank 21 for adding an inorganic flocculant aqueous solution to the water to be treated and performing a flocculant treatment. The configuration is provided. Hereinafter, the aggregating tank 21 to which the inorganic aggregating agent aqueous solution is added to perform the aggregating process is referred to as a first aggregating tank, and the aggregating tank 11 to which the polymer aggregating agent aqueous solution is added to perform the aggregating process is referred to as a second aggregating tank. As the inorganic flocculant, for example, any one of sulfuric acid band, ferric chloride, ferric sulfate, aluminum chloride, aluminum sulfate, polyaluminum chloride, and the like is used.

図2に示す水処理装置の構成において、無機系凝集剤水溶液を貯留する第1の凝集剤水溶液貯蓄槽31及び高分子凝集剤水溶液を貯留する第2の凝集剤水溶液貯蓄槽1の双方に、粒径分布測定装置50を設けるのが望ましいが、ここでは、第2の凝集剤水溶液貯蓄槽1のみに設ける構成としている。図2に示す水処理装置の動作について説明する。第1の凝集槽21にはポンプ14を介して第1の凝集剤水溶液貯蓄槽31に貯留された無機系凝集剤水溶液が添加される。また、第1の凝集槽21の後段に接続された第2の凝集槽11には、ポンプ13を介して第2の凝集剤水溶液貯蓄槽1に貯留された高分子凝集剤水溶液が添加される。第1の凝集槽21及び第2の凝集槽11にはそれぞれ、攪拌機22及び攪拌機12が設けられており、モータの回転数を制御することにより撹拌羽根の速度を制御可能となっている。なお、ここで第1の凝集剤水溶液貯蓄槽31及び第2の凝集剤貯蓄槽1には、粒径分布におけるメジアン径(d50)が1.0μm以下の状態で無機系凝集剤水溶液、高分子凝集剤水溶液がそれぞれ保管されている。   In the configuration of the water treatment apparatus shown in FIG. 2, both the first flocculant aqueous solution storage tank 31 for storing the inorganic flocculant aqueous solution and the second flocculant aqueous solution storage tank 1 for storing the polymer flocculant aqueous solution, Although it is desirable to provide the particle size distribution measuring device 50, here, only the second flocculant aqueous solution storage tank 1 is provided. The operation of the water treatment device shown in FIG. 2 will be described. An inorganic flocculant aqueous solution stored in the first flocculant aqueous solution storage tank 31 is added to the first flocculant tank 21 via the pump 14. In addition, a polymer flocculant aqueous solution stored in the second flocculant aqueous solution storage tank 1 is added to the second flocculant tank 11 connected to the subsequent stage of the first flocculant tank 21 via the pump 13. . The first agglomeration tank 21 and the second agglomeration tank 11 are each provided with a stirrer 22 and a stirrer 12, and the speed of the stirring blades can be controlled by controlling the number of rotations of the motor. Here, the first flocculant aqueous solution storage tank 31 and the second flocculant storage tank 1 include an inorganic flocculant aqueous solution and a polymer in a state where the median diameter (d50) in the particle size distribution is 1.0 μm or less. Each of the flocculant aqueous solutions is stored.

第1の凝集槽21に無機系凝集剤水溶液が添加されると、攪拌機22により急速撹拌を所定時間実行し、無機系凝集剤水溶液が添加され所定時間撹拌後の被処理水は後段の第2の凝集槽11へ送水される。その後、第2の凝集槽11内の被処理水に高分子凝集剤水溶液が添加され、攪拌機12により所定時間緩速撹拌される。所定時間緩速撹拌された被処理水はろ過部9へと送水され、被処理水中に形成された凝集物を分離し除去し、RO膜ユニット10にて濃縮水と淡水に膜分離される。このように第1の凝集槽21において急速撹拌し、第2の凝集槽11において緩速撹拌することで、被処理水中の凝集物であるフロックの粒径を大きくすることができ、凝集性能を向上することが可能となる。なお、無機系凝集剤水溶液の添加量及び高分子凝集剤水溶液の添加量は、図1と同様に、第1の水質検査部7からの水質データ、第2の水質検査部8からの水質データ及び粒径分布測定装置50からの高分子凝集剤水溶液中の粒径分布におけるメジアン径(d50)により決定される。   When the inorganic flocculant aqueous solution is added to the first flocculent tank 21, rapid stirring is performed for a predetermined time by the stirrer 22, and the water to be treated after adding the inorganic flocculant aqueous solution and stirring for the predetermined time is the second stage in the latter stage. The water is fed to the coagulation tank 11. Thereafter, the polymer flocculant aqueous solution is added to the water to be treated in the second flocculation tank 11 and is stirred gently by the stirrer 12 for a predetermined time. The water to be treated that has been gently stirred for a predetermined time is sent to the filtration unit 9 where the aggregates formed in the water to be treated are separated and removed, and the RO membrane unit 10 performs membrane separation into concentrated water and fresh water. In this way, by rapidly stirring in the first flocculation tank 21 and slowly stirring in the second flocculation tank 11, the particle size of flocs that are aggregates in the water to be treated can be increased, and the flocculation performance can be improved. It becomes possible to improve. The addition amount of the inorganic flocculant aqueous solution and the addition amount of the polymer flocculant aqueous solution are the water quality data from the first water quality inspection unit 7 and the water quality data from the second water quality inspection unit 8 as in FIG. And the median diameter (d50) in the particle size distribution in the polymer flocculant aqueous solution from the particle size distribution measuring device 50.

次に、図1及び図2に示した凝集槽に代え、インラインで凝集剤を混合する方式を用いる構成について説明する。図3は、本発明に係る凝集処理部を有する水処理装置の他の全体構成図である。図3に示す水処理装置では、図1に示す凝集槽11及び攪拌機12に代えてインラインミキサ101を配置し、インラインミキサ101の前段で被処理水にポンプ13を介して高分子凝集剤水溶液を添加する構成としている。具体的には、インラインミキサ101の流入部へ接続される配管に、高分子凝集剤水溶液を注入可能なポートを設けている。インラインミキサ101は、例えば、その内部に相互に対向する2つの螺旋状の隔壁を備えている。この相互に対向する2つの螺旋状の隔壁により内部を通流する被処理水に対しせん断応力を作用させ、被処理水に含まれる高分子凝集剤と不純物とを混合することで凝集物であるフロックを形成するものである。図1と同様に凝集剤添加率制御部6が、第1の水質検査部7からの水質データ、第2の水質検出部8からの水質データ及び粒径分布測定装置50から得られる高分子凝集剤水溶液中の粒径分布におけるメジアン径(d50)に基づき高分子凝集剤水溶液の添加量を決定する。このようにインラインミキサ101を用いる場合は、混合後の反応時間、すなわち、高分子凝集剤が被処理水中の不純物を捕捉するための時間を確保するため、配管長または配管径を設定する必要がある。   Next, a configuration using a system in which a flocculant is mixed in-line, instead of the agglomeration tank shown in FIGS. 1 and 2 will be described. FIG. 3 is another overall configuration diagram of a water treatment apparatus having an aggregation treatment unit according to the present invention. In the water treatment apparatus shown in FIG. 3, an in-line mixer 101 is arranged in place of the flocculation tank 11 and the stirrer 12 shown in FIG. 1, and the polymer flocculant aqueous solution is supplied to the water to be treated through the pump 13 in the previous stage of the in-line mixer 101. It is set as the structure to add. Specifically, a port that can inject the polymer flocculant aqueous solution is provided in a pipe connected to the inflow portion of the in-line mixer 101. The inline mixer 101 includes, for example, two spiral partition walls facing each other. The two spiral partition walls facing each other cause a shear stress to act on the water to be treated flowing inside, and the polymer flocculant and impurities contained in the water to be treated are mixed to form an aggregate. It forms a flock. As in FIG. 1, the flocculant addition rate control unit 6 performs the polymer aggregation obtained from the water quality data from the first water quality inspection unit 7, the water quality data from the second water quality detection unit 8, and the particle size distribution measuring device 50. The addition amount of the polymer flocculant aqueous solution is determined based on the median diameter (d50) in the particle size distribution in the agent aqueous solution. Thus, when using the in-line mixer 101, it is necessary to set the pipe length or the pipe diameter in order to secure the reaction time after mixing, that is, the time for the polymer flocculant to capture impurities in the water to be treated. is there.

また、図4は、本発明に係る凝集処理部を有する水処理装置の他の全体構成図である。図4に示す水処理装置では、図2に示す第1の凝集槽21と攪拌機22、第2の凝集槽11と攪拌機12に代えて、それぞれ、インラインミキサ102、インラインミキサ101を設けている。インラインミキサ自体の構造は図3と同様であるため説明を省略する。図4に示す構成において、インラインミキサ102の前段でポンプ14を介して無機系凝集剤水溶液が被処理水に添加され、インラインミキサ102とインラインミキサ101とを接続する配管部でポンプ13を介して高分子凝集剤水溶液が被処理水に添加される。なお、無機系凝集剤水溶液の添加量及び高分子凝集剤水溶液の添加量の決定は、図2と同様に凝集剤添加率制御部6が行う。また、混合後の反応時間を確保するため図3に示す構成と同様に配管長または配管径を設定する必要がある。   Moreover, FIG. 4 is another whole block diagram of the water treatment apparatus which has the aggregation process part which concerns on this invention. In the water treatment apparatus shown in FIG. 4, an inline mixer 102 and an inline mixer 101 are provided in place of the first flocculation tank 21 and the stirrer 22 and the second flocculation tank 11 and the stirrer 12 shown in FIG. Since the structure of the inline mixer itself is the same as that shown in FIG. In the configuration shown in FIG. 4, the aqueous inorganic flocculant solution is added to the water to be treated through the pump 14 before the in-line mixer 102, and the pump 13 is connected to the piping section connecting the in-line mixer 102 and the in-line mixer 101. A polymer flocculant aqueous solution is added to the water to be treated. The addition amount of the inorganic flocculant aqueous solution and the addition amount of the polymer flocculant aqueous solution are determined by the flocculant addition rate control unit 6 as in FIG. Moreover, in order to ensure the reaction time after mixing, it is necessary to set a pipe length or a pipe diameter similarly to the structure shown in FIG.

図1から図4に示す上述の本発明の水処理装置によれば、凝集剤水溶液中の粒径分布におけるメジアン径(d50)を1.0μm以下で貯留することができ凝集処理の高効率化が可能となる。また、凝集剤添加率の最適化で最大凝集剤効率を実現することができ、凝集剤の余剰添加や不必要な汚泥の発生防止が可能となり、水処理装置の運転コストを適正化することができる。
なお、図1から図4に示す本発明の水処理装置で用いる凝集剤水溶液貯蓄槽1,31は、凝集剤を保管できる物であれば特に形状、材質に制限はない。また、凝集剤水溶液のpHも凝集処理の効率に影響を与えるため、pH測定機構及びpH調整剤添加機構も有することが望ましい。
According to the above-described water treatment apparatus of the present invention shown in FIGS. 1 to 4, the median diameter (d50) in the particle size distribution in the flocculant aqueous solution can be stored at 1.0 μm or less, and the efficiency of the coagulation treatment is improved. Is possible. In addition, optimization of the flocculant addition rate can achieve maximum flocculant efficiency, making it possible to prevent excessive flocculant addition and unnecessary sludge generation, and to optimize the operating costs of water treatment equipment. it can.
The flocculant aqueous solution storage tanks 1 and 31 used in the water treatment apparatus of the present invention shown in FIGS. 1 to 4 are not particularly limited in shape and material as long as the flocculant can be stored. Further, since the pH of the flocculant aqueous solution also affects the efficiency of the flocculation treatment, it is desirable to have a pH measurement mechanism and a pH adjuster addition mechanism.

以下、本発明の実施例を比較例と共に具体的に説明する。   Examples of the present invention will be specifically described below together with comparative examples.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸ポリアクリルアミド共重合体水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを5.1とし、高分子凝集剤水溶液における粒径分布(d50)を1.0μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.5TOC/ppm、酸性糖除去率80%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the vessel, a 0.1% polyacrylic acid polyacrylamide copolymer aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 5.1, the particle size distribution (d50) in the polymer flocculant aqueous solution to 1.0 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.5 TOC / ppm and an acid sugar removal rate of 80% were obtained as the treated water quality.

このとき、比較例1として、高分子凝集剤水溶液における粒径分布(d50)を3.0μmに変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率40%を得た。   At this time, as Comparative Example 1, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 3.0 μm and the other conditions were the same, the treated water quality was 0.6 TOC / ppm, acid sugar removal A rate of 40% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸ポリアクリルアミド共重合体水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを5.1とし、高分子凝集剤水溶液における粒径分布(d50)を0.7μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.5TOC/ppm、酸性糖除去率82%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the vessel, a 0.1% polyacrylic acid polyacrylamide copolymer aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 5.1, the particle size distribution (d50) in the polymer flocculant aqueous solution to 0.7 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.5 TOC / ppm and an acid sugar removal rate of 82% were obtained as the treated water quality.

このとき、比較例2として、高分子凝集剤水溶液における粒径分布(d50)を1.5μmに変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率55%を得た。   At this time, as Comparative Example 2, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 1.5 μm and the other conditions were the same, the treated water quality was 0.6 TOC / ppm, acid sugar removal. A rate of 55% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸ポリアクリルアミド共重合体水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを5.1とし、高分子凝集剤水溶液における粒径分布(d50)を0.3μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.4TOC/ppm、酸性糖除去率85%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the vessel, a 0.1% polyacrylic acid polyacrylamide copolymer aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by adjusting the pH to 5.1, the particle size distribution (d50) in the polymer flocculant aqueous solution to 0.3 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.4 TOC / ppm and acidic sugar removal rate of 85% were obtained as treated water quality.

このとき、比較例3として、高分子凝集剤水溶液における粒径分布(d50)を1.1μmに変更し、その他の条件は同一としたところ、処理水質として、0.5TOC/ppm、酸性糖除去率72%を得た。   At this time, as Comparative Example 3, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 1.1 μm and other conditions were the same, the treated water quality was 0.5 TOC / ppm, acid sugar removal A rate of 72% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを3.7とし、高分子凝集剤水溶液における粒径分布(d50)を1.0μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.5TOC/ppm、酸性糖除去率82%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the solution, a 0.1% concentration polyacrylic acid aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 3.7, the particle size distribution (d50) in the polymer flocculant aqueous solution to 1.0 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.5 TOC / ppm and an acid sugar removal rate of 82% were obtained as the treated water quality.

このとき、比較例4として、高分子凝集剤水溶液における粒径分布(d50)を3.0μmに変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率42%を得た。   At this time, as Comparative Example 4, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 3.0 μm and the other conditions were the same, the treated water quality was 0.6 TOC / ppm, acid sugar removal A rate of 42% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを3.7とし、高分子凝集剤水溶液における粒径分布(d50)を0.7μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.4TOC/ppm、酸性糖除去率86%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the solution, a 0.1% concentration polyacrylic acid aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 3.7, the particle size distribution (d50) in the polymer flocculant aqueous solution to 0.7 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.4 TOC / ppm and an acid sugar removal rate of 86% were obtained as treated water quality.

このとき、比較例5として、高分子凝集剤水溶液における粒径分布(d50)を1.5μmに変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率59%を得た。   At this time, as Comparative Example 5, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 1.5 μm and other conditions were the same, the treated water quality was 0.6 TOC / ppm, acid sugar removal A rate of 59% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを3.7とし、高分子凝集剤水溶液における粒径分布(d50)を0.3μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.4TOC/ppm、酸性糖除去率90%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the solution, a 0.1% concentration polyacrylic acid aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 3.7, the particle size distribution (d50) in the polymer flocculant aqueous solution to 0.3 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.4 TOC / ppm and an acid sugar removal rate of 90% were obtained as the treated water quality.

このとき、比較例6として、高分子凝集剤水溶液における粒径分布(d50)を1.1μmに変更し、その他の条件は同一としたところ、処理水質として、0.5TOC/ppm、酸性糖除去率75%を得た。   At this time, as Comparative Example 6, when the particle size distribution (d50) in the polymer flocculant aqueous solution was changed to 1.1 μm and the other conditions were the same, the treated water quality was 0.5 TOC / ppm, acid sugar removal A rate of 75% was obtained.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸ポリアクリルアミド共重合体水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを1.0とし、高分子凝集剤水溶液における粒径分布(d50)を1.0μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.5TOC/ppm、酸性糖除去率83%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the vessel, a 0.1% polyacrylic acid polyacrylamide copolymer aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 1.0, the particle size distribution (d50) in the polymer flocculant aqueous solution to 1.0 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.5 TOC / ppm and an acid sugar removal rate of 83% were obtained as treated water quality.

このとき、比較例7として、pHを8.0に変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率45%を得た。   At this time, as Comparative Example 7, when the pH was changed to 8.0 and the other conditions were the same, 0.6 TOC / ppm and an acidic sugar removal rate of 45% were obtained as the treated water quality.

本実施例では、図2に示す水処理装置の構成を用い、凝集剤水溶液貯蓄槽31に貯留される無機系凝集剤水溶液として、濃度3.8%塩化鉄水溶液を、凝集剤水溶液貯蓄槽1に貯留される高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸水溶液を用いた。被処理水は海水とし、ろ過部9として、孔径約5μmの粒径の不純物を除去可能な砂ろ過槽を用いた。pHを1.0とし、高分子凝集剤水溶液における粒径分布(d50)を1.0μmとし、凝集処理の効果を検証するために、砂ろ過後の処理水を採取し、処理水中の全有機炭素濃度(TOC)及び酸性糖濃度を評価した。評価した結果、処理水質として、0.4TOC/ppm、酸性糖除去率86%を得た。   In this embodiment, using the configuration of the water treatment apparatus shown in FIG. 2, a 3.8% iron chloride aqueous solution is used as the inorganic flocculant aqueous solution stored in the flocculant aqueous solution storage tank 31. As the polymer flocculant aqueous solution stored in the solution, a 0.1% concentration polyacrylic acid aqueous solution was used. The water to be treated was seawater, and a sand filtration tank capable of removing impurities having a pore diameter of about 5 μm was used as the filtration unit 9. In order to verify the effect of the agglomeration treatment by setting the pH to 1.0, the particle size distribution (d50) in the polymer flocculant aqueous solution to 1.0 μm, and collecting the treated water after sand filtration, Carbon concentration (TOC) and acid sugar concentration were evaluated. As a result of the evaluation, 0.4 TOC / ppm and an acid sugar removal rate of 86% were obtained as treated water quality.

このとき、比較例8として、pHを8.0に変更し、その他の条件は同一としたところ、処理水質として、0.6TOC/ppm、酸性糖除去率51%を得た。   At this time, as Comparative Example 8, when the pH was changed to 8.0 and the other conditions were the same, 0.6 TOC / ppm and an acidic sugar removal rate of 51% were obtained as treated water quality.

以上、実施例1から実施例8及び比較例1から比較例8をまとめる。図6は、各実施例の粒径分布と処理水質との関係を説明する図であり、図7は、各比較例の粒径分布と処理水質との関係を説明する図である。   As mentioned above, Example 1 to Example 8 and Comparative Example 1 to Comparative Example 8 are summarized. FIG. 6 is a diagram for explaining the relationship between the particle size distribution of each example and the treated water quality, and FIG. 7 is a diagram for explaining the relationship between the particle size distribution of each comparative example and the treated water quality.

図6及び図7において、高分子凝集剤水溶液として、濃度0.1%ポリアクリル酸ポリアクリルアミド共重合体水溶液を用い、pHを5.1とした場合の実施例1と比較例3とを検討する。実施例1では粒径分布(d50)を1.0μmで処理水質として、0.5TOC/ppm、酸性糖除去率80%であるのに対し、比較例3では粒径分布(d50)を1.1μmで処理水質として、0.5TOC/ppm、酸性糖除去率72%が得られている。すなわち、TOCは同一の値を示し、酸性糖除去率のみが80%と72%で異なる値を示している。   6 and 7, Example 1 and Comparative Example 3 were examined when a 0.1% polyacrylic acid polyacrylamide copolymer aqueous solution was used as the polymer flocculant aqueous solution and the pH was 5.1. To do. In Example 1, the particle size distribution (d50) is 1.0 μm and the treated water quality is 0.5 TOC / ppm, and the acid sugar removal rate is 80%. In Comparative Example 3, the particle size distribution (d50) is 1. The treated water quality at 1 μm is 0.5 TOC / ppm, and the acid sugar removal rate is 72%. That is, TOC shows the same value, and only the acid sugar removal rate shows different values between 80% and 72%.

同様に、高分子凝集剤水溶液として、濃度0.1%のポリアクリル酸水溶液を用い、pH3.7とした場合の実施例4と比較例6とを検討する。実施例4では粒径分布(d50)を1.0μmで処理水質として、0.5TOC/ppm、酸性糖除去率82%であるのに対し、比較例6では粒径分布(d50)を1.1μmで処理水質として、0.5TOC/ppm、酸性糖除去率75%が得られている。 TOCは同一の値を示し、酸性糖除去率のみが82%と72%で異なる値を示している。   Similarly, Example 4 and Comparative Example 6 in which a polyacrylic acid aqueous solution having a concentration of 0.1% is used as the polymer flocculant aqueous solution and the pH is 3.7 are examined. In Example 4, the particle size distribution (d50) is 1.0 μm and the treated water quality is 0.5 TOC / ppm, and the acid sugar removal rate is 82%. In Comparative Example 6, the particle size distribution (d50) is 1. The treated water quality at 1 μm is 0.5 TOC / ppm, and the acid sugar removal rate is 75%. TOC shows the same value, and only the acid sugar removal rate shows different values between 82% and 72%.

ここで、酸性糖除去率について注目すると、本発明の実施形態の1つである図2に示す水処理装置を運転する場合、第2の凝集槽11及びろ過部9の後段に設置されたRO膜ユニット10における負荷は酸性糖除去率80%を境界に大きく変化するという知見が得られた。すなわち、膜の目詰まり(ろ過圧上昇)速度の変化率は酸性糖除去率と相関を有し、酸性糖除去率80%を境界として大きく変化する。図8は、酸性糖除去率と目詰まり(ろ過圧)の上昇速度との関係を示す図である。酸性糖除去率の異なる処理水をRO膜ユニット10に通水し、その時の目詰まり(ろ過圧)の上昇速度を取得しプロットしたものを図8に示している。図8に示されるように、酸性糖除去率80%未満では、目詰まりの上昇速度は高い値を示しその変化率Aは小さい。これに対し、酸性糖除去率80%以上では目詰まりの上昇速度は急激に低下しその変化率Bは変化率Aより大となっている。すなわち、酸性糖除去率を80%以上とすることで、RO膜ユニット10における目詰まり抑制効果が顕著となる。このことから、凝集剤水溶液の粒径分布におけるメジアン径(d50)を1.0μm以下とすることで高い目詰まり抑制効果が得られることがわかる。   Here, when paying attention to the acid sugar removal rate, when operating the water treatment apparatus shown in FIG. 2 which is one of the embodiments of the present invention, the RO installed in the subsequent stage of the second flocculation tank 11 and the filtration unit 9. It was found that the load on the membrane unit 10 changes greatly with the acidic sugar removal rate of 80% as a boundary. That is, the rate of change in the clogging rate (filtration pressure increase) rate of the membrane correlates with the acidic sugar removal rate, and changes greatly with the acidic sugar removal rate of 80% as a boundary. FIG. 8 is a diagram showing the relationship between the acid sugar removal rate and the clogging (filtration pressure) increase rate. The treated water having different acid sugar removal rates is passed through the RO membrane unit 10 and the clogging (filtration pressure) increase rate at that time is acquired and plotted in FIG. As shown in FIG. 8, when the acid sugar removal rate is less than 80%, the clogging rate is high and the rate of change A is small. On the other hand, when the acid sugar removal rate is 80% or more, the clogging rate is rapidly reduced and the rate of change B is greater than the rate of change A. That is, the clogging suppression effect in the RO membrane unit 10 becomes remarkable by setting the acid sugar removal rate to 80% or more. This shows that a high clogging suppression effect can be obtained by setting the median diameter (d50) in the particle size distribution of the flocculant aqueous solution to 1.0 μm or less.

また、高分子凝集剤が完全に溶解した場合を想定し、凝集剤水溶液の粒径分布におけるメジアン径(d50)の下限を設定する。すなわち、高分子凝集剤を構成する原子はC、H、Oの3元素であり、これらの共有結合半径から高分子の長さと占有する体積を算出することで、下限のメジアン径として1.4nmが得られる。よって、本発明で用いる高分子凝集剤水溶液の粒径分布におけるメジアン径は、1.4nm以上1.0μm以下とするのが望ましい。   Further, assuming the case where the polymer flocculant is completely dissolved, the lower limit of the median diameter (d50) in the particle size distribution of the flocculant aqueous solution is set. That is, the atoms constituting the polymer flocculant are three elements of C, H, and O, and by calculating the length of the polymer and the occupied volume from these covalent bond radii, the lower limit median diameter is 1.4 nm. Is obtained. Therefore, the median diameter in the particle size distribution of the aqueous polymer flocculant solution used in the present invention is preferably 1.4 nm or more and 1.0 μm or less.

また、実施例1と実施例7とを比較すると、高分子凝集剤水溶液の粒径分布におけるメジアン径(d50)は1.0μmで同一、pHのみが実施例1では5.1、実施例7では1.0としている。これらの処理水質は、実施例1では0.5TOC/ppm、酸性糖除去率80%であるのに対し、実施例7では0.5TOC/ppm、酸性糖除去率83%となっている。   Further, when Example 1 is compared with Example 7, the median diameter (d50) in the particle size distribution of the polymer flocculant aqueous solution is 1.0 μm, which is the same, and only pH is 5.1 in Example 1, Example 7 Then it is 1.0. These treated water qualities are 0.5 TOC / ppm in Example 1 and an acid sugar removal rate of 80%, whereas in Example 7, the water content is 0.5 TOC / ppm and an acid sugar removal rate of 83%.

更に、実施例4と実施例8を比較すると、高分子凝集剤水溶液の粒径分布におけるメジアン径(d50)は1.0μmで同一、pHのみが実施例4では3.7、実施例8では1.0としている。これらの処理水質は、実施例4では0.5TOC/ppm、酸性糖除去率82%であるのに対し、実施例8では0.4TOC/ppm、酸性糖除去率86%となっている。   Further, when Example 4 and Example 8 are compared, the median diameter (d50) in the particle size distribution of the polymer flocculant aqueous solution is 1.0 μm and the same, and only the pH is 3.7 in Example 4 and in Example 8. It is set to 1.0. These treated water qualities are 0.5 TOC / ppm in Example 4 and an acid sugar removal rate of 82%, whereas in Example 8, they are 0.4 TOC / ppm and an acid sugar removal rate of 86%.

以上から、本発明で用いる高分子凝集剤水溶液の粒径分布におけるメジアン径(d50)を1.0μm以下とすることで、上述のとおり後段に設置されたRO膜ユニット10における目詰まり抑制効果を得ることができ、更に、高分子凝集剤水溶液のpHを低く(酸性状態)することで、酸性糖除去率を更に向上でき、目詰まり抑制効果を更に向上できる。なお、pHの調整はpH1.0以下となるようpH調整剤を添加することが好ましい。   From the above, by setting the median diameter (d50) in the particle size distribution of the polymer flocculant aqueous solution used in the present invention to 1.0 μm or less, the clogging suppressing effect in the RO membrane unit 10 installed in the latter stage as described above can be obtained. Furthermore, by reducing the pH of the polymer flocculant aqueous solution (in an acidic state), the acidic sugar removal rate can be further improved, and the clogging suppressing effect can be further improved. In addition, it is preferable to add a pH adjuster so that pH may be adjusted to 1.0 or less.

なお、本発明は上記した実施形態の構成に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の実施形態の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to the structure of above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of a certain example can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Moreover, it is possible to add / delete / replace the configuration of the other embodiment with respect to a part of the configuration of each embodiment.

1 凝集剤水溶液貯蓄槽
2 フローセル
3 レーザ照射部
4 検出部
5 攪拌機
6 凝集剤添加率制御部
7 第1の水質検査部
8 第2の水質検査部
9 ろ過部
10 RO膜ユニット
11 凝集槽
20 粒径分布測定用の分岐流路
50 粒径分布測定装置
101 インラインミキサ
DESCRIPTION OF SYMBOLS 1 Flocculant aqueous solution storage tank 2 Flow cell 3 Laser irradiation part 4 Detection part 5 Stirrer 6 Flocculant addition rate control part 7 1st water quality inspection part 8 2nd water quality inspection part 9 Filtration part 10 RO membrane unit 11 Coagulation tank 20 grain Branch channel 50 for diameter distribution measurement Particle size distribution measuring apparatus 101 In-line mixer

Claims (17)

不純物を含む被処理水に1種もしくは複数種の凝集剤水溶液を添加し凝集物を形成し前記不純物を除去する凝集処理方法であって、
前記凝集剤水溶液の粒径分布におけるメジアン径が1.0μm以下であることを特徴とする凝集処理方法。
A flocculation treatment method of adding one or more kinds of flocculant aqueous solutions to water to be treated containing impurities to form agglomerates and removing the impurities,
The median diameter in the particle size distribution of said flocculant aqueous solution is 1.0 micrometer or less, The aggregation processing method characterized by the above-mentioned.
請求項1に記載の凝集処理方法において、
前記被処理水に無機系凝集剤水溶液を添加し凝集物を形成し、
前記凝集物形成後の被処理水に高分子凝集剤水溶液を添加することを特徴とする凝集処理方法。
In the aggregation treatment method according to claim 1,
An inorganic flocculant aqueous solution is added to the treated water to form an aggregate,
A coagulation treatment method comprising adding an aqueous polymer coagulant solution to the water to be treated after the formation of the aggregate.
請求項2に記載の凝集処理方法において、
前記高分子凝集剤水溶液の粒径分布におけるメジアン径は1.4nm以上1.0μm以下の範囲であることを特徴とする凝集処理方法。
In the aggregation treatment method according to claim 2,
The median diameter in the particle size distribution of the polymer flocculant aqueous solution is in the range of not less than 1.4 nm and not more than 1.0 μm.
請求項1に記載の凝集処理方法において、
前記凝集剤水溶液はpHが1.0以下に調整されることを特徴とする凝集処理方法。
In the aggregation treatment method according to claim 1,
The flocculant aqueous solution is adjusted to have a pH of 1.0 or less.
請求項1から3のいずれかに記載の凝集処理方法において、
前記凝集剤水溶液の添加量は、前記被処理水の水質データ及び前記凝集剤水溶液の粒径分布におけるメジアン径に基づき決定されることを特徴とする凝集処理方法。
In the aggregation processing method according to any one of claims 1 to 3,
The amount of the flocculant aqueous solution added is determined based on water quality data of the water to be treated and a median diameter in a particle size distribution of the flocculant aqueous solution.
請求項2又は3に記載の凝集処理方法において、
前記無機系凝集剤水溶液は、硫酸バンド、塩化第二鉄、硫酸第二鉄、塩化アルミニウム、硫酸アルミニウム及びポリ塩化アルミのうちのいずれかであることを特徴とする凝集処理方法。
In the aggregation processing method according to claim 2 or 3,
The inorganic coagulant aqueous solution is any one of sulfuric acid band, ferric chloride, ferric sulfate, aluminum chloride, aluminum sulfate and polyaluminum chloride.
請求項2又は3に記載の凝集処理方法において、
前記高分子凝集剤水溶液は、ポリアクリルアミド系凝集剤、ポリスルホン酸系凝集剤、ポリアクリル酸系凝集剤、ポリアクリル酸エステル系凝集剤、ポリアミン系凝集剤及び、リメタクリル酸凝集剤にうちのいずれかであることを特徴とする凝集処理方法。
In the aggregation processing method according to claim 2 or 3,
The polymer flocculant aqueous solution includes any of polyacrylamide flocculants, polysulfonic acid flocculants, polyacrylic flocculants, polyacrylate flocculants, polyamine flocculants, and methacrylic flocculants. A coagulation treatment method characterized by the above.
請求項5に記載の凝集処理方法において、
前記被処理水の水質データは、少なくとも全有機炭素(TOC)、濁度、水温、pH、導電率、タンパク質、糖類(中性糖、酸性糖)及びアデノシン三リン酸(ATP)活性のうちいずれか1つを含むことを特徴とする凝集処理方法。
In the aggregating treatment method according to claim 5,
The water quality data of the water to be treated includes at least total organic carbon (TOC), turbidity, water temperature, pH, conductivity, protein, saccharide (neutral sugar, acidic sugar), and adenosine triphosphate (ATP) activity. A coagulation treatment method, comprising:
攪拌機を備え、凝集剤水溶液を貯留する凝集剤水溶液貯蓄槽と、
前記凝集剤水溶液貯蓄槽内の凝集剤水溶液の粒径分布を測定する粒径分布測定装置と、
被処理水と添加される前記凝集剤水溶液とを混合し凝集物を形成する凝集槽と、
前記凝集物を含む処理水から前記凝集物を除去する凝集物除去部と、
測定される粒径分布に基づき前記凝集剤水溶液の粒径分布におけるメジアン径を1.0μm以下となるよう前記撹拌機を制御する制御部を有することを特徴とする凝集処理装置。
A flocculant aqueous solution storage tank that has a stirrer and stores the flocculant aqueous solution;
A particle size distribution measuring device for measuring the particle size distribution of the flocculant aqueous solution in the flocculant aqueous solution storage tank;
A coagulation tank for mixing the water to be treated and the aqueous flocculant solution to be added to form an aggregate;
An aggregate removal unit for removing the aggregate from the treated water containing the aggregate;
An aggregating apparatus comprising: a control unit that controls the agitator so that a median diameter in the particle size distribution of the aqueous flocculant solution is 1.0 μm or less based on a measured particle size distribution.
請求項9に記載の凝集処理装置において、
前記凝集剤水溶液は、アニオン性高分子凝集剤の水溶液であることを特徴とする凝集処理装置。
The aggregation processing apparatus according to claim 9, wherein
The flocculant aqueous solution is an aqueous solution of an anionic polymer flocculant.
請求項9に記載の凝集処理装置において、
前記被処理水の水質を測定する水質検査部を備え、
前記制御部は、測定された被処理水の水質と前記粒径分布測定装置からの粒径分布に基づき前記被処理水への前記凝集剤水溶液の添加量を決定することを特徴とする凝集処理装置。
The aggregation processing apparatus according to claim 9, wherein
A water quality inspection unit for measuring the quality of the treated water;
The control unit determines the amount of the flocculant aqueous solution added to the water to be treated based on the measured water quality of the water to be treated and the particle size distribution from the particle size distribution measuring device. apparatus.
請求項11に記載の凝集処理装置において、
前記被処理水の水質を測定する第1の水質検査部と、
前記凝集物が除去された処理水の水質を測定する第2の水質検査部と、を備え、
前記制御部は、前記第1の水質検査部、前記第2の水質検査部及び前記粒径分布測定装置からの測定結果に基づき前記被処理水への前記凝集剤水溶液の添加量を決定することを特徴とする凝集処理装置。
The aggregation processing apparatus according to claim 11,
A first water quality inspection unit for measuring the quality of the treated water;
A second water quality inspection unit that measures the quality of the treated water from which the aggregates have been removed,
The control unit determines an addition amount of the flocculant aqueous solution to the water to be treated based on measurement results from the first water quality inspection unit, the second water quality inspection unit, and the particle size distribution measuring device. An aggregating apparatus characterized by the above.
請求項9又は11に記載の凝集処理装置において、
前記凝集剤水溶液貯蓄槽は、無機系凝集剤水溶液を貯留する第1の貯蓄槽と高分子凝集剤水溶液を貯留する第2の貯蓄槽から構成され、
前記凝集槽は、
第1の貯蓄槽からの無機系凝集剤水溶液と前記被処理水とを混合する第1の凝集槽と、
前記第1の凝集槽の後段に配置され、前記第1の凝集槽から導入される凝集物を含む被処理水と前記第2の貯蓄槽からの高分子凝集剤水溶液とを混合する第2の凝集槽から構成されることを特徴とする凝集処理装置。
In the aggregating apparatus according to claim 9 or 11,
The flocculant aqueous solution storage tank is composed of a first storage tank for storing an inorganic flocculant aqueous solution and a second storage tank for storing a polymer flocculant aqueous solution,
The agglomeration tank is
A first flocculating tank for mixing the inorganic flocculant aqueous solution from the first storage tank and the water to be treated;
2nd which arrange | positions in the back | latter stage of the said 1st coagulation tank, mixes the to-be-processed water containing the aggregate introduced from the said 1st coagulation tank, and the polymer flocculant aqueous solution from the said 2nd storage tank. An aggregating apparatus comprising an aggregating tank.
攪拌機を備え、凝集剤水溶液を貯留する凝集剤水溶液貯蓄槽と、
前記凝集剤水溶液貯蓄槽内の凝集剤水溶液の粒径分布を測定する粒径分布測定装置と、
被処理水と添加される前記凝集剤水溶液とを混合し凝集物を形成する凝集槽と、
前記凝集物を含む処理水から前記凝集物を除去する凝集物除去部と、
前記凝集物除去部からの処理水に対し膜分離処理を行う分離部と、
測定される粒径分布に基づき前記凝集剤水溶液の粒径分布におけるメジアン径を1.0μm以下となるよう前記撹拌機を制御する制御部を有することを特徴とする水処理装置。
A flocculant aqueous solution storage tank that has a stirrer and stores the flocculant aqueous solution;
A particle size distribution measuring device for measuring the particle size distribution of the flocculant aqueous solution in the flocculant aqueous solution storage tank;
A coagulation tank for mixing the water to be treated and the aqueous flocculant solution to be added to form an aggregate;
An aggregate removal unit for removing the aggregate from the treated water containing the aggregate;
A separation unit that performs a membrane separation process on the treated water from the aggregate removal unit;
A water treatment apparatus comprising: a control unit that controls the agitator so that a median diameter in a particle size distribution of the flocculant aqueous solution is 1.0 μm or less based on a measured particle size distribution.
請求項14に記載の水処理装置において、
前記被処理水は海水であり、前記凝集剤水溶液はアニオン性高分子凝集剤の水溶液であって、
前記分離部は逆浸透膜(RO膜)を備え、前記逆浸透膜により高塩分濃度の濃縮水と淡水とを分離することを特徴とする水処理装置。
The water treatment device according to claim 14, wherein
The treated water is seawater, and the flocculant aqueous solution is an aqueous solution of an anionic polymer flocculant,
The separation unit includes a reverse osmosis membrane (RO membrane), and the reverse osmosis membrane separates concentrated water and fresh water having a high salinity.
請求項14に記載の水処理装置において、
前記制御部は、前記凝集剤水溶液の粒径分布におけるメジアン径が1.0μm以下の範囲となるよう前記撹拌機の撹拌速度を制御することを特徴とする水処理装置。
The water treatment device according to claim 14, wherein
The said control part controls the stirring speed of the said stirrer so that the median diameter in the particle size distribution of the said coagulant | flocculant aqueous solution may be 1.0 micrometer or less.
請求項15に記載の水処理装置において、
前記凝集剤水溶液貯蓄槽内の凝集剤水溶液のpHが1.0以下となるようpH調整剤を添加することを特徴とする水処理装置。
The water treatment device according to claim 15, wherein
A water treatment apparatus, wherein a pH adjuster is added so that the pH of the flocculant aqueous solution in the flocculant aqueous solution storage tank is 1.0 or less.
JP2013176183A 2013-08-28 2013-08-28 Flocculation treatment method, flocculation treatment device and water treatment apparatus Pending JP2015044149A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013176183A JP2015044149A (en) 2013-08-28 2013-08-28 Flocculation treatment method, flocculation treatment device and water treatment apparatus
AU2014208195A AU2014208195A1 (en) 2013-08-28 2014-07-29 Coagulation processing method, coagulation processing unit, and water processing apparatus
US14/448,260 US20150060367A1 (en) 2013-08-28 2014-07-31 Coagulation processing method, coagulation processing unit, and water processing apparatus
ZA2014/05683A ZA201405683B (en) 2013-08-28 2014-07-31 Coagulation processing method, coagulation processing unit, and water processing apparatus
CN201410376554.1A CN104418419A (en) 2013-08-28 2014-08-01 Coagulation processing method, coagulation processing unit, and water processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176183A JP2015044149A (en) 2013-08-28 2013-08-28 Flocculation treatment method, flocculation treatment device and water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2015044149A true JP2015044149A (en) 2015-03-12

Family

ID=52581664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176183A Pending JP2015044149A (en) 2013-08-28 2013-08-28 Flocculation treatment method, flocculation treatment device and water treatment apparatus

Country Status (5)

Country Link
US (1) US20150060367A1 (en)
JP (1) JP2015044149A (en)
CN (1) CN104418419A (en)
AU (1) AU2014208195A1 (en)
ZA (1) ZA201405683B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803462A (en) * 2015-04-14 2015-07-29 南通华新环保设备工程有限公司 Technological method for advanced sewage treatment
WO2017103958A1 (en) * 2015-12-14 2017-06-22 弘治 菅原 Water purification apparatus
JP2018095773A (en) * 2016-12-15 2018-06-21 サッポロビール株式会社 Regeneration process of antifreeze and regeneration system of antifreeze
JP2018192453A (en) * 2017-05-22 2018-12-06 オルガノ株式会社 Membrane filtration apparatus and method
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulating sedimentation control device, coagulating sedimentation control method and computer program
JP2019162595A (en) * 2018-03-20 2019-09-26 宇部興産株式会社 Acidic water treatment condition design method and acidic water treatment method
JP2020025932A (en) * 2018-08-14 2020-02-20 株式会社東芝 Control device and solid-liquid separation system
JP2021008644A (en) * 2019-06-28 2021-01-28 日本製鉄株式会社 Recovery process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770949B2 (en) * 2015-03-31 2020-10-21 株式会社クボタ Control method of rapid stirrer and rapid stirrer
CN105152292B (en) * 2015-08-31 2019-05-24 宝山钢铁股份有限公司 A kind of automatic preparation facilities and method of flocculant solution
JP6644014B2 (en) * 2017-03-23 2020-02-12 栗田工業株式会社 Water treatment method
US10166494B1 (en) * 2017-06-16 2019-01-01 Meshari S. M. J. Al-Mutairi System and method for remediation of oil-contaminated sand
CN114558472B (en) * 2022-03-07 2023-03-28 四川省简阳天府脱模材料厂 Intelligent batching system for release agent

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929281B2 (en) * 1977-04-20 1984-07-19 株式会社日立製作所 Coagulant injection amount control device for water treatment plants
JP3231164B2 (en) * 1993-10-19 2001-11-19 富士電機株式会社 Control device for water purification plant coagulation process
CN1266822A (en) * 1999-03-12 2000-09-20 中国科学院生态环境研究中心 Polyaluminium chloride and polyacrylamide compounded efficient flocculant and its preparing process
CN1300014C (en) * 2005-07-13 2007-02-14 哈尔滨工业大学 Method for on-line testing effect of polution removing by permanganate composite drug
CN100375721C (en) * 2006-01-24 2008-03-19 哈尔滨工业大学 On line optimizing method for water processing flocculant granularity distribution
CN100565181C (en) * 2006-06-23 2009-12-02 哈尔滨工业大学 The water treatment flocculant granularity fractal dimension determination method for deciding optimal charging amount
JP4950908B2 (en) * 2007-05-18 2012-06-13 メタウォーター株式会社 Method and apparatus for determining coagulant injection rate in water treatment method for coagulation sedimentation treatment
CN101323473A (en) * 2007-06-15 2008-12-17 南京理工大学 Polyaluminium chloride e-poly-dimethyl-diallyl-ammonium chloride composite flocculent, preparation and use method thereof
CN101796947A (en) * 2010-04-15 2010-08-11 青岛星牌作物科学有限公司 Pesticide emulsion in water and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803462A (en) * 2015-04-14 2015-07-29 南通华新环保设备工程有限公司 Technological method for advanced sewage treatment
WO2017103958A1 (en) * 2015-12-14 2017-06-22 弘治 菅原 Water purification apparatus
JP2018095773A (en) * 2016-12-15 2018-06-21 サッポロビール株式会社 Regeneration process of antifreeze and regeneration system of antifreeze
JP2018192453A (en) * 2017-05-22 2018-12-06 オルガノ株式会社 Membrane filtration apparatus and method
JP2019162595A (en) * 2018-03-20 2019-09-26 宇部興産株式会社 Acidic water treatment condition design method and acidic water treatment method
JP7062222B2 (en) 2018-03-20 2022-05-06 Ube株式会社 Acid water treatment condition design method and acid water treatment method
JP2020025932A (en) * 2018-08-14 2020-02-20 株式会社東芝 Control device and solid-liquid separation system
JP7195809B2 (en) 2018-08-14 2022-12-26 株式会社東芝 Controller and solid-liquid separation system
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulating sedimentation control device, coagulating sedimentation control method and computer program
JP2021008644A (en) * 2019-06-28 2021-01-28 日本製鉄株式会社 Recovery process
JP7303430B2 (en) 2019-06-28 2023-07-05 日本製鉄株式会社 Collection method

Also Published As

Publication number Publication date
AU2014208195A1 (en) 2015-03-19
ZA201405683B (en) 2015-11-25
US20150060367A1 (en) 2015-03-05
CN104418419A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP2015044149A (en) Flocculation treatment method, flocculation treatment device and water treatment apparatus
Lin et al. A critical review of the application of electromagnetic fields for scaling control in water systems: mechanisms, characterization, and operation
CN105448373B (en) A kind of uranium-containing waste water with high salt or waste liquid quickly remove uranium salt reduction method
Farahani et al. Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis
JP2015085252A (en) Water treatment method and apparatus
JP2011230038A (en) Water treatment apparatus
JP2009106898A (en) Method and apparatus for treating water
Wang et al. Insight into the combined coagulation-ultrafiltration process: The role of Al species of polyaluminum chlorides
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
WO2022153980A1 (en) Water treatment device and water treatment method
WO2014136651A1 (en) Silica-containing water treatment apparatus, water treatment system, and method for treating silica-containing water
JP2014128746A (en) Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination
Ma et al. Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment
JP2008264723A (en) Method and apparatus for coagulating impurity
Annadurai et al. Floc characteristics and removal of turbidity and humic acid from high-turbidity storm water
JP2016131937A (en) Seawater desalination system and method
CN102815810B (en) Desalination system and desalination method
JP5935967B2 (en) Flocculant addition amount determination method, water treatment method, and water treatment apparatus
JP6532471B2 (en) Water treatment apparatus and water treatment method
JP6687056B2 (en) Water treatment method and water treatment device
WO2016185788A1 (en) Coagulant and water treatment method
JP2012187467A (en) Membrane separation method and membrane separator
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP2019198806A (en) Water treatment method, and water treatment device
Zhang et al. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal