JP7195809B2 - Controller and solid-liquid separation system - Google Patents

Controller and solid-liquid separation system Download PDF

Info

Publication number
JP7195809B2
JP7195809B2 JP2018152659A JP2018152659A JP7195809B2 JP 7195809 B2 JP7195809 B2 JP 7195809B2 JP 2018152659 A JP2018152659 A JP 2018152659A JP 2018152659 A JP2018152659 A JP 2018152659A JP 7195809 B2 JP7195809 B2 JP 7195809B2
Authority
JP
Japan
Prior art keywords
water
solid
residual chlorine
liquid separation
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152659A
Other languages
Japanese (ja)
Other versions
JP2020025932A (en
Inventor
泰彦 永森
忍 茂庭
英武 仕入
徳介 早見
智明 木内
伸浩 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018152659A priority Critical patent/JP7195809B2/en
Publication of JP2020025932A publication Critical patent/JP2020025932A/en
Application granted granted Critical
Publication of JP7195809B2 publication Critical patent/JP7195809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明の実施形態は、制御装置及び固液分離システムに関する。 Embodiments of the present invention relate to controllers and solid-liquid separation systems.

排水や汚泥等の被処理水を浄化する方法の一つに固液分離処理がある。排水処理では、前処理として固液分離処理を行い、分離された固形物と排水とをそれぞれに適した方法で処理することで処理コストを削減することができる。また、汚泥処理では、汚泥の脱水処理として固液分離処理を行い、汚泥の減容を図ることで輸送や処分に要するコストを削減することができる。このような固液分離処理では、固液分離性能を高めるために被処理水に高分子凝集剤が注入される場合がある。高分子凝集剤は、被処理水中の固形物を凝集させる作用を有し、固形物の沈降性を高める効果を奏するため、固液分離性能の向上に寄与する。 Solid-liquid separation treatment is one of methods for purifying water to be treated such as waste water and sludge. In wastewater treatment, solid-liquid separation is performed as a pretreatment, and the separated solids and wastewater are treated by appropriate methods, thereby reducing treatment costs. In sludge treatment, solid-liquid separation treatment is performed as dehydration treatment of sludge, and by reducing the volume of sludge, the cost required for transportation and disposal can be reduced. In such a solid-liquid separation process, a polymer flocculant may be injected into the water to be treated in order to improve solid-liquid separation performance. The polymer flocculant has the effect of flocculating solids in the water to be treated, and has the effect of increasing the sedimentation property of the solids, thus contributing to the improvement of solid-liquid separation performance.

一方で、高分子凝集剤の注入量が不足すれば固液分離性能が低下し、注入量が多すぎると被処理水中に多くの高分子凝集剤が残留することになり処理水の悪化を招くため、高分子凝集剤の注入量は、被処理水中の固形物量の変動に応じて適切に調整される必要がある。また、固液分離処理では、顆粒状で流通することが多い高分子凝集剤を水に溶解させて被処理水に注入するのが一般的であるが、高分子凝集剤の水溶液(以下「高分子溶液」という。)の性状によっては固液分離の性能が低下する場合がある。このような背景により、従来は、被処理水に注入する高分子凝集剤の性状や注入量に起因して固液分離性能が低下してしまう場合があった。 On the other hand, if the injection amount of the polymer flocculant is insufficient, the solid-liquid separation performance will decrease, and if the injection amount is too large, a large amount of the polymer flocculant will remain in the water to be treated, resulting in deterioration of the treated water. Therefore, the injection amount of the polymer flocculant must be appropriately adjusted according to the fluctuation of the amount of solid matter in the water to be treated. In addition, in solid-liquid separation treatment, it is common to dissolve a polymer flocculant, which is often distributed in granular form, in water and inject it into the water to be treated. The performance of solid-liquid separation may decrease depending on the properties of the molecular solution. Due to such a background, conventionally, solid-liquid separation performance sometimes deteriorated due to the properties and injection amount of the polymer flocculant injected into the water to be treated.

特開2015-57288号公報JP 2015-57288 A 特開2011-167651号公報JP 2011-167651 A 特開2004-202400号公報Japanese Patent Application Laid-Open No. 2004-202400

Gehr, Ronald & Kalluri, Ramesh. (1983). EFFECTS OF SHORT-TERM STORAGE AND ELEVATED TEMPERATURES ON THE FLOCCULATION ACTIVITY OF AQUEOUS POLYMER SOLUTIONS.. Water pollution research journal of Canada. 18. 23-43.Gehr, Ronald & Kalluri, Ramesh. (1983). EFFECTS OF SHORT-TERM STORAGE AND ELEVATED TEMPERATURES ON THE FLOCCULATION ACTIVITY OF AQUEOUS POLYMER SOLUTIONS. Water pollution research journal of Canada.

本発明が解決しようとする課題は、被処理水の固液分離性能の低下を抑制することができる制御装置及び固液分離システムを提供することである。 A problem to be solved by the present invention is to provide a control device and a solid-liquid separation system capable of suppressing deterioration in solid-liquid separation performance of water to be treated.

実施形態の制御装置は、活性炭処理によって希釈水から残留塩素成分を除去する改質装置と、高分子凝集剤と前記残留塩素成分が除去された希釈水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、前記残留塩素成分が除去された希釈水の残留塩素濃度を測定する水質計と、を備える固液分離システムの制御装置である制御装置は、前記水質計が測定した残留塩素濃度に基づいて前記改質装置の動作を制御するThe control device of the embodiment mixes a reforming device that removes residual chlorine components from the dilution water by activated carbon treatment, a polymer flocculant, and the dilution water from which the residual chlorine components have been removed to prepare a polymer solution. a dissolution tank, a flocculation tank in which the polymer solution prepared in the dissolution tank is injected into the water to be treated to flocculate the solids in the water, and the water to be treated in which the solids are flocculated is mixed with the solids and moisture. and a water quality meter for measuring the residual chlorine concentration of the dilution water from which the residual chlorine component has been removed . The controller controls the operation of the reformer based on the residual chlorine concentration measured by the water quality meter .

従来の固液分離システムの構成例を示す図。The figure which shows the structural example of the conventional solid-liquid separation system. 第1の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 1st Embodiment. 第1の実施形態における制御装置の機能構成の具体例を示す図。FIG. 2 is a diagram showing a specific example of the functional configuration of a control device according to the first embodiment; 第2の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 2nd Embodiment. 第2の実施形態における制御装置の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the control apparatus in 2nd Embodiment. 第3の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 3rd Embodiment. 第3の実施形態における制御装置の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the control apparatus in 3rd Embodiment.

以下、実施形態の制御装置及び固液分離システムを、図面を参照して説明する。 Hereinafter, a control device and a solid-liquid separation system according to embodiments will be described with reference to the drawings.

(概略)
図1は、従来の固液分離システムの構成例を示す図である。固液分離システム90は、溶解槽91、第1攪拌機92、高分子溶液注入ポンプ93(注入装置の一例)、凝集槽94、第2攪拌機95及び固液分離装置96を備える。溶解槽91は、顆粒状の高分子凝集剤を溶媒である水(以下「希釈水」という。)に溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。第1攪拌機92は、溶解槽91に投入された高分子凝集剤及び希釈水を攪拌する装置である。高分子溶液注入ポンプ93は、溶解槽91において調製された高分子溶液を凝集槽94に注入する装置である。凝集槽94は、高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。第2攪拌機95は、高分子溶液と被処理水とを混和させるために攪拌する装置である。固液分離装置96は、固形物が凝集した被処理水を固形物と水分とに分離する装置である。
(outline)
FIG. 1 is a diagram showing a configuration example of a conventional solid-liquid separation system. A solid-liquid separation system 90 includes a dissolution tank 91 , a first stirrer 92 , a polymer solution injection pump 93 (an example of an injection device), an aggregation tank 94 , a second stirrer 95 and a solid-liquid separation device 96 . The dissolution tank 91 dissolves the granular polymer flocculant in water (hereinafter referred to as "dilution water") as a solvent to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). water tank. The first stirrer 92 is a device that stirs the polymer flocculant and the dilution water introduced into the dissolving tank 91 . The polymer solution injection pump 93 is a device for injecting the polymer solution prepared in the dissolving tank 91 into the aggregation tank 94 . The coagulation tank 94 is a tank for mixing the polymer solution and the water to be treated to coagulate solids in the water to be treated. The second stirrer 95 is a device for stirring to mix the polymer solution and the water to be treated. The solid-liquid separation device 96 is a device that separates the water to be treated in which the solids have aggregated into solids and water.

ここで、高分子溶液注入ポンプ93は、実験室Lで行われた固液分離の模擬試験の結果に基づいて決定された注入率(以下「設定注入率」という。)で動作するように構成される。基本的に、設定注入率は、良好な固液分離性能が得られた試験結果に基づいて決定された注入率であるが、被処理水の水質は時々刻々と変動するものであるため、設定注入率が設定時において必ずしも最適であるとは限らない。設定注入率が、最適な注入率より小さい場合、固液分離性能が低下してしまい、被処理水を望ましい性状の水分と固形分とに分離することができなくなる。また、注入率が最適な注入率より大きい場合も、やはり固液分離性能は低下する。また、高分子凝集剤の注入量が増大するため薬品コストも増大する。さらに、水分中に多くの高分子凝集剤が残留することになり、処理水の水質悪化も懸念される。 Here, the polymer solution injection pump 93 is configured to operate at an injection rate determined based on the results of a simulation test of solid-liquid separation conducted in laboratory L (hereinafter referred to as "set injection rate"). be done. Basically, the set injection rate is determined based on the test results showing good solid-liquid separation performance. The injection rate is not always optimal at the time of setting. If the set injection rate is smaller than the optimum injection rate, the solid-liquid separation performance is lowered, and the water to be treated cannot be separated into desired properties of water and solids. Also, if the injection rate is higher than the optimum injection rate, the solid-liquid separation performance is also lowered. In addition, since the injection amount of the polymer flocculant increases, the chemical cost also increases. Furthermore, a large amount of the polymer flocculant will remain in the water, and there is a concern that the quality of the treated water will deteriorate.

また、高分子凝集剤と希釈水とを攪拌して高分子溶液を調製する場合、継粉(ままこ)の発生等により高分子凝集剤を均一に溶解させるのに時間がかかる場合がある。このために、攪拌時間を長くとろうとすると、その分だけ溶解槽91の容量も大きくしなければならず、装置が大型化してしまう。装置の大型化は、装置コストの高騰につながるとともに、設定場所の確保も困難にする。さらに、従来は、高分子凝集剤の溶解状態を検知する手段がなかったため、不均一な溶解状態の高分子溶液が注入されてしまい、望ましい固液分離性能が得られない場合があった。 Further, when a polymer solution is prepared by stirring a polymer flocculant and diluent water, it may take time to uniformly dissolve the polymer flocculant due to generation of lumps and the like. For this reason, if an attempt is made to lengthen the stirring time, the capacity of the dissolving tank 91 must be increased accordingly, resulting in an increase in the size of the apparatus. An increase in the size of the device leads to a rise in the cost of the device and also makes it difficult to secure a setting place. Furthermore, conventionally, since there was no means for detecting the dissolution state of the polymer flocculant, a non-uniform dissolution state of the polymer solution was injected, and there were cases where desirable solid-liquid separation performance could not be obtained.

また、固液分離性能において望ましい高分子溶液の性状は、貯留時間や貯留環境によって悪化することが知られている。しかしながら、従来は、その性状の悪化を防止又は検知する手段がなかったため、実際の注入率が最適な注入率よりも少なくなり、望ましい固液分離性能が得られない場合があった。 In addition, it is known that properties of a polymer solution, which are desirable for solid-liquid separation performance, deteriorate depending on the retention time and retention environment. However, conventionally, since there was no means for preventing or detecting deterioration of the properties, there were cases where the actual injection rate was less than the optimum injection rate, and desired solid-liquid separation performance could not be obtained.

(第1の実施形態)
図2は、第1の実施形態の固液分離システムの構成例を示す図である。第1の実施形態の固液分離システム100は、溶解槽1、高分子溶液注入ポンプ2、凝集槽3、固液分離装置4及び制御装置5を備える。溶解槽1は、顆粒状の高分子凝集剤を溶媒である水(以下「希釈水」という。)に溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。溶解槽1には、高分子溶液を攪拌する第1撹拌機11が備えられる。
(First embodiment)
FIG. 2 is a diagram showing a configuration example of the solid-liquid separation system of the first embodiment. A solid-liquid separation system 100 of the first embodiment includes a dissolution tank 1 , a polymer solution injection pump 2 , a coagulation tank 3 , a solid-liquid separator 4 and a controller 5 . The dissolution tank 1 dissolves a granular polymer flocculant in water (hereinafter referred to as "dilution water") as a solvent to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). water tank. The dissolving tank 1 is equipped with a first stirrer 11 for stirring the polymer solution.

また、溶解槽1には、高分子溶液中の高分子凝集剤の濃度(以下「凝集剤濃度」という。)に相関する水質(以下「濃度指標」という。)を測定する水質計12が備えられる。水質計12は、高分子溶液のUV-VIS(Ultra Violet - Visible:紫外可視光)吸光度、コロイド電荷量、流動電流値の少なくとも1つを測定する。水質計12は、制御装置5と通信可能に接続され、測定データを制御装置5に送信する。 Further, the dissolution tank 1 is equipped with a water quality meter 12 for measuring water quality (hereinafter referred to as "concentration index") that correlates with the concentration of the polymer flocculant in the polymer solution (hereinafter referred to as "flocculant concentration"). be done. The water quality meter 12 measures at least one of UV-VIS (Ultra Violet-Visible) absorbance, colloidal charge, and streaming current value of the polymer solution. The water quality meter 12 is communicably connected to the control device 5 and transmits measurement data to the control device 5 .

高分子溶液注入ポンプ2は、溶解槽1において調製された高分子溶液を凝集槽3に注入する装置である。高分子溶液注入ポンプ2は制御装置5と通信可能に接続される。高分子溶液注入ポンプ2は、制御装置5から通知される注入率に基づいて高分子溶液の注入動作を行う。 The polymer solution injection pump 2 is a device for injecting the polymer solution prepared in the dissolving tank 1 into the aggregation tank 3 . Polymer solution injection pump 2 is communicably connected to controller 5 . The polymer solution injection pump 2 injects the polymer solution based on the injection rate notified from the controller 5 .

凝集槽3は、高分子溶液注入ポンプ2によって注入された高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。凝集槽3には、高分子溶液と被処理水との混和水を攪拌する第2攪拌機31が備えられる。また、凝集槽3の前段には、槽内に流入する被処理水の流量を測定する流量計32と、槽内に流入する被処理水の固形物濃度を測定する固形物濃度計33と、が設けられる。流量計32及び固形物濃度計33は、制御装置5と通信可能に接続され、測定データを制御装置5に送信する。 The coagulation tank 3 is a tank for mixing the polymer solution injected by the polymer solution injection pump 2 and the water to be treated to coagulate solids in the water to be treated. The aggregation tank 3 is equipped with a second stirrer 31 for stirring the mixed water of the polymer solution and the water to be treated. In the preceding stage of the flocculation tank 3, a flow meter 32 for measuring the flow rate of the water to be treated flowing into the tank, a solid concentration meter 33 to measure the solid concentration of the water to be treated flowing into the tank, is provided. The flowmeter 32 and solid concentration meter 33 are communicably connected to the control device 5 and transmit measurement data to the control device 5 .

固液分離装置4は、高分子溶液の注入により固形物が凝集した被処理水(混和水)を固形物と水分とに分離する装置である。 The solid-liquid separation device 4 is a device that separates the water to be treated (mixed water) in which the solids are aggregated by injecting the polymer solution into solids and water.

制御装置5は、溶解槽1で調製された高分子溶液の凝集剤濃度に応じて凝集槽3に注入される高分子溶液の注入量を調整する機能を有する。具体的には、制御装置5は、水質計12によって測定される濃度指標値に基づいて高分子溶液注入ポンプ2の注入率を決定する。 The control device 5 has a function of adjusting the injection amount of the polymer solution to be injected into the coagulation tank 3 according to the coagulant concentration of the polymer solution prepared in the dissolving tank 1 . Specifically, the control device 5 determines the injection rate of the polymer solution injection pump 2 based on the concentration index value measured by the water quality meter 12 .

図3は、第1の実施形態における制御装置の機能構成の具体例を示す図である。第1の実施形態における制御装置5は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御装置5は、プログラムの実行によって通信部51、記憶部52、測定データ取得部53及び注入率制御部54を備える装置として機能する。なお、制御装置5の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 FIG. 3 is a diagram illustrating a specific example of the functional configuration of the control device according to the first embodiment; The control device 5 in the first embodiment includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected via a bus, and executes programs. The control device 5 functions as a device including a communication section 51, a storage section 52, a measurement data acquisition section 53, and an injection rate control section 54 by executing a program. All or part of each function of the control device 5 may be implemented using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program may be recorded on a computer-readable recording medium. Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and storage devices such as hard disks incorporated in computer systems. The program may be transmitted over telecommunications lines.

通信部51は通信インタフェースである。通信部51は、有線通信インタフェースであってもよいし、無線通信インタフェースであってもよい。通信部51は、水質計12、高分子溶液注入ポンプ2、流量計32及び固形物濃度計33と通信可能に接続される。 A communication unit 51 is a communication interface. The communication unit 51 may be a wired communication interface or a wireless communication interface. The communication unit 51 is communicably connected to the water quality meter 12, the polymer solution injection pump 2, the flow meter 32, and the solid matter concentration meter 33.

記憶部52は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部52は、水質計12、流量計32及び固形物濃度計33の測定データを記憶する。また、記憶部52には、高分子溶液の濃度指標値と凝集剤濃度との関係性を示す関係情報を予め記憶されている。 The storage unit 52 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 52 stores the measurement data of the water quality meter 12 , the flow meter 32 and the solid matter concentration meter 33 . Further, the storage unit 52 pre-stores relationship information indicating the relationship between the concentration index value of the polymer solution and the concentration of the coagulant.

測定データ取得部53は、通信部51を介して水質計12、流量計32及び固形物濃度計33から測定データを取得する。測定データ取得部53は取得した測定データを記憶部52に保存する。 The measurement data acquisition unit 53 acquires measurement data from the water quality meter 12 , the flow meter 32 and the solid matter concentration meter 33 via the communication unit 51 . The measurement data acquisition unit 53 stores the acquired measurement data in the storage unit 52 .

注入率制御部54は、高分子溶液注入ポンプ2の注入率を制御する機能を有する。具体的には、注入率制御部54は、溶解槽1において調製された高分子溶液の凝集剤濃度に応じて高分子溶液注入ポンプ2の注入率を決定し、決定した注入率を通信部51を介して高分子溶液注入ポンプ2に通知する。 The injection rate control section 54 has a function of controlling the injection rate of the polymer solution injection pump 2 . Specifically, the injection rate control unit 54 determines the injection rate of the polymer solution injection pump 2 according to the coagulant concentration of the polymer solution prepared in the dissolution tank 1, and sends the determined injection rate to the communication unit 51. to the polymer solution injection pump 2 via.

より詳細には、以下の手順例で生成される関係情報を予め記憶部52に記録しておく。
[手順1]高分子凝集剤と純水との混合比が異なる複数パターンの高分子溶液を調製する。
[手順2]手順1で調製した各パターンの高分子溶液の濃度指標値を測定する。
[手順3]手順2で測定された濃度指標値と、混合比から算出される凝集剤濃度とをパターンごとに対応づける。
More specifically, the relationship information generated by the following procedure example is recorded in the storage unit 52 in advance.
[Procedure 1] A plurality of patterns of polymer solutions having different mixing ratios of polymer flocculant and pure water are prepared.
[Procedure 2] The concentration index value of the polymer solution of each pattern prepared in Procedure 1 is measured.
[Procedure 3] The concentration index value measured in Procedure 2 and the coagulant concentration calculated from the mixture ratio are associated with each pattern.

注入率制御部54は、このようにして生成された関係情報と、固液分離処理の実施中に取得される高分子溶液の濃度指標値の測定データとに基づいて、溶解槽1に貯留されている高分子溶液の凝集剤濃度を推定する。一方で、固形物の凝集に必要な高分子凝集剤の量は、被処理水中に含まれる固形物の量に応じて定まる。そのため、注入率制御部54は、推定した凝集剤濃度と、測定データが示す被処理水の流量及び固形物濃度と、に基づいて高分子溶液注入ポンプ2の注入率を決定する。 The injection rate control unit 54 controls the concentration index value of the polymer solution stored in the dissolution tank 1 based on the relationship information thus generated and the measurement data of the concentration index value of the polymer solution acquired during the solid-liquid separation process. Estimate the concentration of the flocculant in the polymer solution. On the other hand, the amount of polymer flocculant required for flocculating solids is determined according to the amount of solids contained in the water to be treated. Therefore, the injection rate control unit 54 determines the injection rate of the polymer solution injection pump 2 based on the estimated coagulant concentration and the flow rate and solid concentration of the water to be treated indicated by the measurement data.

ここで、高分子溶液の濃度指標値としては、高分子溶液のUV-VIS吸光度、コロイド電荷量又は流動電流値を用いることができる。注入率制御部54は、これらの濃度指標値のうちのいずれか1つの測定値に基づいて注入率を決定してもよいし、複数の測定値に基づいて注入率を決定してもよい。例えば、複数の濃度指標値に基づいて注入率を決定する場合、注入率制御部54は、複数の濃度指標値ごとに得られた注入率の平均的な値を実際の注入率として決定してもよいし、濃度指標ごとの関係情報に代えて、複数の濃度指標値と凝集剤濃度との対応関係を示す関係情報を用いて注入率を決定してもよい。 Here, the UV-VIS absorbance, colloid charge amount, or streaming current value of the polymer solution can be used as the concentration index value of the polymer solution. The injection rate control unit 54 may determine the injection rate based on one of these concentration index values measured, or may determine the injection rate based on a plurality of measured values. For example, when the injection rate is determined based on a plurality of concentration index values, the injection rate control unit 54 determines an average injection rate obtained for each of the plurality of concentration index values as the actual injection rate. Alternatively, instead of the relationship information for each concentration index, the injection rate may be determined using relationship information indicating a correspondence relationship between a plurality of concentration index values and coagulant concentrations.

このように構成された第1の実施形態の固液分離システム100によれば、被処理水に対する高分子凝集剤の注入量を、流入する被処理水の水質の変動、又は、高分子溶液の凝集剤濃度の変動に応じて調節することが可能になるため、被処理水の固液分離性能の低下を抑制することができる。 According to the solid-liquid separation system 100 of the first embodiment configured as described above, the injection amount of the polymer flocculant to the water to be treated is changed by the fluctuation of the water quality of the inflowing water to be treated or the concentration of the polymer solution. Since it becomes possible to adjust according to fluctuations in the concentration of the coagulant, it is possible to suppress deterioration in solid-liquid separation performance of the water to be treated.

(第2の実施形態)
図4は、第2の実施形態の固液分離システムの構成例を示す図である。第2の実施形態の固液分離システム100aは、流量計32及び固形物濃度計33を備えない点、制御装置5に代えて制御装置5aを備える点で第1の実施形態の固液分離システム100と異なる。また、制御装置5aは、高分子溶液注入ポンプ2の注入率を制御することに代えて高分子溶液注入ポンプ2の動作状態を切り替える制御を行う点で第1の実施形態における制御装置5と異なる。その他の構成は、第1の実施形態と同様であるため、図4では同様の構成について図2と同じ符号を付すことにより説明を省略する。
(Second embodiment)
FIG. 4 is a diagram showing a configuration example of the solid-liquid separation system of the second embodiment. The solid-liquid separation system 100a of the second embodiment is similar to the solid-liquid separation system of the first embodiment in that it does not include the flow meter 32 and the solid concentration meter 33 and includes a controller 5a instead of the controller 5. Different from 100. Further, the control device 5a is different from the control device 5 in the first embodiment in that instead of controlling the injection rate of the polymer solution injection pump 2, the control device 5a performs control to switch the operating state of the polymer solution injection pump 2. . Since other configurations are the same as those of the first embodiment, the same configurations in FIG. 4 are denoted by the same reference numerals as those in FIG.

図5は、第2の実施形態における制御装置の機能構成の具体例を示す図である。第2の実施形態における制御装置5aは、記憶部52に代えて記憶部52aを備える点、測定データ取得部53に代えて測定データ取得部53aを備える点、注入率制御部54に代えて動作状態制御部55を備える点で第1の実施形態における制御装置5と異なる。その他の構成は、第1の実施形態と同様であるため、図5では同様の構成について図3と同じ符号を付すことにより説明を省略する。 FIG. 5 is a diagram showing a specific example of the functional configuration of the control device according to the second embodiment. The control device 5a in the second embodiment includes a storage unit 52a instead of the storage unit 52, a measurement data acquisition unit 53a instead of the measurement data acquisition unit 53, and operates instead of the injection rate control unit 54. It differs from the control device 5 in the first embodiment in that it includes a state control section 55 . Since other configurations are the same as those of the first embodiment, the same configurations in FIG. 5 are denoted by the same reference numerals as in FIG.

記憶部52aは、関係情報に代えて判定情報を予め記憶している点で第1の実施形態における記憶部52と異なる。判定情報は、溶解槽1における高分子凝集剤の溶解状態を判定する際の条件を示す情報である。ここでは、その一例として、高分子凝集剤の溶解状態を示す指標値の閾値が判定情報として予め記憶部52aに記憶されるものとする。 The storage unit 52a differs from the storage unit 52 in the first embodiment in that the determination information is stored in advance instead of the relationship information. The determination information is information indicating conditions for determining the dissolution state of the polymer flocculant in the dissolving tank 1 . Here, as an example, it is assumed that the threshold value of the index value indicating the dissolution state of the polymer flocculant is stored in advance in the storage unit 52a as the determination information.

測定データ取得部53aは、第1の実施形態における測定データ取得部53が水質計12、流量計32及び固形物濃度計33の測定データを取得するのに対して、水質計12の測定データのみを取得する点で第1の実施形態における測定データ取得部53と異なる。 While the measurement data acquisition unit 53 in the first embodiment acquires the measurement data of the water quality meter 12, the flow meter 32, and the solid matter concentration meter 33, the measurement data acquisition unit 53a acquires only the measurement data of the water quality meter 12. is different from the measurement data acquisition unit 53 in the first embodiment in that it acquires .

動作状態制御部55は、溶解槽1における高分子凝集剤の溶液状態に応じて、高分子溶液注入ポンプ2の動作状態を切り替える機能を有する。ここで、高分子溶液注入ポンプ2は、高分子溶液の注入動作を行うことが可能な状態(以下「注入可能状態」という。)と、高分子溶液の注入動作が抑止されている状態(以下「注入抑止状態」という。)と、の2つの動作状態を取りうるものとする。動作状態制御部55は、水質計12によって取得される時系列の測定データに基づいて高分子凝集剤の溶解状態の変化を観測し、高分子凝集剤がある程度均一に溶解したことが観測されたタイミングで、高分子溶液注入ポンプ2の動作状態を注入抑止状態から注入可能状態に遷移させる。 The operating state control unit 55 has a function of switching the operating state of the polymer solution injection pump 2 according to the solution state of the polymer coagulant in the dissolving tank 1 . Here, the polymer solution injection pump 2 is in a state in which the polymer solution can be injected (hereinafter referred to as an “injectable state”) and a state in which the polymer solution injection operation is inhibited (hereinafter referred to as an “injectable state”). (referred to as an "injection inhibited state"). The operating state control unit 55 observes changes in the dissolution state of the polymer flocculant based on the time-series measurement data acquired by the water quality meter 12, and it is observed that the polymer flocculant has dissolved uniformly to some extent. At the timing, the operating state of the polymer solution injection pump 2 is changed from the injection inhibited state to the injection enabled state.

一般に、高分子溶液の凝集剤濃度の変化の大きさは、高分子凝集剤の溶解状態が均一に近づくほど小さくなっていくため、高分子溶液の濃度指標値の変化の大きさを観測することで高分子凝集剤の溶解状態の変化の大きさを観測することができる。具体的には、動作状態制御部55は、水質計12の測定データに基づいて過去の所定期間における濃度指標値の分散値を計算し、この分散値の変化を観測することで、高分子凝集剤の溶解状態を変化を観測する。この場合、分散値は、高分子凝集剤のより均一に溶解するほど、小さい値を示すため、動作状態制御部55は、分散値が所定の閾値以下となったタイミングで高分子溶液注入ポンプ2の動作状態を注入抑止状態から注入可能状態に遷移させる。この場合、記憶部52aには、分散値の判定に用いる閾値が判定情報として予め記憶される。 In general, the degree of change in the concentration of the coagulant in the polymer solution becomes smaller as the dissolution state of the polymer coagulant approaches uniformity. , the magnitude of the change in the dissolution state of the polymer flocculant can be observed. Specifically, the operating state control unit 55 calculates the dispersion value of the concentration index value in a past predetermined period based on the measurement data of the water quality meter 12, and observes the change in the dispersion value to detect the polymer aggregation. Observe the change in the dissolution state of the agent. In this case, the dispersion value indicates a smaller value as the polymer flocculant is dissolved more uniformly. The operating state of is changed from the injection inhibited state to the injection enabled state. In this case, the storage unit 52a preliminarily stores a threshold used for determining the variance value as determination information.

なお、動作状態制御部55は、高分子溶液のUV-VIS吸光度、コロイド電荷量及び流動電流値のうちのいずれか1つの測定値に基づいて溶解状態を判定してもよいし、複数の測定値に基づいて溶解状態を判定してもよい。例えば、複数の測定値に基づいて溶解状態を判定する場合、動作状態制御部55は、各濃度指標値の分散値が全て閾値以下となった場合に高分子溶液注入ポンプ2の動作状態を変更してもよいし、一部の分散値が閾値以下となった場合に高分子溶液注入ポンプ2の動作状態を変更してもよい。また、例えば、動作状態制御部55は、各分散値に基づいて溶解状態の指標値を算出し、その指標値が閾値以下となった場合に高分子溶液注入ポンプ2の動作状態を変更してもよい。 Note that the operating state control unit 55 may determine the dissolution state based on any one measurement value of the UV-VIS absorbance, colloidal charge amount, and flowing current value of the polymer solution, or may determine the dissolution state based on a plurality of measurements. The dissolved state may be determined based on the value. For example, when determining the dissolution state based on a plurality of measured values, the operating state control unit 55 changes the operating state of the polymer solution injection pump 2 when all the variance values of the concentration index values are equal to or less than the threshold. Alternatively, the operating state of the polymer solution injection pump 2 may be changed when a part of the dispersion values becomes equal to or less than the threshold value. Further, for example, the operating state control unit 55 calculates an index value of the dissolved state based on each dispersion value, and changes the operating state of the polymer solution injection pump 2 when the index value becomes equal to or less than a threshold value. good too.

このように構成された第2の実施形態の固液分離システム100aによれば、高分子凝集剤が十分に均一に溶解した高分子溶液が被処理水に注入されるため、被処理水の固液分離性能の低下を抑制することができる。 According to the solid-liquid separation system 100a of the second embodiment configured as described above, since the polymer solution in which the polymer flocculant is sufficiently uniformly dissolved is injected into the water to be treated, the solidity of the water to be treated is reduced. A decrease in liquid separation performance can be suppressed.

(第3の実施形態)
図6は、第3の実施形態の固液分離システムの構成例を示す図である。第3の実施形態の固液分離システム100bは、水質計12、流量計32及び固形物濃度計33を備えない点、制御装置5に代えて制御装置5bを備える点、改質装置6、希釈水注入ポンプ7及び水質計71をさらに備える点で第1の実施形態の固液分離システム100と異なる。また、制御装置5bは、高分子溶液注入ポンプ2の注入率を制御することに代えて改質装置6及び希釈水注入ポンプ7の動作状態を切り替える制御を行う点で第1の実施形態における制御装置5と異なる。その他の構成は、第1の実施形態と同様であるため、図6では同様の構成について図2と同じ符号を付すことにより説明を省略する。
(Third embodiment)
FIG. 6 is a diagram showing a configuration example of a solid-liquid separation system according to the third embodiment. The solid-liquid separation system 100b of the third embodiment does not include the water quality meter 12, the flow meter 32, and the solid concentration meter 33, includes the controller 5b instead of the controller 5, the reformer 6, the dilution It differs from the solid-liquid separation system 100 of the first embodiment in that it further includes a water injection pump 7 and a water quality meter 71 . In addition, the control device 5b performs control to switch the operation states of the reformer 6 and the dilution water injection pump 7 instead of controlling the injection rate of the polymer solution injection pump 2, which is similar to the control in the first embodiment. Differs from device 5. Since other configurations are the same as those of the first embodiment, in FIG. 6, similar configurations are denoted by the same reference numerals as in FIG.

改質装置6は、高分子溶液の調製に用いられる希釈水を改質する装置である。具体的には、改質装置6は、希釈水から所定の成分を除去する処理(以下「改質処理」という。)を行うことにより希釈水を改質する。例えば、改質処理は、膜処理(例えば逆浸透膜処理)及び活性炭処理のいずれか一方又は両方によって実現される。改質装置6の動作は制御装置5bによって制御される。 The reformer 6 is a device for reforming the dilution water used for preparing the polymer solution. Specifically, the reformer 6 reforms the dilution water by removing a predetermined component from the dilution water (hereinafter referred to as "reformation process"). For example, the reforming treatment is realized by one or both of membrane treatment (for example, reverse osmosis membrane treatment) and activated carbon treatment. The operation of the reformer 6 is controlled by the controller 5b.

希釈水注入ポンプ7は、改質装置6によって改質された希釈水(以下「改質希釈水」という。)を溶解槽1に供給する装置である。希釈水注入ポンプ7の動作は制御装置5bによって制御される。希釈水注入ポンプ7の前段には、改質希釈水の水質を測定する水質計71が設置される。具体的には、水質計71は、改質希釈水の水質として、カルシウム濃度、残留塩素濃度及び導電率の一部又は全部を測定する。水質計71は、制御装置5bと通信可能に接続され、測定データを制御装置5bに送信する。なお、希釈水注入ポンプ7は改質装置6の一部として構成されてもよい。 The dilution water injection pump 7 is a device for supplying the dilution water reformed by the reformer 6 (hereinafter referred to as “modified dilution water”) to the dissolution tank 1 . The operation of the dilution water injection pump 7 is controlled by the controller 5b. A water quality meter 71 for measuring the quality of the reformed dilution water is installed upstream of the dilution water injection pump 7 . Specifically, the water quality meter 71 measures part or all of the calcium concentration, residual chlorine concentration, and electrical conductivity as the water quality of the reformed dilution water. The water quality meter 71 is communicably connected to the control device 5b and transmits measurement data to the control device 5b. Note that the dilution water injection pump 7 may be configured as part of the reformer 6 .

図7は、第3の実施形態における制御装置の機能構成の具体例を示す図である。第3の実施形態における制御装置5bは、記憶部52に代えて記憶部52bを備える点、測定データ取得部53に代えて測定データ取得部53bを備える点、注入率制御部54に代えて動作状態制御部55bを備える点で第1の実施形態における制御装置5と異なる。その他の構成は、第1の実施形態と同様であるため、図7では同様の構成について図3と同じ符号を付すことにより説明を省略する。 FIG. 7 is a diagram showing a specific example of the functional configuration of the control device according to the third embodiment. The control device 5b in the third embodiment includes a storage unit 52b instead of the storage unit 52, a measurement data acquisition unit 53b instead of the measurement data acquisition unit 53, and operates instead of the injection rate control unit 54. It differs from the control device 5 in the first embodiment in that it includes a state control section 55b. Since other configurations are the same as those of the first embodiment, the same configurations in FIG. 7 are denoted by the same reference numerals as those in FIG.

記憶部52bは、関係情報に代えて判定情報を予め記憶している点で第1の実施形態における記憶部52と異なる。判定情報は、改質希釈水の水質は判定する際の条件を示す情報である。ここでは、その一例として、改質希釈水の水質の指標値の閾値が判定情報として予め記憶部52bに記憶されるものとする。また、以下では、第2の実施形態における判定情報と区別するため、第3の実施形態における判定情報を第2判定情報と称する。 The storage unit 52b differs from the storage unit 52 in the first embodiment in that determination information is stored in advance instead of relationship information. The judgment information is information indicating conditions for judging the quality of the reformed dilution water. Here, as an example, it is assumed that the threshold value of the index value of the quality of the reformed dilution water is stored in advance in the storage unit 52b as the determination information. Moreover, below, in order to distinguish from the determination information in 2nd Embodiment, the determination information in 3rd Embodiment is called 2nd determination information.

測定データ取得部53bは、水質計12、流量計32及び固形物濃度計33の測定データに代えて水質計71の測定データを取得する点で第1の実施形態における測定データ取得部53と異なる。 The measurement data acquisition unit 53b differs from the measurement data acquisition unit 53 in the first embodiment in that it acquires the measurement data of the water quality meter 71 instead of the measurement data of the water quality meter 12, the flow meter 32, and the solid matter concentration meter 33. .

動作状態制御部55bは、改質希釈水の水質に応じて改質装置6又は希釈水注入ポンプ7の動作状態を切り替える機能を有する。ここで、改質装置6は、改質処理を実行可能な状態(以下「実行可能状態」という。)と、改質処理の実行が抑止されている状態(以下「実行抑止状態」という。)と、の2つの動作状態を取りうるものとする。同様に、希釈水注入ポンプ7は、改質希釈水の注入動作を行うことが可能な状態(以下「注入可能状態」という。)と、改質希釈水の注入動作が抑止されている状態(以下「注入抑止状態」という。)と、の2つの動作状態を取りうるものとする。 The operation state control unit 55b has a function of switching the operation state of the reformer 6 or the dilution water injection pump 7 according to the quality of the reformed dilution water. Here, the reformer 6 is in a state in which the reforming process can be executed (hereinafter referred to as "executable state") and a state in which the reforming process is inhibited (hereinafter referred to as "execution inhibited state"). and can take two operating states. Similarly, the dilution water injection pump 7 is in a state in which the reformed dilution water can be injected (hereinafter referred to as an “injectable state”) and a state in which the reformed dilution water injection operation is inhibited (hereinafter referred to as “injectable state”). hereinafter referred to as an "injection inhibited state").

一般に、被処理水の固液分離性能の低下は、希釈水中に存在する所定の成分(以下「要因成分」という。)に起因することが知られている。具体的には、要因成分は、残留塩素成分やイオン成分であることが知られている。特に、イオン成分では、カルシウムイオンやマグネシウムイオン、硫酸イオン等の2価イオンが固液分離性能の低下に寄与するとされている。これらの要因成分のうち、残留塩素成分は活性炭処理によって除去することが可能であり、イオン成分は膜処理によって除去することが可能である。しかしながら、このような改質処理による要因成分の除去性能は、一般に処理量の増加に応じて低下することが知られている。そのため、改質処理が良好に機能している状況では、改質希釈水中の要因成分の濃度は低い値で観測されるが、改質処理の性能劣化が進むにつれてより高い値が観測されるようになる。 Generally, it is known that the deterioration of the solid-liquid separation performance of the water to be treated is caused by a predetermined component (hereinafter referred to as "factor component") present in the dilution water. Specifically, it is known that the factor components are residual chlorine components and ion components. In particular, among ionic components, divalent ions such as calcium ions, magnesium ions and sulfate ions are said to contribute to the deterioration of the solid-liquid separation performance. Among these factor components, the residual chlorine component can be removed by activated carbon treatment, and the ion component can be removed by membrane treatment. However, it is known that the removal performance of factor components by such a modification treatment generally decreases as the treatment amount increases. Therefore, when the reforming process is functioning well, the concentration of the factor component in the reformed dilution water is observed at a low value, but as the performance deterioration of the reforming process progresses, a higher value is observed. become.

そこで、動作状態制御部55bは、水質計71によって時系列に取得される測定データに基づいて改質希釈水中の要因成分に起因する水質の変化を観測し、要因成分の濃度が所定の閾値以上となったことが観測されたタイミングで、改質装置6の動作状態を実行可能状態から実行抑止状態に遷移させる、又は希釈水注入ポンプ7の動作状態を注入可能状態から注入抑止状態に遷移させる。なお、要因成分のうちのイオン濃度は、改質希釈水の導電率に相関するため、動作状態制御部55bは、改質希釈水の導電率が所定の閾値以上となったタイミングで改質装置6又は希釈水注入ポンプ7の動作を制御してもよい。 Therefore, the operating state control unit 55b observes the change in water quality caused by the factor component in the reformed dilution water based on the measurement data acquired in time series by the water quality meter 71, and the concentration of the factor component exceeds a predetermined threshold value. At the timing when it is observed, the operating state of the reformer 6 is changed from the executable state to the execution inhibited state, or the operating state of the dilution water injection pump 7 is changed from the injection possible state to the injection inhibited state . . Since the ion concentration of the factor components correlates with the conductivity of the reformed dilution water, the operation state control unit 55b controls the reformer 6 or the operation of the dilution water injection pump 7 may be controlled.

このように構成された第3の実施形態の固液分離システム100bによれば、高分子溶液の調製に要因成分濃度の低い希釈水を用いることができるため、被処理水の固液分離性能の低下を抑制することができる。 According to the solid-liquid separation system 100b of the third embodiment configured as described above, dilution water having a low factor component concentration can be used for preparation of the polymer solution. Decrease can be suppressed.

(変形例)
第1実施形態の制御装置5は、注入率制御部54に加え、第2の実施形態における動作状態制御部55、及び第3の実施形態における動作状態制御部55bのいずれか一方又は両方を備えるように構成されてもよい。
(Modification)
In addition to the injection rate control unit 54, the control device 5 of the first embodiment includes either one or both of the operation state control unit 55 in the second embodiment and the operation state control unit 55b in the third embodiment. It may be configured as

以上説明した少なくともひとつの実施形態によれば、希釈水の水質に基づいて高分子溶液の調製処理を制御する、又は高分子溶液の水質に基づいて被処理水に対する高分子溶液の注入処理を制御する制御装置を持つことにより、高分子凝集剤と希釈水とを混合して高分子溶液を調製する溶解槽と、溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムにおいて固液分離性能の低下を抑制することができる。 According to at least one embodiment described above, the polymer solution preparation process is controlled based on the quality of the dilution water, or the polymer solution injection process into the water to be treated is controlled based on the water quality of the polymer solution. By having a control device that and a solid-liquid separation device for separating the water in which the solids have aggregated into solids and water, thereby suppressing deterioration in solid-liquid separation performance. can be done.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

100,100a,100b…固液分離システム、1…溶解槽、11…第1撹拌機、12…水質計、2…高分子溶液注入ポンプ、3…凝集槽、31…第2攪拌機、32…流量計、33…固形物濃度計、4…固液分離装置、5,5a,5b…制御装置、51…通信部、52,52a,52b…記憶部、53,53a,53b…測定データ取得部、54…注入率制御部、55,55b…動作状態制御部、6…改質装置、7…希釈水注入ポンプ、71…水質計、90…従来の固液分離システム、91…溶解槽、92…第1攪拌機、93…高分子溶液注入ポンプ、94…凝集槽、95…第2攪拌機、96…固液分離装置 DESCRIPTION OF SYMBOLS 100,100a,100b... Solid-liquid separation system 1... Dissolution tank 11... 1st stirrer 12... Water quality meter 2... Polymer solution injection pump 3... Aggregation tank 31... 2nd stirrer 32... Flow rate Meter 33 Solid concentration meter 4 Solid-liquid separator 5, 5a, 5b Control device 51 Communication unit 52, 52a, 52b Storage unit 53, 53a, 53b Measurement data acquisition unit, 54... Injection rate control unit 55, 55b... Operation state control unit 6... Reformer 7... Dilution water injection pump 71... Water quality meter 90... Conventional solid-liquid separation system 91... Dissolution tank 92... First stirrer 93 Polymer solution injection pump 94 Aggregation tank 95 Second stirrer 96 Solid-liquid separator

Claims (7)

活性炭処理によって希釈水から残留塩素成分を除去する改質装置と、高分子凝集剤と前記残留塩素成分が除去された希釈水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、前記残留塩素成分が除去された希釈水の残留塩素濃度を測定する水質計と、を備える固液分離システムの制御装置であって、
前記水質計が測定した残留塩素濃度に基づいて前記改質装置の動作を制御する
制御装置。
A reforming device for removing residual chlorine components from dilution water by activated carbon treatment, a dissolution tank for preparing a polymer solution by mixing a polymer flocculant and the dilution water from which the residual chlorine components have been removed, and the dissolution tank. A flocculation tank for injecting the polymer solution prepared in the above into the water to be treated to flocculate solids in the water to be treated, and a solid-liquid separation device for separating the water to be treated in which the solids are flocculated into solids and water. and a water quality meter that measures the residual chlorine concentration of the dilution water from which the residual chlorine component has been removed , wherein
controlling the operation of the reformer based on the residual chlorine concentration measured by the water quality meter ;
Control device.
記残留塩素濃度が所定の閾値以上である場合、前記改質装置が希釈水を改質する動作、又は改質後の希釈水を前記溶解槽に供給する動作を抑止する、
請求項1に記載の制御装置。
When the residual chlorine concentration is equal to or higher than a predetermined threshold, the reformer suppresses the operation of reforming the dilution water or the operation of supplying the reformed dilution water to the dissolution tank.
A control device according to claim 1 .
前記改質装置は、更に逆浸透膜処理によって前記希釈水中の2価イオン成分を除去し、
前記水質計は、更に前記2価イオン成分が除去された希釈水の2価イオン濃度又は導電率を測定し、
前記改質装置によって改質された希釈水の2価イオン濃度又は導電率に基づいて前記改質装置の動作を制御する、
請求項1又は2に記載の制御装置。
The reformer further removes divalent ion components in the diluted water by reverse osmosis membrane treatment,
The water quality meter further measures the divalent ion concentration or conductivity of the diluted water from which the divalent ion component has been removed,
Controlling the operation of the reformer based on the divalent ion concentration or conductivity of the dilution water reformed by the reformer;
3. A control device according to claim 1 or 2 .
前記2価イオン成分は、硫酸イオン、カルシウムイオン又はマグネシウムイオンである、
請求項3に記載の制御装置。
The divalent ion component is a sulfate ion, a calcium ion or a magnesium ion,
4. A control device according to claim 3 .
前記2価イオン濃度又は導電率が所定の閾値以上である場合、前記改質装置が希釈水を改質する動作、又は改質後の希釈水を前記溶解槽に供給する動作を抑止する、
請求項3又は4に記載の制御装置。
When the divalent ion concentration or conductivity is equal to or higher than a predetermined threshold, the reformer suppresses the operation of reforming the dilution water or the operation of supplying the reformed dilution water to the dissolution tank.
5. A control device according to claim 3 or 4 .
活性炭処理によって希釈水から残留塩素成分を除去する改質装置と、
高分子凝集剤と前記残留塩素成分が除去された希釈水とを混合して高分子溶液を調製する溶解槽と、
前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、
前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、
前記残留塩素成分が除去された希釈水の残留塩素濃度を測定する水質計と、
前記水質計が測定した残留塩素濃度に基づき、前記改質装置の動作を制御する制御装置と、
を備える固液分離システム。
a reformer that removes residual chlorine components from the dilution water by activated carbon treatment;
a dissolution tank for preparing a polymer solution by mixing a polymer flocculant and diluting water from which the residual chlorine component has been removed;
a flocculating tank for injecting the polymer solution prepared in the dissolving tank into the water to be treated to flocculate solids in the water;
a solid-liquid separation device for separating the water to be treated in which the solids have aggregated into solids and water;
a water quality meter that measures the residual chlorine concentration of the dilution water from which the residual chlorine component has been removed;
a control device for controlling the operation of the reformer based on the residual chlorine concentration measured by the water quality meter ;
A solid-liquid separation system comprising:
前記制御装置は、前記残留塩素濃度が所定の閾値以上である場合、前記改質装置が希釈水を改質する動作、又は改質後の希釈水を前記溶解槽に供給する動作を抑止する、 When the residual chlorine concentration is equal to or higher than a predetermined threshold, the control device suppresses the operation of the reformer reforming the dilution water or the operation of supplying the reformed dilution water to the dissolution tank.
請求項6に記載の固液分離システム。 The solid-liquid separation system according to claim 6.
JP2018152659A 2018-08-14 2018-08-14 Controller and solid-liquid separation system Active JP7195809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152659A JP7195809B2 (en) 2018-08-14 2018-08-14 Controller and solid-liquid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152659A JP7195809B2 (en) 2018-08-14 2018-08-14 Controller and solid-liquid separation system

Publications (2)

Publication Number Publication Date
JP2020025932A JP2020025932A (en) 2020-02-20
JP7195809B2 true JP7195809B2 (en) 2022-12-26

Family

ID=69620841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152659A Active JP7195809B2 (en) 2018-08-14 2018-08-14 Controller and solid-liquid separation system

Country Status (1)

Country Link
JP (1) JP7195809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476633B2 (en) 2020-04-09 2024-05-01 栗田工業株式会社 Polymer flocculant dissolving system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258407A (en) 1999-03-04 2000-09-22 Hiroo Tanaka Method for deciding cation demand in suspension system
JP2002136809A (en) 2000-11-02 2002-05-14 Japan Organo Co Ltd Polymer coagulant dissolving/injecting apparatus equipped with concentration measuring device
JP2010046627A (en) 2008-08-22 2010-03-04 Toshiba Corp Water-purifying pretreatment system
JP2011131191A (en) 2009-12-25 2011-07-07 Toshiba Corp Membrane filtration system
WO2013099857A1 (en) 2011-12-28 2013-07-04 栗田工業株式会社 Seawater treatment method
JP2015044149A (en) 2013-08-28 2015-03-12 株式会社日立製作所 Flocculation treatment method, flocculation treatment device and water treatment apparatus
JP2016123929A (en) 2014-12-26 2016-07-11 株式会社クオン Water quality improvement method and apparatus
JP2018030065A (en) 2016-08-23 2018-03-01 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258407A (en) 1999-03-04 2000-09-22 Hiroo Tanaka Method for deciding cation demand in suspension system
JP2002136809A (en) 2000-11-02 2002-05-14 Japan Organo Co Ltd Polymer coagulant dissolving/injecting apparatus equipped with concentration measuring device
JP2010046627A (en) 2008-08-22 2010-03-04 Toshiba Corp Water-purifying pretreatment system
JP2011131191A (en) 2009-12-25 2011-07-07 Toshiba Corp Membrane filtration system
WO2013099857A1 (en) 2011-12-28 2013-07-04 栗田工業株式会社 Seawater treatment method
JP2015044149A (en) 2013-08-28 2015-03-12 株式会社日立製作所 Flocculation treatment method, flocculation treatment device and water treatment apparatus
JP2016123929A (en) 2014-12-26 2016-07-11 株式会社クオン Water quality improvement method and apparatus
JP2018030065A (en) 2016-08-23 2018-03-01 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method

Also Published As

Publication number Publication date
JP2020025932A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
Chang et al. Precipitation removal of fluoride from semiconductor wastewater
JP7195809B2 (en) Controller and solid-liquid separation system
JPWO2012108312A1 (en) Sludge aggregation method and apparatus
JP2016032811A (en) Processing method and processing apparatus of sludge
EP3421430A1 (en) Wastewater treatment method and wastewater treatment system
WO2017068825A1 (en) Flocculant injection assistance device and control method
WO2016157646A1 (en) Method for controlling rapid stirrer, and rapid stirrer
JP2011083707A (en) Solid matter separation system
JP2002159805A (en) Flocculant injection control method of water purification plant
JP2007275790A (en) Sludge dewatering apparatus and sludge dewatering method
JP5258714B2 (en) Water treatment method and water treatment apparatus
JP2015054284A (en) Water treatment system
JP2006297228A (en) Method of treating livestock wastewater
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
JP7199210B2 (en) Control device, solid-liquid separation method, computer program, and solid-liquid separation system
JP6158048B2 (en) Water treatment system, water treatment method, water treatment control device, and water treatment control program
JP2021007913A (en) Control device and solid-liquid separation system
JP7086658B2 (en) Water treatment system and water treatment method
JP2009160513A (en) Method for charging flocculant in water purification
JP5148141B2 (en) Membrane filtration method and membrane filtration apparatus
JP5149469B2 (en) Method for dissolving yield improver for paper process made of water-soluble polymer
JP6813277B2 (en) Sludge dewatering equipment
JP2008279412A (en) Method of controlling feeding chemicals
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP2009125639A (en) Method and apparatus for fluorine-containing wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7195809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150