JP7199210B2 - Control device, solid-liquid separation method, computer program, and solid-liquid separation system - Google Patents

Control device, solid-liquid separation method, computer program, and solid-liquid separation system Download PDF

Info

Publication number
JP7199210B2
JP7199210B2 JP2018223520A JP2018223520A JP7199210B2 JP 7199210 B2 JP7199210 B2 JP 7199210B2 JP 2018223520 A JP2018223520 A JP 2018223520A JP 2018223520 A JP2018223520 A JP 2018223520A JP 7199210 B2 JP7199210 B2 JP 7199210B2
Authority
JP
Japan
Prior art keywords
water
solid
liquid separation
treated
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223520A
Other languages
Japanese (ja)
Other versions
JP2020082010A (en
Inventor
泰彦 永森
忍 茂庭
英武 仕入
徳介 早見
智明 木内
伸浩 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018223520A priority Critical patent/JP7199210B2/en
Publication of JP2020082010A publication Critical patent/JP2020082010A/en
Application granted granted Critical
Publication of JP7199210B2 publication Critical patent/JP7199210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、制御装置、固液分離方法コンピュータプログラム、および固液分離システムに関する。 TECHNICAL FIELD Embodiments of the present invention relate to control devices, solid-liquid separation methods , computer programs , and solid-liquid separation systems .

排水や汚泥等の被処理水を浄化する方法の一つに固液分離処理がある。排水処理では、前処理として固液分離処理を行い、分離された固形物と排水とをそれぞれに適した方法で処理することで処理コストを削減することができる。また、汚泥処理では、汚泥の脱水処理として固液分離処理を行い、汚泥の減容を図ることで輸送や処分に要するコストを削減することができる。このような固液分離処理では、固液分離性能を高めるために被処理水に高分子凝集剤が注入される場合がある。高分子凝集剤は、被処理水中の固形物を凝集させる作用を有し、固形物の沈降性を高める効果を奏するため、固液分離性能の向上に寄与する。 Solid-liquid separation treatment is one of methods for purifying water to be treated such as waste water and sludge. In wastewater treatment, solid-liquid separation is performed as a pretreatment, and the separated solids and wastewater are treated by appropriate methods, thereby reducing treatment costs. In sludge treatment, solid-liquid separation treatment is performed as dehydration treatment of sludge, and by reducing the volume of sludge, the cost required for transportation and disposal can be reduced. In such a solid-liquid separation process, a polymer flocculant may be injected into the water to be treated in order to improve solid-liquid separation performance. The polymer flocculant has the effect of flocculating solids in the water to be treated, and has the effect of increasing the sedimentation property of the solids, thus contributing to the improvement of solid-liquid separation performance.

一方で、高分子凝集剤の注入量が不足すれば固液分離性能が低下し、注入量が多すぎると被処理水中に多くの高分子凝集剤が残留することになり処理水の悪化を招くため、高分子凝集剤の注入量は、被処理水中の固形物量の変動に応じて適切に調整される必要がある。一般に、高分子凝集剤の注入率の設定は、実験室における固液分離の模擬試験によって固液分離性能が良好となったものを選定し、選定した注入率を手動で設定することによって行われている。しかしながら、被処理水中の固形物濃度は変動する可能性があるため、このような注入率の設定方法では固形物濃度の変動に対応できない可能性があった。 On the other hand, if the injection amount of the polymer flocculant is insufficient, the solid-liquid separation performance will decrease, and if the injection amount is too large, a large amount of the polymer flocculant will remain in the water to be treated, resulting in deterioration of the treated water. Therefore, the injection amount of the polymer flocculant must be appropriately adjusted according to the fluctuation of the amount of solid matter in the water to be treated. In general, setting the injection rate of the polymer flocculant is performed by selecting one that has shown good solid-liquid separation performance in a simulated solid-liquid separation test in a laboratory, and manually setting the selected injection rate. ing. However, since the concentration of solids in the water to be treated may fluctuate, such a method of setting the injection rate may not be able to cope with fluctuations in the concentration of solids.

特開2010-137115号公報JP 2010-137115 A 特開2013-223846号公報JP 2013-223846 A 特開平11-57731号公報JP-A-11-57731

本発明が解決しようとする課題は、被処理水の固液分離性能の低下を抑制することができる制御装置、固液分離方法コンピュータプログラム、および固液分離システムを提供することである。 The problem to be solved by the present invention is to provide a control device, a solid-liquid separation method , a computer program , and a solid-liquid separation system that can suppress deterioration in solid-liquid separation performance of water to be treated.

実施形態の制御装置は、高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムの制御装置である。制御装置は、制御部を持つ。制御部は、前記固液分離装置により固形物が分離された被処理水である分離水に残留する高分子凝集剤の濃度に基づいて、前記被処理水に対する高分子溶液の注入量を制御する。 The control device of the embodiment comprises a dissolution tank for mixing a polymer flocculant and dissolution water to prepare a polymer solution; and a solid-liquid separator for separating the water to be treated in which the solids have aggregated into solids and water. The control device has a control unit. The control unit controls the injection amount of the polymer solution into the water to be treated based on the concentration of the polymer flocculant remaining in the separated water, which is the water to be treated from which solid matter has been separated by the solid-liquid separator. .

従来の固液分離システムの構成例を示す図。The figure which shows the structural example of the conventional solid-liquid separation system. 第1の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 1st Embodiment. 第1の実施形態における制御装置の機能構成の具体例を示す図。FIG. 2 is a diagram showing a specific example of the functional configuration of a control device according to the first embodiment; 第2の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 2nd Embodiment. 第2の実施形態における制御装置の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the control apparatus in 2nd Embodiment. 第3の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 3rd Embodiment. 第4の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 4th Embodiment. 第5の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 5th Embodiment. 第5の実施形態における制御装置の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the control apparatus in 5th Embodiment. 第1~第5の実施形態の固液分離システムに関して得られた新たな知見を説明する図。FIG. 5 is a diagram for explaining new knowledge obtained with respect to the solid-liquid separation systems of the first to fifth embodiments;

以下、実施形態の制御装置、固液分離方法コンピュータプログラム、および固液分離システムを、図面を参照して説明する。 Hereinafter, a control device, a solid-liquid separation method , a computer program , and a solid-liquid separation system according to embodiments will be described with reference to the drawings.

(概略)
図1は、従来の固液分離システムの構成例を示す図である。固液分離システム90は、溶解槽91、第1攪拌機92、高分子溶液注入ポンプ93、凝集槽94、第2攪拌機95及び固液分離装置96を備える。溶解槽91は、顆粒状の高分子凝集剤を溶媒である水(以下「溶解水」という。)に溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。第1攪拌機92は、溶解槽91に投入された高分子凝集剤及び溶解水を攪拌する装置である。高分子溶液注入ポンプ93は、溶解槽91において調製された高分子溶液を凝集槽94に注入する装置である。凝集槽94は、高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。第2攪拌機95は、高分子溶液と被処理水とを混和させるために攪拌する装置である。固液分離装置96は、固形物が凝集した被処理水を固形物と水分とに分離する装置である。
(outline)
FIG. 1 is a diagram showing a configuration example of a conventional solid-liquid separation system. The solid-liquid separation system 90 includes a dissolution tank 91 , a first stirrer 92 , a polymer solution injection pump 93 , a coagulation tank 94 , a second stirrer 95 and a solid-liquid separation device 96 . The dissolution tank 91 dissolves the granular polymer flocculant in water (hereinafter referred to as "dissolution water") as a solvent to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). water tank. The first stirrer 92 is a device that stirs the polymer flocculant and the dissolved water introduced into the dissolving tank 91 . The polymer solution injection pump 93 is a device for injecting the polymer solution prepared in the dissolving tank 91 into the aggregation tank 94 . The coagulation tank 94 is a tank for mixing the polymer solution and the water to be treated to coagulate solids in the water to be treated. The second stirrer 95 is a device for stirring to mix the polymer solution and the water to be treated. The solid-liquid separation device 96 is a device that separates the water to be treated in which the solids have aggregated into solids and water.

ここで、高分子溶液注入ポンプ93は、実験室Lで行われた固液分離の模擬試験の結果に基づいて決定された注入率(以下「設定注入率」という。)で動作するように構成される。基本的に、設定注入率は、良好な固液分離性能が得られた試験結果に基づいて決定された注入率であるが、被処理水の水質は時々刻々と変動するものであるため、設定注入率が設定時において必ずしも最適であるとは限らない。設定注入率が、最適な注入率より小さい場合、固液分離性能が低下してしまい、被処理水を望ましい性状の水分と固形分とに分離することができなくなる。また、注入率が最適な注入率より大きい場合も、やはり固液分離性能は低下する。また、高分子凝集剤の注入量が増大するため薬品コストも増大する。さらに、水分中に多くの高分子凝集剤が残留することになり、処理水の水質悪化も懸念される。このような理由により、従来は、高分子凝集剤の注入量が必ずしも適切な量とはならない場合があった。 Here, the polymer solution injection pump 93 is configured to operate at an injection rate determined based on the results of a simulation test of solid-liquid separation conducted in laboratory L (hereinafter referred to as "set injection rate"). be done. Basically, the set injection rate is determined based on the test results showing good solid-liquid separation performance. The injection rate is not always optimal at the time of setting. If the set injection rate is smaller than the optimum injection rate, the solid-liquid separation performance is lowered, and the water to be treated cannot be separated into desired properties of water and solids. Also, if the injection rate is higher than the optimum injection rate, the solid-liquid separation performance is also lowered. Moreover, since the injection amount of the polymer flocculant increases, the chemical cost also increases. Furthermore, a large amount of the polymer flocculant will remain in the water, and there is concern that the quality of the treated water will deteriorate. For these reasons, conventionally, there have been cases where the injection amount of the polymer flocculant was not necessarily an appropriate amount.

(第1の実施形態)
図2は、第1の実施形態の固液分離システムの構成例を示す図である。第1の実施形態の固液分離システム100は、溶解槽1、高分子溶液注入ポンプ2、凝集槽3、固液分離装置4、第1貯水槽41及び制御装置5を備える。溶解槽1は、顆粒状の高分子凝集剤を溶媒である水(以下「溶解水」という。)に溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。溶解槽1には、高分子溶液を攪拌する第1撹拌機11が備えられる。
(First embodiment)
FIG. 2 is a diagram showing a configuration example of the solid-liquid separation system of the first embodiment. A solid-liquid separation system 100 of the first embodiment includes a dissolution tank 1 , a polymer solution injection pump 2 , a coagulation tank 3 , a solid-liquid separator 4 , a first water tank 41 and a controller 5 . The dissolution tank 1 dissolves a granular polymer flocculant in water (hereinafter referred to as "dissolution water") as a solvent to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). water tank. The dissolving tank 1 is equipped with a first stirrer 11 for stirring the polymer solution.

高分子溶液注入ポンプ2は、溶解槽1において調製された高分子溶液を凝集槽3に注入する装置である。高分子溶液注入ポンプ2は制御装置5と通信可能に接続される。高分子溶液注入ポンプ2は、制御装置5から通知される注入率に基づいて高分子溶液の注入動作を行う。 The polymer solution injection pump 2 is a device for injecting the polymer solution prepared in the dissolving tank 1 into the aggregation tank 3 . Polymer solution injection pump 2 is communicably connected to controller 5 . The polymer solution injection pump 2 injects the polymer solution based on the injection rate notified from the controller 5 .

凝集槽3は、高分子溶液注入ポンプ2によって注入された高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。凝集槽3には、高分子溶液と被処理水との混和水を攪拌する第2攪拌機31が備えられる。 The coagulation tank 3 is a tank for mixing the polymer solution injected by the polymer solution injection pump 2 and the water to be treated to coagulate solids in the water to be treated. The aggregation tank 3 is equipped with a second stirrer 31 for stirring the mixed water of the polymer solution and the water to be treated.

固液分離装置4は、高分子溶液の注入により固形物が凝集した被処理水(混和水)を固形物と水分とに分離する装置である。第1貯水槽41は固液分離装置4によって固形物が分離された水分(以下「分離水」という。)を貯える貯水槽である。第1貯水槽41には、分離水中に残留する高分子凝集剤の濃度(以下「残留高分子濃度」という。)の指標値を測定する水質計42が備えられる。例えば、水質計42は、高分子溶液のUV-VIS(Ultra Violet - Visible:紫外可視光)吸光度を測定する。水質計42は、制御装置5と通信可能に接続されており、測定データを制御装置5に送信する。 The solid-liquid separation device 4 is a device that separates the water to be treated (mixed water) in which the solids are aggregated by injecting the polymer solution into solids and water. The first water tank 41 is a water tank for storing water (hereinafter referred to as “separated water”) from which the solid matter is separated by the solid-liquid separator 4 . The first water tank 41 is equipped with a water quality meter 42 that measures an index value of the concentration of the polymer flocculant remaining in the separated water (hereinafter referred to as "residual polymer concentration"). For example, the water quality meter 42 measures the UV-VIS (Ultra Violet-Visible) absorbance of the polymer solution. The water quality meter 42 is communicably connected to the control device 5 and transmits measurement data to the control device 5 .

制御装置5は、分離水の残留高分子濃度に応じて凝集槽3に注入される高分子溶液の注入量を調整する機能を有する。具体的には、制御装置5は、水質計42の測定データに基づいて高分子溶液注入ポンプ2の注入率を決定する。 The control device 5 has a function of adjusting the injection amount of the polymer solution injected into the coagulation tank 3 according to the residual polymer concentration of the separated water. Specifically, the control device 5 determines the injection rate of the polymer solution injection pump 2 based on the measurement data of the water quality meter 42 .

図3は、第1の実施形態における制御装置の機能構成の具体例を示す図である。第1の実施形態における制御装置5は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御装置5は、プログラムの実行によって通信部51、記憶部52、測定データ取得部53及び第1注入率制御部54を備える装置として機能する。なお、制御装置5の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 FIG. 3 is a diagram illustrating a specific example of the functional configuration of the control device according to the first embodiment; The control device 5 in the first embodiment includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected via a bus, and executes programs. The control device 5 functions as a device including a communication section 51, a storage section 52, a measurement data acquisition section 53, and a first injection rate control section 54 by executing a program. All or part of each function of the control device 5 may be implemented using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program may be recorded on a computer-readable recording medium. Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and storage devices such as hard disks incorporated in computer systems. The program may be transmitted via telecommunication lines.

通信部51は通信インタフェースである。通信部51は、有線通信インタフェースであってもよいし、無線通信インタフェースであってもよい。通信部51は、水質計42及び高分子溶液注入ポンプ2と通信可能に接続される。 A communication unit 51 is a communication interface. The communication unit 51 may be a wired communication interface or a wireless communication interface. The communication unit 51 is communicably connected to the water quality meter 42 and the polymer solution injection pump 2 .

記憶部52は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部52は、水質計42の測定データを記憶する。また、記憶部52には、残留高分子濃度の指標値と残留高分子濃度との相関性を示すデータ(以下「相関データ」という。)が予め記憶されている。 The storage unit 52 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 52 stores measurement data of the water quality meter 42 . The storage unit 52 stores in advance data indicating the correlation between the index value of the residual polymer concentration and the residual polymer concentration (hereinafter referred to as "correlation data").

測定データ取得部53は、通信部51を介して水質計42から測定データを取得する。測定データ取得部53は取得した測定データを記憶部52に保存する。 The measurement data acquisition unit 53 acquires measurement data from the water quality meter 42 via the communication unit 51 . The measurement data acquisition unit 53 stores the acquired measurement data in the storage unit 52 .

第1注入率制御部54は、高分子溶液注入ポンプ2の注入率を制御する機能を有する。具体的には、第1注入率制御部54は、実験室における固液分離試験等によって決定された高分子溶液注入ポンプ2の注入率を分離水の残留高分子濃度に応じて補正する。なお、被処理水の固形物濃度に基づく補正対象の注入率は、第1注入率制御部54によって決定されてもよいし、図示しない他の機能によって決定されてもよい。 The first injection rate control section 54 has a function of controlling the injection rate of the polymer solution injection pump 2 . Specifically, the first injection rate controller 54 corrects the injection rate of the polymer solution injection pump 2 determined by a solid-liquid separation test or the like in a laboratory, according to the residual polymer concentration of the separated water. The injection rate to be corrected based on the solid concentration of the water to be treated may be determined by the first injection rate control section 54 or may be determined by another function (not shown).

より詳細には、以下の手順例で生成される相関データを予め記憶部52に記録しておく。
[手順1]高分子凝集剤と純水との混合比が異なる複数パターンの高分子溶液を調製する。
[手順2]手順1で調製した各パターンの高分子溶液について高分子濃度の指標値を測定する。本実施形態における残留高分子濃度の指標値は高分子溶液のUV-VIS(Ultra Violet - Visible:紫外可視光)吸光度であり、190nm~240nmの波長を有する紫外可視光を用いて測定される。そのため、手順2では、これと同じ波長を有する紫外可視光を用いて各パターンの高分子濃度を測定する。
[手順3]手順2で測定された高分子濃度の指標値と、混合比から算出される高分子濃度とをパターンごとに対応づける。
More specifically, the correlation data generated by the following procedure example is recorded in the storage unit 52 in advance.
[Procedure 1] A plurality of patterns of polymer solutions having different mixing ratios of polymer flocculant and pure water are prepared.
[Procedure 2] For each pattern of the polymer solution prepared in Procedure 1, the index value of the polymer concentration is measured. The index value of the residual polymer concentration in this embodiment is the UV-VIS (Ultra Violet-Visible) absorbance of the polymer solution, which is measured using UV-visible light having a wavelength of 190 nm to 240 nm. Therefore, in Procedure 2, UV-visible light having the same wavelength is used to measure the polymer concentration of each pattern.
[Procedure 3] The index value of the polymer concentration measured in Procedure 2 and the polymer concentration calculated from the mixture ratio are associated with each pattern.

第1注入率制御部54は、このようにして生成された相関データと、固液分離処理の実施中に取得される残留高分子濃度の指標値の測定データとに基づいて、第1貯水槽41に貯えられている分離水の残留高分子濃度を推定する。 The first injection rate control unit 54 controls the first water tank based on the correlation data thus generated and the measurement data of the residual polymer concentration index value acquired during the solid-liquid separation process. Estimate the residual macromolecule concentration in the separated water stored in 41 .

例えば、第1注入率制御部54は、分離水の残留高分子濃度が100mg/L以上であれば、注入率が最適値よりも高くなっており、分離水中に余剰の高分子凝集剤が残留していると判断し、補正前の注入率を例えば0.1%下げるなどの補正を行う。 For example, if the residual polymer concentration in the separated water is 100 mg/L or more, the first injection rate control unit 54 determines that the injection rate is higher than the optimum value, and excess polymer flocculant remains in the separated water. Then, the injection rate before correction is reduced by 0.1%, for example.

このように構成された第1の実施形態の固液分離システム100では、被処理水に対する高分子凝集剤の注入量が、分離水に流出した高分子凝集剤の濃度の変動に応じて補正される。これにより、実験室等における固液分離試験によって決定された高分子凝集剤の注入率を、注入量の過不足に応じてより適切な値に調整することができ、被処理水の固液分離性能の低下を抑制することが可能となる。 In the solid-liquid separation system 100 of the first embodiment configured as described above, the injection amount of the polymer flocculant into the water to be treated is corrected according to the fluctuation in the concentration of the polymer flocculant that has flowed out to the separated water. be. As a result, the injection rate of the polymer flocculant determined by a solid-liquid separation test in a laboratory can be adjusted to a more appropriate value according to the excess or deficiency of the injection amount, and solid-liquid separation of the water to be treated can be performed. It becomes possible to suppress deterioration in performance.

(第2の実施形態)
図4は、第2の実施形態の固液分離システムの構成例を示す図である。第2の実施形態の固液分離システム100aは、水質計42に代えて水質計42aを備える点、制御装置5に代えて制御装置5aを備える点で第1の実施形態の固液分離システム100と異なる。その他の構成は、第1の実施形態と同様であるため、図4では同様の構成について図2と同じ符号を付すことにより説明を省略する。
(Second embodiment)
FIG. 4 is a diagram showing a configuration example of the solid-liquid separation system of the second embodiment. The solid-liquid separation system 100a of the second embodiment differs from the solid-liquid separation system 100 of the first embodiment in that it includes a water quality meter 42a in place of the water quality meter 42 and a control device 5a in place of the control device 5. different from Since other configurations are the same as those of the first embodiment, the same configurations in FIG. 4 are denoted by the same reference numerals as those in FIG.

水質計42aは、残留高分子濃度に加えて、COD(Chemical Oxygen Demand:化学的酸素要求量)濃度及びSS(Suspended Solid:懸濁物質または浮遊物質)濃度の指標値を測定する点で第1の実施形態の水質計42と異なる。具体的には、COD濃度の指標値は、約254nmの波長を有する紫外可視光を用いて測定されるUV-VIS吸光度である。また、SS濃度の指標値は、約546nmの波長を有する紫外可視光を用いて測定されるUV-VIS吸光度である。 The water quality meter 42a is the first in that it measures the indicator values of the COD (Chemical Oxygen Demand) concentration and the SS (Suspended Solid) concentration in addition to the residual polymer concentration. is different from the water quality meter 42 of the embodiment. Specifically, the COD concentration index value is the UV-VIS absorbance measured using UV-visible light having a wavelength of about 254 nm. Also, the SS concentration index value is the UV-VIS absorbance measured using UV-visible light having a wavelength of about 546 nm.

図5は、第2の実施形態における制御装置の機能構成の具体例を示す図である。第2の実施形態における制御装置5aは、記憶部52に代えて記憶部52aを備える点、第1注入率制御部54に代えて第1注入率制御部54aを備える点で第1の実施形態における制御装置5と異なる。その他の構成は、第1の実施形態と同様であるため、図5では同様の構成について図3と同じ符号を付すことにより説明を省略する。 FIG. 5 is a diagram showing a specific example of the functional configuration of the control device according to the second embodiment. The control device 5a in the second embodiment is similar to the first embodiment in that it includes a storage unit 52a instead of the storage unit 52 and includes a first injection rate control unit 54a instead of the first injection rate control unit 54. is different from the control device 5 in . Since other configurations are the same as those of the first embodiment, the same configurations in FIG. 5 are denoted by the same reference numerals as in FIG.

記憶部52aは、第1の実施形態における相関データに加えて、第2の相関データ及び第3の相関データを予め記憶している点で第1の実施形態における記憶部52と異なる。以下、第1の実施形態における相関データを第1の相関データと記載して第2の相関データ及び第3の相関データと区別する。第2の相関データは、分離水のCOD濃度の指標値(254nm波長のUV-VIS吸光度)とCOD濃度との相関性を示すデータである。また、第3の相関データは、分離水のSS濃度の指標値(546nm波長のUV-VIS吸光度)とSS濃度との相関性を示すデータである。第2の相関データ及び第3の相関データも、第1の相関データと同様の手順によって生成することができる。 The storage unit 52a differs from the storage unit 52 in the first embodiment in that the second correlation data and the third correlation data are stored in advance in addition to the correlation data in the first embodiment. Hereinafter, the correlation data in the first embodiment will be referred to as the first correlation data and distinguished from the second correlation data and the third correlation data. The second correlation data is data indicating the correlation between the COD concentration index value (UV-VIS absorbance at 254 nm wavelength) of separated water and the COD concentration. The third correlation data is data showing the correlation between the SS concentration index value (UV-VIS absorbance at 546 nm wavelength) of the separated water and the SS concentration. The second correlation data and the third correlation data can also be generated by the same procedure as the first correlation data.

第1注入率制御部54aは、高分子溶液注入ポンプ2の注入率を制御する機能を有するでは第1の実施形態における第1注入率制御部54と同様であるが、分離水の残留高分子濃度に加え、COD濃度及びSS濃度に基づいて注入率を制御する点で第1の実施形態における注入率制御部と異なる。 The first injection rate control unit 54a has a function of controlling the injection rate of the polymer solution injection pump 2, and is the same as the first injection rate control unit 54 in the first embodiment. It differs from the injection rate control section in the first embodiment in that the injection rate is controlled based on the COD concentration and the SS concentration in addition to the concentration.

190nm~240nm波長のUV-VIS吸光度を測定することにより分離水の残留高分子濃度を測定する場合、分離水の濁度が高すぎると残留高分子濃度を精度良く推定することが難しくなる。このような場合、高分子溶液注入ポンプ2を適切な注入率に制御できなくなる可能性がある。そこで、本実施形態における第1注入率制御部54aは、分離水のSS濃度又はCOD濃度を用いて、残留高分子濃度の推定精度を判定する。 When measuring the residual polymer concentration in the separated water by measuring the UV-VIS absorbance at a wavelength of 190 nm to 240 nm, it becomes difficult to accurately estimate the residual polymer concentration if the separated water has too high a turbidity. In such a case, there is a possibility that the polymer solution injection pump 2 cannot be controlled at an appropriate injection rate. Therefore, the first injection rate control unit 54a in the present embodiment uses the SS concentration or COD concentration of the separated water to determine the estimation accuracy of the residual polymer concentration.

ここで、一般に254nm波長のUV-VIS吸光度はSS濃度との相関性が高く、546nm波長のUV-VIS吸光度はCOD濃度との相関性が高いことが知られている。一方、SS濃度が高すぎるとCOD濃度との相関性が高い吸光度を測定することが難しくなり、COD濃度が高すぎると残留高分子濃度との相関性が高い吸光度を測定することが難しくなる。そこで、例えば、第1注入率制御部54aは、SS濃度又はCOD濃度の推定値が所定の範囲内に収まっているか否かを判定することにより残留高分子濃度の推定精度を判定する。 Here, it is generally known that the UV-VIS absorbance at a wavelength of 254 nm has a high correlation with the SS concentration, and the UV-VIS absorbance at a wavelength of 546 nm has a high correlation with the COD concentration. On the other hand, if the SS concentration is too high, it becomes difficult to measure the absorbance that has a high correlation with the COD concentration, and if the COD concentration is too high, it becomes difficult to measure the absorbance that has a high correlation with the residual polymer concentration. Therefore, for example, the first injection rate control unit 54a determines the estimation accuracy of the residual polymer concentration by determining whether or not the estimated value of the SS concentration or the COD concentration is within a predetermined range.

この場合、例えば、第1注入率制御部54aは、SS濃度及びCOD濃度の両方がそれぞれについて予め定められた所定の範囲内にある場合に、推定される残留高分子濃度が十分な精度を有すると判定する。 In this case, for example, the first injection rate control unit 54a determines that the estimated residual polymer concentration has sufficient accuracy when both the SS concentration and the COD concentration are within respective predetermined ranges. Then judge.

また、第1注入率制御部54aは、この判定結果を示す情報(以下「精度情報」という。)を表示装置に表示するなどして、報知してもよい。このような精度情報が報知されることにより、例えば、固液分離システム100aのオペレータが、分離水の濁度を低下させる作業(例えば分離水を水で希釈するなどの作業)を行うことで残留高分子濃度の推定精度の低下を抑制することができる。 In addition, the first injection rate control unit 54a may report information indicating the determination result (hereinafter referred to as "accuracy information") by displaying it on a display device or the like. By being notified of such accuracy information, for example, the operator of the solid-liquid separation system 100a performs work to reduce the turbidity of the separated water (for example, work such as diluting the separated water with water). It is possible to suppress a decrease in the accuracy of estimating the polymer concentration.

このように構成された第2の実施形態の固液分離システム100aによれば、分離水の残留高分子濃度をより精度良く測定することができるため、被処理水の固液分離性能の低下を抑制することが可能となる。 According to the solid-liquid separation system 100a of the second embodiment configured in this way, the residual polymer concentration in the separated water can be measured with higher accuracy, so that the deterioration of the solid-liquid separation performance of the water to be treated can be prevented. can be suppressed.

(第3の実施形態)
図6は、第3の実施形態の固液分離システムの構成例を示す図である。第3の実施形態の固液分離システム100bは、分離水をろ過するろ過装置6と、ろ過装置6によって分離水中に残留する固形物が分離された水分(以下「ろ過水」という。)を貯える第2貯水槽61と、をさらに備える点、第1貯水槽41に代えて第2貯水槽61に水質計42が備えられる点、で第1の実施形態の固液分離システム100と異なる。その他の構成は、第1の実施形態と同様であるため、図6では同様の構成について図2と同じ符号を付すことにより説明を省略する。なお、ろ過装置6のろ材は特定のものに限定されず、分離水中の固形物を分離することができるものであれば、どのような種類のものであってもよい。
(Third embodiment)
FIG. 6 is a diagram showing a configuration example of a solid-liquid separation system according to the third embodiment. A solid-liquid separation system 100b of the third embodiment stores water (hereinafter referred to as "filtered water") from which solid substances remaining in the separated water are separated by the filtering device 6 for filtering the separated water and the filtering device 6. The solid-liquid separation system 100 differs from the solid-liquid separation system 100 of the first embodiment in that it further includes a second water tank 61 and that the second water tank 61 is provided with a water quality meter 42 instead of the first water tank 41 . Since other configurations are the same as those of the first embodiment, in FIG. 6, similar configurations are denoted by the same reference numerals as in FIG. Note that the filter medium of the filtering device 6 is not limited to a specific one, and may be of any type as long as it can separate solids in the separated water.

このように構成された第3の実施形態の固液分離システム100bによれば、残留高分子濃度の指標値を測定する前に分離水からある程度の固形物が分離されてより精度の良い残留高分子濃度が測定されるため、被処理水の固液分離性能の低下を抑制することが可能となる。 According to the solid-liquid separation system 100b of the third embodiment configured in this way, a certain amount of solid matter is separated from the separated water before the index value of the residual polymer concentration is measured, and the residual height can be obtained with higher accuracy. Since the molecular concentration is measured, it is possible to suppress deterioration of solid-liquid separation performance of the water to be treated.

なお、第3の実施形態の固液分離システム100bにおいて、ろ過水の残留高分子濃度は第2の実施形態と同様に、紫外可視光の吸光度、COD濃度及びSS濃度を用いて推定されてもよい。また、この場合、第1注入率制御部54は、第2の実施形態と同様に、ろ過水のSS濃度又はCOD濃度を用いて、残留高分子濃度の推定精度を判定してもよい。 Note that in the solid-liquid separation system 100b of the third embodiment, the concentration of residual polymers in filtered water can be estimated using the absorbance of ultraviolet-visible light, the COD concentration, and the SS concentration, as in the second embodiment. good. Also, in this case, the first injection rate control unit 54 may determine the estimation accuracy of the residual polymer concentration using the SS concentration or COD concentration of the filtered water, as in the second embodiment.

(第4の実施形態)
図7は、第4の実施形態の固液分離システムの構成例を示す図である。第4の実施形態の固液分離システム100cは、分離水を希釈するための水(以下「希釈水」という。)を貯える第3貯水槽43と、希釈水によって希釈された分離水(以下「希釈分離水」という。)を貯える第4貯水槽44と、をさらに備える点、第1貯水槽41に代えて第4貯水槽44に水質計42が備えられる点、で第2の実施形態の固液分離システム100aと異なる。この場合、例えば希釈水の流量は、制御装置5aによって報知される精度情報に基づいて固液分離システム100aのオペレータにより調整される。その他の構成は、第4の実施形態と同様であるため、図7では同様の構成について図4と同じ符号を付すことにより説明を省略する。
(Fourth embodiment)
FIG. 7 is a diagram showing a configuration example of a solid-liquid separation system according to the fourth embodiment. The solid-liquid separation system 100c of the fourth embodiment includes a third water storage tank 43 for storing water for diluting the separated water (hereinafter referred to as "dilution water"), and separated water diluted with the dilution water (hereinafter referred to as " The second embodiment is characterized in that it further includes a fourth water tank 44 that stores diluted and separated water, and that the fourth water tank 44 is equipped with a water quality meter 42 instead of the first water tank 41. It differs from the solid-liquid separation system 100a. In this case, for example, the flow rate of the dilution water is adjusted by the operator of the solid-liquid separation system 100a based on the accuracy information notified by the controller 5a. Since other configurations are the same as those of the fourth embodiment, the same configurations in FIG. 7 are denoted by the same reference numerals as in FIG.

このように構成された第4の実施形態の固液分離システム100cによれば、残留高分子濃度の指標値を測定する前に分離水がある程度希釈されてより精度の良い残留高分子濃度が測定されるため、被処理水の固液分離性能の低下を抑制することが可能となる。 According to the solid-liquid separation system 100c of the fourth embodiment configured as described above, the separated water is diluted to some extent before the index value of the residual polymer concentration is measured, so that the residual polymer concentration can be measured with higher accuracy. Therefore, it is possible to suppress the deterioration of the solid-liquid separation performance of the water to be treated.

なお、第4の実施形態の固液分離システム100cにおいて、希釈分離水の残留高分子濃度は第1の実施形態と同様に、紫外可視光の吸光度に基づいて推定されてもよい。また、第4の実施形態の固液分離システム100cは、第1貯水槽41と第4貯水槽44との間に第3の実施形態と同様のろ過装置6を備えてもよい。 In addition, in the solid-liquid separation system 100c of the fourth embodiment, the residual polymer concentration in the diluted separated water may be estimated based on the absorbance of ultraviolet-visible light, as in the first embodiment. Moreover, the solid-liquid separation system 100c of the fourth embodiment may be provided with the filtering device 6 similar to that of the third embodiment between the first water tank 41 and the fourth water tank 44 .

(第5の実施形態)
図8は、第5の実施形態の固液分離システムの構成例を示す図である。第5の実施形態の固液分離システム100dは、分離水に希釈水を注入する希釈水注入ポンプ7を備える点、制御装置5aに代えて制御装置5bを備える点、で第4の実施形態の固液分離システム100cと異なる。制御装置5bは、第3の実施形態の制御装置5aと同様の機能に加え、測定データに基づいて希釈水注入ポンプ7の注入率を制御する機能を有する点で第4の実施形態における制御装置5aと異なる。その他の構成は、第4の実施形態と同様であるため、図8では同様の構成について図7と同じ符号を付すことにより説明を省略する。
(Fifth embodiment)
FIG. 8 is a diagram showing a configuration example of a solid-liquid separation system according to the fifth embodiment. The solid-liquid separation system 100d of the fifth embodiment has a dilution water injection pump 7 for injecting dilution water into the separated water, and a control device 5b instead of the control device 5a. It differs from the solid-liquid separation system 100c. The control device 5b has the same function as the control device 5a of the third embodiment, in addition to the function of controlling the injection rate of the dilution water injection pump 7 based on the measurement data. Different from 5a. Since other configurations are the same as those of the fourth embodiment, the same configurations in FIG. 8 are denoted by the same reference numerals as in FIG.

図9は、第5の実施形態における制御装置の機能構成の具体例を示す図である。第5の実施形態における制御装置5bは、第2注入率制御部55をさらに備える点で第4の実施形態における制御装置5aと異なる。その他の構成は、第4の実施形態と同様であるため、図9では同様の構成について図5と同じ符号を付すことにより説明を省略する。 FIG. 9 is a diagram showing a specific example of the functional configuration of the control device according to the fifth embodiment. The control device 5b in the fifth embodiment differs from the control device 5a in the fourth embodiment in that a second injection rate control section 55 is further provided. Since other configurations are the same as those of the fourth embodiment, the same configurations in FIG. 9 are denoted by the same reference numerals as those in FIG. 5, and descriptions thereof are omitted.

第2注入率制御部55は、水質計42aの測定データに基づいて希釈水注入ポンプ7の注入率を制御する機能を有する。例えば、制御装置5bは、希釈分離水の残留高分子濃度、COD濃度又はSS濃度と希釈水の注入率との対応関係を示す希釈データを予め記憶部52aに記憶しておき、第2注入率制御部55は、その希釈データと、測定データとに基づいて希釈水の注入率を決定して希釈水注入ポンプ7に通知する。 The second injection rate control unit 55 has a function of controlling the injection rate of the dilution water injection pump 7 based on the measurement data of the water quality meter 42a. For example, the control device 5b pre-stores in the storage unit 52a dilution data indicating the correspondence relationship between the residual polymer concentration, COD concentration or SS concentration of the diluted and separated water and the injection rate of the diluted water. The control unit 55 determines the dilution water injection rate based on the dilution data and the measurement data, and notifies the dilution water injection pump 7 of it.

このように構成された第5の実施形態の固液分離システム100dによれば、希釈分離水の残留高分子濃度、COD濃度又はSS濃度に応じた注入率で分離水に希釈水が注入されるため、希釈分離水が残留高分子濃度、COD濃度又はSS濃度の測定に適した濃度に調整される。これにより、希釈分離水が適度に希釈されてより精度の良い残留高分子濃度が測定されるため、被処理水の固液分離性能の低下を抑制することが可能となる。 According to the solid-liquid separation system 100d of the fifth embodiment configured as described above, the diluted water is injected into the separated water at an injection rate corresponding to the residual polymer concentration, COD concentration, or SS concentration of the diluted separated water. Therefore, the diluted separated water is adjusted to a concentration suitable for measuring the residual polymer concentration, COD concentration or SS concentration. As a result, the diluted and separated water is appropriately diluted and the residual polymer concentration can be measured with higher accuracy, so that deterioration of the solid-liquid separation performance of the water to be treated can be suppressed.

なお、第5の実施形態の固液分離システム100dにおいて、希釈分離水の残留高分子濃度は第1の実施形態と同様に、紫外可視光の吸光度に基づいて推定されてもよい。また、第5の実施形態の固液分離システム100dは、第1貯水槽41と第4貯水槽44との間に第3の実施形態と同様のろ過装置6を備えてもよい。 In addition, in the solid-liquid separation system 100d of the fifth embodiment, the residual polymer concentration in the diluted separated water may be estimated based on the absorbance of ultraviolet-visible light, as in the first embodiment. Moreover, the solid-liquid separation system 100d of the fifth embodiment may be provided with the filtering device 6 similar to that of the third embodiment between the first water tank 41 and the fourth water tank 44 .

図10は、第1~第5の実施形態の固液分離システムに関して得られた新たな知見を説明する図である。図10は、高分子溶液の濃度(高分子濃度)と、その高分子溶液の濃度測定に用いる紫外可視光の波長と、制御感度と、相関強度と、に関して得られた対応の一例を示している。制御感度とは、各高分子濃度と、各波長の紫外可視光によって得られた吸光度との相関性を用いた制御の安定性を示す指標であり、ここでは高分子濃度と吸光度との関係を表す直線の傾きを用いている。また、相関強度とは、高分子濃度と吸光度との相関性の強度を表す指標であり、ここでは相関係数Rの二乗値を用いている。 FIG. 10 is a diagram for explaining new knowledge obtained regarding the solid-liquid separation systems of the first to fifth embodiments. FIG. 10 shows an example of the correspondence obtained with respect to the concentration of the polymer solution (polymer concentration), the wavelength of the UV-visible light used to measure the concentration of the polymer solution, the control sensitivity, and the correlation strength. there is The control sensitivity is an index showing the stability of control using the correlation between each polymer concentration and the absorbance obtained by ultraviolet-visible light of each wavelength. The slope of the straight line representing is used. The correlation strength is an index representing the strength of the correlation between the polymer concentration and the absorbance, and the square value of the correlation coefficient R is used here.

図10は、広範囲の濃度領域(図中の全体)においては、220nm波長の紫外可視光を用いることで精度良く高分子濃度を測定できたことを表し、また、低濃度領域においては、191.5nm波長の紫外可視光を用いることで局所的により精度良く高分子濃度を測定できたことを表している。図10は、得られた知見のうち比較的良好な結果の一部を示すものであるが、約190nm~約240nm波長の紫外可視光を用いた場合に十分な精度で高分子濃度を推定することができることが分かった。 FIG. 10 shows that in a wide concentration range (the entire figure), the polymer concentration could be measured with high accuracy by using ultraviolet-visible light with a wavelength of 220 nm. This indicates that the use of UV-visible light with a wavelength of 5 nm enabled local measurement of the polymer concentration with higher accuracy. FIG. 10 shows some of the relatively good results obtained, which estimate the polymer concentration with sufficient accuracy when using UV-visible light of wavelengths from about 190 nm to about 240 nm. I found that it can be done.

このような知見によれば、高分子濃度の測定において、制御に係る濃度範囲が広い場合には220nm波長の紫外可視光を用い、濃度範囲が狭い場合には190nm~220nmの範囲で適宜選択した紫外可視光を用いるということも可能である。 According to such knowledge, in the measurement of the polymer concentration, when the concentration range related to control is wide, UV-visible light with a wavelength of 220 nm is used, and when the concentration range is narrow, it is appropriately selected in the range of 190 nm to 220 nm. It is also possible to use UV-visible light.

以上説明した少なくともひとつの実施形態によれば、固液分離装置により固形物が分離された被処理水である分離水に残留する高分子凝集剤の濃度に基づいて、被処理水に対する高分子溶液の注入量を制御する制御部を持つことにより、高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムにおいて、被処理水の固液分離性能の低下を抑制することができる。 According to at least one embodiment described above, based on the concentration of the polymer flocculant remaining in the separated water, which is the water to be treated from which solids have been separated by the solid-liquid separation device, the polymer solution for the water to be treated By having a control unit that controls the injection amount of the dissolution tank that mixes the polymer flocculant and the dissolution water to prepare a polymer solution, and the polymer solution prepared in the dissolution tank is injected into the water to be treated. A solid-liquid separation system comprising: a flocculation tank for flocculating solids in the water to be treated; A decrease in solid-liquid separation performance can be suppressed.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

100,100a,100b,100c,100d…固液分離システム、1…溶解槽、11…第1撹拌機、2…高分子溶液注入ポンプ、3…凝集槽、31…第2攪拌機、4…固液分離装置、41…第1貯水槽、42,42a…水質計、43…第3貯水槽、44…第4貯水槽、5,5a,5b…制御装置、51…通信部、52,52a…記憶部、53…測定データ取得部、54,54a…第1注入率制御部、55…第2注入率制御部、6…ろ過装置、61…第2貯水槽、7…希釈水注入ポンプ、90…固液分離システム、91…溶解槽、92…第1攪拌機、93…高分子溶液注入ポンプ、94…凝集槽、95…第2攪拌機、96…固液分離装置 DESCRIPTION OF SYMBOLS 100,100a,100b,100c,100d... Solid-liquid separation system 1... Dissolution tank 11... 1st stirrer 2... Polymer solution injection pump 3... Aggregation tank 31... 2nd stirrer 4... Solid-liquid Separation device 41 First water tank 42, 42a Water quality meter 43 Third water tank 44 Fourth water tank 5, 5a, 5b Control device 51 Communication unit 52, 52a Memory Part, 53... Measurement data acquisition part, 54, 54a... First injection rate control part, 55... Second injection rate control part, 6... Filtration device, 61... Second water tank, 7... Dilution water injection pump, 90... Solid-liquid separation system 91 Dissolution tank 92 First stirrer 93 Polymer solution injection pump 94 Aggregation tank 95 Second stirrer 96 Solid-liquid separation device

Claims (6)

高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムの制御装置であって、
前記固液分離装置により固形物が分離され、更に希釈水で希釈された被処理水である分離水に残留する高分子凝集剤の濃度に基づいて、前記被処理水に対する高分子溶液の注入量および前記分離水に注入される前記希釈水の量を制御する制御部を備える、
制御装置。
A dissolution tank for preparing a polymer solution by mixing a polymer flocculant and dissolved water, and a flocculation for flocculating solids in the water to be treated by injecting the polymer solution prepared in the dissolution tank into the water to be treated. A control device for a solid-liquid separation system comprising a tank and a solid-liquid separation device for separating the water to be treated in which the solids are aggregated into solids and water,
Based on the concentration of the polymer flocculant remaining in the separated water, which is the water to be treated in which the solid matter is separated by the solid-liquid separation device and diluted with the dilution water, the injection amount of the polymer solution to the water to be treated. and a control unit that controls the amount of the dilution water injected into the separation water ,
Control device.
前記制御部は、190nm~240nmの波長を有する紫外可視光による高分子溶液の吸光度と高分子凝集剤の濃度との相関性に基づき、前記被処理水に対する高分子溶液の注入量を制御する、
請求項1に記載の制御装置。
The control unit controls the injection amount of the polymer solution into the water to be treated based on the correlation between the absorbance of the polymer solution by ultraviolet-visible light having a wavelength of 190 nm to 240 nm and the concentration of the polymer flocculant. do,
A control device according to claim 1 .
前記制御部は、前記分離水のCOD(Chemical Oxygen Demand)濃度又はSS(Suspended Solid)濃度に基づいて、前記分離水に残留する高分子凝集剤の濃度の推定精度に関する情報を生成する、
請求項1又は2に記載の制御装置。
The control unit, based on the COD (Chemical Oxygen Demand) concentration or SS (Suspended Solid) concentration of the separated water, generates information regarding the accuracy of estimating the concentration of the polymer flocculant remaining in the separated water.
3. A control device according to claim 1 or 2.
高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムの固液分離方法であって、
前記固液分離装置により固形物が分離され、更に希釈水で希釈された被処理水である分離水に残留する高分子凝集剤の濃度に基づいて、前記被処理水に対する高分子溶液の注入量および前記分離水に注入される前記希釈水の量を制御するステップを有する、
固液分離方法。
A dissolution tank for preparing a polymer solution by mixing a polymer flocculant and dissolved water, and a flocculation for flocculating solids in the water to be treated by injecting the polymer solution prepared in the dissolution tank into the water to be treated. A solid-liquid separation method for a solid-liquid separation system, comprising: a tank;
Based on the concentration of the polymer flocculant remaining in the separated water, which is the water to be treated in which the solid matter is separated by the solid-liquid separation device and diluted with the dilution water, the injection amount of the polymer solution to the water to be treated. and controlling the amount of said dilution water injected into said separation water .
Solid-liquid separation method.
高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した被処理水を固形物と水分とに分離する固液分離装置と、を備える固液分離システムの制御装置として機能するコンピュータに、
前記固液分離装置により固形物が分離され、更に希釈水で希釈された被処理水である分離水に残留する高分子凝集剤の濃度に基づいて、前記被処理水に対する高分子溶液の注入量および前記分離水に注入される前記希釈水の量を制御するステップ
を実行させるためのコンピュータプログラム。
A dissolution tank for preparing a polymer solution by mixing a polymer flocculant and dissolved water, and a flocculation for flocculating solids in the water to be treated by injecting the polymer solution prepared in the dissolution tank into the water to be treated. A computer functioning as a control device for a solid-liquid separation system comprising a tank and a solid-liquid separation device for separating the water to be treated in which the solids have aggregated into solids and water,
Based on the concentration of the polymer flocculant remaining in the separated water, which is the water to be treated in which the solid matter is separated by the solid-liquid separation device and diluted with the dilution water, the injection amount of the polymer solution to the water to be treated. and controlling the amount of said dilution water injected into said separation water .
制御装置と、 a controller;
高分子凝集剤と溶解水とを混合して高分子溶液を調製する溶解槽と、 a dissolution tank for preparing a polymer solution by mixing a polymer flocculant and dissolved water;
前記溶解槽において調製された高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる凝集槽と、 a flocculating tank for injecting the polymer solution prepared in the dissolving tank into the water to be treated to flocculate solids in the water;
前記固形物が凝集した被処理水を固形物と分離水とに分離する固液分離装置と、 a solid-liquid separation device for separating the water to be treated in which the solids have aggregated into solids and separated water;
前記固液分離装置で分離された分離水に希釈水を注入する希釈水注入部と、 a dilution water injection unit for injecting dilution water into the separated water separated by the solid-liquid separation device;
前記希釈水が注入された分離水の残留高分子凝集剤の濃度を計測する水質計と、を備え、 a water quality meter that measures the concentration of the residual polymer flocculant in the separated water into which the dilution water has been injected;
前記制御装置は、 The control device is
前記水質計が計測した残留高分子凝集剤の濃度に基づいて、前記被処理水に対する高分子溶液の注入量および前記分離水に注入される前記希釈水の量を制御する、 Based on the concentration of the residual polymer flocculant measured by the water quality meter, the amount of the polymer solution injected into the water to be treated and the amount of the dilution water injected into the separated water are controlled.
固液分離システム。 Solid-liquid separation system.
JP2018223520A 2018-11-29 2018-11-29 Control device, solid-liquid separation method, computer program, and solid-liquid separation system Active JP7199210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223520A JP7199210B2 (en) 2018-11-29 2018-11-29 Control device, solid-liquid separation method, computer program, and solid-liquid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223520A JP7199210B2 (en) 2018-11-29 2018-11-29 Control device, solid-liquid separation method, computer program, and solid-liquid separation system

Publications (2)

Publication Number Publication Date
JP2020082010A JP2020082010A (en) 2020-06-04
JP7199210B2 true JP7199210B2 (en) 2023-01-05

Family

ID=70905426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223520A Active JP7199210B2 (en) 2018-11-29 2018-11-29 Control device, solid-liquid separation method, computer program, and solid-liquid separation system

Country Status (1)

Country Link
JP (1) JP7199210B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272311A (en) 2005-03-02 2006-10-12 Kurita Water Ind Ltd Apparatus and method for coagulation
JP2008161804A (en) 2006-12-28 2008-07-17 Fuji Xerox Co Ltd Water treatment apparatus and method
JP2011115738A (en) 2009-12-04 2011-06-16 Hitachi Ltd Flocculant injection control method of purification plant
JP2017029868A (en) 2015-07-28 2017-02-09 株式会社東芝 Water treatment method, water treatment facility, flocculant injection quantity evaluation system, and residual flocculant quantity estimation apparatus
WO2017068825A1 (en) 2015-10-20 2017-04-27 株式会社東芝 Flocculant injection assistance device and control method
JP2017121601A (en) 2016-01-05 2017-07-13 水ing株式会社 Coagulation method and coagulation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730121B2 (en) * 1991-03-28 1995-04-05 工業技術院長 Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same
JP3312507B2 (en) * 1994-10-20 2002-08-12 栗田工業株式会社 Water treatment equipment
JPH09141300A (en) * 1995-11-21 1997-06-03 Kubota Corp Dehydrating method of liquid-containing solid material and dehydrating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272311A (en) 2005-03-02 2006-10-12 Kurita Water Ind Ltd Apparatus and method for coagulation
JP2008161804A (en) 2006-12-28 2008-07-17 Fuji Xerox Co Ltd Water treatment apparatus and method
JP2011115738A (en) 2009-12-04 2011-06-16 Hitachi Ltd Flocculant injection control method of purification plant
JP2017029868A (en) 2015-07-28 2017-02-09 株式会社東芝 Water treatment method, water treatment facility, flocculant injection quantity evaluation system, and residual flocculant quantity estimation apparatus
WO2017068825A1 (en) 2015-10-20 2017-04-27 株式会社東芝 Flocculant injection assistance device and control method
JP2017077525A (en) 2015-10-20 2017-04-27 株式会社東芝 Flocculant injection support device and control method
JP2017121601A (en) 2016-01-05 2017-07-13 水ing株式会社 Coagulation method and coagulation device

Also Published As

Publication number Publication date
JP2020082010A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP4793193B2 (en) Aggregation apparatus and aggregation method
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP4277831B2 (en) Aggregation apparatus and aggregation method
JP7199210B2 (en) Control device, solid-liquid separation method, computer program, and solid-liquid separation system
JP5636263B2 (en) Flocculant injection control system
JP7086658B2 (en) Water treatment system and water treatment method
JP2008264723A (en) Method and apparatus for coagulating impurity
JP7195809B2 (en) Controller and solid-liquid separation system
JP2006055804A (en) Coagulation device, coagulation method and controller for charging chemical
JP6158048B2 (en) Water treatment system, water treatment method, water treatment control device, and water treatment control program
JPWO2016006419A1 (en) Aggregation method and apparatus
JP4400721B2 (en) Water treatment system
JP2011056478A (en) Water treatment method and water treatment apparatus
JP4037615B2 (en) Aggregation condition determination method
JP7258606B2 (en) Control device, control method and computer program
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP6754680B2 (en) How to operate the pressurized flotation separator and the pressurized flotation separator
KR100736513B1 (en) A suction pressure/time detector by batch type for water supply and a treating method of water using the same
JP2017047395A (en) Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property
JP4400720B2 (en) Water treatment system
KR100736514B1 (en) A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
WO2018168021A1 (en) Method for controlling injection of flocculant, control device, and water treatment system
EP3127590B1 (en) Water treatment system
JP2002263700A (en) Sludge thickener and method of preparing flocculating agent
JP6330085B1 (en) Setting method of coagulant injection rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7199210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150