JPH0730121B2 - Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same - Google Patents

Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same

Info

Publication number
JPH0730121B2
JPH0730121B2 JP8742891A JP8742891A JPH0730121B2 JP H0730121 B2 JPH0730121 B2 JP H0730121B2 JP 8742891 A JP8742891 A JP 8742891A JP 8742891 A JP8742891 A JP 8742891A JP H0730121 B2 JPH0730121 B2 JP H0730121B2
Authority
JP
Japan
Prior art keywords
strain
polysaccharide
ferm
activated sludge
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8742891A
Other languages
Japanese (ja)
Other versions
JPH05262801A (en
Inventor
隆一郎 倉根
豊一 横幕
尚史 八町
秀明 松山
Original Assignee
工業技術院長
環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 環境エンジニアリング株式会社 filed Critical 工業技術院長
Priority to JP8742891A priority Critical patent/JPH0730121B2/en
Publication of JPH05262801A publication Critical patent/JPH05262801A/en
Publication of JPH0730121B2 publication Critical patent/JPH0730121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な多糖類、それから
主としてなる凝集・バルキング抑制・増粘剤(以下単に
凝集剤という)及びその製造方法に関し、更に詳しくは
活性汚泥法等による排水凝集処理法、各種の汚濁物質の
処理、各種工業の排水処理分野、都市下水、各種の発酵
液の処理、更には有用物質等の回収利用等、広範囲に渡
り利用が期待される多糖類、凝集剤及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel polysaccharide, a coagulant / bulking inhibitor / thickener (hereinafter simply referred to as a coagulant) mainly composed of the polysaccharide, and a method for producing the same, more specifically, a wastewater coagulation treatment by an activated sludge method or the like. Law, treatment of various pollutants, wastewater treatment fields of various industries, municipal sewage, treatment of various fermentation liquors, and recovery and utilization of useful substances, etc. The manufacturing method is related.

【0002】[0002]

【従来の技術】凝集剤は各種工業の進展に伴い、各種工
程及びそれから排出される廃水分野に広く使用されてい
る。凝集剤は一般的に合成高分子系(例えば、ポリアク
リルアミド系等)、無機系凝集剤(例えば、硫酸バンド
等)及び生物系凝集剤に大別される。このうち微生物産
生凝集剤は微生物が生産する物質で他の物質を凝集さ
せ、沈澱(沈降)し易くさせる性能を有する物質であ
る。又、機能面よりとらえると、カチオン系、ノニオン
系、アニオン系の3つに分類することが出来る。従来、
これら合成高分子及び無機系凝集剤は、活性汚泥法等を
用いた廃水処理分野から土木浚渫工事等への清澄処理剤
として多用されてきた。又、上水道、中水道の造水分
野、発酵工業における発酵液と菌体の分離といったダウ
ンストリームプロセッシング分野から、更には食品工業
分野への適用という様に非常に広範囲な分野に渡って凝
集剤の使用は期待されている。この様に、凝集剤の使用
は今日の社会生活に深く組み込まれており、なくてはな
らないものであるが故に、更に今後益々その使途が多岐
に渡り、使用量が増加するものと予想される。この為凝
集剤の使用は環境面、ひいては人間の健康にも直結して
いると考えられる。
2. Description of the Related Art Flocculants are widely used in various processes and wastewater fields discharged from them in accordance with the progress of various industries. Flocculants are generally classified into synthetic polymer type (for example, polyacrylamide type), inorganic type flocculants (for example, sulfuric acid band), and biological type flocculants. Among them, the microbial-produced flocculant is a substance produced by microorganisms, which has a property of flocculating other substances and facilitating precipitation. Also, from the viewpoint of function, they can be classified into three types: cationic, nonionic, and anionic. Conventionally,
These synthetic polymers and inorganic flocculants have been widely used as clarification treatment agents from the field of wastewater treatment using the activated sludge method or the like to civil engineering dredging work and the like. Further, from the downstream processing field such as the water production field of the water supply and the central water supply, the separation of the fermentation liquid and the bacterial cells in the fermentation industry, and further to the food industry field, the coagulant is widely used. Use is expected. As described above, the use of coagulants is deeply incorporated into today's social life and is indispensable. Therefore, it is expected that the use will be further diversified and the amount of use will increase. . Therefore, it is considered that the use of the flocculant is directly connected to the environment and the human health.

【0003】[0003]

【発明が解決しようとしている問題点】しかしながら、
現在広く用いられている合成高分子系凝集剤(例えば、
ポリアクリルアミド)等は、能力や経済性の点で優れて
いるが、安全性及び環境面での問題点も指摘されてい
る。更に、バイオインダストリーにおけるダウンストリ
ームプロセッシングへの適用を考えると、合成高分子系
凝集剤の使用には問題があると考えられる。これらの欠
点を解消及び克服する新規凝集剤の開発は各方面より切
望されており、特に生分解性を持ち安全で且つ二次公害
の恐れの無い生物由来の凝集剤の開発が急務な課題とな
っている。又、排水凝集処理法における活性汚泥方式に
おいて残された最も重要な問題は、処理後の処理水と活
性汚泥との分離であり、処理水と活性汚泥とは沈澱槽で
ある分離領域において活性汚泥が速やかに沈降分離する
ことが望ましいが、分離領域において静置時に糸状菌等
の発生によるバルキング現象やデフロック現象が生じて
活性汚泥の凝集フロック作用が低下し、活性汚泥の沈降
分離が不十分となり、活性汚泥の流出という問題が生じ
る。活性汚泥と処理水との分離を促進させる方法とし
て、カチオンポリマー等の高分子凝集剤や多価金属イオ
ン等の無機凝集剤を使用する方法が知られているが、こ
れらの凝集剤は生物分解性が不十分である為、処理水と
共に放水されることにより環境汚染の問題が派生する。
従って本発明の目的は、これらの問題点を解消及び克服
する為に、生分解性を有し、安全で且つ二次公害の恐れ
のない新規な多糖類を提供し、且つその多糖類を微生物
により製造し、微生物由来の凝集剤を提供することにあ
り、又、排水凝集処理方法において、活性汚泥のバルキ
ング現象を生じることなく効率的に活性汚泥を分離する
ことが出来る凝集剤を提供すると共に、優れた特性を有
する増粘剤を提供することである。
[Problems to be solved by the invention] However,
Synthetic polymeric flocculants that are currently widely used (for example,
Polyacrylamide) and the like are excellent in capacity and economical efficiency, but have been pointed out to have problems in safety and environment. Furthermore, considering the application to downstream processing in bioindustry, the use of synthetic polymeric flocculants may be problematic. The development of a new flocculant that eliminates and overcomes these drawbacks has been earnestly desired from all sides, and in particular, the development of a biodegradable, safe, and bioflocculating flocculant that is free from the risk of secondary pollution is an urgent issue. Has become. Further, the most important problem left in the activated sludge system in the wastewater coagulation method is the separation of the treated water and the activated sludge after the treatment, and the treated water and the activated sludge are separated from each other in the separation area which is a settling tank. It is desirable to quickly settle and separate the sludge, but the bulking phenomenon and deflocculation phenomenon caused by the generation of filamentous fungi, etc. occur in the separation area during standing, and the flocculating floc action of the activated sludge decreases, and the sedimentation and separation of the activated sludge becomes insufficient. The problem of outflow of activated sludge arises. As a method for promoting the separation of activated sludge and treated water, a method of using a polymer flocculant such as a cationic polymer or an inorganic flocculant such as a polyvalent metal ion is known. Due to its insufficient property, the problem of environmental pollution is caused by being discharged together with the treated water.
Therefore, an object of the present invention is to provide a novel polysaccharide which is biodegradable, safe, and free from the risk of secondary pollution in order to solve and overcome these problems, and to use the polysaccharide as a microorganism. In order to provide a flocculant derived from a microorganism, and also to provide a flocculant capable of efficiently separating activated sludge without causing a bulking phenomenon of activated sludge in a wastewater flocculation treatment method. , To provide a thickener having excellent properties.

【0004】[0004]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、請求項1に記載
の理化学的性質を有する多糖類、該多糖類から主として
なる凝集剤及びその製造方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a polysaccharide having the physicochemical properties according to claim 1, an aggregating agent mainly composed of the polysaccharide, and a method for producing the same.

【0005】[0005]

【作用】本発明により、以下に述べるR−3菌群に属す
る微生物が産生する新規な多糖類及びそれから主として
なる凝集剤を提供することができる。そして、この凝集
剤は、安全性、生分解性に優れたものであって、二次公
害を生じないものである。又、この凝集剤は無機塩を添
加することにより、更に優れた凝集効果が得られる。
又、活性汚泥を用いる排水凝集処理方法において、本発
明の多糖類を凝集剤として使用することによって、バル
キング現象の主たる原因である糸状菌の発生が抑制さ
れ、活性汚泥と処理水との分離が効率的となる。
According to the present invention, it is possible to provide a novel polysaccharide produced by a microorganism belonging to the following R-3 group and a flocculant mainly composed of the polysaccharide. The coagulant is excellent in safety and biodegradability and does not cause secondary pollution. Further, by adding an inorganic salt to this aggregating agent, a more excellent aggregating effect can be obtained.
Further, in a wastewater coagulation treatment method using activated sludge, by using the polysaccharide of the present invention as a coagulant, the occurrence of filamentous fungi, which is the main cause of the bulking phenomenon, is suppressed, and the separation of activated sludge and treated water Be efficient.

【0006】[0006]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳しく説明する。本発明者は、公知の多数の
凝集剤生産菌ロードコッカス・エリスロポレスをフラク
トース培地で培養し、その凝集効果(力値)を測定して
行く過程で、力価が通常の2倍以上上昇する培養液が存
在することを見出した。この培養液には数種の菌が混在
しており、これらの菌の生産物を分離したところ、特に
優れた力価を示す新規な多糖類であることを発見した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the preferred embodiments. The present inventor cultivates a large number of known flocculant-producing bacteria Rhodococcus erythropoles in a fructose medium, and in the process of measuring the flocculating effect (potency value), a culture in which the titer increases more than twice as much as usual. It was found that liquid was present. Several kinds of bacteria were mixed in this culture solution, and when the products of these bacteria were separated, it was discovered that they are novel polysaccharides showing particularly excellent titers.

【0007】上記の凝集剤生産菌は、シュウドモナス
属、アシネトバクター属、アグロバクテリウム属、エン
テロバクター属、オーレオバクテリウム属及びオエルス
コビア属からなる群から選ばれる少なくとも1属に属す
る凝集剤生産能を有する菌であり、従来公知のロードコ
ッカス・エリスロポレスKR−256−2、FERM−
PNo. 3923及びロードコッカス・エリスロポレスK
R−S−1、FERM−P No.3530等とは異なる属
に属し、その生産物の凝集能力はこれらの公知菌の2〜
3倍或いはそれ以上である。これらの属のうち、シュウ
ドモナス属、アシネトバクター属、アグロバクテリウム
属、エンテロバクター属、オーレオバクテリウム属及び
オエルスコビア属からなる群から選ばれる少なくとも1
属を含む微生物群を本発明ではR−3と称しているが、
夫々既に微工研寄託第11333号(FERM P-11333)、同
第11334号(FERM P-11334)、同第11335号(FER
M P-11335)、同第11336号(FERM P-11336)、同第1
1337号(FERM P-11337)、同第11357号(FERM P-
11357)及び同第11358号(FERM P-11358)として寄託
されている。上記凝集剤生産新規微生物は、以下の菌学
的性質を有している。
The above flocculant-producing bacterium has a coagulant-producing ability belonging to at least one genus selected from the group consisting of Pseudomonas, Acinetobacter, Agrobacterium, Enterobacter, Aureobacteria, and Oerscovia. A bacterium that has the known Rhodococcus erythropoles KR-256-2 and FERM-
P No. 3923 and Lord Coccus Erythropoles K
It belongs to a genus different from R-S-1, FERM-P No. 3530, etc., and the aggregation ability of the product is 2
3 times or more. Of these genera, at least one selected from the group consisting of Pseudomonas, Acinetobacter, Agrobacterium, Enterobacter, Aureobacterium, and Oerscovia.
Although a microbial group including a genus is referred to as R-3 in the present invention,
They have already been deposited in the Institute of Mechanical Engineering, No. 11333 (FERM P-11333), No. 11334 (FERM P-11334), and No. 11335 (FER).
No. 11336), No. 11336 (FERM P-11336), No. 1
No. 1337 (FERM P-11337), No. 11357 (FERM P-
11357) and 11358 (FERM P-11358). The above flocculant-producing novel microorganism has the following mycological properties.

【表1】 表1 [Table 1] Table 1

【表2】 (表1の続き) [Table 2] (Continued from Table 1)

【表3】 (表1の続き) [Table 3] (Continued from Table 1)

【表4】 (表1の続き) [Table 4] (Continued from Table 1)

【表5】 (表1の続き) [Table 5] (Continued from Table 1)

【0008】上記第1表に示す菌学的性質について、細
菌の同定書であるバージー・マニュアル・システマチッ
ク・バクテオロジー第1、2巻(Bergey's Manualof Sys
tematic Bacteriology Volume 1、2)、 (1984 年) で検討
した結果、KYM−1株は同書165頁に記載されてい
るシュウドモナス・フルオレセンスと一致し、KYM−
1株はシュウドモナス・フルオレッセンスと同定し、微
工研寄託第11333号(FERM P-11333)として寄託され
ている。KYM−2株は同書175頁記載のシュウドモ
ナス・セパシアと考えると妥当であり、微工研寄託第1
1334号(FERM P-11334)として寄託されている。KY
M−3株は同書303頁記載のアシネトバクター属細菌
と一致し、微工研寄託第11335号(FERM P-11335)と
して寄託されている。KYM−4株は同書254頁記載
のアグロバクテリウム・レイデオバクターと殆ど記載は
一致するものの、糖の資化性等細かい点で少し異なるの
で同種の近縁類と考えるのが分類学的に妥当であり、本
菌は微工研寄託第11336号(FERMP-11336)として寄
託されている。KYM−5株は同書465頁記載のエン
テロバクター属細菌と属レベルで完全に一致し、微工研
寄託第11337号(FERM P-11337)として寄託されてい
る。KYM−6株は同書1323頁記載のオーレオバク
テリウム属細菌、KYM−7株は同書1489頁記載の
オエルスコビア属細菌と夫々属レベルの記載は一致す
る。KYM−6株は、微工研寄託第11357号(FERM
P-11357)、KYM−7株は、微工研寄託第11358号
(FERM P-11358)として夫々寄託されている。本発明の多
糖類は上記の菌の生産物であり、優れた凝集、バルキン
グ抑制又は増粘活性を有している。
Regarding the mycological properties shown in Table 1 above, Bergey's Manual of Systology Bacteology Vol.
Temic Bacteriology Volume 1, 2), (1984), the KYM-1 strain was consistent with Pseudomonas fluorescens described on page 165 of the same document, and KYM-
One strain was identified as Pseudomonas fluorescens and has been deposited as Microindustrial Research Deposit No. 11333 (FERM P-11333). The KYM-2 strain is appropriate when considered to be Pseudomonas cepacia described on page 175 of the same document, and is deposited by the Institute of Microscopy, No. 1
Deposited as 1334 (FERM P-11334). KY
The M-3 strain corresponds to the bacterium of the genus Acinetobacter described on page 303 of the same document, and has been deposited as Micromachine Research Deposit No. 11335 (FERM P-11335). Although the description of KYM-4 strain is almost the same as Agrobacterium reideobacter described on page 254 of the same book, it is taxonomically considered to be a related species because it is slightly different in details such as sugar assimilation. It is appropriate and the bacterium has been deposited as Microindustrial Research Deposit No. 11336 (FERMP-11336). The KYM-5 strain completely coincides with the genus Enterobacter bacteria described on page 465 of the same document at the genus level, and has been deposited as Microindustrial Research Deposit No. 11337 (FERM P-11337). The description of the KYM-6 strain is the same as that of the bacterium of the genus Aureobacterium described on page 1323 of the same book, and the description of the KYM-7 strain is the same as that of the bacterium of the genus Oerscovia described on page 1489 of the same book. The KYM-6 strain is a micromachine research deposit No. 11357 (FERM
P-11357), and KYM-7 strain are Micromachine Research Deposit No. 11358.
(FERM P-11358), respectively. The polysaccharide of the present invention is a product of the above-mentioned bacterium and has excellent aggregation, bulking inhibition or thickening activity.

【0009】[0009]

【実施例】以下にR−3菌の培養方法の1例と及びその
生産物の理化学的性性質を示す。 培養方法 温度、DO及びpH計を設置した5リットルのジャーフ
ァーメンターに下記の生産培地を3リットル入れ、オー
トクレーブ滅菌した。これに培養液を2%(V/V)接
種し、温度25〜27℃、空気量3リットル/mi
n.、撹拌強度200rpmの条件で1週間培養した。
但し、培養2日目より培養液の粘性が増加したので、撹
拌強度を400rpmに上げた。この間1〜2回/日5
0mlのサンプリングしてセル成長、残留スターチ量、
凝集活性及び粘度を測定した。尚、培養液は500ml
三角フラスコを使用して生産培地で5日間振とう培養し
たものを使用した。液体培地の組成 炭素源(可溶性澱粉、関東化学製) 10g/リットル KHPO 5g/リットル KHPO 2g/リットル MgSO 0.2g/リットル (NHSO 0.5g/リットル NaCl 0.1g/リットル イースト抽出物 0.5g/リットル
EXAMPLES An example of a method for culturing R-3 bacteria and its method are described below.
Indicates the physicochemical properties of the product. Culture method 5 liter jar with temperature, DO and pH meter
Add 3 liters of the following production medium to the armor, and
It was sterilized in a clave. Contact the culture solution with 2% (V / V).
Seed, temperature 25-27 ℃, air volume 3 liters / mi
n. The cells were cultured for 1 week under the conditions of stirring intensity of 200 rpm.
However, since the viscosity of the culture solution increased from the second day of culture, stirring
The stirring intensity was increased to 400 rpm. During this time 1-2 times / day 5
0ml sampling for cell growth, residual starch volume,
The cohesive activity and viscosity were measured. The culture solution is 500 ml
Shake culture in production medium for 5 days using Erlenmeyer flask
I used the one.Liquid medium composition Carbon source (soluble starch, manufactured by Kanto Kagaku) 10 g / liter KTwoHPOFour 5g / liter KHTwoPOFour 2 g / liter MgSOFour 0.2 g / liter (NHFour)TwoSOFour 0.5 g / liter NaCl 0.1 g / liter Yeast extract 0.5 g / liter

【0010】残留スターチ量 ヨウ素−澱粉反応により測定した。20倍希釈培養液に
ヨウ素溶液(I−KI溶液)0.2mlを加え、よく
振とうし、5分間静置後のOD580を測定した。凝集活性 5000mg/リットルのカオリン80mlに10%C
aCl・2HOを10ml加え、20倍希釈した培
養液を1.25ml加え、蒸留水で全体を100mlと
し、pHを8.0〜8.2に調整した。よく振とう撹拌
した後5分間静置し、上澄液のOD550を測定した。粘度 B型回転粘度計(ビスメトロン粘度計)を使用した。サ
ンプルを少量用アダプターに培養液を8〜10ml入
れ、温度26℃で回転数0.3〜60rpmの範囲で測
定した。
Residual starch content Measured by iodine-starch reaction. 0.2 ml of an iodine solution (I 2 -KI solution) was added to the 20-fold diluted culture solution, shaken well, and OD580 was measured after standing for 5 minutes. 10% C in 80 ml of kaolin with agglutination activity of 5000 mg / liter
10 ml of aCl 2 .2H 2 O was added, 1.25 ml of a 20-fold diluted culture solution was added, the whole was adjusted to 100 ml with distilled water, and the pH was adjusted to 8.0 to 8.2. After stirring well with shaking, the mixture was allowed to stand for 5 minutes, and the OD 550 of the supernatant was measured. Viscosity A B-type rotational viscometer (Vismetron viscometer) was used. 8-10 ml of the culture solution was put in a small amount adapter, and the sample was measured at a temperature of 26 ° C. and a rotation speed of 0.3-60 rpm.

【0011】結果 結果を図1に示す。図示の様にセル成長は、培養開始よ
り急激に増加し、24時間後にはほぼ定常状態となり、
その後は若干増加し、3日目以降より僅かに減少した。
残留スターチ量は、培養開始より急激に減少し、48時
間後には殆ど分解されたものと考えられる。傾向として
はセル成長と反比例関係にある。凝集活性は、培養24
時間までは微増であるが、24時間以降は急激に増加
し、72時間後には力値は最高値260となった。粘度
は、経時変化が凝集活性と同様なパターンを示し、24
時間以降は急激に増加し始め、72時間で定常状態とな
った。72時間で粘度は870cpsであった。
Results The results are shown in FIG. As shown in the figure, the cell growth increased sharply after the start of the culture, and after 24 hours it was almost in a steady state.
After that, it increased slightly and decreased slightly after the third day.
It is considered that the amount of residual starch decreased sharply after the start of the culture and was almost decomposed after 48 hours. The tendency is inversely proportional to cell growth. Aggregation activity is 24
Although it slightly increased until the time, it increased sharply after 24 hours and reached the maximum value of 260 after 72 hours. The viscosity shows a pattern similar to that of agglutination activity with time, and
After that time, it began to increase rapidly and reached a steady state at 72 hours. At 72 hours the viscosity was 870 cps.

【0012】上記の培養液からの多糖類の分離及び物性
測定は以下の如く行った。分離 培養液を蒸留水で5倍に希釈し、28000Gで30分
間遠心分離し、沈殿と上澄液とを分離した。上澄液を容
積で1/5まで減圧濃縮し、2〜3倍量のエタノールを
加えて沈殿させ、10000Gで5分間遠心分離し、沈
殿を集めた。これを蒸留水に再溶解させ、エタノールを
加えて沈殿させ、上記と同様に遠心分離し、これを4回
繰り返した。最後にエタノールで沈殿させたものをエタ
ノール及びアセトンで3回洗浄し、1日減圧乾燥させて
乾燥多糖類を得た。上記の多糖類(500mg)を10
0mlの蒸留水に溶解させ、10000Gで5分間遠心
分離し、上澄液を2%50mlのCPCで沈殿させ、1
0000Gで5分間遠心分離した。上記の沈殿を0.5
Nの食塩に溶解し、2倍量のエタノールで沈殿させ、1
0000Gで5分間遠心分離し、沈殿をエタノール及び
アセトンで5回洗浄後減圧乾燥してCPC沈殿分画の乾
燥多糖類(360mg)を得た。
Separation of polysaccharides from the above culture solution and measurement of physical properties were carried out as follows. The separated culture solution was diluted 5 times with distilled water and centrifuged at 28,000 G for 30 minutes to separate the precipitate from the supernatant. The supernatant was concentrated under reduced pressure to ⅕ in volume, added with 2 to 3 times the amount of ethanol to cause precipitation, and centrifuged at 10000 G for 5 minutes to collect the precipitate. This was redissolved in distilled water, ethanol was added to precipitate it, and centrifugation was performed in the same manner as above, and this was repeated 4 times. Finally, what was precipitated with ethanol was washed three times with ethanol and acetone, and dried under reduced pressure for 1 day to obtain a dried polysaccharide. 10 of the above-mentioned polysaccharide (500 mg)
Dissolve in 0 ml distilled water, centrifuge at 10,000 G for 5 minutes, precipitate the supernatant with 2% 50 ml CPC, 1
Centrifuged at 0000G for 5 minutes. 0.5 for the above precipitation
Dissolve in N salt, precipitate with 2 volumes of ethanol, and
After centrifugation at 0000 G for 5 minutes, the precipitate was washed 5 times with ethanol and acetone and then dried under reduced pressure to obtain a dried polysaccharide (360 mg) as a CPC precipitate fraction.

【0013】物性値 上記多糖類は白色粉末であり、元素分析値(重量%)は
C:40.3、H:6.0、N:<0.1、P:<0.
5、S:<0.01、水溶液pHは7.0〜7.5、特
に7.2で中性(C=0.2重量%溶液)、紫外吸収ス
ペクトルは図2の様に波長240nmから吸光度が急激
に上昇し、波長195nm付近でピークとなる。赤外吸
収スペクトルは図3の様に−OH(2700〜3700
cm−1)、−CH−CO−O−R(エステル結合、
1730、1160cm−1)、−COO(イオン化
カルボキシル基、1600cm−1付近、1400cm
−1付近)、溶媒に対する溶解性は水に可溶、アルカリ
に易溶、メタノール、エタノール及びアセトンに不溶で
あった。呈色反応は、ニンヒドリン反応=−、フェノー
ル硫酸法=+、アンスロン硫酸法=+、カルバゾール硫
酸法=+、エルソン−モルガン反応=−であった。又、
電気泳動によれば図4に示す様に酢酸セルロース膜電気
泳動により物質の単一性が確認された。分子量は2×1
(ゲルクロマトグラフィーによる)、旋光度は
[α] 24=−17〜−15°(C=0.2重量%溶
液)、炭化点は245〜265℃であった。
Physical Properties The above-mentioned polysaccharide is a white powder, and the elemental analysis values (% by weight) are C: 40.3, H: 6.0, N: <0.1, P: <0.
5, S: <0.01, pH of aqueous solution is 7.0 to 7.5, especially 7.2, neutral (C = 0.2 wt% solution), ultraviolet absorption spectrum is from wavelength 240 nm as shown in FIG. Absorbance rapidly increases and reaches a peak near a wavelength of 195 nm. The infrared absorption spectrum is -OH (2700-3700) as shown in Fig. 3.
cm −1 ), —CH 2 —CO—O—R (ester bond,
1730, 1160 cm −1 ), —COO (ionized carboxyl group, near 1600 cm −1 , 1400 cm
-1 ), the solubility in the solvent was soluble in water, easily soluble in alkali, and insoluble in methanol, ethanol and acetone. The color reaction was ninhydrin reaction = −, phenol sulfuric acid method = +, anthuron sulfuric acid method = +, carbazole sulfuric acid method = +, Elson-Morgan reaction = −. or,
Electrophoresis confirmed the unity of the substances by cellulose acetate membrane electrophoresis as shown in FIG. Molecular weight is 2 × 1
0 6 (determined by gel chromatography), optical rotation [α] D 24 = -17~- 15 ° (C = 0.2 wt% solution), the carbonized point was two hundred and forty-five to two hundred sixty-five ° C..

【0014】以上の如き元素分析、各種呈色反応及び赤
外吸収スペクトルの結果から、本発明の多糖類は有機酸
を構成成分とする酸性多糖類であるものと考えられた
為、以下の方法により構成糖及び構成有機酸の分析を行
った。構成成分の定性・定量分析 (1)構成糖の定性・定量分析 前記実施例によって得られた精製試料をトリフルオロ酢
酸で加水分解した後、構成糖の同定を薄層クロマトグラ
フィー及びガスクロマトグラフィー分析により同定・定
量した。 (イ)薄層クロマトグラフィー分析 試料10mgをネジ付試験管に入れ、これに2Mトリフ
ルオロ酢酸1mlを加え、窒素ガスで封管し、100℃
で4時間加水分解した液を減圧乾固し、この乾燥物を蒸
留水に溶解した試料を、プレート:シリカゲル60
0.5M NaHPOに浸し105℃で1時間、展
開相:イソプロピルアルコール/アセトン/0.1M乳
酸(重量比4/4/2)、検出法:ジフェニルアミン−
アニリン−燐酸の分析条件で、薄層クロマトグラフィー
にかけ、各標準糖と比較し、構成糖を同定した。結果は
下記表2の通りであった。
From the results of the above-mentioned elemental analysis, various color reactions and infrared absorption spectra, it was considered that the polysaccharide of the present invention is an acidic polysaccharide having an organic acid as a constituent component. The constituent sugars and constituent organic acids were analyzed by. Qualitative / Quantitative Analysis of Constituents (1) Qualitative / Quantitative Analysis of Constituent Sugars After hydrolyzing the purified sample obtained in the above example with trifluoroacetic acid, the constituent sugars were identified by thin layer chromatography and gas chromatography analysis. Was identified and quantified by. (A) Thin layer chromatography analysis 10 mg of the sample was put into a test tube with a screw, 1 ml of 2M trifluoroacetic acid was added thereto, the tube was sealed with nitrogen gas, and the temperature was 100 ° C.
The liquid hydrolyzed for 4 hours was dried under reduced pressure and the dried product was dissolved in distilled water.
Dip in 0.5 M NaH 2 PO 4 at 105 ° C. for 1 hour, developing phase: isopropyl alcohol / acetone / 0.1 M lactic acid (weight ratio 4/4/2), detection method: diphenylamine-
Thin-layer chromatography was performed under the analytical conditions of aniline-phosphoric acid, and the constituent sugars were identified by comparison with each standard sugar. The results are shown in Table 2 below.

【表6】 表2 [Table 6] Table 2

【0015】この結果、精製試料ではRf値0.50と
0.37の2つのスポットが検出され、このスポットは
夫々標準糖のグルコースとガラクトースと一致し、本発
明の多糖類は、構成糖としてグルコースとガラクトース
とを構成成分としていることが明らかとなった。 (ロ)ガスクロマトグラフィーによる分析 薄層クロマトグラフィーによる分析結果より、本発明の
多糖類はグルコースとガラクトースで構成されているこ
とが明らかとなったが、この結果をガスクロマトグラフ
ィーにより確認し、又、定量した。前記の(イ)の如く
加水分解した試料を0.1ml試験管にとり、1昼夜減
圧乾固させ、トリメチルシリル化剤200μlを加え
て、60℃で10分間反応させ、ピリジンで所定濃度に
希釈した。このトリメチルシリル(TMS)誘導体化し
たものをガスクロマトにかけて分析した。その結果を図
8に示す。図8から分かる様に精製試料の加水分解物の
トリメチルシリル誘導体はグルコース及びガラクトース
のシリル化誘導体と一致し、本発明の多糖類がグルコー
スとガラクトースとで構成されていることが確認され
た。構成糖のモル比は、ガスクロマトグラフィーにおけ
る各ピークの面積比より求めた。各構成糖のモル比を出
すに当たり、先ず各規定濃度の各標準サンプルをガスク
ロにかけ、各ピークの面積を求めた。次に精製試料の加
水分解物TMS誘導体をガスクロにかけ、各構成糖のピ
ークを得た。この様にして得られた面積を基にして各構
成糖のモル比を、[構成糖のピーク面積/各標準物質の
ピーク面積×各標準糖のモル数]の式から算出した。
As a result, two spots having Rf values of 0.50 and 0.37 were detected in the purified sample, and these spots corresponded respectively to the standard sugars glucose and galactose, and the polysaccharide of the present invention was used as a constituent sugar. It has been clarified that glucose and galactose are components. (B) Analysis by gas chromatography From the analysis results by thin layer chromatography, it was revealed that the polysaccharide of the present invention was composed of glucose and galactose. The result was confirmed by gas chromatography, and , Quantified. The sample hydrolyzed as described in (a) above was placed in a 0.1 ml test tube, dried under reduced pressure for one day, 200 μl of a trimethylsilylating agent was added, reacted at 60 ° C. for 10 minutes, and diluted with pyridine to a predetermined concentration. The trimethylsilyl (TMS) derivatized product was analyzed by gas chromatography. The result is shown in FIG. As can be seen from FIG. 8, the trimethylsilyl derivative of the hydrolyzate of the purified sample was consistent with the silylated derivative of glucose and galactose, and it was confirmed that the polysaccharide of the present invention was composed of glucose and galactose. The molar ratio of constituent sugars was determined from the area ratio of each peak in gas chromatography. In obtaining the molar ratio of each constituent sugar, first, each standard sample with each specified concentration was subjected to gas chromatography to determine the area of each peak. Next, the hydrolyzate TMS derivative of the purified sample was subjected to gas chromatography to obtain peaks of each constituent sugar. Based on the area thus obtained, the molar ratio of each constituent sugar was calculated from the formula [peak area of constituent sugar / peak area of each standard substance × number of moles of each standard sugar].

【0016】(2)有機酸の定性・定量分析 分析方法としては、前記の実施例で得られた試料を、先
ず薄層クロマトにかけて分析し、構成成分としての有機
酸を同定した。次にガスクロにかけ、TCLの結果を確
認し且つ定量した。 (イ)薄層クロマトグラフィー分析 試料100mgをネジ付試験管にとり、これに2Nの硫
酸20mlを入れ、窒素ガスで封管し、100℃で2時
間加水分解した後、水酸化バリウムで中和し、遠心分離
で沈殿物を除去した後、減圧濃縮し0.45mmのメン
ブレンフイルターで濾過して試料(濾液)を作成した。
この試料を0.1Nの塩酸でpH2に調整し、エーテル
で抽出し、減圧濃縮し、濃縮物の一部をTCL分析
(A)し、一方、他の濃縮物に2,4−ジニトロフェニ
ルヒドラジン試薬を加え、1時間放置し、遠心分離で沈
殿物を回収し、回収物をエタノールに溶解し、これにつ
いてTCL分析(B)を行って有機酸を同定した。TC
L分析(A)は、プレート:HPTLC(セルロース
254S)、展開相:ブタノール/ギ酸/水(重量比4/
1.5/1)、検出法:キシロール−アニリン試薬の条
件で行った。その結果精製試料では、Rf値0.82と
0.38の2個のスポットが検出され、このうちRf値
0.82のスポットは標準物質であるコハク酸と一致し
たが、Rf0.38のスポットはこの条件では薄く広が
ってしまい同定出来なかった。この未知の有機酸を同定
する為に分析(B)を行った。分析(B)は、プレー
ト:HPTHC(シリカゲル F254)、展開相:アミ
ルアルコール/0.25Nアンモニア(重量比20:
1)の条件で行った。その結果、精製試料のRf値は、
標準物質のピルビン酸のRf値0.12と完全に一致し
た。以上の結果から精製試料には、構成成分としてコハ
ク酸とピルビン酸の2種類の有機酸を含んでいることが
明らかになった。
(2) Qualitative / quantitative analysis of organic acid As a method of analysis, the samples obtained in the above-mentioned examples were first subjected to thin layer chromatography for analysis to identify the organic acid as a constituent component. Next, it was subjected to gas chromatography to confirm and quantify the TCL result. (A) Thin layer chromatography analysis 100 mg of a sample was placed in a test tube with a screw, 20 ml of 2N sulfuric acid was put therein, sealed with nitrogen gas, hydrolyzed at 100 ° C. for 2 hours, and then neutralized with barium hydroxide. After removing the precipitate by centrifugation, it was concentrated under reduced pressure and filtered through a 0.45 mm membrane filter to prepare a sample (filtrate).
This sample was adjusted to pH 2 with 0.1 N hydrochloric acid, extracted with ether, concentrated under reduced pressure, and a portion of the concentrate was subjected to TCL analysis (A), while other concentrates were subjected to 2,4-dinitrophenylhydrazine. A reagent was added, the mixture was allowed to stand for 1 hour, the precipitate was recovered by centrifugation, the recovered product was dissolved in ethanol, and TCL analysis (B) was performed on this to identify an organic acid. TC
L analysis (A): Plate: HPTLC (cellulose
F 254S ), developing phase: butanol / formic acid / water (weight ratio 4 /
1.5 / 1), detection method: It was carried out under the condition of xylol-aniline reagent. As a result, in the purified sample, two spots with Rf values of 0.82 and 0.38 were detected. Among these spots, the spot with Rf value of 0.82 coincided with the standard substance, succinic acid, but the spot with Rf of 0.38. Could not be identified because it spread thinly under these conditions. Analysis (B) was performed to identify this unknown organic acid. In the analysis (B), plate: HPTHC (silica gel F 254 ), developing phase: amyl alcohol / 0.25N ammonia (weight ratio 20:
It carried out on the conditions of 1). As a result, the Rf value of the purified sample was
The Rf value of pyruvic acid as a standard substance was completely in agreement with 0.12. From the above results, it was revealed that the purified sample contained two kinds of organic acids, succinic acid and pyruvic acid, as constituent components.

【0017】(ロ)ガスクロマトグラフィー分析 TCLの分析結果をガスクロマトグラフィー分析により
確認し、又、有機酸を定量した。試料20mgをネジ付
試験管に入れ、これに2Mトリフルオロ酢酸2mlを加
え、窒素ガスで封管し、100℃で4時間加水分解し
た。この加水分解液0.5mlを減圧乾固し、この乾燥
物をメタノールに溶解し、トリメチルシリルジアゾメタ
ンを加え30分間放置し、ヘキサンで所定濃度に希釈
し、ガスクロに注入して分析した。分析結果を図9に示
す。この結果、使用した精製試料の成分として、コハク
酸とピルビン酸の2種の有機酸を構成成分として含んで
いることが確認された。有機酸の構成モル比は、ガスク
ロマトグラフィーにおける各ピークの面積比より求め
た。各構成有機酸のモル比を出すに当たり、先ず各規定
濃度の各標準サンプルのメチル化誘導体をガスクロにか
け、各ピークの面積を求めた。次に精製試料の加水分解
物のメチル化誘導体をガスクロにかけ各有機酸のピーク
を得た。この様にして得られた面積を基にして各構成有
機酸のモル比を、[各構成有機酸のピーク面積/各標準
物質のピーク面積×各標準のモル数]の式から算出し
た。以上の方法により各構成糖及び各構成有機酸を数回
にわたり定量し、モル比を算出した結果、構成組成とし
てグルコース:ガラクトース:コハク酸:ピルビン酸=
4〜7:1:0.2〜1:1.5〜3.5であった。こ
の平均値をとると5.5:1:0.6:2.5である。
(B) Gas Chromatographic Analysis The analysis results of TCL were confirmed by gas chromatography analysis, and the organic acid was quantified. 20 mg of the sample was placed in a test tube with a screw, 2 ml of 2M trifluoroacetic acid was added thereto, the tube was sealed with nitrogen gas, and hydrolysis was carried out at 100 ° C. for 4 hours. 0.5 ml of this hydrolyzed liquid was evaporated to dryness under reduced pressure, this dried product was dissolved in methanol, trimethylsilyldiazomethane was added and left to stand for 30 minutes, diluted with hexane to a predetermined concentration, and injected into a gas chromatograph for analysis. The analysis result is shown in FIG. As a result, it was confirmed that the purified sample used contained two kinds of organic acids, succinic acid and pyruvic acid, as constituent components. The constituent molar ratio of the organic acid was determined from the area ratio of each peak in gas chromatography. In obtaining the molar ratio of each constituent organic acid, first, the methylated derivative of each standard sample at each specified concentration was subjected to gas chromatography to determine the area of each peak. Next, the methylated derivative of the hydrolyzate of the purified sample was subjected to gas chromatography to obtain the peak of each organic acid. Based on the area thus obtained, the molar ratio of each constituent organic acid was calculated from the formula [peak area of each constituent organic acid / peak area of each standard substance × mol number of each standard]. The constituent sugars and the constituent organic acids were quantified several times by the above method, and the molar ratio was calculated. As a result, the constituent composition was glucose: galactose: succinic acid: pyruvic acid =
It was 4-7: 1: 0.2-1: 1.5-3.5. When this average value is taken, it is 5.5: 1: 0.6: 2.5.

【0018】本発明の凝集剤は、以上の如き多糖類又は
該多糖類を含む微生物の培養物又は培養処理物を主成分
とするものであって、培養液そのもの、その濃縮物、濾
液、その濾過残渣、それらの乾燥物等いずれの形態でも
よい。又、上記凝集剤には、カルシウムイオン等のカチ
オン性無機塩を1種以上含有させたり、或いは使用時に
含有させることによって、それらの凝集能を更に向上さ
せることが出来る。この凝集剤の凝集効果を更に促進す
るために併用される無機塩としては水中でカチオンを生
成し得るものが望ましく、好ましくは2価以上の多価カ
チオンを生成し得るものがよく、塩化カルシウム、硫酸
アルミニウム、硫酸マグネシウム、硫酸第一鉄を効果的
に用いることが出来る。しかし、これら併用される無機
塩の添加量は凝集させるべき対象の種類によって決めら
れるのが望ましく一般に特に制約されるものではない。
本発明の凝集剤の対象となるものは特に制約されるもの
ではない。代表的なものを例示すると、粘土の一種であ
るカオリン(白とう土)懸濁液が例示されるが、一般に
は各種の凝集対象に対し好適に実施される。図5に、
5,000mg/リットルのカオリン懸濁液を供試液と
した実験例の結果を示す。本発明の凝集剤は凝集剤添加
量0.2〜10mg/リットルの範囲で優れた凝集活性
を示す。
The flocculant of the present invention is mainly composed of the above-mentioned polysaccharide or a culture or treated product of a microorganism containing the above-mentioned polysaccharide, and the culture solution itself, its concentrate, filtrate, its It may be in any form such as a filtration residue or a dried product thereof. In addition, the aggregating ability can be further improved by containing one or more cationic inorganic salts such as calcium ions in the aggregating agent or by including them at the time of use. As the inorganic salt used in combination for further promoting the aggregating effect of the aggregating agent, those capable of forming a cation in water are desirable, and those capable of forming a polyvalent cation having two or more valences are preferable, such as calcium chloride, Aluminum sulfate, magnesium sulfate, and ferrous sulfate can be effectively used. However, the addition amount of these inorganic salts used in combination is preferably determined by the type of the object to be aggregated, and is not particularly limited in general.
The target of the flocculant of the present invention is not particularly limited. A typical example is a suspension of kaolin (white clay), which is a type of clay, but is generally suitable for various types of agglomerates. In Figure 5,
The result of the experiment example which used the 5,000 mg / liter kaolin suspension as a test liquid is shown. The aggregating agent of the present invention exhibits excellent aggregating activity when the amount of the aggregating agent added is in the range of 0.2 to 10 mg / liter.

【0019】本発明の排水凝集処理方法の特徴は、上記
本発明の多糖類を使用にする点であり、適用される排水
は懸濁物を含むいずれの排水でもよいが、特に活性汚泥
を使用する排水凝集処理方法において、活性汚泥と処理
水との分離領域においてバルキングの主たる原因となる
糸状菌の発生及びその増殖が抑えられる。従って本発明
は処理水中において糸状菌が発生し易い排水の処理に特
に有効である。微生物を使用する活性汚泥方式による排
水凝集処理方法自体は周知であり、本発明はこれらの周
知のいずれの排水凝集処理方法においても応用出来るも
のであり、特に限定されない。人工的にバルキングを発
生させた活性汚泥に本発明による凝集剤を添加し、その
バルキング抑制効果を検討した結果を図7に示す。図7
に示す様に本発明の凝集剤を0.05重量%以上添加す
るとバルキング抑制効果を示し、好ましくは0.1重量
%以上添加するとその効果は一層優れる。本発明の好ま
しい実施態様では、活性汚泥と処理水とを分離すべき分
離領域におけるpHを7〜9、特に好ましくは8.0〜
8.5の範囲とすることによって一層優れた力値が得ら
れる。
The feature of the wastewater coagulation treatment method of the present invention is that the above-mentioned polysaccharide of the present invention is used, and the wastewater to be applied may be any wastewater containing a suspension, but activated sludge is particularly used. In the wastewater coagulation treatment method described above, the generation and growth of filamentous fungi, which are the main cause of bulking, can be suppressed in the separation area between activated sludge and treated water. Therefore, the present invention is particularly effective for treating wastewater in which filamentous fungi are easily generated in treated water. A method for effluent coagulation treatment by an activated sludge system using microorganisms is well known, and the present invention is applicable to any of these well-known effluent coagulation treatment methods and is not particularly limited. FIG. 7 shows the results of studying the effect of suppressing the bulking by adding the flocculant according to the present invention to the activated sludge in which the bulking is artificially generated. Figure 7
As shown in (1), when the coagulant of the present invention is added in an amount of 0.05% by weight or more, a bulking suppressing effect is exhibited, and when 0.1% by weight or more is added, the effect is more excellent. In a preferred embodiment of the present invention, the pH in the separation area where the activated sludge and the treated water are to be separated is 7 to 9, particularly preferably 8.0.
By setting it in the range of 8.5, a more excellent force value can be obtained.

【0020】一般に高分子物質は増粘作用をもつが、本
発明の多糖類も優れた増粘効果を有する。本発明により
分離された前記多糖類の粉末(サンプル名、AP・R−
3)の濃度による粘度の特性を測定した。本サンプルの
対照としてザンサンガム(SIGMA社製)を使用し
た。サンプルを1%(wt/wt)になるように純水に
溶解した後、0.1〜1%に範囲で純水で希釈した。夫
々の濃度に調整したサンプルについてB型回転粘度計
(25℃、少量用SS−3−ロータ、60rpm)にて
粘度を測定した。結果は図6に示す。本サンプルはザン
サンガムに比べ、明らかに高い粘度特性を持つことが認
められた。
Generally, a polymeric substance has a thickening effect, but the polysaccharide of the present invention also has an excellent thickening effect. The polysaccharide powder separated according to the present invention (sample name: AP.R-
The characteristic of viscosity according to the concentration of 3) was measured. Zansan gum (manufactured by SIGMA) was used as a control for this sample. The sample was dissolved in pure water to 1% (wt / wt) and then diluted with pure water in the range of 0.1 to 1%. The viscosity of each sample adjusted to each concentration was measured with a B-type rotational viscometer (25 ° C., SS-3-rotor for small amount, 60 rpm). The results are shown in Figure 6. It was confirmed that this sample had a clearly higher viscosity characteristic than that of xanthan gum.

【0021】[0021]

【効果】本発明により微生物が産生する新規な多糖類及
びそれを用いた凝集剤を提供することが出来た。そし
て、この凝集剤は、安全性、生分解性が優れたものであ
って、二次公害を生じないものである。又、この凝集剤
は無機塩を添加することにより、更に優れた凝集効果が
得られる。又、活性汚泥を用いる排水凝集処理方法にお
いて、本発明の多糖類を凝集剤として使用することによ
って、バルキング現象の主たる原因である糸状菌の発生
が抑制され、活性汚泥と処理水との分離が効率的とな
る。更に本発明の多糖類は優れた増粘特性を有するもの
であった。
[Effect] According to the present invention, a novel polysaccharide produced by a microorganism and a flocculant using the same can be provided. And this coagulant is excellent in safety and biodegradability and does not cause secondary pollution. Further, by adding an inorganic salt to this aggregating agent, a more excellent aggregating effect can be obtained. Further, in a wastewater coagulation treatment method using activated sludge, by using the polysaccharide of the present invention as a coagulant, the occurrence of filamentous fungi, which is the main cause of the bulking phenomenon, is suppressed, and the separation of activated sludge and treated water Be efficient. Further, the polysaccharide of the present invention has excellent thickening properties.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】培養液の経時変化を表す図。FIG. 1 is a view showing a change with time of a culture solution.

【図2】紫外吸収スペクトル[Figure 2] Ultraviolet absorption spectrum

【図3】赤外吸収スペクトル[Figure 3] Infrared absorption spectrum

【図4】電気泳動を示す図。FIG. 4 is a diagram showing electrophoresis.

【図5】本発明の多糖類の凝集活性を説明する図FIG. 5 is a diagram explaining the aggregation activity of the polysaccharide of the present invention.

【図6】本発明の多糖類の濃度による粘度変化を説明す
る図
FIG. 6 is a diagram illustrating a change in viscosity according to the concentration of the polysaccharide of the present invention.

【図7】本発明の多糖類のバルキング抑制効果を説明す
る図
FIG. 7 is a diagram for explaining the bulking suppressing effect of the polysaccharide of the present invention.

【図8】ガスクロマトグラフィーによる構成糖の分析結
FIG. 8: Analysis results of constituent sugars by gas chromatography

【図9】ガスクロマトグラフィーによる構成有機酸の分
析結果
FIG. 9: Analysis results of constituent organic acids by gas chromatography

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 19/04 C 7432−4B //(C12P 19/04 C12R 1:38) (C12P 19/04 C12R 1:01) (72)発明者 八町 尚史 東京都千代田区鍛冶町1−5−7 環境エ ンジニアリング株式会社内 (72)発明者 松山 秀明 東京都千代田区鍛冶町1−5−7 環境エ ンジニアリング株式会社内 審査官 谷口 博─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C12P 19/04 C 7432-4B // (C12P 19/04 C12R 1:38) (C12P 19/04 (72) Inventor Naofumi Yamachi 1-5-7 Kajimachi, Chiyoda-ku, Tokyo Environmental Engineering Co., Ltd. (72) Hideaki Matsuyama 1-5-7 Kajimachi, Chiyoda-ku, Tokyo Environment Examiner at Engineering Co., Ltd. Hiroshi Taniguchi

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記の理化学的性質を有する多糖類。 (1)元素分析比(重量%): C:40±2 H:6±1 N:<0.2 P:<0.5 S:<0.1 (2)物質の色:白色 (3)水溶液pH:7.0〜7.5で中性(C=0.2
重量%溶液) (4)紫外線吸収スペクトル: 波長240nmから吸光度が急激に上昇し、波長195
nm付近でピークとなる。 (5)赤外線吸収スペクトル −OH 2700
〜3700cm-1 −CH2 −CO−O−R(エステル結合) 173
0、1160cm-1−COO- (イオン化カルボキシル
基) 1600cm-1付近、1400cm-1付近(6)溶媒に
対する溶解性 水に可溶、アルカリに易溶、メタノール、エタノール及
びアセトンに不溶。 (7)呈色反応 ニンヒドリン反応 − フェノール硫酸法 + アンスロン硫酸法 + カルバゾール硫酸法 + エルソン−モルガン反応 − (8)構成糖及び構成糖比 グルコース:ガラクトース=4〜7:1(モル比) (9)有機酸及びその含有量 コハク酸:ピルビン酸=0.2〜1:1.5〜3.5
(ガラクトース1モルに対して) (10)電気泳動: 酢酸セルロース膜電気泳動により物質の単一性が確認さ
れた。 (11)分子量 2×106 以上(ゲルクロマトグラフィーによる) (12)旋光度:[α]D 24 =−17〜−15°(C=
0.2重量%溶液) (13)炭化点:245〜265℃
1. A polysaccharide having the following physicochemical properties. (1) Elemental analysis ratio (wt%): C: 40 ± 2 H: 6 ± 1 N: <0.2 P: <0.5 S: <0.1 (2) Color of substance: white (3) Aqueous solution pH: 7.0 to 7.5, neutral (C = 0.2
(Wt% solution) (4) Ultraviolet absorption spectrum: Absorbance sharply increases from wavelength 240 nm to wavelength 195
It peaks near nm. (5) Infrared absorption spectrum -OH 2700
~ 3700 cm −1 —CH 2 —CO—O—R (ester bond) 173
0,1160cm -1 -COO - insoluble (ionized carboxyl group) 1600 cm around -1, 1400 cm -1 vicinity (6) soluble in solubility water to solvent, readily soluble in alkali, methanol, ethanol and acetone. (7) Color reaction Ninhydrin reaction-Phenol-sulfuric acid method + Anthuron-sulfuric acid method + Carbazole-sulfuric acid method + Elson-Morgan reaction- (8) Constituent sugar and constituent sugar ratio Glucose: Galactose = 4 to 7: 1 (molar ratio) (9 ) Organic acid and its content succinic acid: pyruvic acid = 0.2-1: 1.5-3.5
(To 1 mol of galactose) (10) Electrophoresis: The identity of the substance was confirmed by cellulose acetate membrane electrophoresis. (11) Molecular weight 2 × 10 6 or more (by gel chromatography) (12) Optical rotation: [α] D 24 = −17 to −15 ° (C =
0.2 wt% solution) (13) Carbonization point: 245 to 265 ° C
【請求項2】 シュウドモナス属、アシネトバクター
属、アグロバクテリウム属、エンテロバクター属、オー
レオバクテリウム属及びオエルスコビア属からなる群か
ら選ばれる少なくとも1属に属する菌から得られた請求
項1に記載の多糖類。
2. The method according to claim 1, obtained from a bacterium belonging to at least one genus selected from the group consisting of Pseudomonas, Acinetobacter, Agrobacterium, Enterobacter, Aureobacteria and Oerscovia. Polysaccharides.
【請求項3】 KYM1株(FERM P−1133
3)、KYM2株(FERM P−11334)、KY
M3株(FERM P−11335)、KYM4株(F
ERM P−11336)、KYM5株(FERM P
−11337)、KYM6株(FERM P−1135
7)及びKYM7株(FERM P−11358)から
なる群から選ばれる少なくとも1株に属する菌から得ら
れた請求項1に記載の多糖類。
3. KYM1 strain (FERM P-1133)
3), KYM2 strain (FERM P-11334), KY
M3 strain (FERM P-11335), KYM4 strain (F
ERM P-11336), KYM5 strain (FERM P
-11337), KYM6 strain (FERM P-1135)
The polysaccharide according to claim 1, obtained from a bacterium belonging to at least one strain selected from the group consisting of 7) and KYM7 strain (FERM P-11358).
【請求項4】 請求項2〜3に記載の微生物を培地に培
養し、該培養物から多糖類を採取することを特徴とする
請求項1に記載の多糖類の製造方法。
4. The method for producing a polysaccharide according to claim 1, wherein the microorganism according to any one of claims 2 to 3 is cultured in a medium, and the polysaccharide is collected from the culture.
【請求項5】 請求項1に記載の多糖類を有効成分とす
凝集剤
5. A flocculant containing the polysaccharide according to claim 1 as an active ingredient.
【請求項6】 請求項1に記載の多糖類を有効成分とす
バルキング抑制剤
6. A bulking inhibitor containing the polysaccharide according to claim 1 as an active ingredient.
【請求項7】 請求項1に記載の多糖類を有効成分とす
増粘剤
7. A thickener containing the polysaccharide according to claim 1 as an active ingredient.
【請求項8】 請求項1に記載の多糖類を処理系に存在
させ、活性汚泥と処理水との分離領域において、活性汚
泥のバルキングを防止することを特徴とする排水凝集処
理方法。
8. A method for coagulating wastewater, wherein the polysaccharide according to claim 1 is present in a treatment system to prevent bulking of the activated sludge in a separation area between activated sludge and treated water.
JP8742891A 1991-03-28 1991-03-28 Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same Expired - Lifetime JPH0730121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8742891A JPH0730121B2 (en) 1991-03-28 1991-03-28 Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8742891A JPH0730121B2 (en) 1991-03-28 1991-03-28 Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05262801A JPH05262801A (en) 1993-10-12
JPH0730121B2 true JPH0730121B2 (en) 1995-04-05

Family

ID=13914600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8742891A Expired - Lifetime JPH0730121B2 (en) 1991-03-28 1991-03-28 Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0730121B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453192B2 (en) * 1994-06-01 2003-10-06 テイカ株式会社 Novel polysaccharide, its production method, use of novel polysaccharide and Agrobacterium radiobacter TNM2 strain
JP4584791B2 (en) * 2005-08-03 2010-11-24 芳聰 前田 Stirring bar for turbid water coagulation sedimentation
JP5344458B2 (en) * 2008-05-22 2013-11-20 日鉄住金環境株式会社 Method for introducing useful microorganisms into activated sludge
JP7199210B2 (en) * 2018-11-29 2023-01-05 株式会社東芝 Control device, solid-liquid separation method, computer program, and solid-liquid separation system

Also Published As

Publication number Publication date
JPH05262801A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
Nakamura et al. Screening, isolation, and some properties of microbial cell flocculants
Tezuka Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge
Deng et al. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment
Suh et al. Characterization of bioflocculant produced by Bacillus sp. DP-152
CN101503709B (en) Method for preparing bioflocculation by Bacillus licheniformis
Farrah et al. Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge
CN102532418B (en) Grating-modified composite bio-flocculant and preparing method thereof
Kanmani et al. Exopolysaccharide from Bacillus sp. YP03: its properties and application as a flocculating agent in wastewater treatment
CN104232548A (en) Exopolysaccharide generated by pseudomonas, culture method and application
CN104724807A (en) Application of citrobacter rodentium for circularly preparing biological flocculants by using waste algae
JPH0730121B2 (en) Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same
CN102408146B (en) Composite bio-flocculant grafted acrylamide flocculant and its preparation method
JP2001129310A (en) Flocculant and sludge treatment method
CN101144076B (en) Method for preparing biological sludge amendment and application thereof
Horan et al. Isolation, identification and characterisation of filamentous and floc‐forming bacteria from activated sludge flocs
JPH0670084B2 (en) Polysaccharide produced by Alcaligenes cupidus, flocculant using the same, and flocculation method
KR20050062719A (en) Microbial polyglucosamine biopolymer pgb-1 from enterobacter sp. bl-2 and its utilization as the cationic bioflocculant
JPH064123B2 (en) Microorganism-derived aggregating agent and aggregating method
JP3861129B2 (en) Decolorizing method of coloring liquid
CN104176803A (en) Azotobacter chroococcum biological flocculant and preparation method thereof
KR100368290B1 (en) Bacillus sp., poly saccharide producing therefrom and wastewater treatment method
JPH0647391A (en) Method for suppressing generation and growth of filamentous fungi
CN107058450A (en) A kind of biological flocculant that graphene oxide is reclaimed from waste water and preparation method thereof
JP2000140509A (en) Novel flocculant and sludge treatment using the same
JP3086879B2 (en) Novel polymer substance APK-78, method for producing the same, microorganism-producing coagulant and drainage coagulation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960312

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 16

EXPY Cancellation because of completion of term