WO2017068825A1 - Flocculant injection assistance device and control method - Google Patents

Flocculant injection assistance device and control method Download PDF

Info

Publication number
WO2017068825A1
WO2017068825A1 PCT/JP2016/071208 JP2016071208W WO2017068825A1 WO 2017068825 A1 WO2017068825 A1 WO 2017068825A1 JP 2016071208 W JP2016071208 W JP 2016071208W WO 2017068825 A1 WO2017068825 A1 WO 2017068825A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flocculant
treated
injection
quality information
Prior art date
Application number
PCT/JP2016/071208
Other languages
French (fr)
Japanese (ja)
Inventor
清一 村山
美意 早見
法光 阿部
卓 毛受
太 黒川
服部 大
哲平 山本
一将 大高
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58556963&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017068825(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2017068825A1 publication Critical patent/WO2017068825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Definitions

  • Embodiments of the present invention relate to a flocculant injection support device and a control method.
  • a water treatment process performed at a water purification plant or the like includes a coagulation sedimentation step and a wastewater treatment step, and the outline of each step is as follows.
  • a solid-liquid separation process is performed to remove unnecessary substances such as suspended substances contained in water to be purified (hereinafter referred to as “water to be treated”).
  • water to be treated a solid-liquid separation process
  • unnecessary substances are aggregated into flocs by injecting a flocculant into the water to be treated.
  • Flocked aggregates are separated from the water to be treated by precipitation treatment and removed.
  • a filtration treatment such as sand filtration may be further performed. Sludge containing agglomerates separated from the water to be treated by precipitation or filtration is sent to a wastewater treatment process.
  • Concentration separation processing is processing which makes the sludge containing a lot of water sent from a coagulation sedimentation process into a state with much less moisture.
  • the water separated from the sludge by the concentration and separation treatment is added to the water to be treated before the flocculant is injected as return water, and is sent again to the coagulation sedimentation step. Therefore, the quality of the water to be treated before the flocculant is injected fluctuates due to the influence of the fluctuation of the return water inflow in addition to the influence of the fluctuation of the quality of the raw water itself sent to the water treatment process. Therefore, the amount of the flocculant to be injected should be appropriately adjusted according to the change in the quality of the water to be treated which varies under the influence of raw water and return water.
  • the amount of flocculant injected is often determined by conducting a beaker-scale agglomeration test (hereinafter referred to as “beaker test”) on the collected raw water and using the test results as a guide.
  • beaker test In order to keep the amount of flocculant injected appropriately, the frequency of the beaker test needs to be increased, but it is not realistic considering the work load. Therefore, in many cases, the flocculant is excessively injected so as not to cause insufficient injection.
  • the amount of flocculant injected increases, the amount of sludge generated also increases, increasing the load of wastewater treatment.
  • the frequency of performing the washing process (back pressure washing or the like) of the filtration equipment is increased. Therefore, it is desirable to control the injection amount of the flocculant to an appropriate amount so as not to over-inject.
  • a method for improving the coagulation effect by returning sludge separated and removed by coagulation sedimentation has been proposed. While such a method can be expected to improve the coagulation effect, it may lead to deterioration of the quality of the water to be treated and may increase the treatment load as a whole. Especially in water treatment plants, deterioration of water quality in the water treatment process is fatal. The same applies to the return water returned from the wastewater treatment process to the coagulation sedimentation process, and deterioration of the quality of the treated water due to the return water must be avoided. In fact, problems such as the generation of off-flavors and increased manganese concentration have arisen due to the deterioration of water quality due to the return water, and there are some entities that need countermeasures.
  • the problem to be solved by the present invention is to provide a coagulant injection support device and a control method that can more appropriately control the injection amount of the coagulant according to the inflow of return water.
  • the flocculant injection support device of the embodiment is a device that controls the injection amount of the flocculant in the coagulation sedimentation step in a water treatment process in which water separated from sludge in the wastewater treatment step is returned to the coagulation sedimentation step as return water. It has an acquisition unit and a control unit. An acquisition part acquires the water quality information regarding the quality of the to-be-processed water in the said coagulation sedimentation process. The control unit controls the injection amount of the flocculant based on the water quality information acquired by the acquisition unit.
  • the turbidity in the water to be treated usually has a negative surface charge, repels each other, and is difficult to settle.
  • the surface charge approaches zero and the repulsive action between the particles is weakened.
  • the cross-linking action of the flocculant is also added to facilitate the formation of floc, and the flocculent particles are separated by precipitation.
  • the purpose of injecting the flocculant in this way is to neutralize the turbid surface charge. Therefore, by controlling the injection amount of the flocculant according to the state of the surface charge of the turbidity in the water to be treated, an appropriate flocculant that takes into account the residual components of the flocculant contained in the return water It is thought that injection can be realized.
  • the surface charge of suspended particles in the water to be treated is the flow current value (SC value: Streaming Current) of the mixed water (specifically, the water to be treated immediately after the flocculant is injected and rapidly stirred in the mixing pond). It can be grasped by measuring.
  • SC value Streaming Current
  • the SC value is an index correlated with the “zeta potential” indicating the charged state of the suspended particle surface.
  • An electric double layer is formed at the interface between suspended particles in water and water. By flowing water in this state, the electric charge distributed to the water side flows together with the water, and flow electrification occurs.
  • the current generated in the water by this flow electrification is called a flow current (SC). While the SC value changes depending on the aggregation state, it changes under the influence of pH, conductivity, and water temperature. Therefore, when the SC value is used to determine the charged state of the turbid surface, correction for removing these effects is necessary.
  • FIG. 1 is a diagram illustrating a specific example of a water treatment process including the flocculant injection support device according to the first embodiment.
  • the water treatment process 1 demonstrated here may be applied to what kind of equipment which performs the solid-liquid separation process using a flocculant.
  • the water treatment process 1 can be applied to facilities such as water purification plants and paper mills.
  • FIG. 1 shows an example in which the water treatment process 1 is applied to a water purification plant.
  • the water treatment process 1 includes adjustment of the intake well 10, the landing well 20, the mixing basin 30, the flock formation basin 40, the sedimentation basin 50, the wastewater treatment step 60, the sand filtration ridge 70, and the distribution reservoir 80.
  • the intake well 10 temporarily stores raw water.
  • the raw water here is water before purification treatment is performed, for example, water drawn from a dam or river, groundwater, and the like.
  • Raw water is sent from the intake well 10 to the receiving well 20, and return water is sent from the wastewater treatment process 60.
  • treated water water in which raw water and return water are mixed in the landing well 20 is referred to as treated water.
  • unnecessary substances such as plants and earth and sand that can be easily separated by gravity settling are separated from the water to be treated.
  • the treated water of the supernatant of the landing well 20 is sent to the mixing basin 30 (rapid stirring pond).
  • the coagulant 100 is poured into the water to be treated by the adjustment unit 90.
  • the operator may manually inject the flocculant in the mixing basin 30.
  • a mixing device 31 is attached to the mixing basin 30.
  • the mixing device 31 mixes the water sent from the landing well 20 and the flocculant 100.
  • the mixing device 31 is, for example, a rapid stirring device (flash mixer), a stirring device having a driving unit such as a motor, or a stirring device (static mixer) having no driving unit.
  • the charge state of the suspended matter (Suspended Solids) is neutralized by the flocculant 100.
  • the suspended material Due to the neutralization of the charged state, the suspended material aggregates.
  • the suspended material is, for example, a colloidal component.
  • minute flocs hereinafter referred to as “fine flocs” are formed in the water by stirring by the mixing device 31.
  • Water containing fine floc is fed from the mixing basin 30 to the flock formation pond 40.
  • the floc formation pond 40 grows flocs by colliding fine flocs contained in water with each other.
  • the sedimentation basin 50 sediments flocs grown in water.
  • the sedimented flock accumulates as mud at the bottom of the sedimentation basin, is periodically withdrawn, and is sent to the waste water treatment step 60.
  • the sludge sent from other processes is concentrated and separated into sludge and water.
  • the supernatant water is returned to the landing well 20. The return is often performed intermittently rather than continuously.
  • the sludge extracted from the sedimentation basin 50 but the sludge and waste water which generate
  • the supernatant water of the sedimentation basin 50 is sent to the sand filtration building 70.
  • the sand filtration building 70 filters the water sent from the sedimentation basin 50.
  • Sand as a filter medium becomes clogged as the filtration duration time elapses, and the differential pressure increases. Therefore, the counter pressure cleaning is periodically performed, and the cleaning waste water is sent to the waste water treatment step 60.
  • the filtered water is sent from the sand filtration building 70 to the distribution reservoir 80.
  • the distributing reservoir 80 chlorine is injected into the water.
  • the water sterilized by chlorine is distributed from the distribution reservoir 80 to houses and the like.
  • the adjustment unit 90 may have any mechanism as long as it can adjust the injection amount of the flocculant 100.
  • the adjustment unit 90 is, for example, a pump (hereinafter referred to as “medicine injection pump”).
  • the adjustment unit 90 injects the injection amount of the flocculant 100 determined by the injection control system 200 including an information processing apparatus or the like into the mixing basin 30.
  • the adjusting unit 90 may inject the flocculant 100 into the mixing basin 30 at the injection rate determined by the injection control system 200.
  • the injection rate of the flocculant 100 is the ratio of the injection amount of the flocculant 100 to the total amount of water (flow rate per hour) at the location where the flocculant 100 is injected.
  • the adjustment unit 90 may change the injection amount or injection rate of the flocculant 100 using an inverter or a solenoid valve.
  • the flocculant 100 is a drug charged to a positive charge.
  • suspended substances in water have a negative charge on the surface.
  • the flocculant 100 is injected into the water to be treated to neutralize the charged state of the suspended matter, and agglomerates particles such as the suspended matter contained in the water to be treated.
  • the aggregating agent 100 is an inorganic aggregating agent such as polyaluminum chloride (PAC), sulfate band, ferric chloride, ferrous sulfate, polysilica iron, and the like.
  • the flocculant 100 may be used in combination with a polymer flocculant.
  • the polymer flocculant include a cationic polymer, an anionic polymer, and an amphoteric polymer.
  • the flocculant 100 may be used in combination with a pH adjuster.
  • the pH adjuster can adjust the pH value of water to a pH range that is appropriate for aggregation.
  • the pH adjusting agent may be an acidic adjusting agent or an alkaline adjusting agent.
  • the acidic regulator include sulfuric acid and hydrochloric acid.
  • the alkaline adjusting agent include caustic soda and calcium hydroxide.
  • the injection control system 200 is a system that controls the injection amount of the flocculant 100 by the adjusting unit 90.
  • the injection control system 200 controls the injection amount of the flocculant 100 based on the water quality information related to the quality of the water to be treated.
  • the water quality information is various quantities relating to the quality of the water to be treated, and is information indicating quantities such as a flowing current value, pH, and conductivity.
  • the pH meter 300 is a measuring device that measures the pH of the mixed water.
  • the pH meter 300 transmits information indicating the measured value of the pH of the admixed water to the injection control system 200.
  • the conductivity meter 400 is a measuring device that measures the pH of the mixed water.
  • the conductivity meter 400 transmits information indicating the measured value of the conductivity of the admixed water to the injection control system 200.
  • FIG. 2 is a functional block diagram showing a functional configuration of the injection control system 200 in the first embodiment.
  • the injection control system 200 includes a flow ammeter 210, an injection support device 220, and a presentation device 230.
  • the flowing ammeter 210 is referred to as an SC (Streaming Current) meter 210.
  • SC Streaming Current
  • the flowing current value is described as the SC value.
  • the SC value of the water to be treated in the mixing basin 30 increases or decreases according to the amount of the flocculant 100 injected.
  • the SC meter 210 may be a flow potentiometer that continuously detects the charged state of suspended substances in the water to be treated. Further, the SC meter 210 may be a zeta electrometer that intermittently detects the charged state of suspended substances in the water to be treated.
  • the SC meter 210 continuously measures the SC value of the water to be treated in the mixing basin 30. The measurement interval is preferably about 1 minute, but if it is within 10 minutes, the performance of the injection control in this embodiment is not greatly affected.
  • the SC meter 210 outputs the SC value of the water to be treated in the mixing basin 30 to the injection support device 220.
  • the injection support apparatus 220 includes a CPU (Central Processing Unit) connected via a bus, a memory, an auxiliary storage device, and the like, and executes an injection support program.
  • the injection support device 220 functions as a device including the acquisition unit 221, the storage unit 222, and the control unit 223 by executing the injection support program. All or some of the functions of the injection support apparatus 220 may be realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). .
  • the injection support program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • the injection support program may be transmitted via a telecommunication line.
  • the acquisition unit 221 acquires the SC value of the water to be treated in the mixing basin 30 from the SC meter 210.
  • the acquisition unit 221 outputs the SC value measured by the SC meter 210 to the control unit 223.
  • the storage unit 222 includes, for example, a non-volatile storage medium (non-temporary recording medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive).
  • the storage unit 222 may include a volatile storage medium such as a RAM (Random Access Memory) or a register, for example.
  • the storage unit 222 may store a computer program for causing the device itself to function as the injection support device 220.
  • the control unit 223 controls the amount of the flocculant injected into the water to be treated in the mixing basin 30. Specifically, the control unit 223 determines the injection amount of the flocculant 100 so that the SC value of the water to be treated approaches a predetermined target value. The control unit 223 generates a control signal for operating the adjustment unit 90 (drug injection pump) so as to inject the coagulant 100 with the determined injection amount. The control unit 223 controls the amount of the flocculant 100 injected into the water to be treated by transmitting the generated control signal to the adjustment unit 90.
  • the injection support device 220 may be configured as a single device or may be configured as a plurality of devices. When the injection support apparatus 220 is configured by a plurality of apparatuses, the injection support apparatus 220 may operate using cloud computing technology. The injection support apparatus 220 may perform operations on various types of data in the key value store format using cloud computing technology.
  • the injection support apparatus 220 a web browser may operate.
  • the entity that performs the operation and monitoring of the injection support apparatus 220, the failure response, and the like may be one entity or a plurality of entities.
  • an entity different from the entity that operates the water treatment process 1 for example, ASP: Application Service Provider
  • ASP Application Service Provider
  • some or all of the operation and monitoring of the injection support apparatus 220 and the failure handling may be performed by a plurality of subjects.
  • the presentation device 230 is configured using a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, or an organic EL (Electro-Luminescence) display. Or the presentation apparatus 230 may be comprised as an interface which connects these display apparatuses to an own apparatus.
  • the presentation device 230 displays the injection support information generated by the injection support device 220.
  • the injection support information is various information that supports the injection of the flocculant 100. For example, the target value of the injection amount of the flocculant 100, the determination result of whether the flocculant 100 is excessive or insufficient, and the like. It is information to show.
  • the injection support information may be displayed in the form of a graph or may be displayed in another form.
  • the presentation device 230 may display the injection support information according to control by the control unit 223.
  • the presentation device 230 may be a voice processing device including a speaker (presentation unit).
  • the presentation device 230 may present the injection support information to the operator by voice.
  • the presentation device 230 may include an operation device such as a keyboard or a touch panel.
  • the operation device may output a value designated by the operator to the control unit 223 in accordance with an operation by the operator.
  • the value output to the control unit 223 is, for example, a value that represents a target value for the injection amount of the flocculant 100.
  • the value output to the control unit 223 may be a SC value target value, for example.
  • the control unit 223 may control the injection amount and injection rate of the flocculant 100 based on the value output from the operation device to the control unit 223.
  • FIG. 3 is a diagram showing an example of the relationship between the injection rate of the flocculant and the turbidity of the water to be treated.
  • the horizontal axis represents the injection rate of the flocculant
  • the vertical axis represents the turbidity of the water to be treated.
  • the turbidity of the water to be treated changes from decreasing to increasing at the injection rate in the vicinity of 20 [mg / L] as the injection rate increases. That is, in the situation as in the example of FIG. 3, it is considered that the vicinity of 20 mg / L is an appropriate value for the injection rate.
  • the injection rate of the flocculant 100 may not be too much or too little.
  • the tendency of the turbidity of the treated water to change from decreasing to increasing as the coagulant injection rate increases varies depending on the type and nature of the treated water. For example, in some water to be treated, the turbidity does not start to increase unless the flocculant injection rate is increased to some extent. Further, for example, depending on the water to be treated, the gradient of increase in turbidity varies. In any case, the amount of the flocculant injected should be controlled to an appropriate value as shown in the example of FIG. 3 in accordance with the type and properties of the water to be treated at that time.
  • FIG. 4 is a diagram showing an example of the relationship between the flocculant injection rate and the SC value. Specifically, FIG. 4 shows the relationship between the flocculant injection rate and the SC value for the same treated water as in FIG. In FIG. 4, the vertical axis represents the SC value, and the horizontal axis represents the injection rate of the flocculant. FIG. 4 shows that the SC value increases as the flocculant injection rate increases. That is, FIG. 4 shows that there is a positive correlation between the SC value and the injection rate of the flocculant.
  • the SC value takes a value near the charge neutralization point (near +2) with respect to an appropriate value (near 20 [mg / L]) of the coagulant injection amount in the example of FIG. I understand. From these facts, it can be understood that the surface charge of the suspended substance in the water to be treated is neutralized by the injection of the flocculant by grasping the SC value.
  • FIG. 5 shows the turbidity of the water to be treated before the flocculant injection (hereinafter referred to as “water to be treated before injection”) and the flocculant injection when the water treatment process 1 is operated at a constant injection rate control.
  • water to be treated before injection shows an example of the SC value of a post-processed water (henceforth "the post-injection treated water” or “mixed water”), and an electrical conductivity change. From FIG. 5, it can be seen that during the period in which the return water is returned from the waste water treatment process 60, the turbidity of the pre-injection treated water increases in accordance with the inflow of the return water. Moreover, in FIG.
  • the SC value of the water to be treated increases at the timing of returning water, so that the water treatment process reduces the injection rate at the timing of returning water.
  • the controller 223 of the injection support device 220 controls the injection rate of the flocculant so that the SC value of the post-injection treated water becomes constant, thereby charging the surface charge of the suspended matter in the post-injection treated water. It can be kept in a neutral state.
  • FIG. 6 is a diagram showing an example of the relationship between pH and SC value of post-injection treated water when the water treatment process 1 is operated with constant injection rate control.
  • the horizontal axis represents pH and the vertical axis represents SC value.
  • FIG. 6 shows that the SC value decreases with increasing pH. That is, FIG. 6 shows that there is a negative correlation between pH and SC value. Based on this correlation, the SC value when the pH fluctuates with a certain value as a reference can be expressed as the following equation (1).
  • a reference value for changing the pH is referred to as a reference value.
  • SC value (pH standard)” represents an SC value that is normalized according to the amount of variation from the standard value of pH.
  • SC value (actually measured value)” represents the measured value of the SC value.
  • FIG. 7 is a diagram showing an example of the relationship between conductivity and SC value.
  • FIG. 7 shows the change in SC value when the conductivity of the water to be treated is changed by injection of sodium chloride.
  • the horizontal axis represents the logarithm of conductivity (EC), and the vertical axis represents the SC value.
  • FIG. 7 shows the SC value calculated by the above formula (1), not the SC value (actual value), as the relationship between the SC value and the conductivity. It is expressed in relation to (pH standard).
  • FIG. 7 shows that the SC value increases as the conductivity increases. That is, FIG. 7 shows that there is a positive correlation between the conductivity and the SC value. Based on this correlation, the SC value when the conductivity varies with a certain value as a reference can be expressed as the following equation (2).
  • SC value (pH reference, conductivity reference)
  • K EC-pH is a coefficient for converting the variation amount of the conductivity into the variation amount of the SC value.
  • K EC-pH 8.2.
  • equation (2) is an approximate equation when the reference value of conductivity (hereinafter referred to as “reference conductivity”) is, for example, 5 [mS / m].
  • the reference value of pH in the above-described formula (1) and the reference value of conductivity in the formula (2) may be expressed by an average value of values that can be taken in the environment. If the change in conductivity is not large, the normalization of the SC value in the equation (2) may be omitted, and the SC value may be normalized only by the equation (1).
  • FIG. 8 is a diagram illustrating an example of a result of feedback control of the water treatment process 1 performed by the injection support apparatus 220 according to the first embodiment.
  • FIG. 8 shows an example in which the SC value is approximated only by the equation (1), and the water treatment process 1 is feedback controlled with the target value of the pH-based SC value being zero.
  • the flocculant injection rate changes in a cycle with the injection rate of about 15 mg / L as the upper limit.
  • the upper limit of the injection rate is a set value of the injection rate at the time of constant injection rate operation.
  • the SC value increases when the return water flows.
  • the control unit 223 since the control here sets the target value of the SC value to zero, the control unit 223 performs feedback control on the water treatment process 1 in a direction in which the SC value decreases. That is, the control unit 223 performs control to reduce the injection rate of the flocculant with respect to the water treatment process 1.
  • the turbidity of the water to be treated is kept good.
  • the water treatment process 1 can effectively use the flocculant remaining in the return water, and the turbidity of the water to be treated is kept good even when the flocculant injection rate is reduced.
  • the injection support apparatus 220 can reduce the coagulant for the areas of the reduction regions 500-1, 500-2, and 500-3 shown in FIG.
  • the average of the injection rate is 12.8 mg / L, and the amount of the flocculant to be injected can be reduced by about 15% compared to the operation at a constant injection rate.
  • the injection support apparatus 220 of the first embodiment configured as described above controls the amount of the flocculant injected into the water to be treated based on the SC value of the water to be treated after the flocculant is injected, Appropriate injection of the flocculant using the residual component of the flocculant contained in the return water can be realized.
  • the injection support apparatus 220 according to the second embodiment is different from the injection support apparatus 220 according to the first embodiment in that the injection amount of the flocculant 100 is based on the quality of the water to be treated (for example, flowing current value) after the flocculant injection.
  • the feed rate of the flocculant injection rate is controlled based on the quality of the water to be treated before the flocculant injection.
  • the injection support device 220 of the second embodiment is referred to as an injection support device 220a in order to distinguish it from the injection support device 220 of the first embodiment.
  • the injection support device 220a captures the return water inflow state based on one or both of the conductivity and pH of the pre-injection treated water, and increases or decreases the injection amount of the flocculant according to the return water inflow state. .
  • the inflow situation of return water appears more strongly in terms of conductivity than pH, it is desirable to monitor the conductivity of return water for grasping the inflow situation.
  • an appropriate injection amount of the flocculant according to the inflow state (hereinafter referred to as “appropriate injection amount”) is determined by correspondence information set in advance based on the result of the beaker test, for example.
  • the appropriate injection amount of the flocculant changes in proportion to the conductivity. Therefore, by clarifying the details of such a relationship in advance by a beaker test, it is possible to generate correspondence information indicating the relationship between the conductivity and the appropriate injection amount of the flocculant.
  • the injection support device 220a determines the presence or absence of inflow of the return water by monitoring the conductivity of the pre-injection treated water for the water treatment process 1 in which the coagulant injection rate is constant. When an inflow of return water is detected, the injection support device 220 determines an appropriate injection amount of the flocculant according to the inflow state at that time based on the correspondence information. The injection assisting device 220a performs feedforward control of the adjustment unit 90 (drug injection pump) so that the appropriate amount of the flocculant determined as described above is injected.
  • the adjustment unit 90 drug injection pump
  • the correspondence information can also be expressed as a relationship between the inflow rate of the return water and the appropriate injection amount, but the water quality of the treated water greatly affects the appropriate injection amount of the flocculant. Therefore, it is desirable that the correspondence information be expressed using the conductivity of the water to be treated that reflects the change in water quality due to the return water, rather than the simple inflow rate of the return water.
  • the following formula (3) is a formula showing a specific example of a method for determining an appropriate injection rate of the flocculant when the conductivity of the water to be treated is used.
  • A is an appropriate injection rate [mg / L] of the coagulant to be determined.
  • a 0 is the flocculant injection rate [mg / L] (constant value) when there is no return water.
  • EC treated water has a conductivity [mS / m] before being injected, and EC 0 is a reference conductivity.
  • the reference conductivity is a standard conductivity value in various environments to which the control of this embodiment is applied.
  • the reference conductivity may be expressed by an average value of values that can be taken by the conductivity in the environment to be controlled.
  • K A is a coefficient for converting conductivity into injection rate.
  • the injection support apparatus 220a of the second embodiment configured as described above is an injection rate of the flocculant. Is determined based on the conductivity of the water to be treated before injection. By determining the injection rate of the flocculant in this way, water treatment is performed with an appropriate injection amount of the flocculant considering the residual components of the flocculant contained in the return water, even when the water quality fluctuation is small. Process 1 can be operated.
  • control unit 223 normalizes the SC value and the coagulant injection amount is not limited to the examples shown in the equations (1) to (3).
  • control unit 223 may perform normalization using an expression that includes the temperature of the water to be treated as a parameter.
  • the control unit 223 functions to control the injection amount of the pH adjuster in addition to the function of controlling the injection amount of the coagulant. May be provided.
  • the control unit 223 determines that the pH of the water to be treated is suitable for agglomeration of unnecessary substances by the flocculant based on the water quality information (for example, the pH of the water to be treated before or after injection measured by the pH meter 300).
  • the injection amount of the pH adjusting agent is controlled so as to be within the predetermined range.
  • the functional unit that controls the injection amount of the pH adjusting agent may be configured as a second control unit different from the control unit 223.
  • an acquisition unit that acquires water quality information regarding the quality of the water to be treated in the coagulation sedimentation step, and the injection amount of the flocculant is controlled based on the water quality information acquired by the acquisition unit.
  • the control unit it is possible to control the injection amount of the flocculant according to the quality of the water to be treated which varies depending on the inflow of the return water.
  • the flow quality value of the water to be treated may be used as the water quality information, or the pH of the water to be treated may be used.
  • the electrical conductivity of to-be-processed water may be used for water quality information, and the flow volume of return water may be used.
  • the flocculant injection support device of the above embodiment is a water treatment process having a coagulation sedimentation step and a wastewater treatment step typified by a water treatment process, and the water separated from sludge in the wastewater treatment step.
  • the quality of the water to be treated (for example, the surface charge of suspended particles) is determined by measuring the quality of the water to be treated before or after the flocculant is injected.
  • the injection amount of the flocculant is controlled according to the water quality. By performing such control, in the water treatment process described above, it is possible to realize an appropriate injection of the flocculant in consideration of the residual component of the flocculant contained in the return water.

Abstract

A flocculant injection assistance device of an embodiment of the present invention includes an acquisition unit and a control unit, and is used in a water treatment process in which water that has been separated from sludge in a wastewater treatment step is returned as return water to a flocculant settling step, in order to control the amount of flocculant injected during the flocculant settling step. The acquisition unit acquires water quality information relating to the water quality of the treated water in the flocculant settling step. The control unit controls the injected amount of the flocculant on the basis of the water quality information acquired by the acquisition unit.

Description

凝集剤注入支援装置及び制御方法Flocculant injection support device and control method
 本発明の実施形態は、凝集剤注入支援装置及び制御方法に関する。 Embodiments of the present invention relate to a flocculant injection support device and a control method.
 一般に、浄水場などで行われている水処理プロセスは、凝集沈殿工程と排水処理工程とを含み、各工程の概要は次のとおりである。凝集沈殿工程では、浄化処理の対象となる水(以下、「被処理水」という。)に含まれる懸濁物質などの不要物を除去するための固液分離処理が行われる。固液分離処理では、まず、被処理水に凝集剤を注入することにより不要物をフロックに凝集させる。フロック化した凝集物は沈殿処理によって被処理水から分離され、除去される。また、沈殿処理が行われた後、さらに砂ろ過などのろ過処理が行われる場合もある。沈殿処理やろ過処理によって被処理水から分離された凝集物を含む汚泥は排水処理工程に送られる。 Generally, a water treatment process performed at a water purification plant or the like includes a coagulation sedimentation step and a wastewater treatment step, and the outline of each step is as follows. In the coagulation sedimentation process, a solid-liquid separation process is performed to remove unnecessary substances such as suspended substances contained in water to be purified (hereinafter referred to as “water to be treated”). In the solid-liquid separation treatment, first, unnecessary substances are aggregated into flocs by injecting a flocculant into the water to be treated. Flocked aggregates are separated from the water to be treated by precipitation treatment and removed. In addition, after the precipitation treatment, a filtration treatment such as sand filtration may be further performed. Sludge containing agglomerates separated from the water to be treated by precipitation or filtration is sent to a wastewater treatment process.
 排水処理工程では、凝集沈殿工程において分離された汚泥の濃縮分離処理が行われる。濃縮分離処理は、凝集沈殿工程から送られてくる大量の水を含む汚泥を、より水分量の少ない状態にする処理である。濃縮分離処理によって汚泥から分離された水は、返送水として凝集剤が注入される前の被処理水に加えられ、再度凝集沈殿工程に送られる。そのため、凝集剤が注入される前の被処理水の水質は、水処理プロセスに送られてくる原水そのものの水質の変動の影響に加え、返送水の流入による変動の影響を受けて変動する。従って、凝集剤の注入量は原水や返送水の影響を受けて変動する被処理水の水質の変化に応じて適切に調節されるべきである。 In the wastewater treatment process, the sludge separated in the coagulation sedimentation process is concentrated and separated. Concentration separation processing is processing which makes the sludge containing a lot of water sent from a coagulation sedimentation process into a state with much less moisture. The water separated from the sludge by the concentration and separation treatment is added to the water to be treated before the flocculant is injected as return water, and is sent again to the coagulation sedimentation step. Therefore, the quality of the water to be treated before the flocculant is injected fluctuates due to the influence of the fluctuation of the return water inflow in addition to the influence of the fluctuation of the quality of the raw water itself sent to the water treatment process. Therefore, the amount of the flocculant to be injected should be appropriately adjusted according to the change in the quality of the water to be treated which varies under the influence of raw water and return water.
 一般に、凝集剤の注入量は、採水された原水に対してビーカー規模の凝集試験(以下、「ビーカー試験」という。)を行い、その試験結果を目安に決定される場合が多い。凝集剤の注入量を適切に保つには、ビーカー試験の頻度を高める必要があるが、作業の負荷を考えると現実的でない。そのため、凝集剤は、注入不足に陥らない程度で過剰に注入されている場合が多い。しかしながら、凝集剤の注入量が多くなると汚泥の発生量も増加するため、排水処理の負荷も高まってしまう。また、ろ過処理の負荷も高まるため、ろ過設備の洗浄処理(逆圧洗浄など)を行う頻度も高くなってしまう。従って、凝集剤の注入量は、過注入とならないよう適切な量に制御されるのが望ましい。 Generally, the amount of flocculant injected is often determined by conducting a beaker-scale agglomeration test (hereinafter referred to as “beaker test”) on the collected raw water and using the test results as a guide. In order to keep the amount of flocculant injected appropriately, the frequency of the beaker test needs to be increased, but it is not realistic considering the work load. Therefore, in many cases, the flocculant is excessively injected so as not to cause insufficient injection. However, if the amount of flocculant injected increases, the amount of sludge generated also increases, increasing the load of wastewater treatment. In addition, since the load of the filtration process is increased, the frequency of performing the washing process (back pressure washing or the like) of the filtration equipment is increased. Therefore, it is desirable to control the injection amount of the flocculant to an appropriate amount so as not to over-inject.
 このような問題に対して、例えば、凝集沈殿により分離除去された汚泥を返送することによって、凝集効果の向上を図る方法が提案されている。このような方法は、凝集効果の向上が期待できる一方で、被処理水の水質悪化を招き、トータルとして処理負荷を高めてしまう可能性がある。特に浄水場では、水処理プロセスにおける水質悪化は致命的である。これは排水処理工程から凝集沈殿工程に戻される返送水についても同様のことが言え、返送水による被処理水の水質悪化は避けなければならない。事実、返送水による水質悪化に起因して異臭味の発生やマンガン濃度の上昇などの問題が生じており、対策が求められている事業体も存在する。 For such a problem, for example, a method for improving the coagulation effect by returning sludge separated and removed by coagulation sedimentation has been proposed. While such a method can be expected to improve the coagulation effect, it may lead to deterioration of the quality of the water to be treated and may increase the treatment load as a whole. Especially in water treatment plants, deterioration of water quality in the water treatment process is fatal. The same applies to the return water returned from the wastewater treatment process to the coagulation sedimentation process, and deterioration of the quality of the treated water due to the return water must be avoided. In fact, problems such as the generation of off-flavors and increased manganese concentration have arisen due to the deterioration of water quality due to the return water, and there are some entities that need countermeasures.
特開2003-340208号公報Japanese Patent Laid-Open No. 2003-340208 特開2009-226285号公報JP 2009-226285 A 特開2012-45494号公報JP 2012-45494 A
 本発明が解決しようとする課題は、凝集剤の注入量を返送水の流入に応じてより適切に制御することができる凝集剤注入支援装置及び制御方法を提供することである。 The problem to be solved by the present invention is to provide a coagulant injection support device and a control method that can more appropriately control the injection amount of the coagulant according to the inflow of return water.
 実施形態の凝集剤注入支援装置は、排水処理工程において汚泥から分離された水を返送水として凝集沈殿工程に返送する水処理プロセスにおいて、前記凝集沈殿工程における凝集剤の注入量を制御する装置であって、取得部と、制御部と、を持つ。取得部は、前記凝集沈殿工程における被処理水の水質に関する水質情報を取得する。制御部は、前記取得部によって取得された前記水質情報に基づいて前記凝集剤の注入量を制御する。 The flocculant injection support device of the embodiment is a device that controls the injection amount of the flocculant in the coagulation sedimentation step in a water treatment process in which water separated from sludge in the wastewater treatment step is returned to the coagulation sedimentation step as return water. It has an acquisition unit and a control unit. An acquisition part acquires the water quality information regarding the quality of the to-be-processed water in the said coagulation sedimentation process. The control unit controls the injection amount of the flocculant based on the water quality information acquired by the acquisition unit.
第1の実施形態の凝集剤注入支援装置を備える水処理プロセスの具体例を示す図。The figure which shows the specific example of a water treatment process provided with the coagulant | flocculant injection assistance apparatus of 1st Embodiment. 第1の実施形態における注入制御システム200の機能構成を示す機能ブロック図。The functional block diagram which shows the function structure of the injection | pouring control system 200 in 1st Embodiment. 凝集剤の注入率と被処理水の濁度との関係の一例を示す図。The figure which shows an example of the injection | pouring rate of a coagulant | flocculant and the turbidity of to-be-processed water. 凝集剤の注入率とSC値との関係の一例を示す図。The figure which shows an example of the injection | pouring rate of a coagulant | flocculant, and SC relationship. 水処理プロセス1を注入率一定制御で運転している場合における、注入前被処理水の濁度と、注入後被処理水のSC値及び導電率の変化の一例を示す図。The figure which shows an example of the change of the turbidity of to-be-processed water before injection | pouring, the SC value of to-be-processed water after injection | pouring, and electrical conductivity in the case of operating the water treatment process 1 by injection | pouring rate fixed control. 水処理プロセス1を注入率一定制御で運転している場合における、注入後被処理水のpH及びSC値の関係の一例を示す図。The figure which shows an example of the relationship between pH of a to-be-processed post-injection water, and SC value in the case of operating the water treatment process 1 by injection rate fixed control. 導電率とSC値との関係の一例を示す図。The figure which shows an example of the relationship between electrical conductivity and SC value. 第1の実施形態の注入支援装置220による水処理プロセス1のフィードバック制御の結果の一例を示す図。The figure which shows an example of the result of the feedback control of the water treatment process 1 by the injection | pouring assistance apparatus 220 of 1st Embodiment.
 以下、実施形態の凝集剤注入支援装置及び制御方法を、図面を参照して説明する。 Hereinafter, the flocculant injection support device and the control method of the embodiment will be described with reference to the drawings.
 (第1の実施形態)
[概略]
 水処理プロセスでは、被処理水が排水処理工程から凝集沈殿工程に戻される場合がある。そして、排水処理工程から凝集沈殿工程に戻される被処理水(以下、「返送水」という。)には、凝集剤の残留成分が含まれている場合がある。そのため、返送水に含まれる凝集剤を有効利用することができれば、凝集剤の注入量を削減できると考えられる。
(First embodiment)
[Outline]
In the water treatment process, water to be treated may be returned from the wastewater treatment process to the coagulation sedimentation process. And the to-be-processed water (henceforth "returned water") returned to a coagulation sedimentation process from a wastewater treatment process may contain the residual component of a coagulant | flocculant. Therefore, if the flocculant contained in the return water can be used effectively, the amount of flocculant injected can be reduced.
 具体的には、被処理水中の濁質は、通常は表面電荷が負に帯電しており、互いに反発しあい、沈降しづらい状態にある。凝集剤を注入することで、表面電荷がゼロ付近に近づき粒子同士の反発作用が弱まる。凝集剤の架橋作用も加わりフロックを形成しやすくなり、フロック化した粒子は沈殿分離される。このように凝集剤を注入する目的は、濁質の表面電荷を中和させることである。そのため、被処理水中の濁質の表面電荷の状態に応じて凝集剤の注入量を変化させるように制御することで、返送水中に含まれる凝集剤の残留成分が考慮された適切な凝集剤の注入を実現できると考えられる。 Specifically, the turbidity in the water to be treated usually has a negative surface charge, repels each other, and is difficult to settle. By injecting the flocculant, the surface charge approaches zero and the repulsive action between the particles is weakened. The cross-linking action of the flocculant is also added to facilitate the formation of floc, and the flocculent particles are separated by precipitation. The purpose of injecting the flocculant in this way is to neutralize the turbid surface charge. Therefore, by controlling the injection amount of the flocculant according to the state of the surface charge of the turbidity in the water to be treated, an appropriate flocculant that takes into account the residual components of the flocculant contained in the return water It is thought that injection can be realized.
 例えば、被処理水中の浮遊粒子の表面電荷は、混和水(具体的には、凝集剤が注入され混和池にて急速撹拌した直後の被処理水)の流動電流値(SC値:Streaming Current)を計測することによって把握することができる。 For example, the surface charge of suspended particles in the water to be treated is the flow current value (SC value: Streaming Current) of the mixed water (specifically, the water to be treated immediately after the flocculant is injected and rapidly stirred in the mixing pond). It can be grasped by measuring.
 SC値は、浮遊粒子表面の荷電状態を示す「ゼータ電位」に相関のある指標である。水中の浮遊粒子と水との界面には電気二重層が形成される。この状態で水を流動させることで水側に配分された電荷が水とともに流れ、流動帯電が生じる。この流動帯電によって水中に生じる電流は流動電流(SC:Streaming Current)と呼ばれる。SC値は凝集状態に応じて変化する一方、pH、導電率、水温の影響を受けて変化する。そのため、濁質表面の荷電状態の判断にSC値を用いる場合、これらの影響を除去するための補正が必要となる。 The SC value is an index correlated with the “zeta potential” indicating the charged state of the suspended particle surface. An electric double layer is formed at the interface between suspended particles in water and water. By flowing water in this state, the electric charge distributed to the water side flows together with the water, and flow electrification occurs. The current generated in the water by this flow electrification is called a flow current (SC). While the SC value changes depending on the aggregation state, it changes under the influence of pH, conductivity, and water temperature. Therefore, when the SC value is used to determine the charged state of the turbid surface, correction for removing these effects is necessary.
[詳細]
 図1は、第1の実施形態の凝集剤注入支援装置を備える水処理プロセスの具体例を示す図である。なお、ここで説明する水処理プロセス1は、凝集剤を用いた固液分離処理を行うどのような設備に適用されてもよい。例えば水処理プロセス1は、浄水場や製紙工場などの設備に適用可能である。図1は、水処理プロセス1が浄水場に適用された例を示している。
[Details]
FIG. 1 is a diagram illustrating a specific example of a water treatment process including the flocculant injection support device according to the first embodiment. In addition, the water treatment process 1 demonstrated here may be applied to what kind of equipment which performs the solid-liquid separation process using a flocculant. For example, the water treatment process 1 can be applied to facilities such as water purification plants and paper mills. FIG. 1 shows an example in which the water treatment process 1 is applied to a water purification plant.
 水処理プロセス1は、取水井10と、着水井20と、混和池30と、フロック形成池40と、沈殿池50と、排水処理工程60と、砂ろ過棟70と、配水池80と、調整部90と、凝集剤100と、注入制御システム200と、pH計300と、導電率計400と、を備える。取水井10は、原水を一時的に貯留する。ここでいう原水とは、浄化処理が行われる前の水であり、例えば、ダムや河川から引き入れられた水や地下水などのことをいう。着水井20には、取水井10から原水が送水されるとともに、排水処理工程60から返送水が送水される。以下では、着水井20において原水及び返送水が混合された水を被処理水と記載する。着水井20では、重力沈降によって容易に分離可能な植物や土砂などの不要物が被処理水から分離される。 The water treatment process 1 includes adjustment of the intake well 10, the landing well 20, the mixing basin 30, the flock formation basin 40, the sedimentation basin 50, the wastewater treatment step 60, the sand filtration ridge 70, and the distribution reservoir 80. Unit 90, flocculant 100, injection control system 200, pH meter 300, and conductivity meter 400. The intake well 10 temporarily stores raw water. The raw water here is water before purification treatment is performed, for example, water drawn from a dam or river, groundwater, and the like. Raw water is sent from the intake well 10 to the receiving well 20, and return water is sent from the wastewater treatment process 60. Hereinafter, water in which raw water and return water are mixed in the landing well 20 is referred to as treated water. In the landing well 20, unnecessary substances such as plants and earth and sand that can be easily separated by gravity settling are separated from the water to be treated.
 混和池30(急速撹拌池)には、着水井20の上澄みの被処理水が送水される。混和池30では、調整部90によって凝集剤100が被処理水に注入される。なお、混和池30における凝集剤の注入は、運転員が手動で行ってもよい。混和池30には、混合装置31が取り付けられている。混合装置31は、着水井20から送水された水と、凝集剤100とを混合する。混合装置31は、例えば、急速攪拌装置(フラッシュ・ミキサ)やモータ等の駆動部を有する攪拌装置や、駆動部を有しない攪拌装置(スタティック・ミキサ)である。混和池30では、凝集剤100によって懸濁物質(Suspended Solids)の荷電状態が中和される。荷電状態が中和されることにより、懸濁物質は凝集する。懸濁物質は、例えば、コロイド成分である。混和池30では、混合装置31による攪拌によって、水中に微小なフロック(以下、「微フロック」という。)が形成される。 The treated water of the supernatant of the landing well 20 is sent to the mixing basin 30 (rapid stirring pond). In the mixing basin 30, the coagulant 100 is poured into the water to be treated by the adjustment unit 90. Note that the operator may manually inject the flocculant in the mixing basin 30. A mixing device 31 is attached to the mixing basin 30. The mixing device 31 mixes the water sent from the landing well 20 and the flocculant 100. The mixing device 31 is, for example, a rapid stirring device (flash mixer), a stirring device having a driving unit such as a motor, or a stirring device (static mixer) having no driving unit. In the mixing basin 30, the charge state of the suspended matter (Suspended Solids) is neutralized by the flocculant 100. Due to the neutralization of the charged state, the suspended material aggregates. The suspended material is, for example, a colloidal component. In the mixing basin 30, minute flocs (hereinafter referred to as “fine flocs”) are formed in the water by stirring by the mixing device 31.
 フロック形成池40には、微フロックを含む水が、混和池30から送水される。フロック形成池40は、水に含まれる微フロック同士を衝突させて、フロックを成長させる。 Water containing fine floc is fed from the mixing basin 30 to the flock formation pond 40. The floc formation pond 40 grows flocs by colliding fine flocs contained in water with each other.
 沈殿池50は、水中で成長したフロックを沈降させる。沈降したフロックは沈殿池の底部に泥となって溜まり、定期的に引抜かれ、排水処理工程60に送られる。 The sedimentation basin 50 sediments flocs grown in water. The sedimented flock accumulates as mud at the bottom of the sedimentation basin, is periodically withdrawn, and is sent to the waste water treatment step 60.
 排水処理工程60では、他の工程から送られてくる汚泥などを濃縮し、汚泥と水に分離する。汚泥から分離された水のうち、上澄水は着水井20へ返送される。返送は連続的にではなく、間欠的に行われる場合が多い。なお、排水処理工程60には、沈殿池50から引き抜かれた汚泥に限らず、水処理プロセス1に含まれる他の様々な工程で発生した汚泥や排水が送られてくる。 In the wastewater treatment process 60, the sludge sent from other processes is concentrated and separated into sludge and water. Of the water separated from the sludge, the supernatant water is returned to the landing well 20. The return is often performed intermittently rather than continuously. In addition, not only the sludge extracted from the sedimentation basin 50 but the sludge and waste water which generate | occur | produced at the various other processes included in the water treatment process 1 are sent to the waste water treatment process 60.
 砂ろ過棟70には、沈殿池50の上澄水が送水される。砂ろ過棟70は、沈殿池50から送水された水をろ過する。ろ材である砂はろ過継続時間が経過するにつれ目詰まりし、差圧が上昇する。従って、定期的に逆圧洗浄がなされ、その洗浄排水は排水処理工程60に送られる。 The supernatant water of the sedimentation basin 50 is sent to the sand filtration building 70. The sand filtration building 70 filters the water sent from the sedimentation basin 50. Sand as a filter medium becomes clogged as the filtration duration time elapses, and the differential pressure increases. Therefore, the counter pressure cleaning is periodically performed, and the cleaning waste water is sent to the waste water treatment step 60.
 配水池80には、ろ過された水が、砂ろ過棟70から送水される。配水池80では、塩素が水に注入される。塩素によって消毒された水は、配水池80から住宅などに配水される。 The filtered water is sent from the sand filtration building 70 to the distribution reservoir 80. In the distributing reservoir 80, chlorine is injected into the water. The water sterilized by chlorine is distributed from the distribution reservoir 80 to houses and the like.
 調整部90は、凝集剤100の注入量を調整可能な機構であれば、どのような機構を有していてもよい。調整部90は、例えば、ポンプ(以下、「薬剤注入ポンプ」という。)である。調整部90は、情報処理装置等を備える注入制御システム200によって決定された注入量の凝集剤100を、混和池30に注入する。なお、調整部90は、注入制御システム200によって決定された注入率で凝集剤100を、混和池30に注入してもよい。凝集剤100の注入率は、凝集剤100が注入される箇所の総水量(時間あたりの流量)に対する、凝集剤100の注入量の割合である。例えば、調整部90は、インバータや電磁弁を用いて、凝集剤100の注入量又は注入率を変更してもよい。 The adjustment unit 90 may have any mechanism as long as it can adjust the injection amount of the flocculant 100. The adjustment unit 90 is, for example, a pump (hereinafter referred to as “medicine injection pump”). The adjustment unit 90 injects the injection amount of the flocculant 100 determined by the injection control system 200 including an information processing apparatus or the like into the mixing basin 30. The adjusting unit 90 may inject the flocculant 100 into the mixing basin 30 at the injection rate determined by the injection control system 200. The injection rate of the flocculant 100 is the ratio of the injection amount of the flocculant 100 to the total amount of water (flow rate per hour) at the location where the flocculant 100 is injected. For example, the adjustment unit 90 may change the injection amount or injection rate of the flocculant 100 using an inverter or a solenoid valve.
 凝集剤100は、正の電荷に帯電している薬剤である。また、水中の懸濁物質は、表面が負の電荷に帯電している。そのため、凝集剤100は、被処理水に注入されることによって懸濁物質の荷電状態を中和させ、被処理水に含まれている懸濁物質等の粒子を凝集させる。凝集剤100は、例えば、ポリ塩化アルミニウム(PAC:Poly Aluminum Chloride)や硫酸バンド、塩化第二鉄、硫酸第一鉄、ポリシリカ鉄等の無機系凝集剤である。 The flocculant 100 is a drug charged to a positive charge. In addition, suspended substances in water have a negative charge on the surface. For this reason, the flocculant 100 is injected into the water to be treated to neutralize the charged state of the suspended matter, and agglomerates particles such as the suspended matter contained in the water to be treated. The aggregating agent 100 is an inorganic aggregating agent such as polyaluminum chloride (PAC), sulfate band, ferric chloride, ferrous sulfate, polysilica iron, and the like.
 凝集剤100は、高分子凝集剤と併用されてもよい。高分子凝集剤は、例えば、カチオン性ポリマ、アニオン性ポリマ、両性ポリマなどである。また、凝集剤100は、pH調整剤と併用されてもよい。pH調整剤は、凝集させるために適切であるpH域に、水のpH値を調整することができる。pH調整剤は、酸性の調整剤でもよいし、アルカリ性の調整剤でもよい。酸性の調整剤は、例えば、硫酸や塩酸などである。アルカリ性の調整剤は、例えば、苛性ソーダや水酸化カルシウムなどである。 The flocculant 100 may be used in combination with a polymer flocculant. Examples of the polymer flocculant include a cationic polymer, an anionic polymer, and an amphoteric polymer. Further, the flocculant 100 may be used in combination with a pH adjuster. The pH adjuster can adjust the pH value of water to a pH range that is appropriate for aggregation. The pH adjusting agent may be an acidic adjusting agent or an alkaline adjusting agent. Examples of the acidic regulator include sulfuric acid and hydrochloric acid. Examples of the alkaline adjusting agent include caustic soda and calcium hydroxide.
 注入制御システム200は、調整部90による凝集剤100の注入量を制御するシステムである。注入制御システム200は、被処理水の水質に関する水質情報に基づいて、凝集剤100の注入量を制御する。水質情報は、被処理水の水質に関する諸量であり、例えば、流動電流値やpH、導電率などの量を示す情報である。 The injection control system 200 is a system that controls the injection amount of the flocculant 100 by the adjusting unit 90. The injection control system 200 controls the injection amount of the flocculant 100 based on the water quality information related to the quality of the water to be treated. The water quality information is various quantities relating to the quality of the water to be treated, and is information indicating quantities such as a flowing current value, pH, and conductivity.
 pH計300は、混和水のpHを測定する測定器である。pH計300は、混和水のpHの測定値を示す情報を注入制御システム200に送信する。 The pH meter 300 is a measuring device that measures the pH of the mixed water. The pH meter 300 transmits information indicating the measured value of the pH of the admixed water to the injection control system 200.
 導電率計400は、混和水のpHを測定する測定器である。導電率計400は、混和水の導電率の測定値を示す情報を注入制御システム200に送信する。 The conductivity meter 400 is a measuring device that measures the pH of the mixed water. The conductivity meter 400 transmits information indicating the measured value of the conductivity of the admixed water to the injection control system 200.
 図2は、第1の実施形態における注入制御システム200の機能構成を示す機能ブロック図である。注入制御システム200は、流動電流計210と、注入支援装置220と、提示装置230とを備える。なお以下では、流動電流計210をSC(Streaming Current:流動電流)計210と記載する。同様に以下では、流動電流値をSC値と記載する。 FIG. 2 is a functional block diagram showing a functional configuration of the injection control system 200 in the first embodiment. The injection control system 200 includes a flow ammeter 210, an injection support device 220, and a presentation device 230. Hereinafter, the flowing ammeter 210 is referred to as an SC (Streaming Current) meter 210. Similarly, in the following, the flowing current value is described as the SC value.
 混和池30における被処理水のSC値は、凝集剤100の注入量に応じて増減する。SC計210は、被処理水中の懸濁物質の荷電状態を連続的に検出する流動電位計でもよい。また、SC計210は、被処理水中の懸濁物質の荷電状態を間欠的に検出するゼータ電位計でもよい。SC計210は、混和池30における被処理水のSC値を、連続的に測定する。測定間隔は1分程度が望ましいが、10分以内であれば本実施形態における注入制御の性能に大きな影響を与えない。SC計210は、混和池30における被処理水のSC値を、注入支援装置220に出力する。 The SC value of the water to be treated in the mixing basin 30 increases or decreases according to the amount of the flocculant 100 injected. The SC meter 210 may be a flow potentiometer that continuously detects the charged state of suspended substances in the water to be treated. Further, the SC meter 210 may be a zeta electrometer that intermittently detects the charged state of suspended substances in the water to be treated. The SC meter 210 continuously measures the SC value of the water to be treated in the mixing basin 30. The measurement interval is preferably about 1 minute, but if it is within 10 minutes, the performance of the injection control in this embodiment is not greatly affected. The SC meter 210 outputs the SC value of the water to be treated in the mixing basin 30 to the injection support device 220.
 注入支援装置220は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、注入支援プログラムを実行する。注入支援装置220は、注入支援プログラムの実行によって取得部221、記憶部222及び制御部223を備える装置として機能する。なお、注入支援装置220の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。注入支援プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。注入支援プログラムは、電気通信回線を介して送信されてもよい。 The injection support apparatus 220 includes a CPU (Central Processing Unit) connected via a bus, a memory, an auxiliary storage device, and the like, and executes an injection support program. The injection support device 220 functions as a device including the acquisition unit 221, the storage unit 222, and the control unit 223 by executing the injection support program. All or some of the functions of the injection support apparatus 220 may be realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). . The injection support program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. The injection support program may be transmitted via a telecommunication line.
 取得部221は、混和池30における被処理水のSC値を、SC計210から取得する。取得部221は、SC計210が測定したSC値を、制御部223に出力する。 The acquisition unit 221 acquires the SC value of the water to be treated in the mixing basin 30 from the SC meter 210. The acquisition unit 221 outputs the SC value measured by the SC meter 210 to the control unit 223.
 記憶部222は、例えば、ROM(Read Only Memory)やフラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記録媒体)を有する。記憶部222は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有していてもよい。記憶部222は、例えば、自装置を注入支援装置220として機能させるためのコンピュータプログラムを記憶してもよい。 The storage unit 222 includes, for example, a non-volatile storage medium (non-temporary recording medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive). The storage unit 222 may include a volatile storage medium such as a RAM (Random Access Memory) or a register, for example. For example, the storage unit 222 may store a computer program for causing the device itself to function as the injection support device 220.
 制御部223は、混和池30において被処理水に注入される凝集剤の量を制御する。具体的には、制御部223は、被処理水のSC値が予め定められた目標値に近づくように、凝集剤100の注入量を決定する。制御部223は、決定した注入量で凝集剤100を注入するように調整部90(薬剤注入ポンプ)を動作させる制御信号を生成する。制御部223は、生成した制御信号を調整部90に送信することによって、被処理水に注入される凝集剤100の量を制御する。 The control unit 223 controls the amount of the flocculant injected into the water to be treated in the mixing basin 30. Specifically, the control unit 223 determines the injection amount of the flocculant 100 so that the SC value of the water to be treated approaches a predetermined target value. The control unit 223 generates a control signal for operating the adjustment unit 90 (drug injection pump) so as to inject the coagulant 100 with the determined injection amount. The control unit 223 controls the amount of the flocculant 100 injected into the water to be treated by transmitting the generated control signal to the adjustment unit 90.
 なお、注入支援装置220は、単体の装置で構成されてもよいし、複数の装置で構成されてもよい。注入支援装置220は、複数の装置で構成される場合、クラウドコンピューティング技術によって動作してもよい。注入支援装置220は、クラウドコンピューティング技術によって、キーバリューストア形式の各種データに演算を施してもよい。 Note that the injection support device 220 may be configured as a single device or may be configured as a plurality of devices. When the injection support apparatus 220 is configured by a plurality of apparatuses, the injection support apparatus 220 may operate using cloud computing technology. The injection support apparatus 220 may perform operations on various types of data in the key value store format using cloud computing technology.
 また、注入支援装置220では、ウェブブラウザが動作してもよい。また、注入支援装置220の運用や監視、障害対応などを実施する主体は一の主体であってもよいし、複数の主体であってもよい。例えば、水処理プロセス1を運用する主体とは別の主体(例えば、ASP:Application Service Provider)が代行して、注入支援装置220の運用や監視、障害対応などを実施してもよい。また、注入支援装置220の運用や監視、障害対応の一部又は全部が複数の主体によって実施されてもよい。 In addition, in the injection support apparatus 220, a web browser may operate. In addition, the entity that performs the operation and monitoring of the injection support apparatus 220, the failure response, and the like may be one entity or a plurality of entities. For example, an entity different from the entity that operates the water treatment process 1 (for example, ASP: Application Service Provider) may act on behalf of the injection support apparatus 220 for operation, monitoring, and failure handling. Further, some or all of the operation and monitoring of the injection support apparatus 220 and the failure handling may be performed by a plurality of subjects.
 提示装置230は、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ等の表示装置を用いて構成される。又は、提示装置230は、これらの表示装置を自装置に接続するインターフェースとして構成されてもよい。提示装置230は、注入支援装置220によって生成された注入支援情報を表示する。注入支援情報は、凝集剤100の注入を支援する種々の情報であり、例えば、凝集剤100の注入量の目標値や、凝集剤100が過剰であるか又は不足しているかの判定結果などを示す情報である。注入支援情報は、グラフの態様で表示されてもよいし、他の態様で表示されてもよい。提示装置230は、注入支援情報の表示を、制御部223による制御に応じて行ってもよい。 The presentation device 230 is configured using a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, or an organic EL (Electro-Luminescence) display. Or the presentation apparatus 230 may be comprised as an interface which connects these display apparatuses to an own apparatus. The presentation device 230 displays the injection support information generated by the injection support device 220. The injection support information is various information that supports the injection of the flocculant 100. For example, the target value of the injection amount of the flocculant 100, the determination result of whether the flocculant 100 is excessive or insufficient, and the like. It is information to show. The injection support information may be displayed in the form of a graph or may be displayed in another form. The presentation device 230 may display the injection support information according to control by the control unit 223.
 また、提示装置230は、スピーカ(提示部)を備える音声処理装置であってもよい。提示装置230は、注入支援情報を音声によって運転員に提示してもよい。また、提示装置230は、キーボードやタッチパネル等の操作デバイスを備えてもよい。操作デバイスは、運転員による操作に応じて、運転員が指定した値を制御部223に出力してもよい。制御部223に出力される値は、例えば、凝集剤100の注入量の目標値を表す値である。制御部223に出力される値は、例えば、SC値の目標値でもよい。制御部223は、操作デバイスから制御部223に出力された値に基づいて、凝集剤100の注入量や注入率を制御してもよい。 Further, the presentation device 230 may be a voice processing device including a speaker (presentation unit). The presentation device 230 may present the injection support information to the operator by voice. The presentation device 230 may include an operation device such as a keyboard or a touch panel. The operation device may output a value designated by the operator to the control unit 223 in accordance with an operation by the operator. The value output to the control unit 223 is, for example, a value that represents a target value for the injection amount of the flocculant 100. The value output to the control unit 223 may be a SC value target value, for example. The control unit 223 may control the injection amount and injection rate of the flocculant 100 based on the value output from the operation device to the control unit 223.
 図3は、凝集剤の注入率と被処理水の濁度との関係の一例を示す図である。図3では、横軸が凝集剤の注入率を表し、縦軸が被処理水の濁度を表す。図3の例の場合、被処理水の濁度は、注入率の増加に応じて20[mg/L]付近の注入率を境に減少から増加に転じている。つまり、図3の例のような状況においては、20mg/L付近が注入率の適正値であると考えられる。このように、凝集剤100の注入率は、多過ぎてもよくないし、少な過ぎてもよくない。 FIG. 3 is a diagram showing an example of the relationship between the injection rate of the flocculant and the turbidity of the water to be treated. In FIG. 3, the horizontal axis represents the injection rate of the flocculant, and the vertical axis represents the turbidity of the water to be treated. In the case of the example in FIG. 3, the turbidity of the water to be treated changes from decreasing to increasing at the injection rate in the vicinity of 20 [mg / L] as the injection rate increases. That is, in the situation as in the example of FIG. 3, it is considered that the vicinity of 20 mg / L is an appropriate value for the injection rate. Thus, the injection rate of the flocculant 100 may not be too much or too little.
 凝集剤注入率の増加に応じて、被処理水の濁度が減少から増加に転じる傾向は、被処理水の種類や性質によって異なる。例えば、ある被処理水は、凝集剤注入率がある程度高くならないと濁度が増加傾向に転じない。また、例えば、被処理水によっては、濁度の増加の勾配が異なる。いずれにせよ、凝集剤の注入量は、そのときの被処理水の種類や性質に応じて図3の例のような適正値に制御されるべきである。 The tendency of the turbidity of the treated water to change from decreasing to increasing as the coagulant injection rate increases varies depending on the type and nature of the treated water. For example, in some water to be treated, the turbidity does not start to increase unless the flocculant injection rate is increased to some extent. Further, for example, depending on the water to be treated, the gradient of increase in turbidity varies. In any case, the amount of the flocculant injected should be controlled to an appropriate value as shown in the example of FIG. 3 in accordance with the type and properties of the water to be treated at that time.
 図4は、凝集剤の注入率とSC値との関係の一例を示す図である。具体的には、図4は、図3と同じ被処理水についての凝集剤の注入率とSC値との関係を示している。図4では、縦軸がSC値を表し、横軸が凝集剤の注入率を表す。図4は、凝集剤の注入率の増加に応じてSC値も増加することを示している。すなわち、図4は、SC値と凝集剤の注入率との間には正の相関関係があることを示している。 FIG. 4 is a diagram showing an example of the relationship between the flocculant injection rate and the SC value. Specifically, FIG. 4 shows the relationship between the flocculant injection rate and the SC value for the same treated water as in FIG. In FIG. 4, the vertical axis represents the SC value, and the horizontal axis represents the injection rate of the flocculant. FIG. 4 shows that the SC value increases as the flocculant injection rate increases. That is, FIG. 4 shows that there is a positive correlation between the SC value and the injection rate of the flocculant.
 さらに、図4からは、図3の例での凝集剤注入量の適正値(20[mg/L]付近)に対して、SC値が荷電中和点付近の値(+2付近)をとることが分かる。これらのことから、凝集剤の注入によって被処理水中の懸濁物質の表面電荷が中和されていく様子は、SC値の観測によって把握できることが分かる。 Further, from FIG. 4, the SC value takes a value near the charge neutralization point (near +2) with respect to an appropriate value (near 20 [mg / L]) of the coagulant injection amount in the example of FIG. I understand. From these facts, it can be understood that the surface charge of the suspended substance in the water to be treated is neutralized by the injection of the flocculant by grasping the SC value.
 図5は、水処理プロセス1を注入率一定制御で運転している場合における、凝集剤注入前の被処理水(以下、「注入前被処理水」という。)の濁度と、凝集剤注入後の被処理水(以下、「注入後被処理水」又は「混和水」という。)のSC値及び導電率の変化の一例を示す図である。図5から、排水処理工程60から返送水が戻されている期間には、返送水の流入に応じて注入前被処理水の濁度が上昇していることが分かる。また、図5では、注入前被処理水の濁度の上昇に合わせて、注入後被処理水のSC値が上昇していることが分かる。そして、返送水の混合によって注入後被処理水のSC値が上昇しているということは水中粒子表面の帯電状態が正側に変動していることを表している。また、返送水が流入するタイミングでは導電率も上昇しているため、導電率が上昇する変化から返送水の流入を捉えることもできる。 FIG. 5 shows the turbidity of the water to be treated before the flocculant injection (hereinafter referred to as “water to be treated before injection”) and the flocculant injection when the water treatment process 1 is operated at a constant injection rate control. It is a figure which shows an example of the SC value of a post-processed water (henceforth "the post-injection treated water" or "mixed water"), and an electrical conductivity change. From FIG. 5, it can be seen that during the period in which the return water is returned from the waste water treatment process 60, the turbidity of the pre-injection treated water increases in accordance with the inflow of the return water. Moreover, in FIG. 5, it turns out that the SC value of the to-be-processed water after injection | pouring is rising with the raise of the turbidity of the to-be-processed water before injection | pouring. And that SC value of to-be-processed water is rising after injection | pouring by mixing of return water has shown that the charged state of the underwater particle surface is fluctuating to the positive side. In addition, since the conductivity increases at the timing when the return water flows, the return water can be captured from the change in the conductivity.
 上記のとおり、凝集剤の注入率が一定の状態では、返送水有りのタイミングで被処理水のSC値が上昇していることから、返送水有りのタイミングでは注入率を減らすように水処理プロセス1を制御することで、SC値の上昇を抑えることができる。すなわち、注入支援装置220の制御部223が、注入後被処理水のSC値が一定となるよう凝集剤の注入率を制御することによって、注入後被処理水中の懸濁物質の表面電荷を荷電中和の状態に保つことができる。 As described above, when the injection rate of the flocculant is constant, the SC value of the water to be treated increases at the timing of returning water, so that the water treatment process reduces the injection rate at the timing of returning water. By controlling 1, the increase of the SC value can be suppressed. That is, the controller 223 of the injection support device 220 controls the injection rate of the flocculant so that the SC value of the post-injection treated water becomes constant, thereby charging the surface charge of the suspended matter in the post-injection treated water. It can be kept in a neutral state.
 図6は、水処理プロセス1を注入率一定制御で運転している場合における、注入後被処理水のpH及びSC値の関係の一例を示す図である。図6において、横軸はpHを表し、縦軸はSC値を表す。図6は、pHの増加に応じてSC値が減少することを示している。すなわち、図6は、pHとSC値との間には負の相関関係があることを示している。この相関関係に基づけば、pHがある値を基準として変動する場合におけるSC値は、次の(1)式のように表すことができる。なおここでは、pHが変動する基準となる値を基準値と呼ぶ。 FIG. 6 is a diagram showing an example of the relationship between pH and SC value of post-injection treated water when the water treatment process 1 is operated with constant injection rate control. In FIG. 6, the horizontal axis represents pH and the vertical axis represents SC value. FIG. 6 shows that the SC value decreases with increasing pH. That is, FIG. 6 shows that there is a negative correlation between pH and SC value. Based on this correlation, the SC value when the pH fluctuates with a certain value as a reference can be expressed as the following equation (1). Here, a reference value for changing the pH is referred to as a reference value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式において「SC値(pH基準)」は、pHの基準値からの変動量に応じて正規化されるSC値を表す。「SC値(実測値)」は、SC値の測定値を表す。KpHは、pHの変動量をSC値の変動量に換算する係数であり、例えば、KpH=-13.8である。pHはpHの基準値であり、例えば、pH=7.0である。 In the equation (1), “SC value (pH standard)” represents an SC value that is normalized according to the amount of variation from the standard value of pH. “SC value (actually measured value)” represents the measured value of the SC value. K pH is a coefficient for converting the fluctuation amount of the pH into the fluctuation amount of the SC value. For example, K pH = −13.8. pH 0 is a reference value of pH, for example, pH 0 = 7.0.
 図7は、導電率とSC値との関係の一例を示す図である。図7は、塩化ナトリウムの注入によって被処理水の導電率を変化させた場合のSC値の変化を示す。図7において横軸は、導電率(EC)の対数を表し、縦軸はSC値を表す。なお、塩化ナトリウムの追加により被処理水のpHも変化するため、図7はSC値と導電率との関係を、SC値(実測値)でなく、上記(1)式により算出されるSC値(pH基準)との関係で表している。図7は、導電率の増加に応じてSC値も増加することを示している。すなわち、図7は、導電率とSC値との間には正の相関関係があることを示している。この相関関係に基づけば、導電率がある値を基準として変動する場合におけるSC値は、次の(2)式のように表すことができる。 FIG. 7 is a diagram showing an example of the relationship between conductivity and SC value. FIG. 7 shows the change in SC value when the conductivity of the water to be treated is changed by injection of sodium chloride. In FIG. 7, the horizontal axis represents the logarithm of conductivity (EC), and the vertical axis represents the SC value. In addition, since the pH of to-be-processed water also changes with addition of sodium chloride, FIG. 7 shows the SC value calculated by the above formula (1), not the SC value (actual value), as the relationship between the SC value and the conductivity. It is expressed in relation to (pH standard). FIG. 7 shows that the SC value increases as the conductivity increases. That is, FIG. 7 shows that there is a positive correlation between the conductivity and the SC value. Based on this correlation, the SC value when the conductivity varies with a certain value as a reference can be expressed as the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (2)式において「SC値(pH基準、導電率基準)」は、pH及び導電率の基準値からの変動量に応じて正規化されるSC値を表す。KEC-pHは、導電率の変動量をSC値の変動量に換算する係数であり、例えば、KEC-pH=8.2である。ECは導電率の基準値であり、例えば、EC=4.5である。なお、(2)式では、導電率の基準値(以下、「基準導電率」という。)を、例えば5[mS/m]とした場合の近似式である。 In the equation (2), “SC value (pH reference, conductivity reference)” represents an SC value normalized according to the amount of variation from the reference value of pH and conductivity. K EC-pH is a coefficient for converting the variation amount of the conductivity into the variation amount of the SC value. For example, K EC-pH = 8.2. EC 0 is a reference value of conductivity, for example, EC 0 = 4.5. Note that equation (2) is an approximate equation when the reference value of conductivity (hereinafter referred to as “reference conductivity”) is, for example, 5 [mS / m].
 なお、上述した(1)式におけるpHの基準値や、(2)式における導電率の基準値は、その環境において取り得る値の平均値などで表されてもよい。また、導電率の変化が大きくない場合には、SC値についての(2)式での正規化は省略されてもよく、SC値は(1)式のみで正規化されてもよい。 In addition, the reference value of pH in the above-described formula (1) and the reference value of conductivity in the formula (2) may be expressed by an average value of values that can be taken in the environment. If the change in conductivity is not large, the normalization of the SC value in the equation (2) may be omitted, and the SC value may be normalized only by the equation (1).
 図8は、第1の実施形態の注入支援装置220による水処理プロセス1のフィードバック制御の結果の一例を示す図である。図8は、(1)式のみでSC値を近似し、pH基準のSC値の目標値をゼロとして水処理プロセス1をフィードバック制御した場合の例である。 FIG. 8 is a diagram illustrating an example of a result of feedback control of the water treatment process 1 performed by the injection support apparatus 220 according to the first embodiment. FIG. 8 shows an example in which the SC value is approximated only by the equation (1), and the water treatment process 1 is feedback controlled with the target value of the pH-based SC value being zero.
 図8の例の制御結果では、約15mg/Lの注入率を上限として凝集剤注入率が周期に変化している。この注入率の上限は、注入率一定運転時における注入率の設定値である。一方で、上述したとおり、返送水の流入時にはSC値が上昇する。これに対して、ここでの制御はSC値の目標値をゼロとしているため、制御部223は、水処理プロセス1に対してSC値が低下する方向にフィードバック制御する。すなわち、制御部223は、水処理プロセス1に対して凝集剤の注入率を減少させる制御を行う。 In the control result of the example of FIG. 8, the flocculant injection rate changes in a cycle with the injection rate of about 15 mg / L as the upper limit. The upper limit of the injection rate is a set value of the injection rate at the time of constant injection rate operation. On the other hand, as described above, the SC value increases when the return water flows. On the other hand, since the control here sets the target value of the SC value to zero, the control unit 223 performs feedback control on the water treatment process 1 in a direction in which the SC value decreases. That is, the control unit 223 performs control to reduce the injection rate of the flocculant with respect to the water treatment process 1.
 また、図8の例の制御結果では、被処理水の濁度が良好に保たれていることが分かる。これは、すなわち、水処理プロセス1が、返送水中に残留している凝集剤を有効利用することができており、凝集剤注入率を減少させても被処理水の濁度が良好に保たれていることを示している。つまり、この場合、注入支援装置220は、図8に示す削減領域500-1、500-2及び500-3の面積分の凝集剤が削減可能となる。図8の例の場合、注入率の平均は12.8mg/Lとなり、注入率一定運転時に比べて注入する凝集剤の量を約15%削減することが可能である。 Also, it can be seen from the control results in the example of FIG. 8 that the turbidity of the water to be treated is kept good. This means that the water treatment process 1 can effectively use the flocculant remaining in the return water, and the turbidity of the water to be treated is kept good even when the flocculant injection rate is reduced. It shows that. That is, in this case, the injection support apparatus 220 can reduce the coagulant for the areas of the reduction regions 500-1, 500-2, and 500-3 shown in FIG. In the case of the example of FIG. 8, the average of the injection rate is 12.8 mg / L, and the amount of the flocculant to be injected can be reduced by about 15% compared to the operation at a constant injection rate.
 このように構成された第1の実施形態の注入支援装置220は、被処理水に注入される凝集剤の量を、凝集剤注入後の被処理水のSC値に基づいて制御することによって、返送水中に含まれる凝集剤の残留成分を有効利用した適切な凝集剤の注入を実現することができる。 The injection support apparatus 220 of the first embodiment configured as described above controls the amount of the flocculant injected into the water to be treated based on the SC value of the water to be treated after the flocculant is injected, Appropriate injection of the flocculant using the residual component of the flocculant contained in the return water can be realized.
(第2の実施形態)
 第2の実施形態の注入支援装置220は、第1の実施形態の注入支援装置220が、凝集剤注入後の被処理水の水質(例えば流動電流値)に基づいて、凝集剤100の注入量をフィードバック制御したのに対して、凝集剤注入前の被処理水の水質に基づいて凝集剤の注入率をフィードフォワード制御する。以下、第2の実施形態の注入支援装置220を、第1の実施形態の注入支援装置220と区別するために注入支援装置220aと記載する。
(Second Embodiment)
The injection support apparatus 220 according to the second embodiment is different from the injection support apparatus 220 according to the first embodiment in that the injection amount of the flocculant 100 is based on the quality of the water to be treated (for example, flowing current value) after the flocculant injection. However, the feed rate of the flocculant injection rate is controlled based on the quality of the water to be treated before the flocculant injection. Hereinafter, the injection support device 220 of the second embodiment is referred to as an injection support device 220a in order to distinguish it from the injection support device 220 of the first embodiment.
 この場合、注入支援装置220aは、注入前被処理水の導電率及びpHの一方又は両方に基づいて返送水の流入状況を捉え、返送水の流入状況に応じて凝集剤の注入量を増減させる。なお、返送水の流入状況はpHよりも導電率の方により強く表れるため、流入状況の把握には返送水の導電率を監視する方が望ましい。 In this case, the injection support device 220a captures the return water inflow state based on one or both of the conductivity and pH of the pre-injection treated water, and increases or decreases the injection amount of the flocculant according to the return water inflow state. . In addition, since the inflow situation of return water appears more strongly in terms of conductivity than pH, it is desirable to monitor the conductivity of return water for grasping the inflow situation.
 また、この場合、流入状況に応じた凝集剤の適正な注入量(以下、「適正注入量」という。)は、例えば、ビーカー試験の結果に基づいて予め設定される対応情報によって決定される。一般に、凝集剤の適正注入量は、導電率に比例して変化することが知られている。そのため、このような関係の詳細を予めビーカー試験によって明らかにすることで、導電率と凝集剤の適正注入量との関係を示す対応情報を生成することができる。 In this case, an appropriate injection amount of the flocculant according to the inflow state (hereinafter referred to as “appropriate injection amount”) is determined by correspondence information set in advance based on the result of the beaker test, for example. In general, it is known that the appropriate injection amount of the flocculant changes in proportion to the conductivity. Therefore, by clarifying the details of such a relationship in advance by a beaker test, it is possible to generate correspondence information indicating the relationship between the conductivity and the appropriate injection amount of the flocculant.
 例えば、注入支援装置220aは、凝集剤注入率一定運転中の水処理プロセス1について、注入前被処理水の導電率を監視することによって返送水の流入の有無を判定する。注入支援装置220は、返送水の流入が検知された場合、対応情報に基づいて、そのときの流入状況に応じた凝集剤の適正注入量を決定する。注入支援装置220aは、このように決定した適正注入量の凝集剤が注入されるように調整部90(薬剤注入ポンプ)をフィードフォワード制御する。 For example, the injection support device 220a determines the presence or absence of inflow of the return water by monitoring the conductivity of the pre-injection treated water for the water treatment process 1 in which the coagulant injection rate is constant. When an inflow of return water is detected, the injection support device 220 determines an appropriate injection amount of the flocculant according to the inflow state at that time based on the correspondence information. The injection assisting device 220a performs feedforward control of the adjustment unit 90 (drug injection pump) so that the appropriate amount of the flocculant determined as described above is injected.
 なお、対応情報は、返送水の流入流量と適正注入量との関係として表すことも可能であるが、凝集剤の適正注入量には被処理水の水質の変動が大きく影響する。そのため、対応情報は、返送水の単純な流入流量よりも、返送水による水質の変動を反映した被処理水の導電率を用いて表されるのが望ましい。次の式(3)は、被処理水の導電率を用いた場合において、凝集剤の適正注入率を決定する方法の具体例を示す式である。 The correspondence information can also be expressed as a relationship between the inflow rate of the return water and the appropriate injection amount, but the water quality of the treated water greatly affects the appropriate injection amount of the flocculant. Therefore, it is desirable that the correspondence information be expressed using the conductivity of the water to be treated that reflects the change in water quality due to the return water, rather than the simple inflow rate of the return water. The following formula (3) is a formula showing a specific example of a method for determining an appropriate injection rate of the flocculant when the conductivity of the water to be treated is used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (3)式において、Aは決定される凝集剤の適正注入率[mg/L]である。Aは、返送水が無いときの凝集剤注入率[mg/L](一定値)である。EC被処理水は、注入前被処理水の導電率[mS/m]であり、ECは基準導電率である。基準導電率は、本実施形態の制御が適用される種々の環境における標準的な導電率の値のことである。基準導電率は、制御対象となる環境において導電率が取り得る値の平均値などで表されてもよい。Kは導電率を注入率に変換する係数である。 In the formula (3), A is an appropriate injection rate [mg / L] of the coagulant to be determined. A 0 is the flocculant injection rate [mg / L] (constant value) when there is no return water. EC treated water has a conductivity [mS / m] before being injected, and EC 0 is a reference conductivity. The reference conductivity is a standard conductivity value in various environments to which the control of this embodiment is applied. The reference conductivity may be expressed by an average value of values that can be taken by the conductivity in the environment to be controlled. K A is a coefficient for converting conductivity into injection rate.
 このように構成された第2の実施形態の注入支援装置220aは、排水処理工程で汚泥から分離された水が返送水として凝集沈殿工程に返送される水処理プロセス1において、凝集剤の注入率を注入前被処理水の導電率に基づいて決定する。凝集剤の注入率がこのように決定されることによって、原水の水質変動が小さい場合であっても、返送水中に含まれる凝集剤の残留成分を考慮した適切な凝集剤の注入量で水処理プロセス1を運転することができる。 In the water treatment process 1 in which the water separated from the sludge in the wastewater treatment process is returned to the coagulation sedimentation process as the return water, the injection support apparatus 220a of the second embodiment configured as described above is an injection rate of the flocculant. Is determined based on the conductivity of the water to be treated before injection. By determining the injection rate of the flocculant in this way, water treatment is performed with an appropriate injection amount of the flocculant considering the residual components of the flocculant contained in the return water, even when the water quality fluctuation is small. Process 1 can be operated.
 以下、実施形態の凝集剤注入支援装置の変形例について説明する。 Hereinafter, modified examples of the flocculant injection support device of the embodiment will be described.
 制御部223がSC値や凝集剤注入量を正規化する方法は(1)式~(3)式に示した例に限定されない。例えば、制御部223は、被処理水の温度をパラメータに含む式を用いて正規化を行ってもよい。 The method by which the control unit 223 normalizes the SC value and the coagulant injection amount is not limited to the examples shown in the equations (1) to (3). For example, the control unit 223 may perform normalization using an expression that includes the temperature of the water to be treated as a parameter.
 水処理プロセス1の凝集沈殿工程において、凝集剤とpH調整剤とを併用する場合、制御部223は、凝集剤の注入量を制御する機能に加えて、pH調整剤の注入量を制御する機能を備えるように構成されてもよい。この場合、制御部223は、水質情報(例えば、pH計300によって測定される注入前又は注入後被処理水のpH)に基づいて、被処理水のpHが凝集剤による不要物の凝集に適した所定の範囲内となるように、pH調整剤の注入量を制御する。制御部223が、このようなpH調整機能を備えることにより、凝集剤の注入による不要物の凝集効果を高めることが可能となる。なお、pH調整剤の注入量を制御する機能部は、制御部223とは異なる第2の制御部として構成されてもよい。 When the coagulant and the pH adjuster are used together in the coagulation sedimentation step of the water treatment process 1, the control unit 223 functions to control the injection amount of the pH adjuster in addition to the function of controlling the injection amount of the coagulant. May be provided. In this case, the control unit 223 determines that the pH of the water to be treated is suitable for agglomeration of unnecessary substances by the flocculant based on the water quality information (for example, the pH of the water to be treated before or after injection measured by the pH meter 300). The injection amount of the pH adjusting agent is controlled so as to be within the predetermined range. When the control unit 223 has such a pH adjustment function, it is possible to enhance the aggregation effect of unnecessary substances due to the injection of the flocculant. Note that the functional unit that controls the injection amount of the pH adjusting agent may be configured as a second control unit different from the control unit 223.
 以上説明した少なくともひとつの実施形態によれば、凝集沈殿工程における被処理水の水質に関する水質情報を取得する取得部と、取得部によって取得された水質情報に基づいて凝集剤の注入量を制御する制御部と、を持つことにより、返送水の流入によって変動する被処理水の水質に応じて凝集剤の注入量を制御することができる。例えば水質情報には、被処理水の流動電流値が用いられてもよいし、被処理水のpHが用いられてもよい。また、水質情報には、被処理水の導電率が用いられてもよいし、返送水の流量が用いられてもよい。 According to at least one embodiment described above, an acquisition unit that acquires water quality information regarding the quality of the water to be treated in the coagulation sedimentation step, and the injection amount of the flocculant is controlled based on the water quality information acquired by the acquisition unit. By having the control unit, it is possible to control the injection amount of the flocculant according to the quality of the water to be treated which varies depending on the inflow of the return water. For example, the flow quality value of the water to be treated may be used as the water quality information, or the pH of the water to be treated may be used. Moreover, the electrical conductivity of to-be-processed water may be used for water quality information, and the flow volume of return water may be used.
 具体的には、上記実施形態の凝集剤注入支援装置は、上水プロセスに代表される凝集沈殿工程及び排水処理工程を有する水処理プロセスであって、排水処理工程で汚泥から分離された水を凝集沈殿工程に返送する水処理プロセスにおいて、凝集剤が注入される前又は後の被処理水の水質を計測することで被処理水の水質(例えば、浮遊粒子表面電荷)を把握し、被処理水の水質に応じて凝集剤の注入量を制御する。このような制御を行うことで、上述した水処理プロセスにおいて、返送水中に含まれる凝集剤の残留成分を考慮した適切な凝集剤の注入を実現できる。 Specifically, the flocculant injection support device of the above embodiment is a water treatment process having a coagulation sedimentation step and a wastewater treatment step typified by a water treatment process, and the water separated from sludge in the wastewater treatment step. In the water treatment process returned to the coagulation sedimentation process, the quality of the water to be treated (for example, the surface charge of suspended particles) is determined by measuring the quality of the water to be treated before or after the flocculant is injected. The injection amount of the flocculant is controlled according to the water quality. By performing such control, in the water treatment process described above, it is possible to realize an appropriate injection of the flocculant in consideration of the residual component of the flocculant contained in the return water.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  凝集剤を注入し、被処理水中の不要物を凝集及び沈殿させる凝集沈殿工程と、前記凝集沈殿工程において沈殿した汚泥を濃縮し、前記汚泥から水を分離する排水処理工程と、を含み、前記排水処理工程において前記汚泥から分離された水を返送水として前記凝集沈殿工程に返送し、前記凝集沈殿工程に送られてくる原水に前記返送水を加えて前記被処理水とする水処理プロセスにおいて、前記凝集沈殿工程における前記凝集剤の注入量を制御する装置であって、
     前記凝集沈殿工程における被処理水の水質に関する水質情報を取得する取得部と、
     前記取得部によって取得された前記水質情報に基づいて前記凝集剤の注入量を制御する制御部と、
     を備える凝集剤注入支援装置。
    A flocculating agent step for injecting a flocculating agent to agglomerate and precipitate unnecessary substances in the water to be treated; and a waste water treatment step for concentrating the sludge precipitated in the flocculating precipitation step and separating water from the sludge, In the water treatment process in which the water separated from the sludge in the wastewater treatment process is returned to the coagulation sedimentation process as return water, and the return water is added to the raw water sent to the coagulation sedimentation process to form the treated water. , An apparatus for controlling the amount of the flocculant injected in the coagulation sedimentation step,
    An acquisition unit for acquiring water quality information on the quality of the water to be treated in the coagulation sedimentation step;
    A control unit for controlling the amount of the flocculant injected based on the water quality information acquired by the acquisition unit;
    A flocculant injection support device.
  2.  前記取得部は、前記被処理水の流動電流値を前記水質情報として取得し、
     前記制御部は、前記水質情報が示す流動電流値に応じて前記凝集剤の注入量を制御する、
     請求項1に記載の凝集剤注入支援装置。
    The acquisition unit acquires a flow current value of the treated water as the water quality information,
    The control unit controls the injection amount of the flocculant according to the flowing current value indicated by the water quality information.
    The flocculant injection support device according to claim 1.
  3.  前記取得部は、前記被処理水のpH又は導電率を前記水質情報の一部として取得し、
     前記制御部は、前記被処理水のpH又は導電率を用いて正規化された流動電流値に基づいて前記凝集剤の注入量を制御する、
     請求項2に記載の凝集剤注入支援装置。
    The acquisition unit acquires the pH or conductivity of the treated water as part of the water quality information,
    The control unit controls the injection amount of the flocculant based on the flow current value normalized using the pH or conductivity of the water to be treated.
    The flocculant injection support device according to claim 2.
  4.  前記取得部は、前記凝集剤が注入された後の被処理水について前記水質情報を取得し、
     前記制御部は、前記水質情報が示す前記被処理水の水質の変化に応じて、前記被処理水の水質が所定の目標値に近づくように前記凝集剤の注入量を制御する、
     請求項1から3のいずれか一項に記載の凝集剤注入支援装置。
    The acquisition unit acquires the water quality information about the water to be treated after the flocculant is injected,
    The control unit controls the injection amount of the flocculant so that the water quality of the treated water approaches a predetermined target value according to a change in the quality of the treated water indicated by the water quality information.
    The flocculant injection support device according to any one of claims 1 to 3.
  5.  前記取得部は、前記凝集剤が注入される前の被処理水について前記水質情報を取得し、
     前記制御部は、前記水質情報に基づいて前記返送水の返送の有無を検出し、前記返送水の返送が行われている間、前記水質情報が示す前記被処理水の水質に応じて前記凝集剤の注入量を制御する、
     請求項1から3のいずれか一項に記載の凝集剤注入支援装置。
    The acquisition unit acquires the water quality information about the water to be treated before the flocculant is injected,
    The control unit detects whether or not the return water is returned based on the water quality information, and the aggregation is performed according to the quality of the treated water indicated by the water quality information while the return water is being returned. To control the injection amount of the agent,
    The flocculant injection support device according to any one of claims 1 to 3.
  6.  前記取得部は、前記被処理水の導電率を前記水質情報として取得し、
     前記制御部は、前記被処理水の導電率の変化に基づいて前記返送水の有無を検出する、
     請求項5に記載の凝集剤注入支援装置。
    The acquisition unit acquires the conductivity of the treated water as the water quality information,
    The control unit detects the presence or absence of the return water based on a change in conductivity of the water to be treated.
    The flocculant injection support device according to claim 5.
  7.  前記取得部は、前記被処理水のpHを前記水質情報として取得し、
     前記制御部は、前記被処理水のpHの変化に基づいて前記返送水の有無を検出する、
     請求項5又は6に記載の凝集剤注入支援装置。
    The acquisition unit acquires the pH of the treated water as the water quality information,
    The control unit detects the presence or absence of the return water based on a change in pH of the water to be treated.
    The flocculant injection support device according to claim 5 or 6.
  8.  前記取得部は、前記返送水の流量を前記水質情報として取得し、
     前記制御部は、前記返送水の流量の変化に基づいて前記返送水の有無を検出する、
     請求項5から7のいずれか一項に記載の凝集剤注入支援装置。
    The acquisition unit acquires the flow rate of the return water as the water quality information,
    The control unit detects the presence or absence of the return water based on a change in the flow rate of the return water.
    The flocculant injection support device according to any one of claims 5 to 7.
  9.  前記凝集沈殿工程において、前記凝集剤に加え、酸剤又はアルカリ剤のpH調整剤が前記被処理水に注入される場合、
     前記制御部は、前記水質情報に基づいて、前記被処理水のpHが所定の範囲内となるように前記pH調整剤の注入量を制御する、
     請求項1から8のいずれか一項に記載の凝集剤注入支援装置。
    In the coagulation sedimentation step, in addition to the coagulant, an acid agent or an alkaline agent pH adjuster is injected into the water to be treated.
    The control unit controls the injection amount of the pH adjusting agent based on the water quality information so that the pH of the water to be treated is within a predetermined range.
    The flocculant injection support device according to any one of claims 1 to 8.
  10.  凝集剤を注入し、被処理水中の不要物を凝集及び沈殿させる凝集沈殿工程と、前記凝集沈殿工程において沈殿した汚泥を濃縮し、前記汚泥から水を分離する排水処理工程と、を含み、前記排水処理工程において前記汚泥から分離された水を返送水として前記凝集沈殿工程に返送し、前記凝集沈殿工程に送られてくる原水に前記返送水を加えて前記被処理水とする水処理プロセスにおいて、前記凝集沈殿工程における前記凝集剤の注入量を制御する制御方法であって、
     前記凝集沈殿工程における被処理水の水質に関する水質情報を取得する取得ステップと、
     前記取得ステップにおいて取得された前記水質情報に基づいて前記凝集剤の注入量を制御する制御ステップと、
     を有する制御方法。
    A flocculating agent step for injecting a flocculating agent to agglomerate and precipitate unnecessary substances in the water to be treated; and a waste water treatment step for concentrating the sludge precipitated in the flocculating precipitation step and separating water from the sludge, In the water treatment process in which the water separated from the sludge in the wastewater treatment process is returned to the coagulation sedimentation process as return water, and the return water is added to the raw water sent to the coagulation sedimentation process to form the treated water. A control method for controlling the amount of the flocculant injected in the coagulation sedimentation step,
    An acquisition step of acquiring water quality information relating to the quality of water to be treated in the coagulation sedimentation step;
    A control step of controlling the injection amount of the flocculant based on the water quality information acquired in the acquisition step;
    A control method.
PCT/JP2016/071208 2015-10-20 2016-07-20 Flocculant injection assistance device and control method WO2017068825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206435 2015-10-20
JP2015206435A JP6633342B2 (en) 2015-10-20 2015-10-20 Coagulant injection support device and control method

Publications (1)

Publication Number Publication Date
WO2017068825A1 true WO2017068825A1 (en) 2017-04-27

Family

ID=58556963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071208 WO2017068825A1 (en) 2015-10-20 2016-07-20 Flocculant injection assistance device and control method

Country Status (2)

Country Link
JP (1) JP6633342B2 (en)
WO (1) WO2017068825A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069197A (en) * 2016-11-02 2018-05-10 共立機巧株式会社 Controller for operation of reciprocating pump
JP2020082010A (en) * 2018-11-29 2020-06-04 株式会社東芝 Control device, solid-liquid separation method, and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179486B2 (en) * 2018-05-01 2022-11-29 株式会社東芝 Coagulant injection control device, coagulant injection control method and computer program
JP7441108B2 (en) 2020-04-23 2024-02-29 オルガノ株式会社 Water treatment method and water treatment equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230608A (en) * 1983-06-15 1984-12-25 Hitachi Ltd Flocculant injection control method in waste water treating plant
JPH08257310A (en) * 1995-03-28 1996-10-08 Kurita Water Ind Ltd Sedimentation apparatus
JP2001327806A (en) * 2000-05-19 2001-11-27 Nishihara Environ Sanit Res Corp Automatic injection device of flocculant for water cleaning
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus
JP2008161809A (en) * 2006-12-28 2008-07-17 Toshiba Corp Coagulant injection control system
JP2008196862A (en) * 2007-02-08 2008-08-28 Toshiba Corp System for detecting state of aggregation
JP2011156529A (en) * 2009-10-30 2011-08-18 Mitsuyoshi Yamazaki Flocculant injection rate determination device and flocculant injection rate control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230608A (en) * 1983-06-15 1984-12-25 Hitachi Ltd Flocculant injection control method in waste water treating plant
JPH08257310A (en) * 1995-03-28 1996-10-08 Kurita Water Ind Ltd Sedimentation apparatus
JP2001327806A (en) * 2000-05-19 2001-11-27 Nishihara Environ Sanit Res Corp Automatic injection device of flocculant for water cleaning
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus
JP2008161809A (en) * 2006-12-28 2008-07-17 Toshiba Corp Coagulant injection control system
JP2008196862A (en) * 2007-02-08 2008-08-28 Toshiba Corp System for detecting state of aggregation
JP2011156529A (en) * 2009-10-30 2011-08-18 Mitsuyoshi Yamazaki Flocculant injection rate determination device and flocculant injection rate control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069197A (en) * 2016-11-02 2018-05-10 共立機巧株式会社 Controller for operation of reciprocating pump
JP2020082010A (en) * 2018-11-29 2020-06-04 株式会社東芝 Control device, solid-liquid separation method, and computer program
JP7199210B2 (en) 2018-11-29 2023-01-05 株式会社東芝 Control device, solid-liquid separation method, computer program, and solid-liquid separation system

Also Published As

Publication number Publication date
JP6633342B2 (en) 2020-01-22
JP2017077525A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5422516B2 (en) Aggregation magnetic separator
WO2017068825A1 (en) Flocculant injection assistance device and control method
JP5951423B2 (en) Flocculant injection control method and flocculant injection control system
KR101645540B1 (en) Method for feeding coagulant for water-purification and apparatus for water-purification using the same
JP6976143B2 (en) Water treatment system and water treatment method
JP2012045441A (en) Method and apparatus for dewatering organic sludge
JP2016191679A (en) Flocculation state detection method, chemical injection control method and chemical injection control device
JP2002159805A (en) Flocculant injection control method of water purification plant
JP2007098287A (en) Method for controlling operation of water purifying process
JP6301850B2 (en) Flocculant injection support device and flocculant injection system
JP2019155283A (en) Chemical addition amount control device and chemical addition amount control method
JP7249818B2 (en) Coagulant injection control device, coagulant injection control method and computer program
JPH06226011A (en) Flocculant injection control method in water treating flocculation process and flocculant injection control device
JP2019198806A (en) Water treatment method, and water treatment device
JP3522650B2 (en) Automatic coagulant injection device for water purification
JP2008279412A (en) Method of controlling feeding chemicals
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
JP2018143937A (en) Aggregation control device, aggregation control method and aggregation control system
JP2002066568A (en) Water treating method and apparatus
WO2017006823A1 (en) Flocculant injection assistance device and flocculant injection assistance system
JP2024034867A (en) Coagulant injection control device, coagulant injection control method, and computer program
JP7225073B2 (en) Coagulating filtration method and coagulating filtration device
JP5723916B2 (en) Method and apparatus for dewatering organic sludge
JPH0567322B2 (en)
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857143

Country of ref document: EP

Kind code of ref document: A1