WO2017006823A1 - Flocculant injection assistance device and flocculant injection assistance system - Google Patents

Flocculant injection assistance device and flocculant injection assistance system Download PDF

Info

Publication number
WO2017006823A1
WO2017006823A1 PCT/JP2016/069269 JP2016069269W WO2017006823A1 WO 2017006823 A1 WO2017006823 A1 WO 2017006823A1 JP 2016069269 W JP2016069269 W JP 2016069269W WO 2017006823 A1 WO2017006823 A1 WO 2017006823A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flocculant
injection
current value
value
Prior art date
Application number
PCT/JP2016/069269
Other languages
French (fr)
Japanese (ja)
Inventor
美意 早見
清一 村山
法光 阿部
卓 毛受
太 黒川
服部 大
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2017006823A1 publication Critical patent/WO2017006823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment

Definitions

  • Embodiments of the present invention relate to a flocculant injection support device and a flocculant injection support system.
  • flocculant is injected into the water storage part in the water purification process.
  • the injection amount or injection rate of the flocculant is determined based on the flow current value of the raw water.
  • the flowing current value needs to be corrected according to a parameter relating to water quality (hereinafter referred to as “water quality parameter”).
  • the water quality parameters are, for example, pH (logarithm of hydrogen ion concentration), conductivity, and water temperature.
  • the problem to be solved by the present invention is to provide a flocculant injection support device and a flocculant injection support system that can support the determination of the injection amount or injection rate of the flocculant even when the water quality parameter changes. is there.
  • the flocculant injection support device of the embodiment has a correction unit and a control unit.
  • the correction unit is the water quality parameter of the water collected from the water collected from the water reservoir into which the flocculant is injected, or the water flowing current value collected from the upstream side of the water flow with respect to the water reservoir. Correct based on The control unit determines a candidate for the injection amount or injection rate of the flocculant based on the corrected flow current value.
  • the figure which shows the example of a relationship between electrical conductivity and flowing current value in embodiment The figure which shows the example of a relationship between the electrical conductivity represented by the logarithm, and the corrected flowing current value in embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a water treatment system 1 including an injection support device (coagulant injection support device).
  • the water treatment system 1 is referred to as a “water treatment system 1a”.
  • the water treatment system 1a is not limited to a specific facility as long as the facility includes a device (solid-liquid separation device) that performs treatment using a flocculant on water.
  • the water treatment system 1a is, for example, a water purification plant, a paper factory, or a food factory.
  • the water treatment system 1a is a water purification plant as an example.
  • the water treatment system 1a includes a intake well 10, a landing well 20, a contact pond 30, a mixing basin 40, a flock formation basin 50, a sedimentation basin 60, a sand filtration ridge 70, a water distribution basin 80, and an adjustment unit. 90, a flocculant 100, and an injection support system 200 (coagulant injection support system).
  • the intake well 10 is located most upstream with respect to the flow of water.
  • the distribution reservoir 80 is located most downstream with respect to the flow of water.
  • the intake well 10 temporarily stores raw water.
  • the raw water from the intake well 10 is sent to the landing well 20.
  • plants and earth and sand are settled and separated from the raw water.
  • the supernatant water of the landing well 20 is sent to the contact pond 30.
  • the water sent from the landing well 20 and the adsorbent are mixed.
  • the adsorbent is, for example, activated carbon.
  • the adsorbent adsorbs the chromaticity component and the soluble component contained in the supernatant water of the landing well 20.
  • the soluble component is, for example, a soluble organic substance.
  • the contact pond 30 is provided with a conductivity meter 31 and a water temperature meter 32.
  • the conductivity meter 31 measures the conductivity of the supernatant water of the contact pond 30.
  • the conductivity meter 31 transmits information representing the measurement result of the conductivity to the injection support system 200.
  • the water thermometer 32 measures the temperature of the supernatant water of the contact pond 30.
  • the water temperature gauge 32 transmits information representing the measurement result of the water temperature to the injection support system 200.
  • the contact basin 30 includes a flow meter 33 in a pipe that leads to the mixing basin 40.
  • the flow meter 33 measures the flow rate of water sent to the mixing basin 40 at a predetermined time.
  • the flow meter 33 transmits information representing the flow measurement result to the injection support system 200.
  • the water temperature meter 32 may measure the temperature of the water measured by the conductivity meter 31.
  • the water temperature meter 32 may measure the temperature of the water whose flow rate is measured by the flow meter 33.
  • the conductivity meter 31 may be installed in the mixing basin 40.
  • the supernatant water of the contact basin 30 is sent to the mixing basin 40 (rapid stirring basin).
  • the coagulant 100 is poured into water by the adjusting unit 90.
  • the flocculant 100 may be poured into water manually by an operator of the water treatment system 1a.
  • the mixing basin 40 is provided with a mixing device 41 and a pH meter 42.
  • the mixing device 41 mixes the water sent from the contact pond 30 and the flocculant 100.
  • the mixing device 41 uses, for example, a rapid stirring device (flash mixer), a stirring device having a driving unit such as a motor, a stirring device without a driving unit (static mixer), or a circulating flow generated by a submersible pump. It is a stirring device.
  • the charged state of the suspended matter (Suspended Solids) is neutralized by the flocculant 100. Due to the neutralization of the charged state, the suspended material aggregates. Suspended substances are, for example, earth and sand having a fine particle size, chromaticity components, soluble components, and algae.
  • fine flocs are formed in the water by the stirring by the mixing device 41.
  • the pH meter 42 measures the pH value of water (logarithm of hydrogen ion concentration) immediately after the flocculant 100 is mixed. In the first embodiment, the pH meter 42 measures the pH value of the water in the mixing basin 40. The pH meter 42 transmits information representing the measurement result of the pH value to the injection support system 200. A pH adjusting agent may be injected into the contact basin 30 or the mixing basin 40.
  • Water containing fine flocs is sent from the mixing basin 40 to the floc formation pond 50.
  • the flock formation pond 50 causes fine flocks contained in water to collide with each other to grow flocks.
  • the sedimentation basin 60 sediments flocs grown in water.
  • the sedimentation basin 60 includes a turbidimeter 61 on a pipe that leads to the sand filtration building 70.
  • the turbidimeter 61 measures the turbidity of the supernatant water sent from the sedimentation basin 60.
  • the turbidimeter 61 transmits the measurement result of turbidity to the injection support system 200.
  • the water from the sedimentation basin 60 is sent to the sand filtration building 70.
  • the sand filtration building 70 filters the water sent from the settling basin 60.
  • the sand filtration building 70 has a column shape.
  • the sand filtration building 70 may be a water tank having an opening.
  • the pipe for supplying water may be packed with an adsorbent.
  • the sand filtration building 70 may be a rectangular sand filtration pond.
  • the filtered water is sent from the sand filtration building 70 to the distribution reservoir 80.
  • chlorine is injected into the water.
  • Water disinfected with chlorine is distributed from the distribution reservoir 80.
  • the distributed water is supplied to houses.
  • the adjustment unit 90 is a mechanism that can adjust the injection amount or injection rate of the flocculant 100. Any mechanism that can adjust the injection amount or injection rate of the flocculant 100 may be used.
  • the adjustment unit 90 is, for example, a pump.
  • the adjustment unit 90 injects the injection amount of the flocculant 100 determined by the injection support system 200 including an information processing apparatus or the like into the mixing basin 40.
  • the adjustment unit 90 may inject the flocculant 100 having the injection amount or injection rate determined by the injection support system 200 into the mixing basin 40.
  • the injection amount of the flocculant 100 is adjusted, for example, in units of liters.
  • the injection rate of the flocculant 100 is expressed by the injection amount of the flocculant 100 per unit time and the flow rate measured by the flow meter 33. For example, the unit of the injection rate of the flocculant 100 is “liter / hour”.
  • the adjustment unit 90 may change the injection amount or injection rate of the flocculant 100 using an inverter or a solenoi
  • the flocculant 100 is a drug charged to a positive charge. In addition, suspended substances and bubbles of water are charged with a negative charge.
  • the flocculant 100 injected into the water agglomerates particles such as suspended substances contained in the water by neutralizing the charged state of the suspended substances in the water.
  • the flocculant 100 is, for example, an inorganic flocculant such as polyaluminum chloride (PAC: Poly-Aluminum Chloride), sulfuric acid band, ferric chloride, ferrous sulfate, polysilica iron.
  • the flocculant 100 may be used in combination with a polymer flocculant.
  • the polymer flocculant is, for example, a cationic polymer, an anionic polymer, or an amphoteric polymer.
  • the flocculant 100 may be used in combination with a pH adjuster.
  • the pH adjuster can adjust the pH value of water until it is in a pH range that is suitable for aggregation.
  • the pH adjusting agent may be an acidic adjusting agent or an alkaline adjusting agent.
  • the acidic regulator is, for example, sulfuric acid or hydrochloric acid.
  • Examples of the alkaline adjusting agent are caustic soda and calcium hydroxide.
  • the injection support system 200 includes a flow ammeter 210 (SCD: Streaming Current Detector), a pH correction unit 220, a conductivity correction unit 230, a water temperature correction unit 240, an injection support device 250, and a presentation device 260. .
  • SCD Streaming Current Detector
  • FIG. 2 is a diagram illustrating a configuration example of the flow ammeter 210.
  • the flowing ammeter 210 is a measuring device having a sensor for measuring the flowing current value (SC value) of water.
  • the measuring device may include other sensors that measure other than the flowing current value.
  • the flow ammeter 210 includes a probe 211, a piston 212, and an electrode 213.
  • Water in the mixing basin 40 is sent to the flow ammeter 210 by a water supply mechanism such as a pump or a water level difference.
  • the water sent to the flow ammeter 210 may be returned to the mixing basin 40. Thereby, the flow ammeter 210 can enhance the mixing action in the mixing basin 40.
  • the interval between the probe 211 and the piston 212 is, for example, 0.1 mm.
  • the piston 212 reciprocates in a space surrounded by the probe 211.
  • the electrode 213-1 measures the flowing current of the water poured into the probe 211, and outputs a signal corresponding to the measured flowing current.
  • the flowing current of water is generated by the movement of the charged suspended matter that occurs as the piston 212 moves up and down.
  • Flowing ammeter 210 outputs a flowing current value indicating a signal corresponding to the measured flowing current to injection support apparatus 250. The same applies to the electrode 213-2.
  • the flow ammeter 210 is, for example, a flow electrometer that continuously detects the charged state of the suspended matter.
  • the flow ammeter 210 may be a zeta electrometer that intermittently detects the charge state of the suspended matter.
  • the flowing current value increases or decreases according to the injection amount or injection rate of the flocculant 100.
  • the flow ammeter 210 continuously measures the flow current value of the water immediately after the flocculant 100 and the raw water are stirred and mixed. In the following, the flow ammeter 210 continuously measures the flow current value of the water in the mixing basin 40 and transmits it to the injection support device 250 based on a preset time period.
  • the flow ammeter 210 may continuously measure the flow current value of the water at the outlet of the mixing basin 40 and the inlet of the flock formation basin 50.
  • the flow ammeter 210 may transmit the flow current value of the water at the outlet of the mixing basin 40 or the inlet of the flock formation pond 50 to the injection support device 250 based on a preset time period.
  • the flowing current value is easily affected by the water quality parameter, it is corrected based on the water quality parameter.
  • the flowing current value is corrected by the pH correction unit 220 based on the measurement result of pH.
  • the flowing current value is corrected by the water temperature correction unit 240 based on the conductivity measurement result.
  • the flowing current value is corrected by the water temperature correction unit 240 based on the measurement result of the water temperature.
  • FIG. 3 is a diagram showing an example of the relationship between the flowing current value and turbidity.
  • the horizontal axis represents the flowing current value.
  • the flowing current value changes according to the injection amount of the flocculant 100.
  • the left vertical axis represents turbidity (NTU: Nephelometric Turbidity Unit).
  • the unit of turbidity is not limited to NTU, but may be “degree” or “mg / L”.
  • the right vertical axis represents the suction filtration time ratio (STR: Suction Time Ratio).
  • An example of the relationship between the flowing current value and the turbidity is stored in the storage unit 253 in the form of table data, for example.
  • the flowing current value increases.
  • the turbidity of water measured by the turbidimeter 61 decreases.
  • the control value (reference value) and the suction filtration time ratio is the lowest, the load on the downstream sand filtration building 70 is reduced with respect to the flow of water. In this case, the water becomes the clearest overall. In FIG. 3, the water is clearest when the turbidity is lowest.
  • the target value of the injection amount (injection rate) of the flocculant 100 is the injection amount (injection rate) at which water is clarified.
  • the control unit 252 acquires the measurement result of the turbidity measured by the turbidimeter 61 from the interface 251.
  • the control unit 252 determines the injection amount or injection rate candidate of the flocculant 100 based on the measurement result of turbidity so that the flowing current value becomes the target value.
  • the controller 252 injects the flocculant 100 until the turbidity measurement result reaches the turbidity threshold.
  • the turbidity threshold is a turbidity determined in advance based on the result of the water quality test so that the water becomes the clearest.
  • the control unit 252 may increase the target value of the flowing current value when the measurement result of the turbidity measured by the turbidimeter 61 exceeds the turbidity threshold.
  • the control unit 252 may acquire the measurement result of the suction filtration time ratio from the interface 251.
  • the controller 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the measurement result of the suction filtration time ratio so that the flowing current value becomes the target value. Candidates for the injection amount or injection rate of the flocculant 100 are presented to the presentation device 260.
  • the control unit 252 acquires, from the interface 251, the injection amount or injection rate selected by the operator of the water treatment system 1 a among the injection amount or injection rate candidates of the flocculant 100.
  • the control unit 252 transmits the injection amount or injection rate selected by the operator of the water treatment system 1a to the adjustment unit 90.
  • the controller 252 causes the adjusting unit 90 to inject the flocculant 100 having the injection amount or injection rate selected by the operator.
  • the control unit 252 injects the flocculant 100 having the injection amount or injection rate selected by the operator until the measurement result of the suction filtration time ratio reaches the STR threshold value.
  • the STR threshold is a suction filtration time ratio determined in advance based on the result of the water quality test so that the water becomes the clearest.
  • the flowing current value is easily affected by water quality parameters. For this reason, the measured flowing current value is converted into the flowing current value in the standard state based on the water quality parameter. That is, the measured flowing current value is corrected based on the water quality parameter. Candidates for the injection amount or injection rate of the flocculant 100 are determined based on the corrected flow current value.
  • the standard state is, for example, a state where water is 25 degrees Celsius, pH 7.0, and conductivity 10 mS / m.
  • the standard state may be defined by an operator of the water treatment system 1a.
  • the operator of the water treatment system 1a may define the standard state based on the annual average value or the monthly average value of the raw water quality of the water treatment system 1a that is actually operated.
  • the pH correction unit 220 acquires the measurement result of the pH value from the pH meter 42.
  • the pH correction unit 220 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the pH value.
  • FIG. 4 is a diagram showing an example of the relationship between pH and flowing current value.
  • the horizontal axis indicates pH.
  • the vertical axis represents the flowing current value.
  • An example of the relationship between pH and flowing current value is stored in the storage unit 253 in the form of table data, for example.
  • the a streaming current and pH a linear relationship monotonically decreasing slope of K pH.
  • the control unit 252 determines a correction value (hereinafter referred to as “pH correction value”) based on the measurement result of the pH value.
  • the flowing current value is corrected based on the pH correction value.
  • the control unit 252 determines the pH correction value based on the formula (1) indicating the relationship between the pH and the flowing current value.
  • ⁇ Z pH indicates a pH correction value.
  • pH indicates the measurement result of the pH value.
  • pH m indicates a pH value in a standard state.
  • Operator of the water treatment system 1a defines the value of K pH by quality test. The operator of the water treatment system 1a may determine the value of the change amount KpH of the flowing current value based on the operation results of the water treatment system 1a.
  • the pH correction unit 220 adds the pH correction value ⁇ Z pH to the flowing current value measured by the flowing ammeter 210.
  • the conductivity correction unit 230 acquires the conductivity measurement result from the conductivity meter 31.
  • the conductivity correcting unit 230 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the conductivity.
  • FIG. 5 is a diagram showing an example of the relationship between conductivity and flowing current value.
  • the horizontal axis indicates the conductivity.
  • the vertical axis represents the flowing current value.
  • the flowing current value approaches the value 0 nonlinearly as the conductivity increases. That is, the absolute value of the flowing current value is smaller as the conductivity increases. Therefore, the sensitivity of the flow ammeter 210 is higher as the conductivity is smaller.
  • FIG. 6 is a diagram showing an example of the relationship between the electrical conductivity expressed in logarithm and the flowing current value.
  • the horizontal axis shows the conductivity expressed by logarithm.
  • the vertical axis represents the flowing current value.
  • An example of the relationship between the electrical conductivity and the flowing current value expressed in logarithm is stored in the storage unit 253 in the form of table data, for example. Since the sensitivity of the flow ammeter 210 is higher as the conductivity is smaller, the conductivity correction unit 230 corrects the flow current value measured by the flow ammeter 210 based on the measurement result of the conductivity expressed by logarithm. .
  • the relationship between the electrical conductivity and the flowing current value can be linearized using a logarithm as shown in Equation (2).
  • a linear relationship of monotonically increasing slope is K EC.
  • the control unit 252 determines a correction value (hereinafter referred to as “EC correction value”) based on the measurement result of the conductivity (EC).
  • the flowing current value is corrected based on the EC correction value.
  • the control unit 252 determines the EC correction value based on Expression (2) indicating the relationship between the conductivity and the flowing current value.
  • ⁇ Z EC indicates an EC correction value.
  • EC m indicates the conductivity in the standard state.
  • EC indicates the measurement result of conductivity.
  • Conductivity correction unit 230 adds the EC correction value [Delta] Z EC to flow a current value measured by the streaming current meter 210.
  • the water temperature correction unit 240 acquires the measurement result of the water temperature from the water temperature gauge 32.
  • the water temperature correction unit 240 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the water temperature.
  • FIG. 7 is a diagram illustrating a relationship example between the water temperature and the flowing current value.
  • the horizontal axis indicates the water temperature.
  • the vertical axis represents the flowing current value.
  • the vertical axis represents the flowing current value.
  • An example of the relationship between the water temperature and the flowing current value is stored in the storage unit 253 in the form of table data, for example.
  • the relationship between water temperature and flow current value a linear relationship with monotonically decreasing slope of K t.
  • the controller 252 determines a correction value (hereinafter referred to as “water temperature correction value”) based on the measurement result of the water temperature.
  • the flowing current value is corrected based on the water temperature correction value.
  • the control unit 252 determines the water temperature correction value based on the equation (3) indicating the relationship between the water temperature and the flowing current value.
  • ⁇ Z t represents a water temperature correction value.
  • t m represents the water temperature in the standard state.
  • t indicates the measurement result of the water temperature.
  • Operator of the water treatment system 1a defines the value of K t the water quality testing.
  • Water temperature correction unit 240 adds the water temperature correction value [Delta] Z t to flow current value measured by the streaming current meter 210.
  • the corrected flowing current value is represented by the equation (4) based on the flowing current value measured by the flowing ammeter 210, the pH correction value ⁇ Z pH , the EC correction value ⁇ Z EC, and the water temperature correction value ⁇ Z t. .
  • Corrected flowing current value Measured flowing current value + ⁇ Z pH + ⁇ Z EC + ⁇ Z t (4)
  • Injection support device 250 is an information processing device such as a computer terminal or a server device. Injection support device 250 may be a single device or a plurality of devices. When the injection support apparatus 250 is a plurality of apparatuses, the injection support apparatus 250 may be operated by cloud computing technology. The injection support apparatus 250 may perform operations on various types of data in the key value store format using cloud computing technology. In the injection support apparatus 250, a web browser may operate. In the injection support apparatus 250, at least one of monitoring, failure handling, and operation of the injection support apparatus 250 may be performed by a proxy service.
  • an entity for example, ASP: “Application” Service ”Provider
  • an entity other than the entity that operates the water treatment system 1a may act on behalf of the injection support apparatus 250 to monitor, troubleshoot, and operate.
  • the injection support apparatus 250 may be monitored, handled by the injection support apparatus 250, and operated by a plurality of entities.
  • the injection support apparatus 250 includes an interface 251, a control unit 252, and a storage unit 253. Some or all of the interface 251 and the control unit 252 are software function units that function when a processor such as a CPU (Central Processing Unit) executes a program stored in the storage unit 253, for example. Also, some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • the interface 251 acquires the turbidity measurement result from the turbidimeter 61.
  • the interface 251 acquires the flowing current value measured by the flowing ammeter 210 from the flowing ammeter 210.
  • the measured flowing current value is corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220. Therefore, the interface 251 acquires the flowing current value corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220.
  • the control unit 252 acquires the flowing current value corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220 from the interface 251.
  • the control unit 252 sends the target value Z SV of the flowing current value, the limit value of the injection rate RPAC of the flocculant 100, and the dilution rate D of the flocculant 100 to the outside of the injection support system 200 via the interface 251. Get from.
  • the controller 252 determines a candidate for the injection amount A PAC or the injection rate R PAC of the flocculant 100 by PI (Proportional Integral) control based on the corrected flow current value.
  • the control unit 252 may determine a candidate for the injection amount A PAC or the injection rate R PAC of the flocculant 100 by PID (Proportional Integral Derivative) control based on the corrected flowing current value.
  • control unit 252 a streaming current Z PV corrected on the basis of the water quality parameters, the difference e n between the target value Z SV of streaming current is determined based on the equation (5).
  • Z SV indicates a target value of the flowing current value (SC value).
  • Z PV indicates a flowing current value corrected based on the water quality parameter.
  • Control unit 252 calculates the difference between the difference e n-1 of the streaming current in the difference e n and (n-1) th control period of streaming current in the control period of the n-th.
  • the control unit 252 determines candidates for the injection amount of the flocculant 100 per liter of water based on the equation (6). That is, the control unit 252 determines a candidate for the injection amount of the flocculant 100.
  • a PAC K p ⁇ (e n ⁇ e n ⁇ 1 ) (6)
  • a PAC indicates the injection amount (in milliliters) of the flocculant 100 per liter of water.
  • the control unit 252 determines the injection rate of the flocculant 100 based on the equation (7).
  • R PAC A PAC ⁇ D ⁇ f ⁇ r PAC ⁇ 1 ⁇ 10 ⁇ 3 (7)
  • RPAC indicates the injection rate (in milliliters) of flocculant 100 per minute. That is, A PAC indicates the injection rate (milliliter / minute) of the flocculant 100. D indicates the dilution factor of the flocculant 100. f indicates the flow rate (liter) of water per minute. r PAC indicates the specific gravity of the flocculant 100.
  • the control unit 252 performs footback control of the injection rate of the flocculant 100 based on the corrected flowing current value. For example, when the injection rate of the flocculant 100 is within a predetermined limit value, the control unit 252 outputs the injection rate of the flocculant 100 to the adjustment unit 90. The adjustment unit 90 injects the flocculant 100 into the mixing basin 40 based on the injection rate of the flocculant 100. For example, the control unit 252 outputs the limit value to the adjustment unit 90 when the injection rate of the flocculant 100 is not within a predetermined limit value range. The adjustment unit 90 injects the flocculant 100 into the mixing basin 40 based on the limit value.
  • the storage unit 253 includes, for example, a nonvolatile storage medium (non-temporary recording medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive).
  • the storage unit 253 may include, for example, a volatile storage medium such as a RAM (Random Access Memory) or a register.
  • the storage unit 253 stores, for example, a program for causing the software function unit to function.
  • the storage unit 253 stores, for example, a data table.
  • the presentation device 260 is a display device having a display screen (presentation unit) such as a liquid crystal display (LCD).
  • the presentation device 260 acquires the target value of the injection amount of the flocculant 100 from the control unit 252 via the interface 251.
  • the presentation device 260 displays the target value of the injection amount of the flocculant 100 on the display screen.
  • the operator of the water treatment system 1a can adjust the injection amount of the flocculant 100 by operating the adjustment unit 90 so that the injection amount of the flocculant 100 becomes the target value of the flocculant 100.
  • the presentation device 260 displays a target value of the injection amount of the flocculant 100 and a determination result indicating whether the flocculant 100 is excessive or insufficient on the display screen according to control by the control unit 252. Also good.
  • the presentation device 260 may be a voice processing device including a speaker (presentation unit).
  • the presentation device 260 may present the target value of the injection amount of the flocculant 100 and a determination result indicating whether the flocculant 100 is excessive or insufficient to the operator by voice.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment include the correction unit (pH correction unit 220, water temperature correction unit 240, conductivity correction unit 230) and the control unit 252.
  • the correction unit collects the water current collected from the water storage unit such as the mixing basin 40 into which the flocculant 100 is injected, or the water flowing current value collected from the upstream side of the water storage unit with respect to the water flow. Correction based on the water quality parameters.
  • the control unit 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the corrected flowing current value. Thereby, the injection support apparatus 250 and the injection support system 200 of the first embodiment can support the determination of the injection amount or the injection rate of the flocculant 100 even when the water quality parameter changes.
  • the conventional injection support system calculates the injection rate (injection amount) of the flocculant based on a simple relational expression for determining the injection rate of the flocculant.
  • the conventional injection support system can perform feedforward control (FF control) for the injection of the flocculant.
  • FF control feedforward control
  • Flow current meter and flow potential meter measure the electrical properties of the generated floc floc after adding a flocculant to the raw water of a water treatment system such as a water purification plant.
  • the conventional injection support system can execute feedback control (FB control) for the injection of the flocculant so that the measured values of the flowing current and the flowing potential become target values.
  • FB control feedback control
  • the simple relational expression used for feedforward control is unchanged.
  • pouring assistance system cannot follow the water quality fluctuation
  • the flocculant may be excessive or insufficient depending on the quality of the raw water.
  • raw water is taken from a plurality of water sources, and the flow rate ratio is frequently changed.
  • the operator has to re-determine the relational expression (correction expression) as appropriate using a jar test or the like. For this reason, the burden on the operator was heavy. In addition, it was difficult to inherit the skills of the operators.
  • Zeta potential is an index representing the aggregation state of particles.
  • the zeta potential is the difference between the charged particle potential in water and the electrically neutral potential. When the value of the zeta potential approaches 0, the water becomes an electric atmosphere in which charge neutralization proceeds and the water tends to aggregate. In order to properly control the state of aggregation, the zeta potential is measured continuously. The zeta potential is difficult to measure continuously in a short time.
  • the flowing current value is an index instead of the zeta potential.
  • the flowing current value is a value obtained by indirectly measuring the zeta potential.
  • the flow ammeter is effective as a sensor that can continuously measure the aggregation state.
  • the piston reciprocates inside a probe with electrodes.
  • the flow ammeter measures the generated current value.
  • the distance between the probe and the piston is, for example, 0.1 mm.
  • the charge density becomes high, and the measurement range may be exceeded.
  • the measurement accuracy may decrease.
  • the flow ammeter measures the flow current value of water between the rapid agitation pond and the floc formation pond.
  • the electrical conductivity meter measures the electrical conductivity of the landing well.
  • the conventional injection support system adjusts the flow current value of water between the rapid agitation pond and the floc formation pond and the electric conductivity of the landing well by a PID controller.
  • the injection amount is controlled by a pump.
  • the operator of the water treatment system had to obtain the relationship between the flowing current value and the water quality parameter in advance by actually conducting a water quality test.
  • the water quality test it is necessary to set up a test system so as not to affect the actual operation of the water treatment plant and to define a correction formula for each water quality parameter or water source. For this reason, the water quality test takes adjustment time at the water purification plant.
  • Another problem is that it is difficult to secure engineers with knowledge of water quality.
  • the operator of the water treatment system 1a of the first embodiment does not need to bother the raw water quality test to determine the relational expression between the flowing current value and the water quality parameter.
  • the operator of the water treatment system 1a of the first embodiment does not need to construct a correction formula for each water quality parameter or water source.
  • the operator of the water treatment system 1a of the first embodiment does not have to set up a test system that does not affect the actual operation of the water purification plant.
  • the injection support device 250 and the injection support system 200 of the first embodiment can reduce the local adjustment time.
  • the injection support apparatus 250 and the injection support system 200 according to the first embodiment can reduce the initial cost related to the introduction of the injection support system 200 using the flowing current value.
  • the injection support apparatus 250 and the injection support system 200 according to the first embodiment can reduce the amount of the flocculant used even when it is difficult to secure an engineer who has knowledge about water quality.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce sludge generation and reduce sludge disposal costs.
  • the injection support device 250 and the injection support system 200 of the first embodiment can appropriately control the injection of the flocculant 100 based on the injection rate of the flocculant 100.
  • the operator of the water treatment system 1a of the first embodiment can easily grasp the excess or deficiency of the flocculant 100 based on the flowing current value of water.
  • the operator of the water treatment system 1a of the first embodiment can easily grasp the excess or deficiency of the flocculant 100 by comparison with the target value of the flocculant 100.
  • the operator of the water treatment system 1a of the first embodiment injects the flocculant 100 following the change in water quality without frequently performing jar tests for determining the amount of the flocculant 100 to be injected. Can do.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the burden on the operator of the water treatment system 1a.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment perform not only the use of the flocculant 100 but also the contact basin 30 by injecting the flocculant 100 in the mixing basin 40 without excess or deficiency. The amount of activated carbon used can be reduced.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the frequency of cleaning the sand filtration building 70 and reduce the running cost.
  • the injection support apparatus 250 and the injection support system 200 according to the first embodiment can automate the injection of an appropriate flocculant 100.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment stabilize the quality of supplied water in consideration of the response to water quality fluctuations, succession of water treatment technology, and reduction of the burden on the operator. be able to.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the influence of other factors that change due to water quality fluctuations by correcting the flowing current value.
  • the injection support apparatus 250 and the injection support system 200 according to the first embodiment can measure the balance between the charge of the suspended matter and the flocculant 100 as a flowing current value. Therefore, the injection support apparatus 250 and the injection support system 200 of the first embodiment can maintain a stable quality of treated water following the water quality change even when the water quality change occurs.
  • Injection support apparatus 250 and infusion support system 200 of the first embodiment can determine a proportional gain K p of the PID control.
  • the injection support apparatus 250 and the injection support system 200 of the first embodiment can determine a proportional gain for PID control.
  • the injection support device 250 and the injection support system 200 of the first embodiment are the target values of the flowing current values shown in FIG.
  • the turbidity of the outlet water of the settling basin 60 can be maintained below a certain value, and the injection control of the flocculant 100 can be continued.
  • the injection support device 250 and the injection support system 200 according to the first embodiment can acquire the flowing current value in the standard state without being affected by the change in the water quality by correcting the flowing current value based on the water quality parameter. Therefore, since the injection support apparatus 250 and the injection support system 200 of the first embodiment can measure the charge state of the particles, the flocculant 100 can be injected according to the fluctuation of the quality of the raw water.
  • candidates for the injection amount or injection rate of the flocculant 100 are determined. decide.
  • the second embodiment is different from the first embodiment in that the control unit 252 combines feedforward control and feedback control. In the second embodiment, only differences from the first embodiment will be described.
  • FIG. 8 is a diagram illustrating a second example of the configuration of the water treatment system 1 including the injection support apparatus 250.
  • the water treatment system 1 is referred to as a “water treatment system 1b”.
  • the contact pond 30 includes a conductivity meter 31, a water temperature meter 32, and a turbidity meter 34.
  • the turbidimeter 34 may be provided in the landing well 20.
  • the sedimentation basin 60 may not include the turbidimeter 61 shown in FIG.
  • the control unit 252 executes feedforward control (FF control). For example, the control unit 252 determines candidates for the injection rate of the flocculant 100 based on the water quality parameters of the raw water. The control unit 252 determines a candidate for the injection rate of the flocculant 100 to a value proportional to the turbidity of the raw water measured by the turbidimeter 34 (turbidity proportional method). The control unit 252 determines a candidate for the injection rate of the flocculant 100 to a value proportional to the flow rate measurement result by the flow meter 33 so that the injection rate of the flocculant 100 is constant (fixed injection rate method).
  • FF control feedforward control
  • the control unit 252 executes feedback control (FB control). For example, the control unit 252 determines a candidate for the injection rate of the flocculant 100 to be output to the adjustment unit 90 based on the flowing current value measured by the flowing ammeter 210.
  • FB control feedback control
  • the control unit 252 injects the flocculant 100 to be output to the adjustment unit 90 based on the injection rate candidate of the flocculant 100 determined by the feedforward control and the injection rate candidate of the flocculant 100 determined by the feedback control. Determine the rate.
  • the injection support apparatus 250 and the injection support system 200 of the second embodiment determine candidates for the injection amount or injection rate of the flocculant 100 before the flocculant 100 is injected into the mixing basin 40. .
  • the injection support device 250 and the injection support system 200 of the second embodiment can shorten the delay of the control time even when the water quality changes.
  • an appropriate injection rate can be determined following water quality fluctuations.
  • candidates for the injection amount or injection rate of the flocculant 100 are determined based on the turbidity measured by the turbidimeter 34 and the corrected flow current value. decide.
  • the third embodiment is different from the second embodiment in that the pH sensitivity characteristic of the flow ammeter 210 is taken into consideration. In the third embodiment, only differences from the second embodiment will be described.
  • FIG. 9 is a diagram showing an example of the relationship between conductivity and flowing current value.
  • the horizontal axis indicates the conductivity.
  • the vertical axis represents the flowing current value.
  • the flowing current value is affected by the pH sensitivity characteristic of the flowing ammeter 210.
  • the flowing current value is affected by the pH value which is one of the water quality parameters of the raw water.
  • FIG. 10 is a diagram illustrating an example of the relationship between the electrical conductivity expressed in logarithm and the corrected flowing current value.
  • the horizontal axis represents the electrical conductivity expressed in logarithm.
  • the vertical axis represents a value obtained by adding the pH correction value ⁇ Z pH calculated using Equation (1) and the measured flowing current value.
  • the value obtained by adding the pH correction value ⁇ Z pH and the measured flowing current value and the conductivity expressed in logarithm have a monotonically increasing linear relationship whose slope is KEC-pH .
  • the control unit 252 determines the pH sensitivity characteristic of the flowing ammeter 210 and the measurement result of the conductivity (EC). A correction value based on this (hereinafter referred to as “ECpH correction value”) is determined.
  • ⁇ Z EC-pH represents an EC pH correction value.
  • the change amount of the flowing current value ( ⁇ (SCD + pH correction value)) in consideration of the pH sensitivity characteristic of the total 210 is shown.
  • EC m indicates the conductivity in the standard state.
  • EC indicates the measurement result of conductivity.
  • the operator of the water treatment system 1b determines the value of KEC-pH by a water quality test.
  • the conductivity correcting unit 230 adds the EC pH correction value ⁇ Z EC-pH to the flowing current value measured by the flowing ammeter 210.
  • the injection support device 250 and the injection support system 200 of the third embodiment linearize the relationship between the conductivity and the flowing current value.
  • the injection support device 250 and the injection support system 200 of the third embodiment correct the flowing current value based on the ECpH correction value.
  • the injection support apparatus 250 and the injection support system 200 of the third embodiment can correct the flowing current value even if the raw water has water quality that is strongly influenced by pH.
  • the water quality that is strongly influenced by the pH is, for example, a water quality with low electrical conductivity.
  • the injection support apparatus 250 and the injection support system 200 according to the third embodiment can determine the injection amount or injection rate candidate of the flocculant 100 even if the water quality or the flow rate varies.
  • the injection support device 250 and the injection support system 200 of the third embodiment can reduce running costs and stabilize the quality of the treated water.
  • FIG. 11 is a diagram illustrating a third example of the configuration of the water treatment system 1 including the injection support apparatus 250.
  • the water treatment system 1 is referred to as a “water treatment system 1c”.
  • the contact pond 30 is provided with a conductivity meter 31 and a turbidity meter 34.
  • the injection support system 200 includes a flow ammeter 210, a pH correction unit 220, a conductivity correction unit 230, an injection support device 250, and a presentation device 260.
  • the conductivity meter 31 may have a temperature compensation function.
  • the conductivity meter 31 can switch the temperature compensation function between valid (present) and invalid (none).
  • the conductivity meter 31 can convert the measured conductivity into conductivity in a state where the water temperature is 25 degrees Celsius, for example.
  • FIG. 12 is a diagram showing an example of the relationship between the raw water temperature and conductivity.
  • the horizontal axis indicates the water temperature.
  • the vertical axis represents conductivity (EC).
  • the conductivity is substantially constant with respect to a change in water temperature when the temperature compensation function of the conductivity meter 31 is effective.
  • the conductivity is proportional to the change in water temperature when the temperature compensation function of the conductivity meter 31 is disabled. Therefore, when the true conductivity of the raw water is substantially constant, the control unit 252 can estimate the water temperature of the raw water based on the conductivity measured by the conductivity meter 31 whose temperature compensation function is invalid. it can.
  • the control unit 252 measures the estimated water temperature and the conductivity based on the conductivity measurement result EC t by the conductivity meter 31 whose temperature compensation function is invalid and the conductivity change amount K EC-t.
  • a correction value based on (hereinafter referred to as “EC t correction value”) is determined.
  • the flowing current value is corrected based on the EC t correction value.
  • the EC t correction value is expressed by Equation (9).
  • ⁇ Z EC-t represents an EC t correction value.
  • the change amount of the flowing current value in consideration of the water temperature of the raw water ( ⁇ (SCD + EC t correction value)) is shown.
  • EC m indicates the conductivity in the standard state.
  • EC t indicates the measurement result of conductivity by the conductivity meter 31 in which the temperature compensation function is invalid.
  • the operator of the water treatment system 1c determines the value of KEC-t through a water quality test.
  • the conductivity correcting unit 230 adds the EC t correction value ⁇ Z EC ⁇ t to the flowing current value measured by the flowing ammeter 210.
  • the corrected flowing current value is expressed by equation (10).
  • Corrected flowing current value measured flowing current value + ⁇ Z pH + ⁇ Z EC ⁇ t (10)
  • the injection support apparatus 250 and the injection support system 200 according to the fourth embodiment correct the flowing current value based on the EC t correction value. Accordingly, the injection support apparatus 250 and the injection support system 200 according to the fourth embodiment are configured such that the conductivity measurement result EC t by the conductivity meter 31 whose temperature compensation function is invalid and the conductivity change amount K EC-t. Based on the above, a change in the water temperature can be estimated.
  • the operator of the water treatment system 1c does not need to perform a water quality test for determining the water temperature correction formula shown in Formula (3).
  • the injection support device 250 and the injection support system 200 according to the fourth embodiment can reduce the time for adjusting the water treatment on site.
  • the injection support apparatus 250 and the injection support system 200 of the fourth embodiment can reduce initial costs.
  • the injection support device 250 and the injection support system 200 of the fourth embodiment can reduce the installation cost of the water temperature gauge 32.
  • the fifth embodiment is different from the fourth embodiment in that the injection support system 200 does not include the conductivity correction unit 230. In the fifth embodiment, only differences from the fourth embodiment will be described.
  • FIG. 13 is a diagram illustrating a fourth example of the configuration of the water treatment system 1 including the injection support device 250.
  • the water treatment system 1 is referred to as a “water treatment system 1d”.
  • the contact pond 30 is provided with a conductivity meter 31.
  • the injection support system 200 includes a flow ammeter 210, a pH correction unit 220, an injection support device 250, and a presentation device 260.
  • the control unit 252 determines the pH correction value based on the formula (1) indicating the relationship between the pH and the flowing current value.
  • the corrected flowing current value is expressed by Equation (11).
  • the injection support apparatus 250 and the injection support system 200 of the fifth embodiment correct the flowing current value based on the pH correction value.
  • the injection support device 250 and the injection support system 200 of the fifth embodiment have changed water quality parameters in a water purification plant with a raw water conductivity as small as about 5 mS / m or a water purification plant with a small change in conductivity. Even in this case, the determination of the injection amount or injection rate of the flocculant 100 can be assisted.
  • the injection support apparatus 250 and the injection support system 200 according to the fifth embodiment support determination of the injection amount or injection rate of the flocculant even when the water quality parameter changes in a water purification plant that does not have a conductivity meter. be able to.
  • the injection support apparatus 250 and the injection support system 200 of the fifth embodiment can reduce the period during which the coordinator adjusts the water treatment in the field in order to create the conductivity correction formula.
  • the injection support apparatus 250 and the injection support system 200 of the fifth embodiment can reduce initial costs.
  • the injection support apparatus 250 and the injection support system 200 according to the fifth embodiment can reduce the installation cost of the conductivity meter 31.
  • the sixth embodiment is different from the fourth embodiment in that the injection support system 200 does not include the pH correction unit 220. In the sixth embodiment, only differences from the fourth embodiment will be described.
  • FIG. 14 is a diagram illustrating a fifth example of the configuration of the water treatment system 1 including the injection assisting device 250.
  • the water treatment system 1 is referred to as a “water treatment system 1e”.
  • the contact pond 30 is provided with a conductivity meter 31 and a turbidity meter 34.
  • the mixing basin 40 is provided with a mixing device 41.
  • control unit 252 determines the EC t correction value based on Expression (9) indicating the relationship between the conductivity and the flowing current value.
  • the corrected flowing current value is expressed by Expression (12).
  • the injection support apparatus 250 and the injection support system 200 according to the sixth embodiment correct the flowing current value based on the EC t correction value.
  • the injection support apparatus 250 and the injection support system 200 of the sixth embodiment can be used for the injection amount or injection rate of the flocculant 100 even when the water quality parameter changes in a water purification plant where the change in the conductivity of the raw water is large. Can help make decisions.
  • the seventh embodiment is different from the second embodiment in that the injection support system 200 includes an acquisition unit 270.
  • the injection support system 200 includes an acquisition unit 270.
  • the seventh embodiment only differences from the second embodiment will be described.
  • FIG. 15 is a diagram illustrating a sixth example of the configuration of the water treatment system 1 including the injection support apparatus 250.
  • the water treatment system 1 is referred to as a “water treatment system 1f”.
  • the injection support system 200 includes a flow ammeter 210, an injection support device 250, a presentation device 260, and an acquisition device 300.
  • the acquisition device 300 includes a pH correction unit 220, a conductivity correction unit 230, a water temperature correction unit 240, and an acquisition unit 270.
  • the acquisition unit 270 includes an operation device such as a keyboard and a touch panel.
  • the touch panel may be integrated with the liquid crystal display.
  • the operation device outputs the injection amount or injection rate selected by the operator to the control unit 252 in accordance with the operation by the operator.
  • the operating device obtains a value related to an expression that determines a candidate for the injection amount or injection rate of the flocculant 100.
  • the operation device outputs a value (constant) designated by the operator by an operation by the operator to the control unit 252.
  • the value (constant) specified by the operator is, for example, the value of the slope K pH and the value of the slope K EC .
  • the values designated by the operator are, for example, the value of the slope K t and the value of the slope K EC-pH .
  • the value designated by the operator is, for example, the value of the slope K EC-t .
  • the value designated by the operator is, for example, the value of the water quality parameter in the standard state.
  • the values of the water quality parameter in the standard state are, for example, the pH value pH m in the standard state, the conductivity EC m in the standard state, and the water temperature t m in the standard state.
  • the acquisition unit 270 may be a communication device.
  • the acquisition unit 270 may acquire a value designated by the operator by remote operation using a personal computer or a tablet terminal. That is, the acquisition unit 270 may acquire a value by communication.
  • the injection support device 250 and the injection support system 200 correct the flowing current value based on the value specified by the operator. That is, the control unit 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the value acquired by the acquisition unit 270 and the flowing current value corrected by the correction unit of the acquisition device 300. Thereby, the injection support device 250 and the injection support system 200 of the seventh embodiment determine the injection amount or injection rate of the flocculant 100 based on the value designated by the operator even when the water quality parameter changes significantly. Can help.
  • the injection amount or injection of the flocculant can help determine the rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

A flocculant injection assistance device according to an embodiment has a correction unit and a control unit. The streaming current value of water collected from a water storage unit into which a flocculant has been injected, or of water collected from a location that is upstream from the water storage unit with respect to the flow of water is corrected by the correction unit on the basis of water quality parameters of the collected water. The candidate amount of the flocculant to be injected or rate at which the flocculant to be injected is determined by the control unit on the basis of the corrected streaming current value.

Description

凝集剤注入支援装置及び凝集剤注入支援システムFlocculant injection support device and flocculant injection support system
 本発明の実施形態は、凝集剤注入支援装置及び凝集剤注入支援システムに関する。 Embodiments of the present invention relate to a flocculant injection support device and a flocculant injection support system.
 水処理システムでは、浄水工程において貯水部に凝集剤が注入される。凝集剤の注入量又は注入率は、原水の流動電流値に基づいて定められる。流動電流値は、水質に関するパラメータ(以下、「水質パラメータ」という。)に応じて補正する必要がある。水質パラメータは、例えば、pH(水素イオンの濃度の対数)、導電率、水温である。従来の凝集剤注入支援装置は、水質パラメータが変化した場合には、凝集剤の注入量又は注入率の候補を適切に決定することができない場合があった。 In the water treatment system, flocculant is injected into the water storage part in the water purification process. The injection amount or injection rate of the flocculant is determined based on the flow current value of the raw water. The flowing current value needs to be corrected according to a parameter relating to water quality (hereinafter referred to as “water quality parameter”). The water quality parameters are, for example, pH (logarithm of hydrogen ion concentration), conductivity, and water temperature. In the conventional flocculant injection support device, when the water quality parameter changes, there are cases where the candidate of the flocculant injection amount or injection rate cannot be appropriately determined.
特許第3522650号公報Japanese Patent No. 3522650 特許第4230787号公報Japanese Patent No. 4230787 特開平7-256008号公報JP 7-256008 A 特開2011-197714号公報JP 2011-197714 A
 本発明が解決しようとする課題は、水質パラメータが変化した場合でも、凝集剤の注入量又は注入率の決定を支援することができる凝集剤注入支援装置及び凝集剤注入支援システムを提供することである。 The problem to be solved by the present invention is to provide a flocculant injection support device and a flocculant injection support system that can support the determination of the injection amount or injection rate of the flocculant even when the water quality parameter changes. is there.
 実施形態の凝集剤注入支援装置は、補正部と、制御部とを持つ。補正部は、凝集剤が注入される貯水部から採取された水、又は貯水部に対して水の流れに関する上流側の箇所から採取された水の流動電流値を、採取された水の水質パラメータに基づいて補正する。制御部は、補正された流動電流値に基づいて凝集剤の注入量又は注入率の候補を決定する。 The flocculant injection support device of the embodiment has a correction unit and a control unit. The correction unit is the water quality parameter of the water collected from the water collected from the water reservoir into which the flocculant is injected, or the water flowing current value collected from the upstream side of the water flow with respect to the water reservoir. Correct based on The control unit determines a candidate for the injection amount or injection rate of the flocculant based on the corrected flow current value.
実施形態における、注入支援装置を備える水処理システムの構成の第1例を示す図。The figure which shows the 1st example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment. 実施形態における、流動電流計の構成例を示す図。The figure which shows the structural example of the flow ammeter in embodiment. 実施形態における、流動電流値と濁度との関係例を示す図。The figure which shows the example of a relationship between flowing current value and turbidity in embodiment. 実施形態における、pHと流動電流値との関係例を示す図。The figure which shows the example of relationship between pH and flowing current value in embodiment. 実施形態における、導電率と流動電流値との関係例を示す図。The figure which shows the example of a relationship between electrical conductivity and flowing current value in embodiment. 実施形態における、対数で表された導電率と流動電流値との関係例を示す図。The figure which shows the example of a relationship between the electrical conductivity represented by the logarithm, and flowing current value in embodiment. 実施形態における、水温と流動電流値との関係例を示す図。The figure which shows the example of a relationship between the water temperature and flowing current value in embodiment. 実施形態における、注入支援装置を備える水処理システムの構成の第2例を示す図。The figure which shows the 2nd example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment. 実施形態における、導電率と流動電流値との関係例を示す図。The figure which shows the example of a relationship between electrical conductivity and flowing current value in embodiment. 実施形態における、対数で表された導電率と、補正された流動電流値との関係例を示す図。The figure which shows the example of a relationship between the electrical conductivity represented by the logarithm, and the corrected flowing current value in embodiment. 実施形態における、注入支援装置を備える水処理システムの構成の第3例を示す図。The figure which shows the 3rd example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment. 実施形態における、原水の水温及び導電率の関係例を示す図。The figure which shows the example of a relationship between the water temperature of raw | natural water and electrical conductivity in embodiment. 実施形態における、注入支援装置を備える水処理システムの構成の第4例を示す図。The figure which shows the 4th example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment. 実施形態における、注入支援装置を備える水処理システムの構成の第5例を示す図。The figure which shows the 5th example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment. 実施形態における、注入支援装置を備える水処理システムの構成の第6例を示す図。The figure which shows the 6th example of a structure of a water treatment system provided with the injection assistance apparatus in embodiment.
 以下、実施形態の凝集剤注入支援装置及び凝集剤注入支援システムを、図面を参照して説明する。
(第1の実施形態)
 図1は、注入支援装置(凝集剤注入支援装置)を備える水処理システム1の構成例を示す図である。第1の実施形態では、水処理システム1は、「水処理システム1a」という。水処理システム1aは、凝集剤を用いる処理を水に施す装置(固液分離装置)を備える設備であれば、特定の設備に限定されない。水処理システム1aは、例えば、浄水場、製紙工場、食品工場である。第1の実施形態では、水処理システム1aは、一例として浄水場である。
Hereinafter, the flocculant injection support device and the flocculant injection support system of the embodiment will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram illustrating a configuration example of a water treatment system 1 including an injection support device (coagulant injection support device). In the first embodiment, the water treatment system 1 is referred to as a “water treatment system 1a”. The water treatment system 1a is not limited to a specific facility as long as the facility includes a device (solid-liquid separation device) that performs treatment using a flocculant on water. The water treatment system 1a is, for example, a water purification plant, a paper factory, or a food factory. In 1st Embodiment, the water treatment system 1a is a water purification plant as an example.
 水処理システム1aは、取水井10と、着水井20と、接触池30と、混和池40と、フロック形成池50と、沈殿池60と、砂ろ過棟70と、配水池80と、調整部90と、凝集剤100と、注入支援システム200(凝集剤注入支援システム)とを備える。取水井10は、水の流れに関して最も上流に位置する。配水池80は、水の流れに関して最も下流に位置する。 The water treatment system 1a includes a intake well 10, a landing well 20, a contact pond 30, a mixing basin 40, a flock formation basin 50, a sedimentation basin 60, a sand filtration ridge 70, a water distribution basin 80, and an adjustment unit. 90, a flocculant 100, and an injection support system 200 (coagulant injection support system). The intake well 10 is located most upstream with respect to the flow of water. The distribution reservoir 80 is located most downstream with respect to the flow of water.
 取水井10は、原水を一時的に貯留する。
 着水井20には、取水井10の原水が送られる。着水井20では、植物や土砂が原水から沈降分離される。
The intake well 10 temporarily stores raw water.
The raw water from the intake well 10 is sent to the landing well 20. In the landing well 20, plants and earth and sand are settled and separated from the raw water.
 接触池30には、着水井20の上澄みの水が送られる。接触池30では、着水井20から送られた水と吸着材とが混合される。吸着材は、例えば、活性炭である。接触池30では、着水井20の上澄みの水に含まれている色度成分や溶解性成分を、吸着材が吸着する。溶解性成分は、例えば、溶解性の有機物である。 The supernatant water of the landing well 20 is sent to the contact pond 30. In the contact pond 30, the water sent from the landing well 20 and the adsorbent are mixed. The adsorbent is, for example, activated carbon. In the contact pond 30, the adsorbent adsorbs the chromaticity component and the soluble component contained in the supernatant water of the landing well 20. The soluble component is, for example, a soluble organic substance.
 接触池30には、導電率計31と、水温計32とが備えられる。導電率計31は、接触池30の上澄みの水の導電率を測定する。導電率計31は、導電率の測定結果を表す情報を注入支援システム200に送信する。水温計32は、接触池30の上澄みの水の温度を測定する。水温計32は、水温の測定結果を表す情報を注入支援システム200に送信する。接触池30は、混和池40に通じる配管に流量計33を備える。流量計33は、所定時間に混和池40に送られる水の流量を測定する。流量計33は、流量の測定結果を表す情報を注入支援システム200に送信する。なお、水温計32は、導電率計31が導電率を測定した水の温度を測定もよい。水温計32は、流量計33が流量を測定した水の温度を測定してもよい。凝集剤100の添加率によって混和池40の導電率が変化する場合、導電率計31は混和池40に設置されてもよい。 The contact pond 30 is provided with a conductivity meter 31 and a water temperature meter 32. The conductivity meter 31 measures the conductivity of the supernatant water of the contact pond 30. The conductivity meter 31 transmits information representing the measurement result of the conductivity to the injection support system 200. The water thermometer 32 measures the temperature of the supernatant water of the contact pond 30. The water temperature gauge 32 transmits information representing the measurement result of the water temperature to the injection support system 200. The contact basin 30 includes a flow meter 33 in a pipe that leads to the mixing basin 40. The flow meter 33 measures the flow rate of water sent to the mixing basin 40 at a predetermined time. The flow meter 33 transmits information representing the flow measurement result to the injection support system 200. The water temperature meter 32 may measure the temperature of the water measured by the conductivity meter 31. The water temperature meter 32 may measure the temperature of the water whose flow rate is measured by the flow meter 33. When the conductivity of the mixing basin 40 varies depending on the addition rate of the flocculant 100, the conductivity meter 31 may be installed in the mixing basin 40.
 混和池40(急速撹拌池)には、接触池30の上澄みの水が送られる。混和池40では、調整部90によって凝集剤100が水に注入される。混和池40では、水処理システム1aの運転員による手動で、凝集剤100が水に注入されてもよい。 The supernatant water of the contact basin 30 is sent to the mixing basin 40 (rapid stirring basin). In the mixing basin 40, the coagulant 100 is poured into water by the adjusting unit 90. In the mixing basin 40, the flocculant 100 may be poured into water manually by an operator of the water treatment system 1a.
 混和池40には、混合装置41と、pH計42とが備えられる。混合装置41は、接触池30から送られた水と、凝集剤100とを混合する。混合装置41は、例えば、急速攪拌装置(フラッシュ・ミキサ)、モータ等の駆動部を有する攪拌装置、駆動部を有しない攪拌装置(スタティック・ミキサ)や、水中ポンプによって発生する循環流を利用した撹拌装置である。混和池40では、凝集剤100によって懸濁物質(Suspended Solids)の荷電状態が中和される。荷電状態が中和されることにより、懸濁物質は凝集する。懸濁物質は、例えば、微細な粒径の土砂、色度成分、溶解性成分や、藻類である。混和池40では、混合装置41による攪拌によって、水中に微フロックが形成される。 The mixing basin 40 is provided with a mixing device 41 and a pH meter 42. The mixing device 41 mixes the water sent from the contact pond 30 and the flocculant 100. The mixing device 41 uses, for example, a rapid stirring device (flash mixer), a stirring device having a driving unit such as a motor, a stirring device without a driving unit (static mixer), or a circulating flow generated by a submersible pump. It is a stirring device. In the mixing basin 40, the charged state of the suspended matter (Suspended Solids) is neutralized by the flocculant 100. Due to the neutralization of the charged state, the suspended material aggregates. Suspended substances are, for example, earth and sand having a fine particle size, chromaticity components, soluble components, and algae. In the mixing basin 40, fine flocs are formed in the water by the stirring by the mixing device 41.
 pH計42は、凝集剤100が混合された直後の水のpH値(水素イオンの濃度の対数)を測定する。第1の実施形態では、pH計42は、混和池40の水のpH値を測定する。pH計42は、pH値の測定結果を表す情報を注入支援システム200に送信する。なお、接触池30や混和池40などには、pH調整剤が注入されてもよい。 The pH meter 42 measures the pH value of water (logarithm of hydrogen ion concentration) immediately after the flocculant 100 is mixed. In the first embodiment, the pH meter 42 measures the pH value of the water in the mixing basin 40. The pH meter 42 transmits information representing the measurement result of the pH value to the injection support system 200. A pH adjusting agent may be injected into the contact basin 30 or the mixing basin 40.
 フロック形成池50には、微フロックを含む水が、混和池40から送られる。フロック形成池50は、水に含まれる微フロック同士を衝突させて、フロックを成長させる。
 沈殿池60は、水中で成長したフロックを沈降させる。沈殿池60は、砂ろ過棟70に通じる配管に濁度計61を備える。濁度計61は、沈殿池60から送られた上澄みの水の濁度を測定する。濁度計61は、濁度の測定結果を注入支援システム200に送信する。
Water containing fine flocs is sent from the mixing basin 40 to the floc formation pond 50. The flock formation pond 50 causes fine flocks contained in water to collide with each other to grow flocks.
The sedimentation basin 60 sediments flocs grown in water. The sedimentation basin 60 includes a turbidimeter 61 on a pipe that leads to the sand filtration building 70. The turbidimeter 61 measures the turbidity of the supernatant water sent from the sedimentation basin 60. The turbidimeter 61 transmits the measurement result of turbidity to the injection support system 200.
 砂ろ過棟70には、沈殿池60の水が送られる。砂ろ過棟70は、沈殿池60から送られた水をろ過する。砂ろ過棟70は、カラムの形状を有する。砂ろ過棟70は、開口部を有する水槽でもよい。送水するための配管を砂ろ過棟70が有する場合、送水するための配管には吸着材が詰められていてもよい。砂ろ過棟70は、矩形の砂ろ過池でもよい。 The water from the sedimentation basin 60 is sent to the sand filtration building 70. The sand filtration building 70 filters the water sent from the settling basin 60. The sand filtration building 70 has a column shape. The sand filtration building 70 may be a water tank having an opening. When the sand filtration building 70 has a pipe for supplying water, the pipe for supplying water may be packed with an adsorbent. The sand filtration building 70 may be a rectangular sand filtration pond.
 配水池80には、ろ過された水が、砂ろ過棟70から送られる。配水池80では、塩素が水に注入される。塩素によって消毒された水は、配水池80から配水される。配水された水は、住宅などに供給される。 The filtered water is sent from the sand filtration building 70 to the distribution reservoir 80. In the distributing reservoir 80, chlorine is injected into the water. Water disinfected with chlorine is distributed from the distribution reservoir 80. The distributed water is supplied to houses.
 調整部90は、凝集剤100の注入量又は注入率を調整可能な機構である。凝集剤100の注入量又は注入率を調整可能な機構であれば、どのような機構を有していてもよい。
調整部90は、例えば、ポンプである。調整部90は、情報処理装置等を備える注入支援システム200によって決定された注入量の凝集剤100を、混和池40に注入する。調整部90は、注入支援システム200によって決定された注入量又は注入率の凝集剤100を、混和池40に注入してもよい。凝集剤100の注入量は、例えば、リットルの単位で調整される。凝集剤100の注入率は、単位時間あたりの凝集剤100の注入量と、流量計33によって測定される流量とで表現される。例えば、凝集剤100の注入率の単位は、「リットル/時」である。なお、調整部90は、インバータや電磁弁を用いて、凝集剤100の注入量又は注入率を変更してもよい。
The adjustment unit 90 is a mechanism that can adjust the injection amount or injection rate of the flocculant 100. Any mechanism that can adjust the injection amount or injection rate of the flocculant 100 may be used.
The adjustment unit 90 is, for example, a pump. The adjustment unit 90 injects the injection amount of the flocculant 100 determined by the injection support system 200 including an information processing apparatus or the like into the mixing basin 40. The adjustment unit 90 may inject the flocculant 100 having the injection amount or injection rate determined by the injection support system 200 into the mixing basin 40. The injection amount of the flocculant 100 is adjusted, for example, in units of liters. The injection rate of the flocculant 100 is expressed by the injection amount of the flocculant 100 per unit time and the flow rate measured by the flow meter 33. For example, the unit of the injection rate of the flocculant 100 is “liter / hour”. Note that the adjustment unit 90 may change the injection amount or injection rate of the flocculant 100 using an inverter or a solenoid valve.
 凝集剤100は、正の電荷に帯電している薬剤である。また、水の懸濁物質や気泡は、負の電荷に帯電している。水に注入された凝集剤100は、水の懸濁物質の荷電状態を中和させることによって、その水に含まれている懸濁物質等の粒子を凝集させる。 The flocculant 100 is a drug charged to a positive charge. In addition, suspended substances and bubbles of water are charged with a negative charge. The flocculant 100 injected into the water agglomerates particles such as suspended substances contained in the water by neutralizing the charged state of the suspended substances in the water.
 凝集剤100は、例えば、ポリ塩化アルミニウム(PAC : Poly Aluminum Chloride)、硫酸バンド、塩化第二鉄、硫酸第一鉄、ポリシリカ鉄等の無機系凝集剤である。凝集剤100は、高分子凝集剤と併用されてもよい。高分子凝集剤は、例えば、カチオン性ポリマ、アニオン性ポリマ、両性ポリマである。 The flocculant 100 is, for example, an inorganic flocculant such as polyaluminum chloride (PAC: Poly-Aluminum Chloride), sulfuric acid band, ferric chloride, ferrous sulfate, polysilica iron. The flocculant 100 may be used in combination with a polymer flocculant. The polymer flocculant is, for example, a cationic polymer, an anionic polymer, or an amphoteric polymer.
 凝集剤100は、pH調整剤と併用されてもよい。pH調整剤は、凝集させるために適切であるpH域になるまで、水のpH値を調整することができる。pH調整剤は、酸性の調整剤でもよいし、アルカリ性の調整剤でもよい。酸性の調整剤は、例えば、硫酸や塩酸である。アルカリ性の調整剤は、例えば、苛性ソーダや水酸化カルシウムである。 The flocculant 100 may be used in combination with a pH adjuster. The pH adjuster can adjust the pH value of water until it is in a pH range that is suitable for aggregation. The pH adjusting agent may be an acidic adjusting agent or an alkaline adjusting agent. The acidic regulator is, for example, sulfuric acid or hydrochloric acid. Examples of the alkaline adjusting agent are caustic soda and calcium hydroxide.
 注入支援システム200は、流動電流計210(SCD: Streaming Current Detector)と、pH補正部220と、導電率補正部230と、水温補正部240と、注入支援装置250と、提示装置260とを備える。 The injection support system 200 includes a flow ammeter 210 (SCD: Streaming Current Detector), a pH correction unit 220, a conductivity correction unit 230, a water temperature correction unit 240, an injection support device 250, and a presentation device 260. .
 図2は、流動電流計210の構成例を示す図である。流動電流計210は、水の流動電流値(SC値)を測定するセンサを有する測定装置である。測定装置は、流動電流値以外を測定する他のセンサを含んでいてもよい。流動電流計210は、プローブ211と、ピストン212と、電極213とを有する。流動電流計210には、ポンプなどの送水機構や水位差によって、混和池40の水が送られる。なお、流動電流計210に送られた水は、混和池40に戻されてもよい。これにより、流動電流計210は、混和池40での混合作用を高めることができる。 FIG. 2 is a diagram illustrating a configuration example of the flow ammeter 210. The flowing ammeter 210 is a measuring device having a sensor for measuring the flowing current value (SC value) of water. The measuring device may include other sensors that measure other than the flowing current value. The flow ammeter 210 includes a probe 211, a piston 212, and an electrode 213. Water in the mixing basin 40 is sent to the flow ammeter 210 by a water supply mechanism such as a pump or a water level difference. The water sent to the flow ammeter 210 may be returned to the mixing basin 40. Thereby, the flow ammeter 210 can enhance the mixing action in the mixing basin 40.
 プローブ211とピストン212との間隔は、例えば、0.1mmである。ピストン212は、プローブ211に囲まれた空間で往復運動をする。電極213-1は、プローブ211に注水された水の流動電流を測定し、測定した流動電流に応じた信号を出力する。
水の流動電流は、ピストン212の上下運動に伴って生じる帯電した懸濁物質の移動によって発生する。流動電流計210は、測定した流動電流に応じた信号を示す流動電流値を、注入支援装置250に出力する。電極213-2も同様である。
The interval between the probe 211 and the piston 212 is, for example, 0.1 mm. The piston 212 reciprocates in a space surrounded by the probe 211. The electrode 213-1 measures the flowing current of the water poured into the probe 211, and outputs a signal corresponding to the measured flowing current.
The flowing current of water is generated by the movement of the charged suspended matter that occurs as the piston 212 moves up and down. Flowing ammeter 210 outputs a flowing current value indicating a signal corresponding to the measured flowing current to injection support apparatus 250. The same applies to the electrode 213-2.
 流動電流計210は、例えば、懸濁物質の荷電状態を連続的に検出する流動電位計である。流動電流計210は、懸濁物質の荷電状態を間欠的に検出するゼータ電位計でもよい。流動電流値は、凝集剤100の注入量又は注入率に応じて増減する。流動電流計210は、凝集剤100と原水とが撹拌混合された直後の水の流動電流値を、連続的に測定する。以下では、流動電流計210は、混和池40の水の流動電流値を、連続的に測定し、予め設定した時間周期に基づいて注入支援装置250に送信する。なお、流動電流計210は、混和池40の出口やフロック形成池50の入口の水の流動電流値を、連続的に測定してもよい。流動電流計210は、混和池40の出口やフロック形成池50の入口の水の流動電流値を、予め設定した時間周期に基づいて注入支援装置250に送信してもよい。 The flow ammeter 210 is, for example, a flow electrometer that continuously detects the charged state of the suspended matter. The flow ammeter 210 may be a zeta electrometer that intermittently detects the charge state of the suspended matter. The flowing current value increases or decreases according to the injection amount or injection rate of the flocculant 100. The flow ammeter 210 continuously measures the flow current value of the water immediately after the flocculant 100 and the raw water are stirred and mixed. In the following, the flow ammeter 210 continuously measures the flow current value of the water in the mixing basin 40 and transmits it to the injection support device 250 based on a preset time period. The flow ammeter 210 may continuously measure the flow current value of the water at the outlet of the mixing basin 40 and the inlet of the flock formation basin 50. The flow ammeter 210 may transmit the flow current value of the water at the outlet of the mixing basin 40 or the inlet of the flock formation pond 50 to the injection support device 250 based on a preset time period.
 流動電流値は、水質パラメータの影響を受けやすいので、水質パラメータに基づいて補正される。例えば、流動電流値は、pHの測定結果に基づいてpH補正部220によって補正される。例えば、流動電流値は、導電率の測定結果に基づいて水温補正部240によって補正される。例えば、流動電流値は、水温の測定結果に基づいて水温補正部240によって補正される。 Since the flowing current value is easily affected by the water quality parameter, it is corrected based on the water quality parameter. For example, the flowing current value is corrected by the pH correction unit 220 based on the measurement result of pH. For example, the flowing current value is corrected by the water temperature correction unit 240 based on the conductivity measurement result. For example, the flowing current value is corrected by the water temperature correction unit 240 based on the measurement result of the water temperature.
 図3は、流動電流値と濁度との関係例を示す図である。横軸は、流動電流値を表す。流動電流値は、凝集剤100の注入量に応じて変化する。左の縦軸は、濁度(NTU: Nephelometric Turbidity Unit)を表す。濁度の単位は、NTUに限らず「度」や「mg/L」であっても良い。右の縦軸は、吸引ろ過時間比(STR: Suction Time Ratio)を表す。流動電流値と濁度との関係例は、例えば、テーブルデータの形式で記憶部253に記憶される。 FIG. 3 is a diagram showing an example of the relationship between the flowing current value and turbidity. The horizontal axis represents the flowing current value. The flowing current value changes according to the injection amount of the flocculant 100. The left vertical axis represents turbidity (NTU: Nephelometric Turbidity Unit). The unit of turbidity is not limited to NTU, but may be “degree” or “mg / L”. The right vertical axis represents the suction filtration time ratio (STR: Suction Time Ratio). An example of the relationship between the flowing current value and the turbidity is stored in the storage unit 253 in the form of table data, for example.
 図3では、混和池40における凝集剤100の注入率が増えるに従い、流動電流値は上昇する。流動電流値が上昇するに従い、濁度計61が測定した水の濁度は低下する。沈殿池60の出口における濁度の運用上の管理値は、例えば、1度(=0.8NTU)以下である。濁度が管理値(基準値)以下かつ吸引ろ過時間比が最も低い場合、水の流れに関して下流の砂ろ過棟70の負荷は低下する。この場合、総合的に水は最も清澄となる。図3では、濁度が最も低い場合、水は最も清澄となっている。凝集剤100の注入量(注入率)の目標値は、水が最も清澄となる注入量(注入率)である。 In FIG. 3, as the injection rate of the flocculant 100 in the mixing basin 40 increases, the flowing current value increases. As the flowing current value increases, the turbidity of water measured by the turbidimeter 61 decreases. The operational management value of turbidity at the outlet of the settling basin 60 is, for example, 1 degree (= 0.8 NTU) or less. When the turbidity is lower than the control value (reference value) and the suction filtration time ratio is the lowest, the load on the downstream sand filtration building 70 is reduced with respect to the flow of water. In this case, the water becomes the clearest overall. In FIG. 3, the water is clearest when the turbidity is lowest. The target value of the injection amount (injection rate) of the flocculant 100 is the injection amount (injection rate) at which water is clarified.
 制御部252は、濁度計61によって測定された濁度の測定結果を、インタフェース251から取得する。制御部252は、流動電流値が目標値となるように、濁度の測定結果に基づいて凝集剤100の注入量又は注入率の候補を決定する。制御部252は、濁度の測定結果が濁度閾値となるまで、凝集剤100を注入する。濁度閾値は、水が最も清澄となるように水質試験の結果に基づいて予め定められた濁度である。制御部252は、濁度計61によって測定された濁度の測定結果が濁度閾値を超えている場合には、流動電流値の目標値を増加させてもよい。 The control unit 252 acquires the measurement result of the turbidity measured by the turbidimeter 61 from the interface 251. The control unit 252 determines the injection amount or injection rate candidate of the flocculant 100 based on the measurement result of turbidity so that the flowing current value becomes the target value. The controller 252 injects the flocculant 100 until the turbidity measurement result reaches the turbidity threshold. The turbidity threshold is a turbidity determined in advance based on the result of the water quality test so that the water becomes the clearest. The control unit 252 may increase the target value of the flowing current value when the measurement result of the turbidity measured by the turbidimeter 61 exceeds the turbidity threshold.
 制御部252は、吸引ろ過時間比の測定結果を、インタフェース251から取得してもよい。制御部252は、流動電流値が目標値となるように、吸引ろ過時間比の測定結果に基づいて凝集剤100の注入量又は注入率の候補を決定する。凝集剤100の注入量又は注入率の候補は、提示装置260に提示される。 The control unit 252 may acquire the measurement result of the suction filtration time ratio from the interface 251. The controller 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the measurement result of the suction filtration time ratio so that the flowing current value becomes the target value. Candidates for the injection amount or injection rate of the flocculant 100 are presented to the presentation device 260.
 制御部252は、凝集剤100の注入量又は注入率の候補のうち、水処理システム1aの運転員が選択した注入量又は注入率を、インタフェース251から取得する。制御部252は、水処理システム1aの運転員が選択した注入量又は注入率を、調整部90に送信する。制御部252は、運転員が選択した注入量又は注入率の凝集剤100を、調整部90によって注入する。例えば、制御部252は、吸引ろ過時間比の測定結果がSTR閾値となるまで、運転員が選択した注入量又は注入率の凝集剤100を注入する。STR閾値は、水が最も清澄となるように水質試験の結果に基づいて予め定められた吸引ろ過時間比である。 The control unit 252 acquires, from the interface 251, the injection amount or injection rate selected by the operator of the water treatment system 1 a among the injection amount or injection rate candidates of the flocculant 100. The control unit 252 transmits the injection amount or injection rate selected by the operator of the water treatment system 1a to the adjustment unit 90. The controller 252 causes the adjusting unit 90 to inject the flocculant 100 having the injection amount or injection rate selected by the operator. For example, the control unit 252 injects the flocculant 100 having the injection amount or injection rate selected by the operator until the measurement result of the suction filtration time ratio reaches the STR threshold value. The STR threshold is a suction filtration time ratio determined in advance based on the result of the water quality test so that the water becomes the clearest.
 流動電流値は、水質パラメータの影響を受けやすい。このため、測定された流動電流値は、水質パラメータに基づいて、標準状態における流動電流値に換算される。すなわち、測定された流動電流値は、水質パラメータに基づいて補正される。凝集剤100の注入量又は注入率の候補は、補正された流動電流値に基づいて決定される。 The flowing current value is easily affected by water quality parameters. For this reason, the measured flowing current value is converted into the flowing current value in the standard state based on the water quality parameter. That is, the measured flowing current value is corrected based on the water quality parameter. Candidates for the injection amount or injection rate of the flocculant 100 are determined based on the corrected flow current value.
 なお、標準状態とは、例えば、水が摂氏25度、pH7.0、導電率10mS/mになっている状態である。標準状態は、水処理システム1aの運転員によって定義されてもよい。水処理システム1aの運転員は、実際に運用する水処理システム1aの原水の水質の年間平均値や月間平均値に基づいて、標準状態を定義してもよい。 The standard state is, for example, a state where water is 25 degrees Celsius, pH 7.0, and conductivity 10 mS / m. The standard state may be defined by an operator of the water treatment system 1a. The operator of the water treatment system 1a may define the standard state based on the annual average value or the monthly average value of the raw water quality of the water treatment system 1a that is actually operated.
 pH補正部220は、pH値の測定結果をpH計42から取得する。pH補正部220は、流動電流計210によって測定された流動電流値を、pH値の測定結果に基づいて補正する。 The pH correction unit 220 acquires the measurement result of the pH value from the pH meter 42. The pH correction unit 220 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the pH value.
 図4は、pHと流動電流値との関係例を示す図である。横軸はpHを示す。縦軸は流動電流値を示す。pHと流動電流値との関係例は、例えば、テーブルデータの形式で記憶部253に記憶される。流動電流値とpHとには、傾きがKpHである単調減少の線形関係がある。制御部252は、pH値の測定結果に基づく補正値(以下、「pH補正値」という。)を決定する。流動電流値は、pH補正値に基づいて補正される。制御部252は、pHと流動電流値との関係を示す式(1)に基づいて、pH補正値を決定する。 FIG. 4 is a diagram showing an example of the relationship between pH and flowing current value. The horizontal axis indicates pH. The vertical axis represents the flowing current value. An example of the relationship between pH and flowing current value is stored in the storage unit 253 in the form of table data, for example. The a streaming current and pH, a linear relationship monotonically decreasing slope of K pH. The control unit 252 determines a correction value (hereinafter referred to as “pH correction value”) based on the measurement result of the pH value. The flowing current value is corrected based on the pH correction value. The control unit 252 determines the pH correction value based on the formula (1) indicating the relationship between the pH and the flowing current value.
 ΔZpH=KpH×(pH-pH) …(1) ΔZ pH = K pH × (pH m −pH) (1)
 ΔZpHは、pH補正値を示す。KpH(=ΔSCD/ΔpH)は、pH値の変化量(ΔpH)あたりの流動電流値の変化量(ΔSCD)である。pHは、pH値の測定結果を示す。pHは、標準状態におけるpH値を示す。水処理システム1aの運転員は、水質試験によってKpHの値を定める。水処理システム1aの運転員は、水処理システム1aの運用実績に基づいて、流動電流値の変化量KpHの値を定めてもよい。pH補正部220は、流動電流計210によって測定された流動電流値にpH補正値ΔZpHを加算する。 ΔZ pH indicates a pH correction value. K pH (= ΔSCD / ΔpH) is a change amount (ΔSCD) of the flowing current value per change amount (ΔpH) of the pH value. pH indicates the measurement result of the pH value. pH m indicates a pH value in a standard state. Operator of the water treatment system 1a, defines the value of K pH by quality test. The operator of the water treatment system 1a may determine the value of the change amount KpH of the flowing current value based on the operation results of the water treatment system 1a. The pH correction unit 220 adds the pH correction value ΔZ pH to the flowing current value measured by the flowing ammeter 210.
 導電率補正部230は、導電率の測定結果を導電率計31から取得する。導電率補正部230は、流動電流計210によって測定された流動電流値を、導電率の測定結果に基づいて補正する。 The conductivity correction unit 230 acquires the conductivity measurement result from the conductivity meter 31. The conductivity correcting unit 230 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the conductivity.
 図5は、導電率と流動電流値との関係例を示す図である。横軸は導電率を示す。縦軸は流動電流値を示す。流動電流値は、導電率が増加するほど非線形に値0に近づく。すなわち、流動電流値の絶対値は、導電率が増加するほど小さい。したがって、流動電流計210の感度は、導電率が小さいほど高い。 FIG. 5 is a diagram showing an example of the relationship between conductivity and flowing current value. The horizontal axis indicates the conductivity. The vertical axis represents the flowing current value. The flowing current value approaches the value 0 nonlinearly as the conductivity increases. That is, the absolute value of the flowing current value is smaller as the conductivity increases. Therefore, the sensitivity of the flow ammeter 210 is higher as the conductivity is smaller.
 図6は、対数で表された導電率と流動電流値との関係例を示す図である。横軸は、対数によって表された導電率を示す。縦軸は流動電流値を示す。対数で表された導電率と流動電流値との関係例は、例えば、テーブルデータの形式で記憶部253に記憶される。導電率が小さいほど流動電流計210の感度が高いので、導電率補正部230は、流動電流計210によって測定された流動電流値を、対数によって表された導電率の測定結果に基づいて補正する。 FIG. 6 is a diagram showing an example of the relationship between the electrical conductivity expressed in logarithm and the flowing current value. The horizontal axis shows the conductivity expressed by logarithm. The vertical axis represents the flowing current value. An example of the relationship between the electrical conductivity and the flowing current value expressed in logarithm is stored in the storage unit 253 in the form of table data, for example. Since the sensitivity of the flow ammeter 210 is higher as the conductivity is smaller, the conductivity correction unit 230 corrects the flow current value measured by the flow ammeter 210 based on the measurement result of the conductivity expressed by logarithm. .
 導電率と流動電流値との関係は、式(2)に示すように対数を用いて線形化することができる。対数で表された導電率と流動電流値とには、傾きがKECである単調増加の線形関係がある。制御部252は、導電率(EC)の測定結果に基づく補正値(以下、「EC補正値」という。)を決定する。流動電流値は、EC補正値に基づいて補正される。制御部252は、導電率と流動電流値との関係を示す式(2)に基づいて、EC補正値を決定する。 The relationship between the electrical conductivity and the flowing current value can be linearized using a logarithm as shown in Equation (2). In the conductivity expressed in logarithm and streaming current, a linear relationship of monotonically increasing slope is K EC. The control unit 252 determines a correction value (hereinafter referred to as “EC correction value”) based on the measurement result of the conductivity (EC). The flowing current value is corrected based on the EC correction value. The control unit 252 determines the EC correction value based on Expression (2) indicating the relationship between the conductivity and the flowing current value.
 ΔZEC=KEC×lоg(EC/EC) …(2) ΔZ EC = K EC × liter (EC m / EC) (2)
 ΔZECは、EC補正値を示す。KEC(=ΔSCD/lоg(EC))は、対数で表された導電率の変化量(lоg(EC))あたりの流動電流値の変化量(ΔSCD)を示す。ECは、標準状態における導電率を示す。ECは導電率の測定結果を示す。水処理システム1aの運転員は、水質試験によってKECの値を定める。導電率補正部230は、流動電流計210によって測定された流動電流値にEC補正値ΔZECを加算する。 ΔZ EC indicates an EC correction value. K EC (= ΔSCD / lig (EC)) represents a change amount (ΔSCD) of the flowing current value per change amount of conductivity (log (EC)) expressed in logarithm. EC m indicates the conductivity in the standard state. EC indicates the measurement result of conductivity. Operator of the water treatment system 1a, defines the value of K EC by quality test. Conductivity correction unit 230 adds the EC correction value [Delta] Z EC to flow a current value measured by the streaming current meter 210.
 水温補正部240は、水温の測定結果を水温計32から取得する。水温補正部240は、流動電流計210によって測定された流動電流値を、水温の測定結果に基づいて補正する。 The water temperature correction unit 240 acquires the measurement result of the water temperature from the water temperature gauge 32. The water temperature correction unit 240 corrects the flowing current value measured by the flowing ammeter 210 based on the measurement result of the water temperature.
 図7は、水温と流動電流値との関係例を示す図である。横軸は、水温を示す。縦軸は流動電流値を示す。縦軸は流動電流値を示す。水温と流動電流値との関係例は、例えば、テーブルデータの形式で記憶部253に記憶される。水温と流動電流値との関係には、傾きがKである単調減少の線形関係がある。制御部252は、水温の測定結果に基づく補正値(以下、「水温補正値」という。)を決定する。流動電流値は、水温補正値に基づいて補正される。制御部252は、水温と流動電流値との関係を示す式(3)に基づいて、水温補正値を決定する。 FIG. 7 is a diagram illustrating a relationship example between the water temperature and the flowing current value. The horizontal axis indicates the water temperature. The vertical axis represents the flowing current value. The vertical axis represents the flowing current value. An example of the relationship between the water temperature and the flowing current value is stored in the storage unit 253 in the form of table data, for example. The relationship between water temperature and flow current value, a linear relationship with monotonically decreasing slope of K t. The controller 252 determines a correction value (hereinafter referred to as “water temperature correction value”) based on the measurement result of the water temperature. The flowing current value is corrected based on the water temperature correction value. The control unit 252 determines the water temperature correction value based on the equation (3) indicating the relationship between the water temperature and the flowing current value.
 ΔZ=K×(t-t) …(3) ΔZ t = K t × (t m −t) (3)
 ΔZは水温補正値を示す。K(=ΔSCD/Δt)は、水温の変化量(Δt)あたりの流動電流値の変化量(ΔSCD)を示す。tは標準状態における水温を示す。tは水温の測定結果を示す。水処理システム1aの運転員は、水質試験によってKの値を定める。水温補正部240は、流動電流計210によって測定された流動電流値に水温補正値ΔZを加算する。 ΔZ t represents a water temperature correction value. K t (= ΔSCD / Δt) indicates a change amount (ΔSCD) of the flowing current value per change amount (Δt) of the water temperature. t m represents the water temperature in the standard state. t indicates the measurement result of the water temperature. Operator of the water treatment system 1a, defines the value of K t the water quality testing. Water temperature correction unit 240 adds the water temperature correction value [Delta] Z t to flow current value measured by the streaming current meter 210.
 したがって、補正された流動電流値は、流動電流計210によって測定された流動電流値とpH補正値ΔZpHとEC補正値ΔZECと水温補正値ΔZとに基づく式(4)によって表される。 Therefore, the corrected flowing current value is represented by the equation (4) based on the flowing current value measured by the flowing ammeter 210, the pH correction value ΔZ pH , the EC correction value ΔZ EC, and the water temperature correction value ΔZ t. .
 補正された流動電流値=測定された流動電流値+ΔZpH+ΔZEC+ΔZ…(4) Corrected flowing current value = Measured flowing current value + ΔZ pH + ΔZ EC + ΔZ t (4)
 注入支援装置250は、コンピュータ端末やサーバ装置等の情報処理装置である。注入支援装置250は、単体の装置でもよいし、複数の装置でもよい。注入支援装置250は、複数の装置である場合、クラウドコンピューティング技術によって動作してもよい。注入支援装置250は、クラウドコンピューティング技術によって、キーバリューストア形式の各種データに演算を施してもよい。注入支援装置250では、ウェブブラウザが動作してもよい。注入支援装置250は、注入支援装置250の監視、障害対応及び運用のうち少なくとも一つが、代行サービスにより行われていてもよい。つまり、水処理システム1aを運用する主体とは別の主体(例えば、ASP: Application Service Provider)が代行して、注入支援装置250を監視、障害対応及び運用してもよい。また、注入支援装置250は、注入支援装置250の監視、障害対応及び運用が、複数の主体によってなされてもよい。 Injection support device 250 is an information processing device such as a computer terminal or a server device. Injection support device 250 may be a single device or a plurality of devices. When the injection support apparatus 250 is a plurality of apparatuses, the injection support apparatus 250 may be operated by cloud computing technology. The injection support apparatus 250 may perform operations on various types of data in the key value store format using cloud computing technology. In the injection support apparatus 250, a web browser may operate. In the injection support apparatus 250, at least one of monitoring, failure handling, and operation of the injection support apparatus 250 may be performed by a proxy service. That is, an entity (for example, ASP: “Application” Service ”Provider) other than the entity that operates the water treatment system 1a may act on behalf of the injection support apparatus 250 to monitor, troubleshoot, and operate. In addition, the injection support apparatus 250 may be monitored, handled by the injection support apparatus 250, and operated by a plurality of entities.
 注入支援装置250は、インタフェース251と、制御部252と、記憶部253とを備える。インタフェース251と、制御部252とのうち一部または全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、記憶部253に記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。 The injection support apparatus 250 includes an interface 251, a control unit 252, and a storage unit 253. Some or all of the interface 251 and the control unit 252 are software function units that function when a processor such as a CPU (Central Processing Unit) executes a program stored in the storage unit 253, for example. Also, some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
 インタフェース251は、濁度の測定結果を濁度計61から取得する。インタフェース251は、流動電流計210によって測定された流動電流値を、流動電流計210から取得する。測定された流動電流値は、水温補正部240と導電率補正部230とpH補正部220とのうち少なくとも一つによって補正される。したがって、インタフェース251は、水温補正部240と導電率補正部230とpH補正部220とのうち少なくとも一つによって補正された流動電流値を取得する。 The interface 251 acquires the turbidity measurement result from the turbidimeter 61. The interface 251 acquires the flowing current value measured by the flowing ammeter 210 from the flowing ammeter 210. The measured flowing current value is corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220. Therefore, the interface 251 acquires the flowing current value corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220.
 制御部252は、水温補正部240と導電率補正部230とpH補正部220とのうち少なくとも一つによって補正された流動電流値を、インタフェース251から取得する。
制御部252は、流動電流値の目標値ZSVと、凝集剤100の注入率RPACのリミット値と、凝集剤100の希釈倍率Dとを、インタフェース251を介して、注入支援システム200の外部から取得する。
The control unit 252 acquires the flowing current value corrected by at least one of the water temperature correction unit 240, the conductivity correction unit 230, and the pH correction unit 220 from the interface 251.
The control unit 252 sends the target value Z SV of the flowing current value, the limit value of the injection rate RPAC of the flocculant 100, and the dilution rate D of the flocculant 100 to the outside of the injection support system 200 via the interface 251. Get from.
 制御部252は、補正された流動電流値に基づくPI(Proportional Integral)制御によって、凝集剤100の注入量APAC又は注入率RPACの候補を決定する。制御部252は、補正された流動電流値に基づくPID(Proportional Integral Derivative)制御によって、凝集剤100の注入量APAC又は注入率RPACの候補を決定してもよい。 The controller 252 determines a candidate for the injection amount A PAC or the injection rate R PAC of the flocculant 100 by PI (Proportional Integral) control based on the corrected flow current value. The control unit 252 may determine a candidate for the injection amount A PAC or the injection rate R PAC of the flocculant 100 by PID (Proportional Integral Derivative) control based on the corrected flowing current value.
 例えば、制御部252は、水質パラメータに基づいて補正された流動電流値ZPVと、流動電流値の目標値ZSVとの差eを、式(5)に基づいて決定する。 For example, the control unit 252, a streaming current Z PV corrected on the basis of the water quality parameters, the difference e n between the target value Z SV of streaming current is determined based on the equation (5).
 e=ZSV-ZPV …(5) e n = Z SV −Z PV (5)
 eは、n回目の制御周期における流動電流値の差(=ZSV-ZPV)を示す。ZSVは流動電流値(SC値)の目標値を示す。ZPVは、水質パラメータに基づいて補正された流動電流値を示す。 e n denotes the difference between streaming current in the control period of the n-th (= Z SV -Z PV). Z SV indicates a target value of the flowing current value (SC value). Z PV indicates a flowing current value corrected based on the water quality parameter.
 制御部252は、n回目の制御周期における流動電流値の差eと(n-1)回目の制御周期における流動電流値の差en-1との差分を算出する。制御部252は、水1リットルあたりの凝集剤100の注入量の候補を、式(6)に基づいて決定する。すなわち、制御部252は、凝集剤100の注入量の候補を決定する。 Control unit 252 calculates the difference between the difference e n-1 of the streaming current in the difference e n and (n-1) th control period of streaming current in the control period of the n-th. The control unit 252 determines candidates for the injection amount of the flocculant 100 per liter of water based on the equation (6). That is, the control unit 252 determines a candidate for the injection amount of the flocculant 100.
 APAC=K×(e-en-1) …(6) A PAC = K p × (e n −e n−1 ) (6)
 APACは、水1リットルあたりの凝集剤100の注入量(ミリリットル)を示す。Kは、PID制御の比例ゲインを示す。Kは、例えば、PID制御の通常のパラメータ設定方法によって決定される。en-1は、(n-1)回目の制御周期における差(=ZSV-ZPV)を示す。 A PAC indicates the injection amount (in milliliters) of the flocculant 100 per liter of water. K p denotes a proportional gain of PID control. Kp is determined by, for example, a normal parameter setting method for PID control. e n−1 represents a difference in the (n−1) th control cycle (= Z SV −Z PV ).
 制御部252は、凝集剤100の注入率を、式(7)に基づいて決定する。 The control unit 252 determines the injection rate of the flocculant 100 based on the equation (7).
 RPAC=APAC×D×f×rPAC -1×10-3 …(7) R PAC = A PAC × D × f × r PAC −1 × 10 −3 (7)
 RPACは、1分間あたり凝集剤100の注入量(ミリリットル)を示す。すなわち、APACは、凝集剤100の注入率(ミリリットル/分)を示す。Dは、凝集剤100の希釈倍率を示す。fは、1分間あたりの水の流量(リットル)を示す。rPACは、凝集剤100の比重を示す。 RPAC indicates the injection rate (in milliliters) of flocculant 100 per minute. That is, A PAC indicates the injection rate (milliliter / minute) of the flocculant 100. D indicates the dilution factor of the flocculant 100. f indicates the flow rate (liter) of water per minute. r PAC indicates the specific gravity of the flocculant 100.
 制御部252は、補正された流動電流値に基づいて、凝集剤100の注入率のフィートバック制御を実行する。例えば、制御部252は、凝集剤100の注入率が所定のリミット値の範囲内である場合、凝集剤100の注入率を調整部90に出力する。調整部90は、凝集剤100の注入率に基づいて、混和池40に凝集剤100を注入する。例えば、制御部252は、凝集剤100の注入率が所定のリミット値の範囲内でない場合、リミット値を調整部90に出力する。調整部90は、リミット値に基づいて、混和池40に凝集剤100を注入する。 The control unit 252 performs footback control of the injection rate of the flocculant 100 based on the corrected flowing current value. For example, when the injection rate of the flocculant 100 is within a predetermined limit value, the control unit 252 outputs the injection rate of the flocculant 100 to the adjustment unit 90. The adjustment unit 90 injects the flocculant 100 into the mixing basin 40 based on the injection rate of the flocculant 100. For example, the control unit 252 outputs the limit value to the adjustment unit 90 when the injection rate of the flocculant 100 is not within a predetermined limit value range. The adjustment unit 90 injects the flocculant 100 into the mixing basin 40 based on the limit value.
 記憶部253は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記録媒体)を有する。記憶部253は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有していてもよい。記憶部253は、例えば、ソフトウェア機能部を機能させるためのプログラムを記憶する。記憶部253は、例えば、データテーブルを記憶する。 The storage unit 253 includes, for example, a nonvolatile storage medium (non-temporary recording medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive). The storage unit 253 may include, for example, a volatile storage medium such as a RAM (Random Access Memory) or a register. The storage unit 253 stores, for example, a program for causing the software function unit to function. The storage unit 253 stores, for example, a data table.
 提示装置260は、液晶ディスプレイ(LCD: Liquid Crystal Display)等の表示画面(提示部)を有する表示装置である。提示装置260は、凝集剤100の注入量の目標値を、インタフェース251を介して、制御部252から取得する。提示装置260は、凝集剤100の注入量の目標値を表示画面に表示する。水処理システム1aの運転員は、凝集剤100の注入量が凝集剤100の目標値となるように、調整部90を操作して凝集剤100の注入量を調整することができる。提示装置260は、凝集剤100の注入量の目標値や、凝集剤100が過剰であるか又は不足であるかを示す判定結果を、制御部252による制御に応じて、表示画面に表示してもよい。 The presentation device 260 is a display device having a display screen (presentation unit) such as a liquid crystal display (LCD). The presentation device 260 acquires the target value of the injection amount of the flocculant 100 from the control unit 252 via the interface 251. The presentation device 260 displays the target value of the injection amount of the flocculant 100 on the display screen. The operator of the water treatment system 1a can adjust the injection amount of the flocculant 100 by operating the adjustment unit 90 so that the injection amount of the flocculant 100 becomes the target value of the flocculant 100. The presentation device 260 displays a target value of the injection amount of the flocculant 100 and a determination result indicating whether the flocculant 100 is excessive or insufficient on the display screen according to control by the control unit 252. Also good.
 なお、提示装置260は、スピーカ(提示部)を備える音声処理装置でもよい。提示装置260は、凝集剤100の注入量の目標値や、凝集剤100が過剰であるか又は不足であるかを示す判定結果を、音声によって運転員に提示してもよい。 Note that the presentation device 260 may be a voice processing device including a speaker (presentation unit). The presentation device 260 may present the target value of the injection amount of the flocculant 100 and a determination result indicating whether the flocculant 100 is excessive or insufficient to the operator by voice.
 以上のように、第1の実施形態の注入支援装置250及び注入支援システム200は、補正部(pH補正部220、水温補正部240、導電率補正部230)と、制御部252とを持つ。補正部は、凝集剤100が注入される混和池40などの貯水部から採取された水、又は貯水部に対して水の流れに関する上流側の箇所から採取された水の流動電流値を、採取された水の水質パラメータに基づいて補正する。制御部252は、補正された流動電流値に基づいて凝集剤100の注入量又は注入率の候補を決定する。
 これによって、第1の実施形態の注入支援装置250及び注入支援システム200は、水質パラメータが変化した場合でも、凝集剤100の注入量又は注入率の決定を支援することができる。
As described above, the injection support apparatus 250 and the injection support system 200 of the first embodiment include the correction unit (pH correction unit 220, water temperature correction unit 240, conductivity correction unit 230) and the control unit 252. The correction unit collects the water current collected from the water storage unit such as the mixing basin 40 into which the flocculant 100 is injected, or the water flowing current value collected from the upstream side of the water storage unit with respect to the water flow. Correction based on the water quality parameters. The control unit 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the corrected flowing current value.
Thereby, the injection support apparatus 250 and the injection support system 200 of the first embodiment can support the determination of the injection amount or the injection rate of the flocculant 100 even when the water quality parameter changes.
 従来の注入支援システムは、凝集剤の注入率を定めるための単純な関係式に基づいて、凝集剤の注入率(注入量)を算出する。従来の注入支援システムは、凝集剤の注入について、フィードフォワード制御(FF制御)を実行可能である。 The conventional injection support system calculates the injection rate (injection amount) of the flocculant based on a simple relational expression for determining the injection rate of the flocculant. The conventional injection support system can perform feedforward control (FF control) for the injection of the flocculant.
 流動電流計や流動電位計は、浄水場などの水処理システムの原水に凝集剤を加えた後、生成された凝集フロックの電気的性質を測定する。従来の注入支援システムは、流動電流や流動電位の測定値が目標値となるように、凝集剤の注入について、フィードバック制御(FB制御)を実行可能である。 Flow current meter and flow potential meter measure the electrical properties of the generated floc floc after adding a flocculant to the raw water of a water treatment system such as a water purification plant. The conventional injection support system can execute feedback control (FB control) for the injection of the flocculant so that the measured values of the flowing current and the flowing potential become target values.
 従来の注入支援システムでは、フィードフォワード制御に使用する単純な関係式は、不変である。このため、従来の注入支援システムは、経年による原水の水質変動や、突発的な原水の水質変動に追従できない。従来の注入支援システムでは、濁度が変化しない場合でも、原水の水質によっては凝集剤の過不足が生じる場合がある。従来の注入支援システムでは、複数の水源から原水を取水して、その流量比率が頻繁に変更される場合もあった。従来の注入支援システムでは、運転員は、関係式(補正式)をジャーテストなどで適宜決め直さなければならなかった。このため、運転員の負担は大きかった。また、運転員の技術の継承は難しかった。 In the conventional injection support system, the simple relational expression used for feedforward control is unchanged. For this reason, the conventional injection | pouring assistance system cannot follow the water quality fluctuation | variation of raw | natural water with age, or sudden fluctuation | variation of the water quality of raw | natural water. In the conventional injection support system, even when the turbidity does not change, the flocculant may be excessive or insufficient depending on the quality of the raw water. In a conventional injection support system, raw water is taken from a plurality of water sources, and the flow rate ratio is frequently changed. In the conventional injection support system, the operator has to re-determine the relational expression (correction expression) as appropriate using a jar test or the like. For this reason, the burden on the operator was heavy. In addition, it was difficult to inherit the skills of the operators.
 ゼータ電位は、粒子の凝集状態を表す指標である。ゼータ電位は、水中における帯電した粒子の電位と、電気的に中性な電位との差である。ゼータ電位の値が0に近づくと、水は、荷電中和が進み、凝集し易い電気的雰囲気となる。凝集の状態を適切に制御するため、ゼータ電位は、連続的に測定される。ゼータ電位は、短時間に連続的に測定することが困難である。 Zeta potential is an index representing the aggregation state of particles. The zeta potential is the difference between the charged particle potential in water and the electrically neutral potential. When the value of the zeta potential approaches 0, the water becomes an electric atmosphere in which charge neutralization proceeds and the water tends to aggregate. In order to properly control the state of aggregation, the zeta potential is measured continuously. The zeta potential is difficult to measure continuously in a short time.
 流動電流値は、ゼータ電位に代わる指標である。流動電流値は、ゼータ電位を間接的に測定した値である。流動電流計は、凝集状態を連続的に測定できるセンサとして有効である。流動電流計では、ピストンは、電極のついたプローブの内部を往復運動する。流動電流計は、発生した電流値を測定する。プローブとピストンの間隔は、例えば、0.1mmである。流動電流計では、電荷密度が高くなってしまい、測定範囲を超過してしまうことがある。流動電流計は、粒子数の多い水を測定対象とする場合、測定精度が低下することがある。 The flowing current value is an index instead of the zeta potential. The flowing current value is a value obtained by indirectly measuring the zeta potential. The flow ammeter is effective as a sensor that can continuously measure the aggregation state. In a flow ammeter, the piston reciprocates inside a probe with electrodes. The flow ammeter measures the generated current value. The distance between the probe and the piston is, for example, 0.1 mm. In a flow ammeter, the charge density becomes high, and the measurement range may be exceeded. When the flow ammeter is intended to measure water with a large number of particles, the measurement accuracy may decrease.
 従来の注入支援システムでは、流動電流計は、急速撹拌池とフロック形成池との間の水の流動電流値を測定する。従来の注入支援システムでは、電気伝導率計は、着水井の電気伝導率を測定する。従来の注入支援システムは、急速撹拌池とフロック形成池との間の水の流動電流値と、着水井の電気伝導率を、PID調節計によって調節する。従来の注入支援システムは、注入量をポンプで制御する。 In the conventional injection support system, the flow ammeter measures the flow current value of water between the rapid agitation pond and the floc formation pond. In a conventional injection support system, the electrical conductivity meter measures the electrical conductivity of the landing well. The conventional injection support system adjusts the flow current value of water between the rapid agitation pond and the floc formation pond and the electric conductivity of the landing well by a PID controller. In the conventional injection support system, the injection amount is controlled by a pump.
 従来の注入支援システムでは、水処理システムの運転員は、流動電流値と水質パラメータとの関係について、実際に水質試験を行って事前に求めておく必要があった。水質試験は、実際の浄水場の運用に影響を与えないように試験系を組み、水質パラメータ又は水源ごとに補正式を定める必要がある。このため、水質試験は、浄水場での調整時間が掛かる。また、水質について知識のある技術者の確保が難しい、という課題がある。 In the conventional injection support system, the operator of the water treatment system had to obtain the relationship between the flowing current value and the water quality parameter in advance by actually conducting a water quality test. In the water quality test, it is necessary to set up a test system so as not to affect the actual operation of the water treatment plant and to define a correction formula for each water quality parameter or water source. For this reason, the water quality test takes adjustment time at the water purification plant. Another problem is that it is difficult to secure engineers with knowledge of water quality.
 第1の実施形態の水処理システム1aの運転員は、原水の水質試験をわざわざ行って流動電流値と水質パラメータとの関係式を定める必要がない。第1の実施形態の水処理システム1aの運転員は、水質パラメータ又は水源ごとに補正式を構築する必要がない。第1の実施形態の水処理システム1aの運転員は、実際の浄水場の運用に影響を与えない試験系をわざわざ組まなくてよい。第1の実施形態の注入支援装置250及び注入支援システム200は、現地調整時間を削減することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、流動電流値を用いる注入支援システム200の導入に関するイニシャルコストを、低減することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、水質について知識のある技術者の確保が難しい場合でも、凝集剤の使用量を削減することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、汚泥発生を削減し、汚泥処分費を削減することができる。 The operator of the water treatment system 1a of the first embodiment does not need to bother the raw water quality test to determine the relational expression between the flowing current value and the water quality parameter. The operator of the water treatment system 1a of the first embodiment does not need to construct a correction formula for each water quality parameter or water source. The operator of the water treatment system 1a of the first embodiment does not have to set up a test system that does not affect the actual operation of the water purification plant. The injection support device 250 and the injection support system 200 of the first embodiment can reduce the local adjustment time. The injection support apparatus 250 and the injection support system 200 according to the first embodiment can reduce the initial cost related to the introduction of the injection support system 200 using the flowing current value. The injection support apparatus 250 and the injection support system 200 according to the first embodiment can reduce the amount of the flocculant used even when it is difficult to secure an engineer who has knowledge about water quality. The injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce sludge generation and reduce sludge disposal costs.
 第1の実施形態の注入支援装置250及び注入支援システム200は、凝集剤100の注入率に基づいて、凝集剤100の注入を適正に制御することができる。第1の実施形態の水処理システム1aの運転員は、水の流動電流値に基づいて、凝集剤100の過不足を容易に把握することができる。第1の実施形態の水処理システム1aの運転員は、凝集剤100の目標値との比較によって、凝集剤100の過不足を容易に把握することができる。第1の実施形態の水処理システム1aの運転員は、凝集剤100の注入量を決定するためのジャーテストを頻繁に行わなくても、水質の変動に追従して凝集剤100を注入することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、水処理システム1aの運転員の負担を軽減することができる。 The injection support device 250 and the injection support system 200 of the first embodiment can appropriately control the injection of the flocculant 100 based on the injection rate of the flocculant 100. The operator of the water treatment system 1a of the first embodiment can easily grasp the excess or deficiency of the flocculant 100 based on the flowing current value of water. The operator of the water treatment system 1a of the first embodiment can easily grasp the excess or deficiency of the flocculant 100 by comparison with the target value of the flocculant 100. The operator of the water treatment system 1a of the first embodiment injects the flocculant 100 following the change in water quality without frequently performing jar tests for determining the amount of the flocculant 100 to be injected. Can do. The injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the burden on the operator of the water treatment system 1a.
 凝集剤100が過剰に注入された場合、未反応の凝集剤100が沈殿池60の出口水に残存する。凝集剤100が過剰に注入された場合、砂ろ過棟70の吸着処理の負荷が増大して、砂ろ過棟70の洗浄の頻度が増える。未反応の凝集剤100は水中で透明であるため、運転員は凝集剤100の有無を目視では判定することができない。このため、凝集剤100は過剰に注入され易い。したがって、第1の実施形態の注入支援装置250及び注入支援システム200は、混和池40において凝集剤100の注入を過不足なく行うことによって、凝集剤100の使用量だけでなく、接触池30における活性炭の使用量を削減することができる。 When the flocculant 100 is excessively injected, the unreacted flocculant 100 remains in the outlet water of the settling basin 60. When the flocculant 100 is excessively injected, the load of the adsorption process of the sand filtration building 70 is increased, and the frequency of cleaning the sand filtration building 70 is increased. Since the unreacted flocculant 100 is transparent in water, the operator cannot visually determine the presence or absence of the flocculant 100. For this reason, the flocculant 100 is easily injected excessively. Therefore, the injection support apparatus 250 and the injection support system 200 of the first embodiment perform not only the use of the flocculant 100 but also the contact basin 30 by injecting the flocculant 100 in the mixing basin 40 without excess or deficiency. The amount of activated carbon used can be reduced.
 第1の実施形態の注入支援装置250及び注入支援システム200は、砂ろ過棟70の洗浄頻度を減らし、ランニングコストを低減することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、適正な凝集剤100の注入を自動化することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、水質変動への対応、水処理技術の継承、運転員の負担軽減の点を考慮した上で、供給する水の質を安定させることができる。 The injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the frequency of cleaning the sand filtration building 70 and reduce the running cost. The injection support apparatus 250 and the injection support system 200 according to the first embodiment can automate the injection of an appropriate flocculant 100. The injection support apparatus 250 and the injection support system 200 of the first embodiment stabilize the quality of supplied water in consideration of the response to water quality fluctuations, succession of water treatment technology, and reduction of the burden on the operator. be able to.
 第1の実施形態の注入支援装置250及び注入支援システム200は、流動電流値を補正することで、水質変動によって変化する他の因子の影響を少なくすることができる。第1の実施形態の注入支援装置250及び注入支援システム200は、濁質と凝集剤100の電荷のバランスを、流動電流値として測定することができる。したがって、第1の実施形態の注入支援装置250及び注入支援システム200は、水質変動が生じた場合であっても、水質変動に追従して安定した処理水の水質を維持することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、PID制御の比例ゲインKを決定することができる。第1の実施形態の注入支援装置250及び注入支援システム200は、PID制御の比例ゲインを決定することができる。 The injection support apparatus 250 and the injection support system 200 of the first embodiment can reduce the influence of other factors that change due to water quality fluctuations by correcting the flowing current value. The injection support apparatus 250 and the injection support system 200 according to the first embodiment can measure the balance between the charge of the suspended matter and the flocculant 100 as a flowing current value. Therefore, the injection support apparatus 250 and the injection support system 200 of the first embodiment can maintain a stable quality of treated water following the water quality change even when the water quality change occurs. Injection support apparatus 250 and infusion support system 200 of the first embodiment can determine a proportional gain K p of the PID control. The injection support apparatus 250 and the injection support system 200 of the first embodiment can determine a proportional gain for PID control.
 原水の水質変動が大きいために沈殿池60の出口水の濁度が上昇した場合でも、第1の実施形態の注入支援装置250及び注入支援システム200は、図3に示す流動電流値の目標値を変更することによって、沈殿池60の出口水の濁度を一定値以下に維持して、凝集剤100の注入制御を継続することができる。 Even when the turbidity of the outlet water of the settling basin 60 is increased due to a large variation in the quality of the raw water, the injection support device 250 and the injection support system 200 of the first embodiment are the target values of the flowing current values shown in FIG. By changing the turbidity, the turbidity of the outlet water of the settling basin 60 can be maintained below a certain value, and the injection control of the flocculant 100 can be continued.
 第1の実施形態の注入支援装置250及び注入支援システム200は、水質パラメータによって流動電流値を補正することによって、水質変化に影響されずに標準状態における流動電流値を取得することができる。したがって、第1の実施形態の注入支援装置250及び注入支援システム200は、粒子の荷電状態を測定することができるので、原水の水質の変動に応じて凝集剤100を注入することができる。 The injection support device 250 and the injection support system 200 according to the first embodiment can acquire the flowing current value in the standard state without being affected by the change in the water quality by correcting the flowing current value based on the water quality parameter. Therefore, since the injection support apparatus 250 and the injection support system 200 of the first embodiment can measure the charge state of the particles, the flocculant 100 can be injected according to the fluctuation of the quality of the raw water.
 第1の実施形態の注入支援装置250及び注入支援システム200では、濁度計61が測定した濁度と補正された流動電流値とに基づいて、凝集剤100の注入量又は注入率の候補を決定する。 In the injection support apparatus 250 and the injection support system 200 according to the first embodiment, based on the turbidity measured by the turbidimeter 61 and the corrected flow current value, candidates for the injection amount or injection rate of the flocculant 100 are determined. decide.
 (第2の実施形態)
 第2の実施形態では、制御部252がフィードフォワード制御とフィードバック制御とを組み合わせる点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
(Second Embodiment)
The second embodiment is different from the first embodiment in that the control unit 252 combines feedforward control and feedback control. In the second embodiment, only differences from the first embodiment will be described.
 図8は、注入支援装置250を備える水処理システム1の構成の第2例を示す図である。第2の実施形態では、水処理システム1は、「水処理システム1b」という。接触池30には、導電率計31と、水温計32と、濁度計34とが備えられる。濁度計34は、着水井20に備えられてもよい。なお、沈殿池60は、図1に示す濁度計61を備えなくてもよい。 FIG. 8 is a diagram illustrating a second example of the configuration of the water treatment system 1 including the injection support apparatus 250. In the second embodiment, the water treatment system 1 is referred to as a “water treatment system 1b”. The contact pond 30 includes a conductivity meter 31, a water temperature meter 32, and a turbidity meter 34. The turbidimeter 34 may be provided in the landing well 20. The sedimentation basin 60 may not include the turbidimeter 61 shown in FIG.
 制御部252は、フィードフォワード制御(FF制御)を実行する。例えば、制御部252は、原水の水質パラメータに基づいて、凝集剤100の注入率の候補を決定する。制御部252は、濁度計34によって測定された原水の濁度に比例する値に、凝集剤100の注入率の候補を決定する(濁度比例方式)。制御部252は、凝集剤100の注入率が一定となるように、流量計33による流量の測定結果に比例した値に、凝集剤100の注入率の候補を決定する(注入率一定方式)。 The control unit 252 executes feedforward control (FF control). For example, the control unit 252 determines candidates for the injection rate of the flocculant 100 based on the water quality parameters of the raw water. The control unit 252 determines a candidate for the injection rate of the flocculant 100 to a value proportional to the turbidity of the raw water measured by the turbidimeter 34 (turbidity proportional method). The control unit 252 determines a candidate for the injection rate of the flocculant 100 to a value proportional to the flow rate measurement result by the flow meter 33 so that the injection rate of the flocculant 100 is constant (fixed injection rate method).
 制御部252は、フィードバック制御(FB制御)を実行する。例えば、制御部252は、流動電流計210によって測定された流動電流値に基づいて、調整部90に出力する凝集剤100の注入率の候補を決定する。 The control unit 252 executes feedback control (FB control). For example, the control unit 252 determines a candidate for the injection rate of the flocculant 100 to be output to the adjustment unit 90 based on the flowing current value measured by the flowing ammeter 210.
 制御部252は、フィードフォワード制御によって決定した凝集剤100の注入率の候補と、フィードバック制御によって決定した凝集剤100の注入率の候補とに基づいて、調整部90に出力する凝集剤100の注入率を決定する。 The control unit 252 injects the flocculant 100 to be output to the adjustment unit 90 based on the injection rate candidate of the flocculant 100 determined by the feedforward control and the injection rate candidate of the flocculant 100 determined by the feedback control. Determine the rate.
 以上のように、第2の実施形態の注入支援装置250及び注入支援システム200は、混和池40で凝集剤100が注入される前に、凝集剤100の注入量又は注入率の候補を決定する。
 これによって、第2の実施形態の注入支援装置250及び注入支援システム200は、水質変動が生じた場合でも、制御時間の遅れを短くすることができる。フィードフォワード制御とフィードバック制御を組み合わせることによって、水質変動に追従して適正な注入率を決定することができる。
As described above, the injection support apparatus 250 and the injection support system 200 of the second embodiment determine candidates for the injection amount or injection rate of the flocculant 100 before the flocculant 100 is injected into the mixing basin 40. .
Thereby, the injection support device 250 and the injection support system 200 of the second embodiment can shorten the delay of the control time even when the water quality changes. By combining feedforward control and feedback control, an appropriate injection rate can be determined following water quality fluctuations.
 第2の実施形態の注入支援装置250及び注入支援システム200では、濁度計34が測定した濁度と補正された流動電流値とに基づいて、凝集剤100の注入量又は注入率の候補を決定する。 In the injection support device 250 and the injection support system 200 of the second embodiment, candidates for the injection amount or injection rate of the flocculant 100 are determined based on the turbidity measured by the turbidimeter 34 and the corrected flow current value. decide.
 (第3の実施形態)
 第3の実施形態では、流動電流計210のpH感度特性を考慮する点が、第2の実施形態と相違する。第3の実施形態では、第2の実施形態との相違点についてのみ説明する。
(Third embodiment)
The third embodiment is different from the second embodiment in that the pH sensitivity characteristic of the flow ammeter 210 is taken into consideration. In the third embodiment, only differences from the second embodiment will be described.
 図9は、導電率と流動電流値との関係例を示す図である。横軸は導電率を示す。縦軸は流動電流値を示す。流動電流値は、流動電流計210のpH感度特性の影響を受ける。また、流動電流値は、原水の水質パラメータの一つであるpH値の影響を受ける。重曹などの電解質が原水に注入された場合、原水の導電率が上昇する。重曹を原水に注入すると、原水のpH値が上昇する。重曹を原水にさらに注入すると、原水のpH値が一定になる。 FIG. 9 is a diagram showing an example of the relationship between conductivity and flowing current value. The horizontal axis indicates the conductivity. The vertical axis represents the flowing current value. The flowing current value is affected by the pH sensitivity characteristic of the flowing ammeter 210. The flowing current value is affected by the pH value which is one of the water quality parameters of the raw water. When an electrolyte such as baking soda is injected into the raw water, the conductivity of the raw water increases. When sodium bicarbonate is injected into the raw water, the pH value of the raw water increases. If sodium bicarbonate is further injected into the raw water, the pH value of the raw water becomes constant.
 図10は、対数で表された導電率と、補正された流動電流値との関係例を示す図である。横軸は、対数で表された導電率を示す。縦軸は、式(1)を用いて演算したpH補正値ΔZpHと測定された流動電流値とを加算した値を示す。pH補正値ΔZpHと測定された流動電流値とを加算した値と、対数で表された導電率とには、傾きがKEC-pHである単調増加の線形関係がある。制御部252は、pH補正値によって補正された流動電流値と導電率との関係を示す式(8)に基づいて、流動電流計210のpH感度特性と導電率(EC)の測定結果とに基づく補正値(以下、「ECpH補正値」という。)を決定する。 FIG. 10 is a diagram illustrating an example of the relationship between the electrical conductivity expressed in logarithm and the corrected flowing current value. The horizontal axis represents the electrical conductivity expressed in logarithm. The vertical axis represents a value obtained by adding the pH correction value ΔZ pH calculated using Equation (1) and the measured flowing current value. The value obtained by adding the pH correction value ΔZ pH and the measured flowing current value and the conductivity expressed in logarithm have a monotonically increasing linear relationship whose slope is KEC-pH . Based on the equation (8) indicating the relationship between the flowing current value corrected by the pH correction value and the conductivity, the control unit 252 determines the pH sensitivity characteristic of the flowing ammeter 210 and the measurement result of the conductivity (EC). A correction value based on this (hereinafter referred to as “ECpH correction value”) is determined.
 ΔZEC-pH=KEC-pH×lоg(EC/EC) …(8) ΔZ EC−pH = K EC−pH × l og (EC m / EC) (8)
 ΔZEC-pHはECpH補正値を示す。KEC-pH(=Δ(SCD+pH補正値)/Δlоg(EC))は、対数で表された導電率の変化量(Δlоg(EC))あたりの流動電流値の変化量であって、流動電流計210のpH感度特性を考慮した流動電流値の変化量(Δ(SCD+pH補正値))を示す。ECは、標準状態における導電率を示す。ECは導電率の測定結果を示す。水処理システム1bの運転員は、水質試験によってKEC-pHの値を定める。導電率補正部230は、流動電流計210によって測定された流動電流値にECpH補正値ΔZEC-pHを加算する。 ΔZ EC-pH represents an EC pH correction value. K EC-pH (= Δ (SCD + pH correction value) / Δl (g) (EC)) is the amount of change in the flow current value per logarithmic change in conductivity (Δl (g)). The change amount of the flowing current value (Δ (SCD + pH correction value)) in consideration of the pH sensitivity characteristic of the total 210 is shown. EC m indicates the conductivity in the standard state. EC indicates the measurement result of conductivity. The operator of the water treatment system 1b determines the value of KEC-pH by a water quality test. The conductivity correcting unit 230 adds the EC pH correction value ΔZ EC-pH to the flowing current value measured by the flowing ammeter 210.
 以上のように、第3の実施形態の注入支援装置250及び注入支援システム200は、導電率と流動電流値との関係を線形化する。第3の実施形態の注入支援装置250及び注入支援システム200は、ECpH補正値に基づいて流動電流値を補正する。
 これによって、第3の実施形態の注入支援装置250及び注入支援システム200は、pHの影響を強く受ける水質を原水が有していても、流動電流値を補正することができる。pHの影響を強く受ける水質とは、例えば導電率が小さい水質である。第3の実施形態の注入支援装置250及び注入支援システム200は、水質や流量が変動しても、凝集剤100の注入量又は注入率の候補を決定することができる。第3の実施形態の注入支援装置250及び注入支援システム200は、ランニングコストを削減し、処理した水の水質を安定させることができる。
As described above, the injection support device 250 and the injection support system 200 of the third embodiment linearize the relationship between the conductivity and the flowing current value. The injection support device 250 and the injection support system 200 of the third embodiment correct the flowing current value based on the ECpH correction value.
Thereby, the injection support apparatus 250 and the injection support system 200 of the third embodiment can correct the flowing current value even if the raw water has water quality that is strongly influenced by pH. The water quality that is strongly influenced by the pH is, for example, a water quality with low electrical conductivity. The injection support apparatus 250 and the injection support system 200 according to the third embodiment can determine the injection amount or injection rate candidate of the flocculant 100 even if the water quality or the flow rate varies. The injection support device 250 and the injection support system 200 of the third embodiment can reduce running costs and stabilize the quality of the treated water.
 (第4の実施形態)
 第4の実施形態では、注入支援システム200が水温補正部240を備えない点が、点が、第3の実施形態と相違する。第4の実施形態では、第3の実施形態との相違点についてのみ説明する。
(Fourth embodiment)
In the fourth embodiment, the point that the injection support system 200 does not include the water temperature correction unit 240 is different from the third embodiment. In the fourth embodiment, only differences from the third embodiment will be described.
 図11は、注入支援装置250を備える水処理システム1の構成の第3例を示す図である。第4の実施形態では、水処理システム1は、「水処理システム1c」という。接触池30には、導電率計31と、濁度計34とが備えられる。注入支援システム200は、流動電流計210と、pH補正部220と、導電率補正部230と、注入支援装置250と、提示装置260とを備える。 FIG. 11 is a diagram illustrating a third example of the configuration of the water treatment system 1 including the injection support apparatus 250. In the fourth embodiment, the water treatment system 1 is referred to as a “water treatment system 1c”. The contact pond 30 is provided with a conductivity meter 31 and a turbidity meter 34. The injection support system 200 includes a flow ammeter 210, a pH correction unit 220, a conductivity correction unit 230, an injection support device 250, and a presentation device 260.
 導電率は水温の影響を受ける。このため、導電率計31が温度補償機能を備えている場合がある。導電率計31は、温度補償機能の有効(あり)又は無効(なし)を切り替えることができる。導電率計31は、測定された導電率を、例えば水温が摂氏25度である状態における導電率に換算することができる。 Electrical conductivity is affected by water temperature. For this reason, the conductivity meter 31 may have a temperature compensation function. The conductivity meter 31 can switch the temperature compensation function between valid (present) and invalid (none). The conductivity meter 31 can convert the measured conductivity into conductivity in a state where the water temperature is 25 degrees Celsius, for example.
 図12は、原水の水温及び導電率の関係例を示す図である。横軸は水温を示す。縦軸は導電率(EC)を示す。導電率は、導電率計31の温度補償機能が有効である場合、水温変化に対してほぼ一定である。導電率は、導電率計31の温度補償機能が無効である場合、水温変化に比例する。したがって、制御部252は、原水の真の導電率がほぼ一定である場合には、温度補償機能が無効である導電率計31が測定した導電率に基づいて、原水の水温を推定することができる。 FIG. 12 is a diagram showing an example of the relationship between the raw water temperature and conductivity. The horizontal axis indicates the water temperature. The vertical axis represents conductivity (EC). The conductivity is substantially constant with respect to a change in water temperature when the temperature compensation function of the conductivity meter 31 is effective. The conductivity is proportional to the change in water temperature when the temperature compensation function of the conductivity meter 31 is disabled. Therefore, when the true conductivity of the raw water is substantially constant, the control unit 252 can estimate the water temperature of the raw water based on the conductivity measured by the conductivity meter 31 whose temperature compensation function is invalid. it can.
 制御部252は、温度補償機能が無効である導電率計31による導電率の測定結果ECと、導電率の変化量KEC-tとに基づいて、推定された水温と導電率の測定結果とに基づく補正値(以下、「EC補正値」という。)を決定する。流動電流値は、EC補正値に基づいて補正される。EC補正値は、式(9)によって表される。 The control unit 252 measures the estimated water temperature and the conductivity based on the conductivity measurement result EC t by the conductivity meter 31 whose temperature compensation function is invalid and the conductivity change amount K EC-t. A correction value based on (hereinafter referred to as “EC t correction value”) is determined. The flowing current value is corrected based on the EC t correction value. The EC t correction value is expressed by Equation (9).
 ΔZEC-t=KEC-t×lоg(EC/EC) …(9) ΔZ EC−t = K EC−t × lig (EC m / EC t ) (9)
 ΔZEC-tはEC補正値を示す。KEC-t(=Δ(SCD+EC補正値)/Δlоg(EC))は、対数で表された導電率の変化量(Δlоg(EC))あたりの流動電流値の変化量であって、原水の水温を考慮した流動電流値の変化量(Δ(SCD+EC補正値))を示す。ECは、標準状態における導電率を示す。ECは、温度補償機能が無効である導電率計31による導電率の測定結果を示す。水処理システム1cの運転員は、水質試験によってKEC-tの値を定める。導電率補正部230は、流動電流計210によって測定された流動電流値にEC補正値ΔZEC-tを加算する。補正された流動電流値は、式(10)によって表される。 ΔZ EC-t represents an EC t correction value. K EC-t (= Δ (SCD + EC t correction value) / Δl og (EC t )) is a variation in flow current value per change in electric conductivity (Δl og (EC t )) expressed in logarithm. The change amount of the flowing current value in consideration of the water temperature of the raw water (Δ (SCD + EC t correction value)) is shown. EC m indicates the conductivity in the standard state. EC t indicates the measurement result of conductivity by the conductivity meter 31 in which the temperature compensation function is invalid. The operator of the water treatment system 1c determines the value of KEC-t through a water quality test. The conductivity correcting unit 230 adds the EC t correction value ΔZ EC−t to the flowing current value measured by the flowing ammeter 210. The corrected flowing current value is expressed by equation (10).
 補正された流動電流値=測定された流動電流値+ΔZpH+ΔZEC―t …(10) Corrected flowing current value = measured flowing current value + ΔZ pH + ΔZ EC−t (10)
 以上のように、第4の実施形態の注入支援装置250及び注入支援システム200は、EC補正値に基づいて、流動電流値を補正する。
 これによって、第4の実施形態の注入支援装置250及び注入支援システム200は、温度補償機能が無効である導電率計31による導電率の測定結果ECと、導電率の変化量KEC-tとに基づいて、水温の変化を推定することができる。
As described above, the injection support apparatus 250 and the injection support system 200 according to the fourth embodiment correct the flowing current value based on the EC t correction value.
Accordingly, the injection support apparatus 250 and the injection support system 200 according to the fourth embodiment are configured such that the conductivity measurement result EC t by the conductivity meter 31 whose temperature compensation function is invalid and the conductivity change amount K EC-t. Based on the above, a change in the water temperature can be estimated.
 水処理システム1cの運転員は、式(3)に示す水温補正式を定めるための水質試験を行う必要がない。第4の実施形態の注入支援装置250及び注入支援システム200は、水処理を現地で調整する時間を短縮することができる。第4の実施形態の注入支援装置250及び注入支援システム200は、イニシャルコストを削減することができる。第4の実施形態の注入支援装置250及び注入支援システム200は、水温計32の設置コストを削減することができる。 The operator of the water treatment system 1c does not need to perform a water quality test for determining the water temperature correction formula shown in Formula (3). The injection support device 250 and the injection support system 200 according to the fourth embodiment can reduce the time for adjusting the water treatment on site. The injection support apparatus 250 and the injection support system 200 of the fourth embodiment can reduce initial costs. The injection support device 250 and the injection support system 200 of the fourth embodiment can reduce the installation cost of the water temperature gauge 32.
 (第5の実施形態)
 第5の実施形態では、注入支援システム200が導電率補正部230を備えない点が、第4の実施形態と相違する。第5の実施形態では、第4の実施形態との相違点についてのみ説明する。
(Fifth embodiment)
The fifth embodiment is different from the fourth embodiment in that the injection support system 200 does not include the conductivity correction unit 230. In the fifth embodiment, only differences from the fourth embodiment will be described.
 図13は、注入支援装置250を備える水処理システム1の構成の第4例を示す図である。第5の実施形態では、水処理システム1は、「水処理システム1d」という。接触池30には、導電率計31が備えられる。注入支援システム200は、流動電流計210と、pH補正部220と、注入支援装置250と、提示装置260とを備える。制御部252は、pHと流動電流値との関係を示す式(1)に基づいて、pH補正値を決定する。補正された流動電流値は、式(11)によって表される。 FIG. 13 is a diagram illustrating a fourth example of the configuration of the water treatment system 1 including the injection support device 250. In the fifth embodiment, the water treatment system 1 is referred to as a “water treatment system 1d”. The contact pond 30 is provided with a conductivity meter 31. The injection support system 200 includes a flow ammeter 210, a pH correction unit 220, an injection support device 250, and a presentation device 260. The control unit 252 determines the pH correction value based on the formula (1) indicating the relationship between the pH and the flowing current value. The corrected flowing current value is expressed by Equation (11).
 補正された流動電流値=測定された流動電流値+ΔZpH …(11) Corrected flowing current value = measured flowing current value + ΔZ pH (11)
 以上のように、第5の実施形態の注入支援装置250及び注入支援システム200は、pH補正値に基づいて、流動電流値を補正する。
 これによって、第5の実施形態の注入支援装置250及び注入支援システム200は、原水の導電率が5mS/m程度と小さい浄水場や、導電率の変化が少ない浄水場で、水質パラメータが変化した場合でも、凝集剤100の注入量又は注入率の決定を支援することができる。第5の実施形態の注入支援装置250及び注入支援システム200は、導電率計を設置していない浄水場で、水質パラメータが変化した場合でも、凝集剤の注入量又は注入率の決定を支援することができる。第5の実施形態の注入支援装置250及び注入支援システム200は、導電率の補正式を作成するために、調整員が現地で水処理を調整する期間を削減することができる。第5の実施形態の注入支援装置250及び注入支援システム200は、イニシャルコストを削減することができる。第5の実施形態の注入支援装置250及び注入支援システム200は、導電率計31の設置コストを削減することができる。
As described above, the injection support apparatus 250 and the injection support system 200 of the fifth embodiment correct the flowing current value based on the pH correction value.
As a result, the injection support device 250 and the injection support system 200 of the fifth embodiment have changed water quality parameters in a water purification plant with a raw water conductivity as small as about 5 mS / m or a water purification plant with a small change in conductivity. Even in this case, the determination of the injection amount or injection rate of the flocculant 100 can be assisted. The injection support apparatus 250 and the injection support system 200 according to the fifth embodiment support determination of the injection amount or injection rate of the flocculant even when the water quality parameter changes in a water purification plant that does not have a conductivity meter. be able to. The injection support apparatus 250 and the injection support system 200 of the fifth embodiment can reduce the period during which the coordinator adjusts the water treatment in the field in order to create the conductivity correction formula. The injection support apparatus 250 and the injection support system 200 of the fifth embodiment can reduce initial costs. The injection support apparatus 250 and the injection support system 200 according to the fifth embodiment can reduce the installation cost of the conductivity meter 31.
 (第6の実施形態)
 第6の実施形態では、注入支援システム200がpH補正部220を備えない点が、第4の実施形態と相違する。第6の実施形態では、第4の実施形態との相違点についてのみ説明する。
(Sixth embodiment)
The sixth embodiment is different from the fourth embodiment in that the injection support system 200 does not include the pH correction unit 220. In the sixth embodiment, only differences from the fourth embodiment will be described.
 図14は、注入支援装置250を備える水処理システム1の構成の第5例を示す図である。第6の実施形態では、水処理システム1は、「水処理システム1e」という。接触池30には、導電率計31と、濁度計34とが備えられる。混和池40には、混合装置41が備えられる。 FIG. 14 is a diagram illustrating a fifth example of the configuration of the water treatment system 1 including the injection assisting device 250. In the sixth embodiment, the water treatment system 1 is referred to as a “water treatment system 1e”. The contact pond 30 is provided with a conductivity meter 31 and a turbidity meter 34. The mixing basin 40 is provided with a mixing device 41.
 制御部252は、原水のpH値がほぼ一定に維持されている場合、導電率と流動電流値との関係を示す式(9)に基づいて、EC補正値を決定する。補正された流動電流値は、式(12)によって表される。 When the pH value of the raw water is maintained substantially constant, the control unit 252 determines the EC t correction value based on Expression (9) indicating the relationship between the conductivity and the flowing current value. The corrected flowing current value is expressed by Expression (12).
 補正された流動電流値=測定された流動電流値+ΔZEC-t …(12) Corrected flowing current value = measured flowing current value + ΔZ EC−t (12)
 以上のように、第6の実施形態の注入支援装置250及び注入支援システム200は、EC補正値に基づいて、流動電流値を補正する。
 これによって、第6の実施形態の注入支援装置250及び注入支援システム200は、原水の導電率の変化が大きい浄水場で、水質パラメータが変化した場合でも、凝集剤100の注入量又は注入率の決定を支援することができる。
As described above, the injection support apparatus 250 and the injection support system 200 according to the sixth embodiment correct the flowing current value based on the EC t correction value.
As a result, the injection support apparatus 250 and the injection support system 200 of the sixth embodiment can be used for the injection amount or injection rate of the flocculant 100 even when the water quality parameter changes in a water purification plant where the change in the conductivity of the raw water is large. Can help make decisions.
 (第7の実施形態)
 第7の実施形態では、注入支援システム200が取得部270を備える点が、第2の実施形態と相違する。第7の実施形態では、第2の実施形態との相違点についてのみ説明する。
(Seventh embodiment)
The seventh embodiment is different from the second embodiment in that the injection support system 200 includes an acquisition unit 270. In the seventh embodiment, only differences from the second embodiment will be described.
 図15は、注入支援装置250を備える水処理システム1の構成の第6例を示す図である。第7の実施形態では、水処理システム1は、「水処理システム1f」という。注入支援システム200は、流動電流計210と、注入支援装置250と、提示装置260と、取得装置300とを備える。取得装置300は、pH補正部220と、導電率補正部230と、水温補正部240と、取得部270とを備える。 FIG. 15 is a diagram illustrating a sixth example of the configuration of the water treatment system 1 including the injection support apparatus 250. In the seventh embodiment, the water treatment system 1 is referred to as a “water treatment system 1f”. The injection support system 200 includes a flow ammeter 210, an injection support device 250, a presentation device 260, and an acquisition device 300. The acquisition device 300 includes a pH correction unit 220, a conductivity correction unit 230, a water temperature correction unit 240, and an acquisition unit 270.
 取得部270は、キーボードやタッチパネル等の操作デバイスを備える。タッチパネルは、液晶ディスプレイと一体でもよい。操作デバイスは、運転員による操作に応じて、運転員が選択した注入量又は注入率を、制御部252に出力する。操作デバイスは、凝集剤100の注入量又は注入率の候補を定める式に関する値を取得する。例えば、操作デバイスは、運転員による操作によって運転員が指定した値(定数)を、制御部252に出力する。運転員が指定した値(定数)は、例えば、傾きKpHの値、傾きKECの値である。
運転員が指定した値は、例えば、傾きKの値、傾きKEC-pHの値である。運転員が指定した値は、例えば、傾きKEC-tの値である。運転員が指定した値は、例えば、標準状態における水質パラメータの値である。標準状態における水質パラメータの値は、例えば、標準状態におけるpH値pH、標準状態における導電率EC、標準状態における水温tである。
The acquisition unit 270 includes an operation device such as a keyboard and a touch panel. The touch panel may be integrated with the liquid crystal display. The operation device outputs the injection amount or injection rate selected by the operator to the control unit 252 in accordance with the operation by the operator. The operating device obtains a value related to an expression that determines a candidate for the injection amount or injection rate of the flocculant 100. For example, the operation device outputs a value (constant) designated by the operator by an operation by the operator to the control unit 252. The value (constant) specified by the operator is, for example, the value of the slope K pH and the value of the slope K EC .
The values designated by the operator are, for example, the value of the slope K t and the value of the slope K EC-pH . The value designated by the operator is, for example, the value of the slope K EC-t . The value designated by the operator is, for example, the value of the water quality parameter in the standard state. The values of the water quality parameter in the standard state are, for example, the pH value pH m in the standard state, the conductivity EC m in the standard state, and the water temperature t m in the standard state.
 取得部270は、通信装置でもよい。取得部270は、パーソナルコンピュータやタブレット端末による遠隔操作によって、運転員が指定した値を取得してもよい。すなわち、取得部270は、通信によって値を取得してもよい。 The acquisition unit 270 may be a communication device. The acquisition unit 270 may acquire a value designated by the operator by remote operation using a personal computer or a tablet terminal. That is, the acquisition unit 270 may acquire a value by communication.
 以上のように、第7の実施形態の注入支援装置250及び注入支援システム200は、運転員が指定した値に基づいて、流動電流値を補正する。すなわち、制御部252は、取得部270が取得した値と、取得装置300の補正部が補正した流動電流値とに基づいて、凝集剤100の注入量又は注入率の候補を決定する。
 これによって、第7の実施形態の注入支援装置250及び注入支援システム200は、水質パラメータが著しく変化した場合でも、運転員が指定した値に基づいて凝集剤100の注入量又は注入率の決定を支援することができる。
As described above, the injection support device 250 and the injection support system 200 according to the seventh embodiment correct the flowing current value based on the value specified by the operator. That is, the control unit 252 determines a candidate for the injection amount or injection rate of the flocculant 100 based on the value acquired by the acquisition unit 270 and the flowing current value corrected by the correction unit of the acquisition device 300.
Thereby, the injection support device 250 and the injection support system 200 of the seventh embodiment determine the injection amount or injection rate of the flocculant 100 based on the value designated by the operator even when the water quality parameter changes significantly. Can help.
 以上述べた少なくともひとつの実施形態によれば、水質パラメータに基づいて流動電流値を補正する補正部を持つことにより、採取された水の水質パラメータが変化した場合でも、凝集剤の注入量又は注入率の決定を支援することができる。 According to at least one embodiment described above, by having a correction unit that corrects the flow current value based on the water quality parameter, even when the water quality parameter of the collected water changes, the injection amount or injection of the flocculant Can help determine the rate.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (8)

  1.  凝集剤が注入される貯水部から採取された水、又は前記貯水部に対して水の流れに関する上流側の箇所から採取された水の流動電流値を、採取された水の水質パラメータに基づいて補正する補正部と、
     補正された前記流動電流値に基づいて前記凝集剤の注入量又は注入率の候補を決定する制御部と、
     を備える凝集剤注入支援装置。
    Based on the water quality parameter of the collected water, the water current collected from the water storage part into which the flocculant is injected, or the water flowing from the upstream side of the water storage part with respect to the water flow is collected. A correction unit to correct,
    A controller that determines a candidate for the injection amount or injection rate of the flocculant based on the corrected flow current value;
    A flocculant injection support device.
  2.  前記水質パラメータは、pH値、導電率及び水温のうち少なくとも一つである、請求項1に記載の凝集剤注入支援装置。 The flocculant injection support device according to claim 1, wherein the water quality parameter is at least one of pH value, conductivity, and water temperature.
  3.  前記補正部は、前記導電率に基づいて前記水温を推定し、推定した前記水温と前記導電率とに基づいて前記流動電流値を補正する、請求項2に記載の凝集剤注入支援装置。 The flocculant injection support device according to claim 2, wherein the correction unit estimates the water temperature based on the conductivity, and corrects the flowing current value based on the estimated water temperature and the conductivity.
  4.  前記制御部は、前記貯水部に対して水の流れに関する上流側の箇所から採取された水の濁度と前記補正された流動電流値とに基づいて、前記凝集剤の注入量又は注入率の候補を決定する、請求項1に記載の凝集剤注入支援装置。 The control unit is configured to determine an injection amount or an injection rate of the flocculant based on the turbidity of water collected from the upstream side of the water storage unit with respect to the water flow and the corrected flow current value. The flocculant injection support device according to claim 1, wherein a candidate is determined.
  5.  前記制御部は、前記貯水部に対して水の流れに関する下流側の箇所から採取された水の濁度と前記補正された流動電流値とに基づいて、前記凝集剤の注入量又は注入率の候補を決定する、請求項1に記載の凝集剤注入支援装置。 The control unit, based on the turbidity of water collected from the downstream side of the water storage unit with respect to the flow of water and the corrected flow current value, the injection amount or injection rate of the flocculant The flocculant injection support device according to claim 1, wherein a candidate is determined.
  6.  前記制御部は、予め定められた目標値と前記補正された流動電流値との差に基づいて前記凝集剤の注入量又は注入率の候補を決定する、請求項1に記載の凝集剤注入支援装置。 The flocculant injection support according to claim 1, wherein the control unit determines a candidate for an injection amount or an injection rate of the flocculant based on a difference between a predetermined target value and the corrected flow current value. apparatus.
  7.  前記注入量又は前記注入率の候補を定める式に関する値を取得する取得部
     を備え、
     前記制御部は、取得された前記値と、補正された前記流動電流値とに基づいて前記凝集剤の注入量又は注入率の候補を決定する、請求項1に記載の凝集剤注入支援装置。
    An acquisition unit for acquiring a value related to an expression for determining the injection amount or the injection rate candidate,
    The flocculant injection support device according to claim 1, wherein the controller determines a candidate for the injection amount or injection rate of the flocculant based on the acquired value and the corrected flow current value.
  8.  凝集剤が注入される貯水部から採取された水、又は前記貯水部に対して水の流れに関する上流側の箇所から採取された水の流動電流値を測定する流動電流計
     を有する測定装置と、
     採取された水の水質パラメータに基づいて前記流動電流値を補正する補正部と、
     補正された前記流動電流値に基づいて前記凝集剤の注入量又は注入率の候補を決定する制御部と、
     を有する凝集剤注入支援装置と、
     前記凝集剤の注入量又は注入率の候補を提示する提示部
     を有する提示装置と、
     を備える凝集剤注入支援システム。
    A measuring device having a flow current meter for measuring a flow current value of water collected from a water storage portion into which a flocculant is injected, or water collected from a location upstream of the water storage portion with respect to the flow of water;
    A correction unit for correcting the flowing current value based on the water quality parameter of the collected water;
    A controller that determines a candidate for the injection amount or injection rate of the flocculant based on the corrected flow current value;
    A flocculant injection support device having
    A presentation device having a presentation unit for presenting candidates for the injection amount or injection rate of the flocculant;
    A flocculant injection support system comprising:
PCT/JP2016/069269 2015-07-09 2016-06-29 Flocculant injection assistance device and flocculant injection assistance system WO2017006823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137992A JP2017018879A (en) 2015-07-09 2015-07-09 Flocculant injection support device and flocculant injection support system
JP2015-137992 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006823A1 true WO2017006823A1 (en) 2017-01-12

Family

ID=57685525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069269 WO2017006823A1 (en) 2015-07-09 2016-06-29 Flocculant injection assistance device and flocculant injection assistance system

Country Status (2)

Country Link
JP (1) JP2017018879A (en)
WO (1) WO2017006823A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022009481A1 (en) * 2020-07-07 2022-01-13

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284304A (en) * 1990-03-30 1991-12-16 Ebara Infilco Co Ltd Control method for injecting flocculant
JPH06304414A (en) * 1993-04-26 1994-11-01 Michimasa Oguri Control device for cohesive sedimentation process in water purifying plant
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284304A (en) * 1990-03-30 1991-12-16 Ebara Infilco Co Ltd Control method for injecting flocculant
JPH06304414A (en) * 1993-04-26 1994-11-01 Michimasa Oguri Control device for cohesive sedimentation process in water purifying plant
JP2002239307A (en) * 2001-02-21 2002-08-27 Nishihara Watertech Corp Ltd Apparatus for automatically injecting flocculant for water cleaning based on streaming current value
JP2004223357A (en) * 2003-01-21 2004-08-12 Toshiba Corp Flocculant injecting/controlling apparatus

Also Published As

Publication number Publication date
JP2017018879A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US9682872B2 (en) Wastewater treatment system
JP5420467B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
US9815718B2 (en) Method of controlling addition rate of an odor control chemical
US11866348B2 (en) System, apparatus, and method for treating wastewater in real time
KR20110081868A (en) Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance
JP3485900B2 (en) Automatic coagulant injection device for water purification by flowing current value
WO2017068825A1 (en) Flocculant injection assistance device and control method
JP2004223357A (en) Flocculant injecting/controlling apparatus
KR101253481B1 (en) Optimized control system for dispensing flocculant for water treatment facility
JP5691709B2 (en) Water purification method and water purification device
WO2017006823A1 (en) Flocculant injection assistance device and flocculant injection assistance system
JP6301850B2 (en) Flocculant injection support device and flocculant injection system
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JP2008196862A (en) System for detecting state of aggregation
CN115784397A (en) Tap water flocculating agent dosing method, system, terminal and storage medium
JP3522650B2 (en) Automatic coagulant injection device for water purification
JP4985088B2 (en) Chemical injection control method
JP2008073667A (en) Method and apparatus for treating phosphoric acid-containing waste water
JP7335160B2 (en) Sludge coagulation dewatering device and its control method
JP6173808B2 (en) Setting method of coagulant injection rate
KR20000033348A (en) Method and apparatus of coagulant injection in a water purification plant
KR20080013431A (en) Sensor assembly and water treatment method and apparatus used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821292

Country of ref document: EP

Kind code of ref document: A1