KR101334693B1 - Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same - Google Patents

Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same Download PDF

Info

Publication number
KR101334693B1
KR101334693B1 KR1020110022507A KR20110022507A KR101334693B1 KR 101334693 B1 KR101334693 B1 KR 101334693B1 KR 1020110022507 A KR1020110022507 A KR 1020110022507A KR 20110022507 A KR20110022507 A KR 20110022507A KR 101334693 B1 KR101334693 B1 KR 101334693B1
Authority
KR
South Korea
Prior art keywords
flocculant
turbidity
amount
raw water
water
Prior art date
Application number
KR1020110022507A
Other languages
Korean (ko)
Other versions
KR20120104852A (en
Inventor
김현욱
이재경
김관중
이창원
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020110022507A priority Critical patent/KR101334693B1/en
Publication of KR20120104852A publication Critical patent/KR20120104852A/en
Application granted granted Critical
Publication of KR101334693B1 publication Critical patent/KR101334693B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

본 발명은 수질측정기와 회귀모델을 이용한 응집제 주입량 결정방법과 그를 이용한 정수처리시스템에 관한 것으로, 보다 상세하게는 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터에 기반하여 각 관측치의 상호관계를 시계열 분석에 기초한 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)으로 분석함으로써 최적의 응집제 주입량을 결정하는 방법과 그를 이용한 정수처리시스템에 관한 것이다.
본 발명에 따른 응집제 주입량 결정방법은, 상수 원수의 정수처리과정에서 응집제의 주입량을 결정하는 방법에 있어서, 자기회귀통합이동평균모형 (Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석이 가능한 컴퓨터 장치에 과거의 원수 수질 데이터로서 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 제어변수로, 응집제 주입량 데이터를 조절변수로 입력하여 시계열 분석을 통해 회귀식을 유추하는 단계; 상기 회귀식을 컴퓨터 연산자화하는 단계; 응집처리할 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도를 실측하는 단계; 상기 실측된 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 상기 컴퓨터 연산자화한 회귀식에 적용하여 응집제 주입량을 예측하는 단계;를 포함하여 이루어진다.
본 발명은 실시간으로 응집제의 주입량을 결정할 수 있고 적정량의 응집제를 주입할 수 있도록 하여 응집제의 소비량을 줄일 수 있도록 할 뿐만 아니라, 종래의 수작업으로 행하던 일을 자동 시스템으로 대체하도록 하여 간편하고 저비용으로 시스템을 운영할 수 있도록 하는 효과를 가진다.
The present invention relates to a flocculant injection amount determination method using a water quality meter and a regression model, and to a water treatment system using the same. More specifically, the correlation between each observation value is based on pH, alkalinity, water temperature, turbidity, and electrical conductivity data of raw water. The present invention relates to a method for determining an optimal amount of flocculant injection by analyzing an auto-regressive integrated moving average model (ARIMA model) based on time series analysis and a water treatment system using the same.
In the method of determining the amount of flocculant injection according to the present invention, in the method of determining the amount of flocculant injected in the constant water treatment process, time series analysis using an auto-regressive integrated moving average model (ARIMA model) is performed. Inferring the regression equation through time series analysis by inputting pH, alkalinity, water temperature, turbidity and electrical conductivity data as control variables and coagulant injection amount data as control variables as possible raw water quality data on a computer device; Computerizing the regression expression; Measuring pH, alkalinity, water temperature, turbidity, and electrical conductivity of the raw water to be flocculated; Predicting the amount of flocculant injection by applying the measured pH, alkalinity, water temperature, turbidity, and electrical conductivity data of the raw water to the computer-operated regression equation.
The present invention can determine the injection amount of the flocculant in real time and inject the appropriate amount of flocculant to reduce the consumption of the flocculant, as well as to replace the conventional manual work with the automatic system by the simple and low cost system It has the effect of operating.

Description

수질측정기와 회귀모델을 이용한 응집제 주입량 결정방법과 그를 이용한 정수처리시스템{Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same}Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same}

본 발명은 수질측정기와 회귀모형을 이용한 응집제 주입량 결정방법과 그를 이용한 정수처리시스템에 관한 것으로, 보다 상세하게는 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터에 기반하여 각 관측치의 상호관계를 시계열 분석에 기초한 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)으로 분석함으로써 최적의 응집제 주입량을 결정하는 방법과 그를 이용한 정수처리시스템에 관한 것이다.The present invention relates to a coagulant injection amount determination method using a water quality meter and a regression model, and to a water treatment system using the same. The present invention relates to a method for determining the optimal amount of flocculant injection by analyzing an auto-regressive integrated moving average model (ARIMA model) based on time series analysis and a water treatment system using the same.

일반적인 정수처리과정이 도 1에 도시되어 있다. A general water treatment process is shown in FIG.

착수정을 거친 상수 원수 중의 부유물질을 제거하기 위하여 혼화지에서 응집제를 주입한다. 응집제는 원액을 희석하여 주입하는데 이는 응집제가 상수 원수와 골고루 섞이게 하기 위해서이다. 응집제가 주입된 상수 원수는 응집지를 거치는데 응집지에서는 응집제와 미세 콜로이드물질이 뭉친 플록(Floc)이 자라나는 공간이다. 플록(Floc)이 충분히 성장하지 않으면 침전이 이루어지지 않게 되어 후속공정에 악영향을 미칠 수 있다. 응집지를 거친 상수 원수는 침전지에서 중력에 의한 고액분리의 과정을 거치게 되고, 침전지에서 미처 분리되지 못한 부유물질들은 여과지에서 여과하여 제거된다. 여과지를 거친 상수 원수는 염소 소독된 후 정수지에 머무르다가 송수펌프를 통해 소비자에게 공급된다.A flocculant is injected from the mixed paper to remove suspended solids in the purified water after the impregnation. The flocculant is diluted and injected in order to make the flocculant evenly mixed with the constant raw water. The constant raw water into which the flocculant is injected passes through the flocculant, which is a space where floc grows with the flocculant and the fine colloidal material. If the floc does not grow sufficiently, precipitation will not occur, which may adversely affect subsequent processes. The constant raw water through the flocculation paper is subjected to the process of gravity-liquid separation at the sedimentation basin, and the suspended solids which are not separated at the sedimentation basin are filtered out in the filter basin. The purified raw water, which has passed through the filter paper, is chlorinated and then stays in the purified water and is supplied to the consumer through a water pump.

정수처리에서의 응집공정은 콜로이드와 현탁고형물질입자의 표면전하를 응집제로 중화시키는 공정이며, 급속혼화는 응집을 달성하기 위한 필수적인 과정이다. 급속혼화 및 응집공정의 운전과 유지관리에서 가장 중요한 것은 원수의 수질과 처리수량이 계속 변동하더라도 적절한 성질의 응집제를 선정하여 변동되는 원수의 수질과 정수 수량에 따라 적절한 양으로 주입해야 한다는 것이다. The flocculation process in the purification process neutralizes the surface charges of the colloidal and suspended solid particles with a flocculating agent, and rapid admixing is an essential process for achieving coagulation. The most important thing in the operation and maintenance of the rapid mixing and flocculation process is that even if the water quality and the treated water are constantly changing, a flocculant of appropriate properties should be selected and injected in the appropriate amount according to the fluctuating water quality and purified water quantity.

이를 위해 Jar test, 제타(zeta)전위 측정, Database기반 마이크로 프로세서, SCD (Streaming Current Detector) 등의 다양한 방법이 이용되고 있다. To this end, various methods such as jar test, zeta potential measurement, database-based microprocessor, and streaming current detector (SCD) have been used.

Jar-test는 응집, 플록형성, 침전공정을 평가하고 조절하는 시험방법으로 널리 행해지고 있는 방법이다. 이 Jar-test는 응집제의 최적화, 약품주입 순서, 혼화에너지와 혼화시간, 침전과 여과성능을 평가하고, 침전수의 부식특성을 평가할 수 있으며 재래식 공정에서 최적응집제 주입량을 결정하는데 유효하게 사용되어 왔다. 그러나 Jar-test는 급격한 수질변화 시 대처시간이 느리고, 응집제 주입시설의 완벽한 자동화가 어려운 단점이 있다. 또한 직접 여과법이나 인라인(in-line)공정에서 운전자에게 적절한 응집제의 주입량을 제공하지 못하므로, Jar-test 응집제어방식을 이용한 정수장에서는 직접 여과법이나 인라인(in-line) 공정을 제대로 채택하지 못하는 한계가 있다. Jar-test is a widely used test method for evaluating and controlling flocculation, flocculation and precipitation processes. This Jar-test has been used effectively to evaluate flocculant optimization, chemical injection sequence, mixing energy and mixing time, sedimentation and filtration performance, to evaluate the corrosion characteristics of precipitated water and to determine the optimal coagulant dosage in conventional processes. . However, Jar-test has the disadvantages of slow coping time in case of rapid water quality change and complete automation of flocculant injection facility. In addition, the direct filtration or in-line process does not provide the operator with the proper amount of coagulant injection. Therefore, the water purification plant using Jar-test coagulation control method does not properly adopt the direct filtration or in-line process. There is.

Database기반 마이크로 프로세서를 이용한 방법은 응집제 주입량에 영향을 미치는 인자인 수온, 탁도, 알칼리도, pH 등의 수질자료를 측정기로부터 공급받고, 최근 1년 이상의 수질자료를 데이터화하여 마이크로 프로세서의 연산에 의해 최적 응집제 주입량을 결정한 다음, 원수 유량계로부터 공급된 유량 신호와 최적 응집제 주입량을 재연산하여 최종적으로 연산된 응집제 주입량을 전기적 신호로 바꾸어 응집제 주입장치로 전송하는 방식이다. 이 방식은 수질변화가 심한 때에도 신속하게 응집제 주입량을 변화시켜 수질사고를 예방하고, 응집 최적화를 달성하여 정수효율을 향상시킬 수 있으며, 수질자료의 분석 및 축적이 용이하다. 그러나 응집제 최적화 시스템이 고가이고, 응집제 주입량을 결정하는 주요인자인 유량계, 탁도계, 알칼리도계, pH측정기 등에서 데이터가 부정확하게 입력될 경우 응집효율을 저하시키는 역효과가 발생할 수 있다. The method using a database-based microprocessor receives water quality data such as water temperature, turbidity, alkalinity, and pH, which are factors affecting the coagulant injection amount, and the optimum coagulant by calculating the microprocessor by calculating the water quality data for more than one year. After the injection amount is determined, the flow rate signal supplied from the raw water flow meter and the optimum flocculant injection amount are recomputed, and the final calculated flocculant injection amount is converted into an electrical signal and transmitted to the flocculant injection device. This method can quickly change the flocculant injection rate even when the water quality changes severely to prevent water accidents, achieve coagulation optimization to improve water purification efficiency, and it is easy to analyze and accumulate water quality data. However, if the flocculant optimization system is expensive and data is incorrectly input from the flowmeter, turbidimeter, alkalinity meter, pH meter, etc., which are the main factors for determining the flocculant injection amount, adverse effects may occur.

SCD(Streaming Current Detector)란, 시료 중 콜로이드 입자의 표면전하를 연속적으로 온라인으로 측정하는 기기로서 제타(zeta)전위 측정기기와 같은 원리를 사용하고 있다. 이미 선진국에서는 SCD의 실용성 및 장점에 관한 많은 연구결과가 발표되었고, 실제 정수장에서 성공적으로 사용되고 있다. 이 장치는 원수에 응집제가 주입된 후 일정시간이 경과한 지점에서 샘플을 취수하여 원수 내 콜로이드 입자의 표면전하를 연속적으로 측정하여 현재의 응집상태를 출력하고, 응집제 주입설비는 이 전기적 출력신호를 기준삼아 응집제 주입량을 보정하고 연속조절하여 항상 최적 응집조건에 맞는 응집제 주입량을 자동조절한다. Streaming Current Detector (SCD) is a device that continuously measures the surface charge of colloidal particles in a sample on-line and uses the same principle as a zeta potential measuring device. In developed countries, many researches on the practicality and advantages of SCD have been published and are being used successfully in water purification plants. This device takes a sample at a point after a certain amount of time after the coagulant is injected into the raw water and continuously measures the surface charge of the colloidal particles in the raw water to output the current coagulation state. As a standard, the amount of coagulant injected is automatically adjusted by adjusting and continuously adjusting the amount of coagulant injected.

이는 별도의 응집제 주입량을 지시할 필요가 없으므로, 원수 수질 측정시스템이 없는 정수장에 적합한 시스템이다. 특히 급격한 수질변화가 많이 발생하는 정수장에서의 수질사고 예방 등에 효과적인 것으로 평가되고 있다. 또한 SCD에 의한 응집제 주입량 결정방식은 원수 유량계, 수질 측정기의 자료에 관계없이 독자적으로 SCD와 응집제 주입장치만으로 최적 응집조건을 달성할 수 있으므로 초기 시설비가 적게 들고, 시설이 간편해지는 등의 장점이 있다. 반면 원수에서의 탁질 문제로 샘플링 펌프에서의 막힘현상에 의한 오차가 발생할 수 있고, 신속한 반응을 유도하기 위해 샘플링 펌프에서 SCD까지의 지연시간(Lag Time)을 최소화해야 하며, 특히 샘플수의 취수지점 선정에 신중을 기해야 하는 등의 문제점이 있다.
This is a suitable system for water purification plants without a raw water quality measurement system because there is no need to indicate a separate flocculant injection amount. In particular, it is evaluated to be effective in preventing water accidents in water purification plants where rapid changes in water quality occur frequently. In addition, the method of determining the amount of flocculant injected by SCD can achieve the optimal flocculation condition by using SCD and flocculant injector independently regardless of the data of raw water flow meter and water quality measuring instrument. . On the other hand, turbidity problems in raw water may cause errors due to blockage in the sampling pump, and in order to induce rapid response, the lag time from the sampling pump to the SCD should be minimized. There are problems such as careful selection.

본 발명은 상기 종래의 응집제어방식의 문제점을 해결하기 위해 안출된 것으로 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터에 기반하여 각 관측치의 상호관계를 시계열 분석에 기초한 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)으로 분석함으로써 실시간으로 원수의 수질을 모니터링하여 최적의 응집제 주입량을 산출할 수 있어, 시시각각 변화하는 원수의 성상에 따라 실시간으로 응집제의 주입량을 결정할 수 있도록 함에 그 목적이 있다.The present invention was devised to solve the problems of the conventional coagulation control method, and based on time series analysis, the autoregressive integrated moving average model based on time series analysis on the correlation of each observation value based on pH, alkalinity, water temperature, turbidity, and electrical conductivity data of raw water. By analyzing with (Auto-Regressive Integrated Moving Average model; ARIMA model), it is possible to calculate the optimal amount of flocculant injection by monitoring the quality of raw water in real time, so that the amount of flocculant injection can be determined in real time according to the characteristics of raw water. The purpose is to.

또한, 본 발명은 응집제의 주입량을 결정한 후, 결정된 양의 응집제를 정수처리공정의 혼화지에 자동주입할 수 있는 시스템을 제공하여 사용이 간편하고 저비용으로 정수처리 시스템을 운영할 수 있도록 함에 그 목적이 있다.In addition, the present invention provides a system capable of automatically injecting the determined amount of the flocculant into the mixed paper of the water treatment process after determining the amount of flocculant to be injected, it is easy to use and operate the water treatment system at low cost. have.

상기 목적을 달성하기 위해서 본 발명은 상수 원수의 정수처리과정에서 응집제의 주입량을 결정하는 방법에 있어서, 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석이 가능한 컴퓨터 장치에 과거의 원수 수질 데이터로서 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 제어변수로, 응집제 주입량 데이터를 조절변수로 입력하여 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석을 통해 회귀식을 유추하는 단계; 상기 유추한 회귀식을 컴퓨터 연산자화하는 단계; 응집처리할 원수의 수질을 실측하는 단계; 상기 실측된 원수의 수질 데이터를 상기 컴퓨터 연산자화한 회귀식에 적용하여 응집제 주입량을 연산하는 단계;를 포함하는 것을 특징으로 하는 염소제 주입량 결정방법을 제공한다.In order to achieve the above object, the present invention provides a method for determining the amount of coagulant injected during the purification process of constant raw water, and time-series analysis using an auto-regressive integrated moving average model (ARIMA model) is possible. Auto-Regressive Integrated Moving Average model (ARIMA) by inputting pH, alkalinity, water temperature, turbidity, and electrical conductivity data as control variables and coagulant injection data as control variables as raw water quality data in a computer device. inferring a regression equation through time series analysis using a model); Computerizing the inferred regression equation; Measuring the quality of the raw water to be agglomerated; And calculating a flocculant injection amount by applying the measured water quality data of the raw water to the computer-operated regression equation.

또한 본 발명은 상수 원수의 응집처리가 진행되는 혼화지; 응집처리할 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도를 실측하는 수질측정기; 상수 원수의 응집처리를 위하여 응집제를 저장하는 응집제 저장조; 과거의 원수 수질 데이터로서 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 제어변수로, 응집제 주입량 데이터를 조절변수로 하여 자기회귀통합이동평균 모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석을 통해 유추한 회귀식이 연산자화 되어 있어, 상기 실측된 pH, 알칼리도, 수온, 탁도, 전기전도도를 상기 연산자화된 회귀식에 적용하여 응집제 주입량을 연산한 후, 필요한 양의 응집제를 공급할 수 있도록 정량펌프를 제어하는 응집제 주입량 제어부; 응집제 주입량 제어부의 제어신호에 의해 일정한 양의 응집제를 응집제 저장조로부터 혼화지로 공급하는 정량펌프; 상수 원수와 응집제를 혼합하여 급속교반하기 위한 교반기;를 포함하여 이루어지는 것을 특징으로 하는 정수처리시스템을 제공한다.In addition, the present invention is a mixed paper where the coagulation treatment of the constant raw water; A water quality meter for measuring pH, alkalinity, water temperature, turbidity, and electrical conductivity of the constant raw water to be agglomerated; A coagulant reservoir for storing coagulant for coagulation of raw water; Using the auto-regressive integrated moving average model (ARIMA model) with past raw water quality data as pH, alkalinity, water temperature, turbidity and electrical conductivity data as control variables and coagulant injection data as control variables The regression equation inferred through time series analysis is operatorized to apply the measured pH, alkalinity, water temperature, turbidity, and electrical conductivity to the operatorized regression formula to calculate the amount of flocculant injection, and to supply the required amount of flocculant. Coagulant injection amount control unit to control the metering pump so that; A metering pump for supplying a fixed amount of flocculant from the flocculant reservoir to the mixed paper by a control signal of the flocculant injection amount control unit; It provides a water treatment system comprising a; agitator for mixing the raw water and flocculant for rapid stirring.

본 발명에 의하면, 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터에 기반하여 각 수질 데이터가 응집제의 주입량에 미치는 상관관계를 시계열 분석에 기초한 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)으로 분석함으로써 그 분석결과를 이용하여 실시간으로 모니터링되는 수질 데이터로부터 최적의 응집제 주입량을 실시간으로 산출할 수 있어, 본 발명은 시시각각 변화하는 상수 원수의 성상에 따라 실시간으로 응집제의 주입량을 결정할 수 있을 뿐만 아니라, 적정한 양의 응집제를 주입할 수 있도록 함으로써 응집제의 소비량을 줄일 수 있는 효과를 가진다.According to the present invention, the autoregressive integrated moving average model based on time-series analysis is used to determine the correlation between the water quality data and the amount of coagulant injected based on the pH, alkalinity, water temperature, turbidity, and electrical conductivity data of the constant raw water. By analyzing the average model (ARIMA model), the optimal amount of flocculant injection can be calculated in real time from the water quality data monitored in real time using the analysis result. In addition to determining the injection amount, it is possible to inject an appropriate amount of flocculant, thereby reducing the consumption of the flocculant.

또한, 본 발명은 응집제의 주입량을 결정한 후 결정된 양의 응집제를 자동으로 주입할 수 있는 시스템을 제공함으로써, 종래의 수작업으로 행하던 일을 자동시스템으로 대체하도록 하여 간편하고 저비용으로 시스템을 운영할 수 있도록 하는 효과를 가진다.In addition, the present invention provides a system capable of automatically injecting the determined amount of flocculant after determining the amount of flocculant to be injected, so that it is possible to operate the system at a low cost by replacing the conventional manual work with an automatic system. Has the effect of

도 1은 일반적인 정수처리공정을 나타내는 모식도이고,
도 2는 pH가 탁도제거에 미치는 영향(2.4 ㎎/ℓ Al2O3주입)을 나타내는 그래프이며,
도 3은 수온에 따른 응집효율의 변화 및 입자수의 변화를 나타내는 그래프이고,
도 4는 상수 원수가 고탁도일 때의 본 발명에 따른 ARIMA model 적용의 오차율 그래프이며,
도 5은 상수 원수가 중탁도일 때의 본 발명에 따른 ARIMA model 적용의 오차율 그래프이고,
도 6은 상수 원수가 저탁도일 때의 본 발명에 따른 ARIMA model 적용의 오차율 그래프이며,
도 7은 정수처리시스템에서 본 발명에 일실시예에 따른 응집제 주입량 결정방법의 흐름을 나타내는 블럭도이고,
도 8은 본 발명의 일실시예에 따른 응집제 주입량 제어부를 구비한 정수처리시스템의 모식도이다.
1 is a schematic diagram showing a general water treatment process,
Figure 2 is a graph showing the effect of pH on turbidity removal (2.4 mg / L Al 2 O 3 injection),
3 is a graph showing a change in the aggregation efficiency and the number of particles according to the water temperature,
4 is a graph of the error rate of applying the ARIMA model according to the present invention when the constant raw water is high turbidity,
5 is a graph of the error rate of applying the ARIMA model according to the present invention when the constant raw water is heavy turbidity,
Figure 6 is a graph of the error rate of application of the ARIMA model according to the present invention when the constant raw water is low turbidity,
7 is a block diagram showing the flow of the flocculant injection amount determination method according to an embodiment of the present invention in the water treatment system,
8 is a schematic diagram of a water treatment system having a flocculant injection amount control unit according to an embodiment of the present invention.

이하, 본 발명의 일실시예를 첨부된 도면들을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model : 이하 'ARIMA model'이라고 함)은 과거 시계열의 형태가 미래에도 같은 형태로 반복하리라는 기본 가정하에서 각 관측치의 상호관계를 분석하는 모델이다.The auto-regressive integrated moving average model (ARIMA model) is used to analyze the correlation of each observation under the basic assumption that the past time series will repeat the same in the future. It is a model.

모형 식별, 모형 추정, 모형 진단의 3단계로 구성된 ARIMA model은 단기예측에 정확한 모형으로서 전환점에 대한 예측이 가능하고, 예측의 신뢰구간을 설정할 수 있으며, 모형의 적합성을 검증할 수 있는 통계적 검진이 가능하고, 새로운 데이터의 주입에 따라 모형의 모수를 쉽게 업데이트 할 수 있으며, 정상적이거나 비정상적인 시계열을 모두 다룰 수 있어 매우 융통성이 큰 장점이 있다.The ARIMA model, which consists of three stages of model identification, model estimation, and model diagnosis, is an accurate model for short-term prediction, which can predict the turning point, establish the confidence interval of the prediction, and provide statistical tests to verify the model's suitability. It is possible to update the parameters of the model easily by injecting new data, and it is very flexible because it can handle both normal and abnormal time series.

ARIMA model은 시계열의 안정성 및 계절적 안정성 검증과 자기회귀 및 이동평균의 형태를 결정하는 '모형의 식별단계'; 식별된 모형의 모수를 비선형 극우추정법으로 추정하는 '모수의 추정단계'; 모형의 추정과정에서 산출된 여러가지 통계적인 기법을 사용하여 모형의 설명력을 검증하는 '모형의 적합성 검증단계'; 설정된 모형을 이용하여 향후 일정기간 동안의 시계열 움직임을 예측하는 '예측단계'로 이루어져 있다.The ARIMA model is a 'identification step of the model' that determines the stability of the time series and seasonal stability and determines the shape of the autoregressive and moving averages; An estimating step of the parameter estimating the parameters of the identified model by nonlinear extreme right estimation; 'Conformance verification step of model', which verifies the explanatory power of model using various statistical techniques calculated during model estimation process; It consists of a 'prediction step' that predicts time-series movements over a period of time using a set model.

ARIMA model의 종류에는 과거의 예측값을 기반으로 미래를 예측하는 자기회귀모형(Auto Regressive model; AR model)이 있고 다음과 같이 표현된다.
The ARIMA model includes an auto regressive model (AR model) that predicts the future based on past predictions.

yt = Ф1yt-1 + Ф2yt-2 + ···+ Фpyt-p + εt (1)y t = Ф 1 y t-1 + Ф 2 y t-2 + ... + Ф p y tp + ε t (1)

yt는 종속변수, yt -1,yt -2,yt -p는 독립변수 y t is the dependent variable, y t -1 , y t -2 , y t -p is the independent variable

Ф1, Ф2, Фp는 자기회귀계수, εt는 잔차, p는 차수
Ф 1 , Ф 2 , Ф p is the autoregressive coefficient, ε t is the residual, p is the order

또한, 자기회귀모형(Auto Regressive model; AR model)과 달리 과거의 오차값을 기반으로 미래를 예측하는 이동평균모형(Moving Average model; MA model)이 있으며 다음과 같이 표현된다. In addition, unlike the auto regressive model (AR model), there is a moving average model (MA model) that predicts the future based on the past error value is expressed as follows.

yt = εt - θ1εt-1 - θ2εt-2 -···- θqεt-q (2)y t = εt-θ 1 ε t-12 ε t-2 -...- θ q ε tq (2)

yt는 종속변수, εt는 잔차, εt-1, εt-2, εt-q는 잔차의 이전값y t is the dependent variable, εt is the residual, ε t-1, ε t-2, ε tq is the previous value of the residual

θ1, θ2, θq는 이동평균계수, q는 차수 θ 1 , θ 2 , θ q are moving average coefficients, q is degree

또한, 자기회귀모형(Auto Regressive model; AR model), 이동평균모형(Moving Average model; MA model)을 통합시켜 놓은 것으로 과거의 실제값의 오차값을 동시에 고려하여 미래를 예측하는 자기회귀통합이동평균모형(Auto Regressive Moving Integrated Average model; ARIMA model)이 있으며 차수가 p와 q인 경우에는 다음과 같이 표현된다. In addition, it integrates an auto regressive model (AR model) and a moving average model (MA model). The autoregressive integrated moving average predicts the future by simultaneously considering the error values of past actual values. If there is an auto regressive moving integrated average model (ARIMA model) and the order is p and q, it is expressed as follows.

yt1yt-12yt-2+ ··+Фpyt-p+ εt1εt-12εt-2-··-θqεt-q (3)y t = Ф 1 y t-1 + Ф 2 y t-2 + ... + Ф p y tp + ε t1 ε t-12 ε t-2- · -θ q ε tq (3)

yt는 종속변수, yt -1,yt -2,yt -p는 독립변수, Ф1, Ф2, Фp는 자기회귀계수y t is the dependent variable, y t -1 , y t -2 , y t -p is the independent variable, Ф 1 , Ф 2 , Ф p is the autoregressive coefficient

εt는 잔차, εt-1, εt-2, εt-q는 잔차의 이전값, θ1, θ2, θq는 이동평균계수
εt is the residual, ε t-1, ε t-2, ε tq is the previous value of the residual, θ 1 , θ 2 , θ q is the moving average coefficient

본 발명의 일실시예에 따른 ARIMA model에 기반한 응집제 주입량 결정방법은 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터에 기반하여 각 수질 데이터가 응집제의 주입량에 미치는 상관관계를 시계열 분석에 기초한 ARIMA model로 분석하고 그 분석결과를 이용하여 실시간으로 모니터링되는 수질 데이터로부터 최적의 응집제 주입량을 실시간으로 산출하는 것이다. The method of determining the coagulant injection amount based on the ARIMA model according to an embodiment of the present invention is based on time series analysis of the correlation between the water quality data and the coagulant injection amount based on the pH, alkalinity, water temperature, turbidity, and electrical conductivity data of the constant raw water. Analyzes with the ARIMA model and uses the analysis results to calculate the optimal flocculant dosage in real time from the water quality data monitored in real time.

본 발명의 일실시예에 따른 ARIMA model에 기반한 응집공정의 자동제어를 위해 주어진 인자는 위에서 언급한 바와 같이 pH, 알칼리도, 수온, 탁도, 전기전도도이며 이들 각 수질데이터가 응집공정에 미치는 영향은 다음과 같다.The factors given for the automatic control of the coagulation process based on the ARIMA model according to an embodiment of the present invention are pH, alkalinity, water temperature, turbidity, and electrical conductivity as mentioned above.The influence of each water quality data on the coagulation process is as follows. Is the same as

pH는 수식으로 pH = -log[H+] 로 나타내어지며 수중 수소이온의 농도로서 물이 산성인지 중성인지 염기성인지를 나타내 주는 지표이다. pH는 log함수를 이용하기 때문에 pH가 1만큼 변화하는 것은 수소이온의 농도가 10배 줄거나 늘어나는 것을 의미한다. pH 측정기는 일종의 농도차 전지로서 유리전극 안의 물질과 유리전극 밖의 시료의 수소이온 농도차에 의해 유리전극에 전류가 흐르며 이 세기를 측정하여 수소이온을 나타내 주는 기기가 pH 미터이다. pH is expressed as pH = -log [H + ] by the formula and is an indicator of whether the water is acidic, neutral or basic as the concentration of hydrogen ions in water. Since pH uses a logarithmic function, changing the pH by 1 means that the concentration of hydrogen ions decreases or increases by 10 times. pH meter is a kind of concentration difference battery. Current flows through glass electrode by the difference in concentration of hydrogen ion between material inside glass electrode and sample outside glass electrode. pH meter is a device that displays hydrogen ion by measuring the intensity.

도 2를 보면 pH 5.5~7.5사이의 물에서 응집제에 의한 플럭 형성이 잘 이루어짐을 알 수 있다. 하지만 응집제 주입량에 따라 최적 pH가 변하기 때문에 응집제 주입량을 변경할 때마다 최적의 pH를 다시 찾아야 한다.Referring to Figure 2 it can be seen that the floc formation by the flocculant is well made in water between pH 5.5 ~ 7.5. However, since the optimum pH changes according to the coagulant injection amount, the optimum pH must be found again whenever the coagulant injection amount is changed.

알칼리도는 산을 중화시킬 수 있는 능력으로 알칼리도가 증가 할수록 응집제의 소모량이 증가하고, 용존유기탄소(DOC; Dissolved Oxygen Carbon)의 제거율이 감소한다. The alkalinity is the ability to neutralize the acid. As the alkalinity increases, the consumption of the flocculant increases and the removal rate of dissolved organic carbon (DOC) decreases.

수온이란, 물의 온도로서, 온도는 대상물질의 내부에너지를 나타내는 것으로 보통 화학반응의 속도에 영향을 미치는 인자로 작용한다. 도 3을 보면 수온이 올라갈수록 응집효율이 좋아지는 것을 알 수 있다.Water temperature is the temperature of water. Temperature represents the internal energy of a target substance and usually acts as a factor affecting the speed of a chemical reaction. Looking at Figure 3 it can be seen that as the water temperature rises, the aggregation efficiency is improved.

탁도는 물의 탁한 정도를 나타내는 지표로서, 탁도계는 빛의 분산정도를 파악하는 방식과 빛의 막힘정도를 파악하는 방식의 두 가지가 있으며 탁도가 높을수록 분산이 높고, 막힘이 크다. 때문에 깨끗한 물에서는 탁도가 매우 낮다.Turbidity is an indicator of turbidity of water, and there are two types of turbidimeters: a measure of the degree of light dispersion and a measure of the degree of light blockage. The higher the turbidity, the higher the dispersion and the greater the blockage. Therefore, turbidity is very low in clean water.

전기전도도가 낮을수록 수중 이온이나 용해성 염의 양이 적다는 것을 의미한다. 전기전도도는 수중 이온의 수에 비례한다고 할 수 있다. 주입된 응집제가 수중 콜로이드 물질과 충분히 반응하였는지에 대한 평가를 할 수 있다.Lower electrical conductivity means less ions or soluble salts in the water. Electrical conductivity can be said to be proportional to the number of ions in the water. It can be evaluated whether the injected flocculant has sufficiently reacted with the colloidal material in water.

이후, ARIMA model을 이용하여 뚝도 정수장의 최근 5년(2003~2008)간의 원수 수질 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도) 및 응집제 주입량 데이터를 입수하여 응집제 주입량을 조절변수로, 원수 수질(pH, 알칼리도, 수온, 탁도, 전기전도도)을 제어변수로 하여 시계열 분석을 통해 회귀식을 유추하고 이 회귀식을 컴퓨터 연산자화하여 응집제 주입량을 예측한 실험예를 들어 본 발명을 설명한다. Then, using the ARIMA model, raw water quality data (pH, alkalinity, water temperature, turbidity, electrical conductivity) and coagulant injection amount data of the last 5 years (2003 ~ 2008) of Ttukdo water purification plant were obtained and the coagulant injection amount was controlled as a control variable. The present invention will be described as an experimental example in which water quality (pH, alkalinity, water temperature, turbidity, electrical conductivity) is used as a control variable, and a regression equation is inferred through time series analysis, and this regression equation is computerized to predict the amount of flocculant injection.

이를 위하여 우선, 상기 5년간의 데이터 중 응집제 주입량에 가장 큰 영향을 주는 탁도를 기준으로 고탁도, 중탁도, 저탁도로 구분하여 표본을 추출하였다. To this end, first, samples were divided into high turbidity, heavy turbidity, and low turbidity based on the turbidity which has the greatest influence on the coagulant injection amount of the five-year data.

상기 5년간의 데이터 중 탁도가 100 이상인 고탁도인 날짜들의 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도, 응집제 주입량)를 취합하여 시계열 분석 회귀계수를 유추하여 표 1을 얻은 바, ARIMA model에 의한 결과값과 실제값의 차이인 오차율 5% 미만인 데이터는 표 2와 같이 2개로서(도 4 참조), 오차율 5% 미만인 데이터수가 작은 것은 고탁도 시의 데이터 부족에 의한 것으로 생각된다. The data from the high turbidity dates (pH, alkalinity, water temperature, turbidity, electrical conductivity, flocculant injection amount) of the five years of data were collected and inferred from the time series analysis regression coefficient to obtain Table 1. The data of less than 5% of the error rate, which is the difference between the resultant value and the actual value, is two as shown in Table 2 (refer to FIG. 4).

표 1은 고탁도에서의 시계열 분석 회귀계수이다.Table 1 shows the regression coefficients of time series at high turbidity.

시계열 분석 회귀계수Time series analysis regression coefficient 전기전도도Electrical conductivity 알칼리도Alkalinity pHpH 수온Water temperature 탁도Turbidity ㎲/㎠㎲ / ㎠ ㎎/ℓ㎎ / ℓ pHpH NTUNTU 0.0271390.027139 -0.17345-0.17345 1.6774991.677499 0.6590060.659006 0.0325030.032503 -0.03515-0.03515 -0.12888-0.12888 1.3767991.376799 1.0190961.019096 0.0300260.030026 -0.04071-0.04071 -0.12987-0.12987 1.3865581.386558 1.0422931.042293 0.0299230.029923 -0.06456-0.06456 -0.07131-0.07131 1.1317371.131737 1.1894461.189446 0.0288880.028888 -0.05084-0.05084 -0.02927-0.02927 0.9325060.932506 1.0680831.068083 0.0365910.036591 -0.04194-0.04194 -0.02578-0.02578 0.9235540.923554 1.0181411.018141 0.036320.03632 -0.0244-0.0244 -0.00132-0.00132 0.8119770.811977 0.884140.88414 0.0424570.042457

표 2는 고탁도에서의 ARIMA model에 따른 응집제 주입량 변화이다.Table 2 shows the changes in flocculant dosage according to the ARIMA model at high turbidity.

응집제 주입량Coagulant Injection 오차율(%)Error rate (%) 5%이내 오차 (∨ 표시)Within 5% error (∨ mark) 40.2440.24 23.6323.63 30.5030.50 3.363.36 24.2724.27 18.7518.75 26.1426.14 25.6625.66 26.9426.94 1.541.54 28.5328.53 24.7824.78 32.7532.75 16.5316.53

상기 5년간의 데이터 중 최근 1년간의 데이터에서 탁도가 중탁도인 1이상 100 미만을 나타내는 날짜들의 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도, 응집제 주입량)를 취합하여 시계열 분석 회귀계수를 유추하여 표 3을 얻고 응집제 주입량을 예측하여 실제 주입량과 비교한 바, 표 4와 같이 67개의 데이터 중에 18개의 데이터 만이 실제 주입량과 ARIMA model에 의한 결과값이 5%이내의 오차율을 보이는데(도 5 참조), 오차율 5% 미만인 데이터수가 작은 것은 중탁도 시의 데이터 개수도 충분하지 않기 때문으로 생각된다.The time series analysis regression coefficient is inferred by collecting data (pH, alkalinity, water temperature, turbidity, electrical conductivity, coagulant injection amount) of dates showing turbidity of 1 or more and less than 100 from the data of the last 5 years. As shown in Table 4, only 18 data out of 67 data shows the actual injection amount and the result value by ARIMA model within 5%, as shown in Table 4 (see Fig. 5). The reason is that the number of data having an error rate of less than 5% is small because the number of data at the time of heavy turbidity is not enough.

표 3은 중탁도에서의 시계열 분석 회귀계수이다.Table 3 shows the time series analysis regression coefficients at heavy turbidity.

시계열 분석 회귀계수Time series analysis regression coefficient 전기전도도Electrical conductivity 알칼리도Alkalinity pHpH 수온Water temperature 탁도Turbidity ㎲/㎠㎲ / ㎠ ㎎/ℓ㎎ / ℓ pHpH NTUNTU -0.09481-0.09481 0.0715540.071554 -6.03755-6.03755 2.8056282.805628 0.1497950.149795 -0.05121-0.05121 -0.12666-0.12666 -4.67565-4.67565 2.443242.44324 0.144830.14483 -0.04584-0.04584 -0.21621-0.21621 -1.86024-1.86024 1.704131.70413 0.01217030.0121703 -0.04916-0.04916 -0.021323-0.021323 -1.84426-1.84426 1.710071.71007 0.1227780.122778 -0.03739-0.03739 -0.21657-0.21657 -2.25818-2.25818 1.7813081.781308 0.1229280.122928 -0.04615-0.04615 -0.14114-0.14114 -3.75216-3.75216 2.1460822.146082 0.1476380.147638 -0.05969-0.05969 -0.10261-0.10261 -3.36433-3.36433 2.0373252.037325 0.1507510.150751 -0.05986-0.05986 -0.0991-0.0991 -3.17419-3.17419 1.9809621.980962 0.1481290.148129 -0.0581-0.0581 -0.11564-0.11564 -3.07231-3.07231 1.9630061.963006 0.1468560.146856 -0.05845-0.05845 -0.13701-0.13701 -2.77268-2.77268 1.8930621.893062 0.1476860.147686 -0.05656-0.05656 -0.13485-0.13485 -2.90137-2.90137 1.9111641.911164 0.1506510.150651 -0.09344-0.09344 -0.17558-0.17558 -1.14019-1.14019 1.6673671.667367 0.1341430.134143 -0.09728-0.09728 -0.18931-0.18931 -0.94214-0.94214 1.6712621.671262 0.1261470.126147 -0.09449-0.09449 -0.19396-0.19396 -0.82016-0.82016 1.6237131.623713 0.1251590.125159 0.006380.00638 -0.66778-0.66778 71841117184111 -0.5584-0.5584 0.0152780.015278 -0.0217-0.0217 -0.70111-0.70111 9.4631049.463104 -1.03978-1.03978 -0.00849-0.00849 -0.0417-0.0417 -0.66922-0.66922 10.5149610.51496 -1.27848-1.27848 -0.02731-0.02731 0.0508430.050843 -0.68824-0.68824 6.1782626.178262 -0.4562-0.4562 0.0207450.020745 0.0486840.048684 -0.67755-0.67755 6.1666866.166686 -0.46343-0.46343 0.0239710.023971 0.0970230.097023 -0.73317-0.73317 3.8397193.839719 0.072920.07292 0.0352850.035285 0.0988180.098818 -0.72842-0.72842 3.7283663.728366 0.0792470.079247 0.0406440.040644 0.0984640.098464 -0.72142-0.72142 3.6893573.689357 0.0837890.083789 0.0411470.041147 0.0949390.094939 -0.67765-0.67765 3.4701093.470109 0.1117320.111732 0.0430820.043082 0.0859310.085931 -0.58496-0.58496 2.9953352.995335 0.1769090.176909 0.0500620.050062 0.0689540.068954 -0.41581-0.41581 2.2213952.221395 0.2790590.279059 0.0555940.055594 0.0694620.069462 -0.39386-0.39386 2.0727672.072767 0.2643430.264343 0.0661560.066156 0.0695590.069559 -0.37292-0.37292 1.958141.95814 0.2618490.261849 0.0686250.068625 0.077480.07748 -0.38325-0.38325 1.9751261.975126 0.1927710.192771 0.0781710.078171 0.0778340.077834 -0.36813-0.36813 1.8935871.893587 0.1829430.182943 0.0825840.082584 0.0847360.084736 -0.36817-0.36817 1.8583031.858303 0.1515770.151577 0.093640.09364 0.0996210.099621 -0.48273-0.48273 2.264362.26436 0.0492140.049214 0.1312160.131216 0.0953570.095357 -0.38371-0.38371 1.8376661.837666 0.0279490.027949 0.1620160.162016 0.068630.06863 -0.1484-0.1484 0.9090470.909047 0.1774620.177462 0.1354830.135483 0.0642980.064298 -0.11208-0.11208 0.7666550.766655 0.2013580.201358 0.1269990.126999 0.0768840.076884 -0.18412-0.18412 1.0244231.024423 0.1046960.104696 0.1619640.161964 0.0855080.085508 -0.26441-0.26441 1.3098641.309864 0.0345210.034521 0.2014370.201437 0.0910630.091063 -0.30032-0.30032 1.4313351.431335 -0.02726-0.02726 0.2420690.242069 0.0907090.090709 -0.27026-0.27026 1.3074541.307454 -0.03896-0.03896 0.26210.2621 0.0836680.083668 -0.20106-0.20106 1.0298391.029839 0.0130990.013099 0.2653870.265387 0.0690850.069085 -0.09014-0.09014 0.5909260.590926 0.1336120.133612 0.2590460.259046 0.0470890.047089 0.0309020.030902 0.1110060.111006 0.3476010.347601 0.2334360.233436 -0.00135-0.00135 0.2434690.243469 -0.74133-0.74133 0.8587540.858754 0.1450440.145044 0.0056170.005617 0.2603220.260322 -0.78506-0.78506 0.7818340.781834 0.1351130.135113 0.0066920.006692 0.261880.26188 -0.7886-0.7886 0.7695990.769599 0.1348710.134871 -0.00558-0.00558 0.244720.24472 -0.74507-0.74507 0.9114860.911486 0.1330650.133065 -0.01164-0.01164 0.2190230.219023 -0.66057-0.66057 0.9845430.984543 0.1273030.127303 -0.02694-0.02694 0.2215610.221561 -0.68559-0.68559 1.1247271.124727 0.1139620.113962 -0.4957-0.4957 0.0505930.050593 -0.53676-0.53676 4.8775334.877533 0.0868080.086808 -0.49662-0.49662 0.055070.05507 -0.55006-0.55006 4.870314.87031 0.0850450.085045 0.1180770.118077 0.0015350.001535 -0.38339-0.38339 2.880752.88075 0.1178530.117853 0.010730.01073 0.0158330.015833 -0.4083-0.4083 3.1387833.138783 0.1085920.108592 -0.20487-0.20487 0.0592140.059214 -0.44319-0.44319 3.3352263.335226 0.0915360.091536 -0.15172-0.15172 0.0408210.040821 -0.37688-0.37688 3.1392263.139226 0.095240.09524 -0.13133-0.13133 0.0682960.068296 -0.38271-0.38271 2.622542.62254 0.0955080.095508 -0.14935-0.14935 0.0799220.079922 -0.39643-0.39643 2.5402592.540259 0.0949250.094925 -0.08909-0.08909 0.0856960.085696 -0.39411-0.39411 2.2061792.206179 0.0993320.099332 -0.03053-0.03053 0.0979980.097998 -0.41078-0.41078 1.8623521.862352 0.1027260.102726 0.0208010.020801 0.1004970.100497 -0.40963-0.40963 1.6321531.632153 0.1057760.105776 0.0551940.055194 0.1053850.105385 -0.41783-0.41783 1.4716331.471633 0.1070730.107073 0.0548720.054872 0.109630.10963 -0.4247-0.4247 1.4272831.427283 0.1075220.107522 0.1064990.106499 0.1081740.108174 -0.42291-0.42291 1.2683721.268372 0.1099450.109945 0.1627730.162773 0.1104850.110485 -0.42093-0.42093 1.0276241.027624 0.1126570.112657 0.1387820.138782 0.1147950.114795 -0.42654-0.42654 1.0546031.054603 0.1122740.112274 0.0176810.017681 0.1292820.129282 -0.45627-0.45627 1.345021.34502 0.107720.10772 -0.11058-0.11058 0.1379390.137939 -0.46888-0.46888 1.6798491.679849 0.1029050.102905 0.0296810.029681 0.1533830.153383 -0.48871-0.48871 1.0656391.065639 0.1054860.105486 0.1068330.106833 0.1519260.151926 -0.48271-0.48271 0.8104730.810473 0.1079930.107993

표 4는 중탁도에서의 ARIMA model에 따른 응집제 주입량 변화이다.Table 4 shows the changes in flocculant dosage according to the ARIMA model in heavy turbidity.

응집제 주입량Coagulant Injection 오차율(%)Error rate (%) 5%이내 오차 (∨ 표시)Within 5% error (∨ mark) 19.5319.53 39.6539.65 16.6716.67 36.1136.11 19.4219.42 11.8011.80 20.6120.61 12.5512.55 17.5417.54 4.324.32 14.0414.04 18.6318.63 13.3813.38 11.6211.62 14.0214.02 2.942.94 14.4714.47 16.5316.53 14.8314.83 20.5220.52 21.1421.14 30.0530.05 21.5221.52 10.3410.34 21.6721.67 1.501.50 -1.13-1.13 105.34105.34 17.8617.86 15.3715.37 18.7818.78 8.848.84 13.7013.70 51.2551.25 21.3221.32 4.504.50 75.0775.07 218.23218.23 26.3526.35 14.5814.58 19.5619.56 2.962.96 22.1722.17 16.6816.68 24.2424.24 61.6361.63 24.8824.88 77.6877.68 21.3121.31 63.9163.91 18.5018.50 42.3342.33 18.0618.06 38.9138.91 17.7317.73 36.4036.40 19.1019.10 59.1659.16 19.2019.20 59.9859.98 20.8920.89 74.1174.11 21.2321.23 76.9676.96 15.6215.62 20.1720.17 15.3815.38 28.1428.14 15.1415.14 26.2026.20 13.8013.80 6.186.18 13.0913.09 0.720.72 14.4814.48 20.6720.67 13.6713.67 13.9313.93 12.8112.81 1.431.43 28.8128.81 52.8252.82 10.3710.37 4.424.42 12.9012.90 0.770.77 10.3710.37 4.364.36 26.4226.42 10.2610.26 22.3222.32 18.5318.53 21.8121.81 22.8122.81 18.1118.11 1.591.59 14.2914.29 9.809.80 12.9712.97 0.350.35 11.8411.84 13.3113.31 12.9612.96 1.671.67 13.5213.52 2.612.61 12.6412.64 7.217.21 12.8612.86 16.2416.24 12.1712.17 19.1219.12 11.8611.86 9.719.71 11.3411.34 4.674.67 11.4611.46 7.697.69 11.3011.30 7.257.25 11.5411.54 8.688.68 11.7711.77 8.478.47 11.3211.32 6.366.36 10.9510.95 5.495.49 11.0011.00 4.804.80 11.1311.13 4.004.00 11.4111.41 2.732.73

상기 5년간의 데이터 중 최근 1년간의 데이터에서 탁도가 저탁도인 10 미만을 나타내는 날짜들의 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도, 응집제 주입량)를 취합하여 시계열 분석 회귀계수를 유추하여 표 5를 얻고 응집제 주입량을 예측하여 실제 주입량과 비교한 바, 표 6과 같이 172개의 데이터중 152개의 데이터가 실제 주입량과 ARIMA model에 의한 결과값이 5% 이내의 오차율을 보였다(도 6 참조).
From the data of the last five years, data (pH, alkalinity, water temperature, turbidity, electrical conductivity, coagulant injection amount) showing dates with low turbidity of less than 10 are collected and inferred from the time series analysis regression coefficient. As a result of obtaining 5 and predicting the amount of flocculant injection, the result was compared with the actual injection rate.

표 5는 저탁도에서의 시계열 분석 회귀 계수이다.Table 5 shows the time series analysis regression coefficients at low turbidity.

시계열 분석 회귀 계수Time series analysis regression coefficient 전기 전도도Electrical conductivity 알칼리도Alkalinity pHpH 수온Water temperature 탁도Turbidity ㎲/㎠㎲ / ㎠ ㎎/ℓ㎎ / ℓ pHpH NTUNTU 0.0679780.067978 -0.07865-0.07865 0.1278030.127803 -0.09602-0.09602 0.3330850.333085 0.0679290.067929 -0.07636-0.07636 0.126110.12611 -0.11367-0.11367 0.3511870.351187 0.0683080.068308 -0.07559-0.07559 0.1267770.126777 -0.12881-0.12881 0.3531180.353118 0.0686420.068642 -0.07521-0.07521 0.1266460.126646 -0.14033-0.14033 0.357290.35729 0.0692880.069288 -0.07626-0.07626 0.1265790.126579 -0.15003-0.15003 0.3587720.358772 0.071180.07118 -0.08266-0.08266 0.1259880.125988 -0.1604-0.1604 0.3628760.362876 0.07270.0727 -0.08776-0.08776 0.1256270.125627 -0.1703-0.1703 0.3681110.368111 0.0728380.072838 -0.08729-0.08729 0.1255810.125581 -0.17801-0.17801 0.3720330.372033 0.0729910.072991 -0.08684-0.08684 0.126040.12604 -0.18526-0.18526 0.3727660.372766 0.0731190.073119 -0.08636-0.08636 0.1264420.126442 -0.1919-0.1919 0.3734350.373435 0.0736010.073601 -0.08761-0.08761 0.1257530.125753 -0.19832-0.19832 0.3797810.379781 0.0741990.074199 -0.08977-0.08977 0.1244420.124442 -0.20496-0.20496 0.3923650.392365 0.0749210.074921 -0.09258-0.09258 0.1231560.123156 -0.21092-0.21092 0.404680.40468 0.074950.07495 -0.09181-0.09181 0.1238040.123804 -0.21611-0.21611 0.4031590.403159 0.0749490.074949 -0.09104-0.09104 0.1244210.124421 -0.22068-0.22068 0.4018030.401803 0.0749170.074917 -0.0899-0.0899 0.1261510.126151 -0.22646-0.22646 0.3959740.395974 0.0749740.074974 -0.08924-0.08924 0.1279060.127906 -0.23208-0.23208 0.3906440.390644 0.0745980.074598 -0.08677-0.08677 0.1302210.130221 -0.23844-0.23844 0.3847280.384728 0.0742820.074282 -0.08475-0.08475 0.1314880.131488 -0.24238-0.24238 0.3807080.380708 0.0744690.074469 -0.0853-0.0853 0.1308350.130835 -0.24552-0.24552 0.3862790.386279 0.0742390.074239 -0.08363-0.08363 0.1323980.132398 -0.24887-0.24887 0.3799370.379937 0.0739480.073948 -0.08185-0.08185 0.1334660.133466 -0.25214-0.25214 0.3766820.376682 0.0730060.073006 -0.07698-0.07698 0.1376840.137684 -0.25773-0.25773 0.3623610.362361 0.0717510.071751 -0.07087-0.07087 0.1414940.141494 -0.26166-0.26166 0.3478680.347868 0.0714820.071482 -0.06854-0.06854 0.1478270.147827 -0.26893-0.26893 0.3247580.324758 0.0706210.070621 -0.06434-0.06434 0.1516460.151646 -0.273-0.273 0.3123670.312367 0.0692950.069295 -0.05825-0.05825 0.1551140.155114 -0.27611-0.27611 0.3006550.300655 0.0683340.068334 -0.05373-0.05373 0.1593620.159362 -0.28152-0.28152 0.2893870.289387 0.0668120.066812 -0.04712-0.04712 0.1632740.163274 -0.2878-0.2878 0.2836990.283699 0.0651130.065113 -0.03975-0.03975 0.1669180.166918 -0.29196-0.29196 0.275830.27583 0.0638340.063834 -0.03428-0.03428 0.1705210.170521 -0.29597-0.29597 0.2685520.268552 0.0633890.063389 -0.0323-0.0323 0.1717410.171741 -0.29824-0.29824 0.2669090.266909 0.0633780.063378 -0.03202-0.03202 0.1717630.171763 -0.29938-0.29938 0.2668340.266834 0.0644010.064401 -0.03554-0.03554 0.1771530.177153 -0.30411-0.30411 0.2462850.246285 0.064010.06401 -0.03443-0.03443 0.1778280.177828 -0.3088-0.3088 0.2587290.258729 0.0639970.063997 -0.03423-0.03423 0.1777110.177711 -0.30959-0.30959 0.2593090.259309 0.0642020.064202 -0.03488-0.03488 0.1771710.177171 -0.31036-0.31036 0.2607850.260785 0.0640260.064026 -0.03399-0.03399 0.1774310.177431 -0.3116-0.3116 0.2606490.260649 0.06390.0639 -0.03332-0.03332 0.177640.17764 -0.31271-0.31271 0.2605870.260587 0.0638850.063885 -0.03308-0.03308 0.1767670.176767 -0.31253-0.31253 0.262380.26238 0.0638040.063804 -0.03259-0.03259 0.1765530.176553 -0.31278-0.31278 0.2625330.262533 0.063780.06378 -0.03239-0.03239 0.1765750.176575 -0.31337-0.31337 0.2625880.262588 0.0637070.063707 -0.03196-0.03196 0.1762090.176209 -0.3133-0.3133 0.2629970.262997 0.0636710.063671 -0.03168-0.03168 0.1755930.175593 -0.3129-0.3129 0.263860.26386 0.0639340.063934 -0.03257-0.03257 0.174180.17418 -0.31227-0.31227 0.2666570.266657 0.0641250.064125 -0.03317-0.03317 0.1735060.173506 -0.3119-0.3119 0.2670960.267096 0.0640870.064087 -0.03292-0.03292 0.1732460.173246 -0.3118-0.3118 0.2673280.267328 0.0640780.064078 -0.03282-0.03282 0.1732260.173226 -0.31206-0.31206 0.2673970.267397 0.0642360.064236 -0.03334-0.03334 0.1725350.172535 -0.31154-0.31154 0.2680640.268064 0.0639920.063992 -0.03227-0.03227 0.1718520.171852 -0.31058-0.31058 0.269140.26914 0.0639980.063998 -0.03228-0.03228 0.1718880.171888 -0.31075-0.31075 0.2691690.269169 0.0641880.064188 -0.03305-0.03305 0.1723180.172318 -0.31173-0.31173 0.268540.26854 0.0642550.064255 -0.03331-0.03331 0.1725960.172596 -0.31247-0.31247 0.2683940.268394 0.0644830.064483 -0.03426-0.03426 0.1731790.173179 -0.31374-0.31374 0.2677240.267724 0.0645840.064584 -0.03455-0.03455 0.1726910.172691 -0.31274-0.31274 0.2669960.266996 0.0645630.064563 -0.03442-0.03442 0.1722440.172244 -0.3119-0.3119 0.2672350.267235 0.0645350.064535 -0.03427-0.03427 0.1721280.172128 -0.31162-0.31162 0.2670180.267018 0.0645430.064543 -0.03426-0.03426 0.1720320.172032 -0.31149-0.31149 0.2669380.266938 0.0645920.064592 -0.03441-0.03441 0.172010.17201 -0.31145-0.31145 0.2664520.266452 0.0646310.064631 -0.03452-0.03452 0.171970.17197 -0.31127-0.31127 0.2659270.265927 0.0646950.064695 -0.03489-0.03489 0.1721290.172129 -0.31273-0.31273 0.2681940.268194 0.0647030.064703 -0.03491-0.03491 0.1721570.172157 -0.31298-0.31298 0.2683650.268365 0.0646890.064689 -0.03482-0.03482 0.1720930.172093 -0.31297-0.31297 0.2683710.268371 0.0646920.064692 -0.03479-0.03479 0.1720810.172081 -0.31318-0.31318 0.2684030.268403 0.0647560.064756 -0.03496-0.03496 0.1718490.171849 -0.313-0.313 0.2683620.268362 0.0646920.064692 -0.03466-0.03466 0.1719930.171993 -0.31353-0.31353 0.2683380.268338 0.0646680.064668 -0.03453-0.03453 0.1721930.172193 -0.31435-0.31435 0.268510.26851 0.0648770.064877 -0.03534-0.03534 0.1729710.172971 -0.31709-0.31709 0.2683680.268368 0.0648590.064859 -0.03518-0.03518 0.1730860.173086 -0.31771-0.31771 0.2681510.268151 0.0648130.064813 -0.0349-0.0349 0.1732140.173214 -0.31845-0.31845 0.2680930.268093 0.065360.06536 -0.03691-0.03691 0.1744560.174456 -0.32128-0.32128 0.2641670.264167 0.0653950.065395 -0.03681-0.03681 0.1751380.175138 -0.32233-0.32233 0.2606740.260674 0.0653970.065397 -0.03674-0.03674 0.1750350.175035 -0.32283-0.32283 0.2614020.261402 0.0657660.065766 -0.03797-0.03797 0.1759880.175988 -0.32545-0.32545 0.2578280.257828 0.0657910.065791 -0.03792-0.03792 0.1762730.176273 -0.32688-0.32688 0.2572160.257216 0.0658780.065878 -0.03817-0.03817 0.1764740.176474 -0.32899-0.32899 0.2580950.258095 0.0660040.066004 -0.03861-0.03861 0.1766270.176627 -0.33127-0.33127 0.259590.25959 0.0661220.066122 -0.03901-0.03901 0.1768410.176841 -0.33329-0.33329 0.2603650.260365 0.0660830.066083 -0.03874-0.03874 0.1768990.176899 -0.33379-0.33379 0.2601880.260188 0.0660220.066022 -0.0384-0.0384 0.1769310.176931 -0.3344-0.3344 0.2602890.260289 0.0659370.065937 -0.03796-0.03796 0.1769150.176915 -0.33508-0.33508 0.2607850.260785 0.0661070.066107 -0.0385-0.0385 0.1773590.177359 -0.33537-0.33537 0.2583490.258349 0.0670320.067032 -0.04229-0.04229 0.1778350.177835 -0.33755-0.33755 0.2599360.259936 0.0668270.066827 -0.04082-0.04082 0.1797780.179778 -0.33583-0.33583 0.2431040.243104 0.0651570.065157 -0.03436-0.03436 0.1780290.178029 -0.33514-0.33514 0.2531530.253153 0.0651730.065173 -0.03446-0.03446 0.1782980.178298 -0.3358-0.3358 0.2531570.253157 0.0650580.065058 -0.03398-0.03398 0.1787810.178781 -0.3362-0.3362 0.2517640.251764 0.065180.06518 -0.03445-0.03445 0.1798170.179817 -0.33719-0.33719 0.2488920.248892 0.0655870.065587 -0.03611-0.03611 0.1809340.180934 -0.33882-0.33882 0.2467170.246717 0.0653560.065356 -0.03508-0.03508 0.1815070.181507 -0.33872-0.33872 0.2436520.243652 0.0655430.065543 -0.03585-0.03585 0.1824710.182471 -0.33984-0.33984 0.241550.24155 0.065640.06564 -0.03623-0.03623 0.1833430.183343 -0.34071-0.34071 0.2394520.239452 0.0646630.064663 -0.03241-0.03241 0.1823150.182315 -0.34054-0.34054 0.2450720.245072 0.0639970.063997 -0.02977-0.02977 0.1819410.181941 -0.34019-0.34019 0.2472150.247215 0.0634330.063433 -0.02758-0.02758 0.181080.18108 -0.34018-0.34018 0.2515510.251551 0.062980.06298 -0.02583-0.02583 0.1802730.180273 -0.34009-0.34009 0.2553030.255303 0.0629810.062981 -0.02585-0.02585 0.1801240.180124 -0.34014-0.34014 0.2559580.255958 0.0630230.063023 -0.02603-0.02603 0.1797970.179797 -0.34008-0.34008 0.2570060.257006 0.062920.06292 -0.02558-0.02558 0.1798130.179813 -0.33912-0.33912 0.2561770.256177 0.0628620.062862 -0.02534-0.02534 0.1795370.179537 -0.3384-0.3384 0.2564810.256481 0.0628850.062885 -0.02538-0.02538 0.1794670.179467 -0.33771-0.33771 0.2554790.255479 0.0628560.062856 -0.02524-0.02524 0.1793440.179344 -0.33703-0.33703 0.2550410.255041 0.0627320.062732 -0.02469-0.02469 0.1795180.179518 -0.33601-0.33601 0.2533080.253308 0.062620.06262 -0.02415-0.02415 0.1799460.179946 -0.33489-0.33489 0.2502650.250265 0.0625430.062543 -0.02375-0.02375 0.1803430.180343 -0.33395-0.33395 0.2472330.247233 0.0617170.061717 -0.02033-0.02033 0.1806510.180651 -0.33108-0.33108 0.2441330.244133 0.0607430.060743 -0.0164-0.0164 0.1812540.181254 -0.32833-0.32833 0.2421430.242143 0.0596320.059632 -0.01386-0.01386 0.1785280.178528 -0.33527-0.33527 0.2866360.286636 0.0581160.058116 -0.00968-0.00968 0.1760760.176076 -0.34149-0.34149 0.329970.32997 0.0614390.061439 -0.01755-0.01755 0.1810070.181007 -0.32517-0.32517 0.2158770.215877 0.0619950.061995 -0.01902-0.01902 0.1821460.182146 -0.32346-0.32346 0.1990210.199021 0.0619220.061922 -0.01864-0.01864 0.1823280.182328 -0.32328-0.32328 0.197080.19708 0.0617790.061779 -0.01811-0.01811 0.1827330.182733 -0.32344-0.32344 0.1967240.196724 0.0616580.061658 -0.0176-0.0176 0.1829910.182991 -0.32338-0.32338 0.1957130.195713 0.0613150.061315 -0.01649-0.01649 0.1830270.183027 -0.32421-0.32421 0.2005530.200553 0.0612120.061212 -0.01598-0.01598 0.1829710.182971 -0.3239-0.3239 0.1991460.199146 0.0610520.061052 -0.01546-0.01546 0.1835750.183575 -0.32438-0.32438 0.199730.19973 0.0610170.061017 -0.01548-0.01548 0.1849440.184944 -0.32545-0.32545 0.1993460.199346 0.0608560.060856 -0.0149-0.0149 0.186140.18614 -0.32546-0.32546 0.1971250.197125 0.0606620.060662 -0.0142-0.0142 0.1864770.186477 -0.32565-0.32565 0.1977090.197709 0.060560.06056 -0.01378-0.01378 0.1866040.186604 -0.32564-0.32564 0.1973370.197337 0.0604580.060458 -0.01333-0.01333 0.1864220.186422 -0.32544-0.32544 0.197180.19718 0.0605040.060504 -0.01357-0.01357 0.1871610.187161 -0.32586-0.32586 0.1960930.196093 0.0606070.060607 -0.01397-0.01397 0.1870910.187091 -0.32591-0.32591 0.1961450.196145 0.0604870.060487 -0.01353-0.01353 0.187280.18728 -0.32625-0.32625 0.1965730.196573 0.0604420.060442 -0.01339-0.01339 0.1873740.187374 -0.32655-0.32655 0.1970820.197082 0.0603870.060387 -0.0131-0.0131 0.1866860.186686 -0.32545-0.32545 0.1977210.197721 0.0603570.060357 -0.01293-0.01293 0.1863520.186352 -0.3247-0.3247 0.1974850.197485 0.0604420.060442 -0.01327-0.01327 0.1863040.186304 -0.32469-0.32469 0.1974210.197421 0.0604050.060405 -0.01305-0.01305 0.1858830.185883 -0.32375-0.32375 0.1971740.197174 0.0603390.060339 -0.01271-0.01271 0.1853590.185359 -0.32259-0.32259 0.1969930.196993 0.0604290.060429 -0.01296-0.01296 0.1846190.184619 -0.3214-0.3214 0.197190.19719 0.0605430.060543 -0.01329-0.01329 0.184350.18435 -0.32051-0.32051 0.1957440.195744 0.0604930.060493 -0.01305-0.01305 0.184130.18413 -0.31989-0.31989 0.1954620.195462 0.0604990.060499 -0.01307-0.01307 0.1841450.184145 -0.31993-0.31993 0.195450.19545 0.0605230.060523 -0.01309-0.01309 0.1838890.183889 -0.31914-0.31914 0.1946580.194658 0.0601010.060101 -0.01132-0.01132 0.1830820.183082 -0.31737-0.31737 0.1955450.195545 0.06010.0601 -0.01132-0.01132 0.1831120.183112 -0.31745-0.31745 0.1956090.195609 0.0603320.060332 -0.01229-0.01229 0.1836070.183607 -0.31856-0.31856 0.1951020.195102 0.0604690.060469 -0.01289-0.01289 0.1839310.183931 -0.31943-0.31943 0.1951770.195177 0.0608260.060826 -0.01439-0.01439 0.1846460.184646 -0.3212-0.3212 0.1947110.194711 0.0608040.060804 -0.01415-0.01415 0.1844790.184479 -0.31997-0.31997 0.1923940.192394 0.0606960.060696 -0.01365-0.01365 0.1841540.184154 -0.31898-0.31898 0.1919790.191979 0.0606490.060649 -0.01341-0.01341 0.1839480.183948 -0.31831-0.31831 0.1914580.191458 0.0606680.060668 -0.01345-0.01345 0.1838050.183805 -0.31793-0.31793 0.1911510.191151 0.0607470.060747 -0.01369-0.01369 0.1836380.183638 -0.31732-0.31732 0.1900990.190099 0.0608090.060809 -0.01384-0.01384 0.1834090.183409 -0.31638-0.31638 0.1886470.188647 0.0609630.060963 -0.01458-0.01458 0.1832430.183243 -0.3174-0.3174 0.191280.19128 0.060990.06099 -0.01461-0.01461 0.1828950.182895 -0.31641-0.31641 0.1903670.190367 0.0609220.060922 -0.01423-0.01423 0.1823070.182307 -0.31476-0.31476 0.1894260.189426 0.0607610.060761 -0.01344-0.01344 0.1813050.181305 -0.31219-0.31219 0.1885740.188574 0.0600960.060096 -0.0104-0.0104 0.1781690.178169 -0.3045-0.3045 0.1877230.187723 0.0597520.059752 -0.00876-0.00876 0.1756870.175687 -0.29906-0.29906 0.1876330.187633 0.0597850.059785 -0.00886-0.00886 0.1752510.175251 -0.2984-0.2984 0.187810.18781 0.0602370.060237 -0.01073-0.01073 0.175680.17568 -0.30105-0.30105 0.1887630.188763 0.0602480.060248 -0.01077-0.01077 0.1756220.175622 -0.30107-0.30107 0.1887120.188712 0.0602420.060242 -0.01075-0.01075 0.1755630.175563 -0.30121-0.30121 0.189060.18906 0.061140.06114 -0.01425-0.01425 0.1769060.176906 -0.30418-0.30418 0.1845370.184537 0.0614130.061413 -0.01512-0.01512 0.1773220.177322 -0.30423-0.30423 0.1795890.179589 0.0614360.061436 -0.01521-0.01521 0.1772430.177243 -0.30403-0.30403 0.1796880.179688 0.0621810.062181 -0.01801-0.01801 0.1779740.177974 -0.30628-0.30628 0.1753430.175343 0.0623660.062366 -0.01868-0.01868 0.1778570.177857 -0.30675-0.30675 0.1747490.174749 0.0626540.062654 -0.01985-0.01985 0.1778130.177813 -0.30844-0.30844 0.1760380.176038 0.0629810.062981 -0.0212-0.0212 0.177770.17777 -0.31037-0.31037 0.1778670.177867 0.0632990.063299 -0.02249-0.02249 0.1777740.177774 -0.31196-0.31196 0.1787550.178755 0.0633210.063321 -0.02253-0.02253 0.1776390.177639 -0.31139-0.31139 0.1779750.177975 0.0633240.063324 -0.0225-0.0225 0.1774310.177431 -0.31085-0.31085 0.1775420.177542 0.0633190.063319 -0.02245-0.02245 0.1771970.177197 -0.31044-0.31044 0.1775180.177518 0.0635910.063591 -0.02343-0.02343 0.1777960.177796 -0.30974-0.30974 0.173260.17326 0.0645820.064582 -0.02765-0.02765 0.1795420.179542 -0.31269-0.31269 0.1726740.172674 0.0646970.064697 -0.02681-0.02681 0.1798220.179822 -0.30583-0.30583 0.1467880.146788 0.0626960.062696 -0.01903-0.01903 0.1750360.175036 -0.30221-0.30221 0.1644510.164451

표 6은 저탁도에서의 ARIMA model에 따른 응집제 주입량 변화이다.Table 6 shows the changes in coagulant dosage according to the ARIMA model at low turbidity.

응집제 주입량Coagulant Injection 오차율(%)Error rate (%) 5%이내 오차 (∨ 표시)Within 5% error (∨ mark) 10.91 10.91 9.12 9.12 11.01 11.01 8.26 8.26 11.09 11.09 7.57 7.57 11.15 11.15 7.12 7.12 11.19 11.19 6.75 6.75 11.24 11.24 6.31 6.31 11.29 11.29 5.95 5.95 11.29 11.29 5.90 5.90 11.30 11.30 5.86 5.86 11.27 11.27 6.09 6.09 11.29 11.29 5.94 5.94 11.30 11.30 5.87 5.87 11.31 11.31 5.73 5.73 11.37 11.37 5.21 5.21 11.38 11.38 5.21 5.21 11.43 11.43 4.78 4.78 11.44 11.44 4.71 4.71 11.44 11.44 4.64 4.64 11.48 11.48 4.31 4.31 11.48 11.48 4.32 4.32 11.46 11.46 4.49 4.49 11.45 11.45 4.58 4.58 11.48 11.48 4.31 4.31 11.52 11.52 3.98 3.98 11.52 11.52 4.03 4.03 11.53 11.53 3.91 3.91 11.57 11.57 3.62 3.62 11.60 11.60 3.32 3.32 11.61 11.61 3.26 3.26 11.66 11.66 2.87 2.87 11.67 11.67 2.71 2.71 11.66 11.66 2.86 2.86 11.68 11.68 2.66 2.66 11.67 11.67 2.71 2.71 11.73 11.73 2.21 2.21 11.67 11.67 2.74 2.74 11.66 11.66 2.83 2.83 11.70 11.70 2.54 2.54 11.74 11.74 2.16 2.16 11.76 11.76 2.02 2.02 11.79 11.79 1.75 1.75 11.80 11.80 1.65 1.65 11.82 11.82 1.48 1.48 11.81 11.81 1.57 1.57 11.84 11.84 1.32 1.32 11.86 11.86 1.18 1.18 11.88 11.88 1.03 1.03 11.86 11.86 1.15 1.15 11.94 11.94 0.53 0.53 11.96 11.96 0.33 0.33 11.93 11.93 0.56 0.56 11.92 11.92 0.64 0.64 11.97 11.97 0.27 0.27 12.00 12.00 0.01 0.01 12.01 12.01 0.11 0.11 11.97 11.97 0.22 0.22 11.96 11.96 0.36 0.36 11.93 11.93 0.56 0.56 11.96 11.96 0.32 0.32 11.96 11.96 0.37 0.37 11.94 11.94 0.51 0.51 11.93 11.93 0.61 0.61 11.88 11.88 1.01 1.01 11.86 11.86 1.18 1.18 11.84 11.84 1.32 1.32 11.82 11.82 1.52 1.52 11.80 11.80 1.67 1.67 11.75 11.75 2.10 2.10 11.71 11.71 2.44 2.44 11.68 11.68 2.63 2.63 11.67 11.67 2.77 2.77 11.65 11.65 2.92 2.92 11.65 11.65 2.95 2.95 11.63 11.63 3.06 3.06 11.64 11.64 3.00 3.00 11.64 11.64 3.02 3.02 11.65 11.65 2.96 2.96 11.66 11.66 2.86 2.86 11.65 11.65 2.91 2.91 11.64 11.64 2.98 2.98 11.65 11.65 2.90 2.90 11.66 11.66 2.84 2.84 11.34 11.34 3.12 3.12 11.41 11.41 3.69 3.69 11.19 11.19 1.75 1.75 11.30 11.30 2.70 2.70 11.38 11.38 3.47 3.47 11.35 11.35 3.14 3.14 11.33 11.33 2.98 2.98 11.35 11.35 3.16 3.16 11.35 11.35 3.17 3.17 11.38 11.38 3.48 3.48 11.33 11.33 3.04 3.04 11.19 11.19 1.74 1.74 11.11 11.11 0.98 0.98 10.97 10.97 0.29 0.29 10.84 10.84 1.44 1.44 10.81 10.81 1.75 1.75 10.75 10.75 2.31 2.31 10.76 10.76 2.14 2.14 10.78 10.78 1.99 1.99 10.84 10.84 1.44 1.44 10.89 10.89 0.97 0.97 10.93 10.93 0.66 0.66 10.92 10.92 0.76 0.76 10.93 10.93 0.63 0.63 11.00 11.00 0.03 0.03 11.27 11.27 2.41 2.41 11.46 11.46 4.18 4.18 11.36 11.36 3.31 3.31 11.29 11.29 2.60 2.60 11.30 11.30 2.73 2.73 11.28 11.28 2.58 2.58 11.32 11.32 2.89 2.89 11.28 11.28 2.58 2.58 11.30 11.30 2.70 2.70 11.28 11.28 2.56 2.56 11.28 11.28 2.59 2.59 11.27 11.27 2.46 2.46 11.24 11.24 2.20 2.20 11.19 11.19 1.69 1.69 11.09 11.09 0.79 0.79 11.08 11.08 0.76 0.76 11.04 11.04 0.33 0.33 10.94 10.94 0.59 0.59 10.87 10.87 1.16 1.16 10.84 10.84 1.42 1.42 10.82 10.82 1.62 1.62 10.81 10.81 1.73 1.73 10.86 10.86 1.30 1.30 10.90 10.90 0.91 0.91 10.93 10.93 0.66 0.66 10.95 10.95 0.48 0.48 11.00 11.00 0.01 0.01 11.03 11.03 0.29 0.29 11.03 11.03 0.30 0.30 11.02 11.02 0.22 0.22 11.06 11.06 0.58 0.58 11.04 11.04 0.36 0.36 11.05 11.05 0.46 0.46 11.04 11.04 0.39 0.39 10.96 10.96 0.35 0.35 10.88 10.88 1.13 1.13 10.83 10.83 1.58 1.58 10.66 10.66 3.06 3.06 10.60 10.60 3.59 3.59 10.59 10.59 3.68 3.68 10.51 10.51 4.44 4.44 10.40 10.40 5.45 5.45 10.32 10.32 8.78 8.78 10.34 10.34 20.46 20.46 10.47 10.47 19.46 19.46 10.64 10.64 5.62 5.62 10.79 10.79 1.90 1.90 10.91 10.91 0.81 0.81 10.95 10.95 0.49 0.49 10.95 10.95 0.49 0.49 10.88 10.88 1.13 1.13 10.85 10.85 1.33 1.33 10.77 10.77 2.13 2.13 10.68 10.68 2.87 2.87 10.78 10.78 1.96 1.96 10.76 10.76 2.17 2.17 10.76 10.76 2.20 2.20 10.71 10.71 2.65 2.65 10.69 10.69 2.84 2.84 10.71 10.71 2.61 2.61 10.71 10.71 2.60 2.60 10.68 10.68 2.87 2.87 10.63 10.63 3.37 3.37 10.64 10.64 3.23 3.23 10.63 10.63 3.33 3.33

저탁도에서 오차율 5% 미만인 데이터수가 많은 것은 저탁도에서의 데이터의 수가 많으므로 회귀식이 보다 정확하게 유추되는 것을 의미하고, 데이터의 수가 많을 경우(통상적으로 표본이 100개 이상일 경우 측정값이 정규분포를 형성하므로 표본용 데이터의 수는 100개 이상인 것이 바람직하다) 본 발명에 따른 ARIMA model을 이용하여 원수 수질 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도) 및 응집제 주입량 데이터로부터 응집제 주입량을 조절변수로, 원수 수질(pH, 알칼리도, 수온, 탁도, 전기전도도)을 제어변수로 하여 시계열 분석을 통해 회귀식을 유추하고, 이회귀식을 컴퓨터 연산자화하여 응집제 주입량을 신뢰성있게 예측할 수 있음을 의미한다.A large number of data with less than 5% error in low turbidity means that the regression equation is more accurately inferred because of the large number of data at low turbidity, and when the number of data is large (typically 100 or more samples, the measured value is normally distributed). It is preferable that the number of sample data is 100 or more.) Using the ARIMA model according to the present invention, the coagulant injection amount is adjusted from raw water quality data (pH, alkalinity, water temperature, turbidity, electrical conductivity) and coagulant injection amount data. This means that raw water quality (pH, alkalinity, water temperature, turbidity, electrical conductivity) can be used as control variables to infer the regression equation through time series analysis, and the regression equation can be computerized to predict the amount of flocculant injection.

이러한 시계열 분석 기반 모델은 일반적으로 피드포워드(Feed Forward) 제어를 통해 응집제 주입량을 제어하게 되는데 피드포워드(Feed Forward) 제어는 일종의 예측제어로서 원인을 검출하여 잘못된 결과를 미연에 방지하도록 움직여 주는 제어인 바, 측정치(Process Value: PV)와 제어하고자 하는 설정치(Set Point: SP)를 비교하여 그 차이에 따른 양 만큼을 조작단으로 보내고 수정된 결과를 다시 검출단 센서에서 측정하는 피드백(Feed Back)제어와 비교된다. Such time-series analysis-based models generally control the coagulant injection through feed forward control. Feed forward control is a kind of predictive control that detects the cause and moves it to prevent wrong results. F. Feedback that compares the measured value (Process Value: PV) with the set point (SP) to be controlled and sends the amount according to the difference to the operator, and feeds the modified result back to the detector sensor (Feed Back) Compared to control.

도 7은 정수처리시스템에서 본 발명에 일실시예에 따른 응집제 주입량 결정방법의 흐름을 나타내는 블럭도이다. 본 발명에 따른 응집제 제어방식은 도 7과 같이 응집제 주입 감시장치를 통해 큰 수질변화에 대해서 감시하고, 응집처리할 원수 의 수질(pH, 알칼리도, 수온, 탁도, 전기전도도)을 실측하여 응집제 주입량을 컴퓨터로 연산한 후, 연산된 응집제 주입량에 따라서 응집제 주입 정량펌프의 속도를 조절하는 것으로 이루어진다.7 is a block diagram showing the flow of the flocculant injection amount determination method according to an embodiment of the present invention in the water treatment system. In the coagulant control method according to the present invention, the coagulant injection monitoring device monitors a large water quality change and measures the water quality (pH, alkalinity, water temperature, turbidity, and electrical conductivity) of the raw water to be coagulated, thereby increasing the coagulant injection amount. After computing by computer, the speed of the coagulant injection metering pump is adjusted according to the calculated amount of coagulant injection.

이와 같이, 본 발명에 따른 ARIMA model을 이용하여 응집제 주입량을 결정하는 방법은 자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석이 가능한 컴퓨터 장치에 과거의 원수 수질 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도) 및 응집제 주입량 데이터로부터 응집제 주입량을 조절변수로, 원수 수질 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도)을 제어변수로 입력하여 ARIMA model을 이용한 시계열 분석을 통해 회귀식을 유추하는 단계; 상기 회귀식을 컴퓨터 연산자화하는 단계; 응집처리할 원수의 수질을 실측하는 단계; 상기 실측된 원수의 수질 데이터를 상기 컴퓨터 연산자화한 회귀식에 적용하여 응집제 주입량을 연산하는 단계;를 포함하여 이루어진다. As such, the method of determining the amount of flocculant injection using the ARIMA model according to the present invention includes the past raw water quality in a computer device capable of time series analysis using an auto-regressive integrated moving average model (ARIMA model). From the data (pH, alkalinity, water temperature, turbidity, electrical conductivity) and the coagulant injection amount data, the coagulant injection amount is input as a control variable, and the raw water quality data (pH, alkalinity, water temperature, turbidity, electrical conductivity) is input as a control variable. Inferring the regression equation through time series analysis; Computerizing the regression expression; Measuring the quality of the raw water to be agglomerated; Calculating the amount of flocculant injection by applying the measured water quality data to the computer-operated regression equation.

도 8은 본 발명의 일실시예에 따른 응집제 주입량 제어부를 구비한 정수처리시스템의 모식도이다. 8 is a schematic diagram of a water treatment system having a flocculant injection amount control unit according to an embodiment of the present invention.

본 발명의 일실시예에 따른 응집제 주입량 제어부를 구비한 정수처리시스템(100)은 혼화지(110), 응집제 주입량 제어부(120), 응집제 저장조(130), 수질측정기(140), 정량펌프(150), 교반기(160)를 포함하여 구성된다.Water treatment system 100 having a flocculant injection amount control unit according to an embodiment of the present invention is a mixed paper 110, flocculant injection amount control unit 120, flocculant storage tank 130, water quality measuring unit 140, metering pump 150 ), The stirrer 160 is configured.

응집제 주입량 제어부(120)는 앞에서 설명한 바와 같이 실측된 원수 수질 데이터(pH, 알칼리도, 수온, 탁도, 전기전도도)를 앞에서 설명한 컴퓨터 연산자화한 회귀식에 적용하여 응집제 주입량을 연산한 후, 필요한 양의 응집제를 공급할 수 있도록 정량펌프(150)를 제어한다.As described above, the flocculant injection amount control unit 120 applies the measured raw water quality data (pH, alkalinity, water temperature, turbidity, and electrical conductivity) to the computer-operated regression equation described above, and then calculates the flocculant injection amount. The metering pump 150 is controlled to supply a flocculant.

수질측정기(650)는 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도를 각각 측정할 수 있는 측정기로 이루어져 있다.The water quality measuring instrument 650 includes a measuring instrument capable of measuring pH, alkalinity, water temperature, turbidity, and electrical conductivity of constant raw water, respectively.

응집제 주입량 제어부(120)의 제어신호에 의해 정량펌프(150)가 작동하면, 일정한 양의 응집제가 응집제 저장조(130)로부터 혼화지(110)로 공급되며, 교반기(160)에 의해 상수 원수와 응집제가 섞여서 급속교반이 일어나고 충분히 혼합되면 다음 정수과정으로 이동한다.When the metering pump 150 is operated by the control signal of the coagulant injection amount control unit 120, a constant amount of coagulant is supplied from the coagulant storage tank 130 to the mixed paper 110, the constant raw water and the coagulant by the stirrer 160 Are mixed and rapid stirring takes place, and when it is sufficiently mixed, it moves to the next water purification process.

이상의 설명은 본 발명의 기술사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예는 본 발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention and various changes and modifications may be made without departing from the essential characteristics of the present invention by those of ordinary skill in the art to which the present invention belongs. Therefore, the embodiments disclosed in the present invention are not intended to limit the scope of the present invention but to limit the scope of the technical idea of the present invention. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas falling within the scope of the same shall be construed as falling within the scope of the present invention.

100: 정수처리시스템 110: 혼화지
120: 응집제 주입량 제어부 130: 응집제 저장조
140: 수질측정기 150: 정량펌프
160: 교반기
100: water treatment system 110: mixed paper
120: flocculant injection amount control unit 130: flocculant storage tank
140: water quality meter 150: metering pump
160: stirrer

Claims (2)

상수 원수의 정수처리과정에서 응집제의 주입량을 결정하는 방법에 있어서,
자기회귀통합이동평균모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석이 가능한 컴퓨터 장치에 과거의 원수 수질 데이터로서 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 제어변수로, 응집제 주입량 데이터를 조절변수로 입력하여 시계열 분석을 통해 회귀식을 유추하는 단계;
상기 회귀식을 컴퓨터 연산자화하는 단계;
응집처리할 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도를 실측하는 단계;
상기 실측된 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 상기 컴퓨터 연산자화한 회귀식에 적용하여 응집제 주입량을 예측하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 응집제 주입량 결정방법.
In the method of determining the injection amount of the flocculant in the purification process of the constant raw water,
In the past, the raw water quality data was used as a control variable in a computer device capable of time series analysis using an auto-regressive integrated moving average model (ARIMA model) as a control variable. Injecting a dose data as a control variable and inferring a regression equation through time series analysis;
Computerizing the regression expression;
Measuring pH, alkalinity, water temperature, turbidity, and electrical conductivity of the raw water to be flocculated;
Predicting the amount of flocculant injected by applying the measured raw water pH, alkalinity, water temperature, turbidity, and electrical conductivity data to the computer-operated regression equation.
상수 원수의 응집처리가 진행되는 혼화지(110)와;
응집처리할 상수 원수의 pH, 알칼리도, 수온, 탁도, 전기전도도를 실측하는 수질측정기(140)와;
상수 원수의 응집처리를 위하여 응집제를 저장하는 응집제 저장조(130)와;
과거의 원수 수질 데이터로서 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 제어변수로, 응집제 주입량 데이터를 조절변수로 하여 자기회귀통합이동평균 모형(Auto-Regressive Integrated Moving Average model; ARIMA model)을 이용한 시계열 분석을 통해 유추한 회귀식이 연산자화 되어 있어, 상기 실측된 pH, 알칼리도, 수온, 탁도, 전기전도도 데이터를 상기 연산자화된 회귀식에 적용하여 응집제 주입량을 연산한 후, 필요한 양의 응집제를 공급할 수 있도록 정량펌프(150)를 제어하는 응집제 주입량 제어부(120)와;
상기 응집제 주입량 제어부(120)의 제어신호에 의해 일정한 양의 응집제를 응집제 저장조(130)로부터 혼화지(110)로 공급하는 정량펌프(150)와;
상수 원수와 응집제를 혼합하여 급속교반하기 위한 교반기(160);를 포함하여 이루어지는 것을 특징으로 하는 정수처리시스템.
Mixed paper 110 in which agglomeration of the raw water is carried out;
A water quality meter 140 for measuring pH, alkalinity, water temperature, turbidity, and electrical conductivity of the constant raw water to be aggregated;
A coagulant reservoir 130 for storing a coagulant for coagulation of raw water;
Using the auto-regressive integrated moving average model (ARIMA model) with past raw water quality data as pH, alkalinity, water temperature, turbidity and electrical conductivity data as control variables and coagulant injection data as control variables The regression equation inferred through time series analysis is operatorized to apply the measured pH, alkalinity, water temperature, turbidity, and electrical conductivity data to the calculated regression equation to calculate the amount of flocculant injection, and to supply the required amount of flocculant. Coagulant injection amount control unit 120 for controlling the metering pump 150 to be able to;
A metering pump 150 for supplying a predetermined amount of flocculant from the flocculant reservoir 130 to the mixed paper 110 according to the control signal of the flocculant injection amount control unit 120;
And a stirrer (160) for rapidly agitating by mixing the raw water and the flocculant.
KR1020110022507A 2011-03-14 2011-03-14 Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same KR101334693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110022507A KR101334693B1 (en) 2011-03-14 2011-03-14 Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110022507A KR101334693B1 (en) 2011-03-14 2011-03-14 Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same

Publications (2)

Publication Number Publication Date
KR20120104852A KR20120104852A (en) 2012-09-24
KR101334693B1 true KR101334693B1 (en) 2013-12-02

Family

ID=47112074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110022507A KR101334693B1 (en) 2011-03-14 2011-03-14 Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same

Country Status (1)

Country Link
KR (1) KR101334693B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420613B1 (en) 2021-11-19 2022-07-13 주식회사 거남 Assembly type water purification system
US20230257283A1 (en) * 2020-11-18 2023-08-17 Hach Company Process, system, and computer readable storage medium for determining optimal coagulant dosage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880137A (en) * 2014-04-07 2014-06-25 盐城工学院 Electromagnetic coagulation treatment process
KR102492822B1 (en) * 2022-08-04 2023-01-27 주식회사 퍼팩트 Multi-purpose water tank with improved watertightness and safety using a hemispherical finish cap and sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133580A (en) * 1997-07-18 1999-02-09 Mitsubishi Chem Corp Apparatus for assisting process operation
KR100219440B1 (en) 1996-06-26 1999-10-01 박정숙 Method and apparatus for putting coagulant
KR100808607B1 (en) * 2006-09-21 2008-02-28 조필호 Method for automatic injection of coagulant in water purification plant and apparatus thereof
KR100920522B1 (en) 2009-05-21 2009-10-09 대양바이오테크 주식회사 Device and method for diagnosing and controlling wastewater treatment process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100219440B1 (en) 1996-06-26 1999-10-01 박정숙 Method and apparatus for putting coagulant
JPH1133580A (en) * 1997-07-18 1999-02-09 Mitsubishi Chem Corp Apparatus for assisting process operation
KR100808607B1 (en) * 2006-09-21 2008-02-28 조필호 Method for automatic injection of coagulant in water purification plant and apparatus thereof
KR100920522B1 (en) 2009-05-21 2009-10-09 대양바이오테크 주식회사 Device and method for diagnosing and controlling wastewater treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257283A1 (en) * 2020-11-18 2023-08-17 Hach Company Process, system, and computer readable storage medium for determining optimal coagulant dosage
KR102420613B1 (en) 2021-11-19 2022-07-13 주식회사 거남 Assembly type water purification system

Also Published As

Publication number Publication date
KR20120104852A (en) 2012-09-24

Similar Documents

Publication Publication Date Title
US9517954B2 (en) Chemical injection control method and chemical injection controller
CN114545985B (en) Floc characteristic monitoring and process feedback-based dosing system and method
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP7179486B2 (en) Coagulant injection control device, coagulant injection control method and computer program
KR100964895B1 (en) System and method to measure feeding rate of coagulant for water purification process
JP2004223357A (en) Flocculant injecting/controlling apparatus
CN109032061A (en) A kind of dosing intelligence control system for water process
CN105764856A (en) Control method and control program for water treatment facility and water treatment system
KR20100115852A (en) System and method for automatic control of coagulant does
JP5691709B2 (en) Water purification method and water purification device
WO2006067873A1 (en) Method of measuring and managing sedimentation separation operation and apparatus therefor
CN112759063A (en) Pre-ozone adding control method and control system thereof
KR101244445B1 (en) Control method and apparatus of coagulant dose using data-mining
JP5072382B2 (en) Flocculant injection control device
WO2022193737A1 (en) Intelligent control system and method for circulating cooling water system
CN214693460U (en) Ozone dosing control system in advance
KR101197392B1 (en) The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence
KR102308649B1 (en) Automatic chemical dosing system for improving efficiency of sludge dehydration
US6241896B1 (en) Auto dosage determination method and apparatus for coagulant control in the treatment of water
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
CN204576294U (en) A kind of wet spinning DMAC concentration self-checking device
JP7443265B2 (en) How to determine the dosage of coagulant for treating raw water
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
CN118112084A (en) Water plant PAC dosing control method and system based on SCD
JP3120525B2 (en) Anaerobic digester monitoring device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171010

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 7