JP4400721B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP4400721B2
JP4400721B2 JP2004004299A JP2004004299A JP4400721B2 JP 4400721 B2 JP4400721 B2 JP 4400721B2 JP 2004004299 A JP2004004299 A JP 2004004299A JP 2004004299 A JP2004004299 A JP 2004004299A JP 4400721 B2 JP4400721 B2 JP 4400721B2
Authority
JP
Japan
Prior art keywords
water
suspension
aggregation
turbidity
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004004299A
Other languages
Japanese (ja)
Other versions
JP2005193204A (en
Inventor
信明 長尾
文夫 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004004299A priority Critical patent/JP4400721B2/en
Publication of JP2005193204A publication Critical patent/JP2005193204A/en
Application granted granted Critical
Publication of JP4400721B2 publication Critical patent/JP4400721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、凝集剤を注入して原水中の懸濁物および/または溶解物を除去する水処理システムに関する。   The present invention relates to a water treatment system that injects a flocculant to remove suspensions and / or lysates in raw water.

用水処理や排水処理においては、処理対象とする原水に無機系または有機系の凝集剤を注入して原水中に含まれる懸濁物や溶解物を凝集させ、凝集フロックとして除去することが行われる。この際、凝集処理過程における懸濁液を計測槽に導き、沈下や濾過等の手段を用いて固液分離処理を行った後に、その処理水の濁度を計測したり、或いは濁度計を用いて固液分離後の処理水濁度を計測して上記凝集剤の注入量を制御することが行われる(例えば特許文献1を参照)。   In irrigation water treatment and wastewater treatment, an inorganic or organic flocculant is injected into the raw water to be treated to agglomerate the suspension or dissolved matter contained in the raw water and removed as agglomerated floc. . At this time, after the suspension in the flocculation process is guided to a measurement tank and subjected to solid-liquid separation using means such as subsidence and filtration, the turbidity of the treated water is measured, or a turbidimeter is used. It is used to measure the treatment water turbidity after solid-liquid separation and control the injection amount of the flocculant (see, for example, Patent Document 1).

一方、本発明者らは、凝集フロックを形成した固液混合状態の懸濁液中にレーザ光を照射し、上記懸濁液中の懸濁物への上記レーザ光の衝突により発生する散乱光を微少な計測領域において検出することで、凝集物(フロック)および未凝集物による各散乱光成分を互いに区別して前記懸濁液中の粒子の状態を精度良く検出する凝集センサ、更にはこの凝集センサの出力に基づいて原水に対する凝集剤の注入を制御することを提唱した(例えば特許文献2を参照)。
特開平7−204412号公報 特開2002−257715号公報
On the other hand, the present inventors irradiate laser light into a solid-liquid mixed suspension in which aggregated flocs are formed, and scattered light generated by the collision of the laser light with the suspension in the suspension. Is detected in a very small measurement region, and the scattered light components due to the aggregates (floc) and non-aggregates are distinguished from each other so that the state of the particles in the suspension can be accurately detected. It was proposed to control the injection of the flocculant into the raw water based on the output of the sensor (see, for example, Patent Document 2).
JP-A-7-204412 JP 2002-257715 A

しかしながら凝集処理して固液分離した後の処理水濁度を計測して凝集剤の注入量を制御する手法においては、凝集剤の注入位置と上記処理水濁度の計測位置との時間遅れが大きく、原水水質の急激な変動に対処することができない。また固液分離処理した処理水の濁質を計測する場合、凝集処理自体が良好であっても、処理水量の増加による沈降速度の低下や界面上昇等によるフロックリークに起因して、固液分離処理後の処理水の濁度が上昇することがある。これ故、処理水量の増加による濁度の上昇と、凝集不良による濁度の上昇との区別が付き難いと言う不具合がある。更には前述したように計測槽を用いて懸濁液を固液分離するには、設備や時間的な損失が生じることが否めず、しかも原水水質の変動に速やかに対処することができないと言う問題がある。   However, in the method of measuring the treatment water turbidity after coagulation treatment and solid-liquid separation and controlling the injection amount of the flocculant, there is a time delay between the injection position of the flocculant and the measurement position of the treatment water turbidity. Large, unable to cope with rapid fluctuations in raw water quality. In addition, when measuring the turbidity of treated water that has undergone solid-liquid separation treatment, even if the coagulation treatment itself is good, solid-liquid separation is caused by floc leaks due to a decrease in sedimentation rate due to an increase in the amount of treated water and an increase in the interface. Turbidity of treated water after treatment may increase. Therefore, there is a problem that it is difficult to distinguish between an increase in turbidity due to an increase in the amount of treated water and an increase in turbidity due to poor aggregation. Furthermore, as described above, in order to separate the suspension into solid and liquid using the measuring tank, it is unavoidable that equipment and time are lost, and that it is impossible to quickly cope with fluctuations in the quality of raw water. There's a problem.

本発明はこのような事情を考慮してなされたもので、その目的は、凝集剤を注入して原水中の懸濁物および/または溶解物を除去するに際して、凝集剤の注入による水質変動とそれ以外の、例えば処理水量やpHの変化等の水質変動要因とを区別して検出することができ、その検出結果に基づいて凝集剤の注入制御を適切に、しかも迅速に行うことのできる水処理システムを提供することにある。   The present invention has been made in view of such circumstances. The purpose of the present invention is to eliminate fluctuations in water quality due to the injection of the flocculant when the flocculant is injected to remove the suspension and / or dissolved matter in the raw water. Water treatment that can distinguish and detect other water quality fluctuation factors such as the amount of treated water and changes in pH, for example, and can control the injection of the flocculant appropriately and quickly based on the detection result To provide a system.

上述した目的を達成するべく本発明に係る水処理システムは、原水に凝集剤を注入して該原水中の懸濁物および/または溶解物を凝集化する凝集反応槽と、この凝集反応槽から排出された懸濁液を固液分離処理して前記懸濁物および/または溶解物を除去した処理水を得る沈殿槽等の固液分離装置とを備えたものであって、
前記凝集反応槽または前記凝集反応槽から前記固液分離装置に至る懸濁液の供給経路に設けられて前記懸濁液におけるフロックの形成状態と濁度とを計測して前記懸濁物および/または溶解物の凝集状態を検出する凝集状態計測手段と、
前記固液分離装置からの前記処理水の排出経路に設けられて該処理水におけるフロックの形成状態と濁度とを計測して該処理水の水質を評価する濁度計等の水質評価手段と、
予め懸濁液および処理水の状態変化をその要因別に整理して記憶したデータベースを参照して、前記凝集状態計測手段により求められる前記懸濁物および/または溶解物の凝集状態と上記水質評価手段により求められる前記処理水の水質との組合せに応じて前記処理水の水質変動の要因を判定する要因判定手段と
を具備し、
前記凝集状態計測手段および水質評価手段は、計測対象水中に照射したレーザ光の微小領域における散乱光を検出して該計測対象水におけるフロックの形成状態と濁度とを計測する、例えば特許文献2に示すような凝集センサからなり、
前記要因判定手段は、上記各凝集センサによりそれぞれ求められたフロックの形成状態および/または濁度の相対関係が、その水質変動要因に固有な挙動を示すことに基づき、予め水質変動の要因に対応付けて前記懸濁液および処理水におけるフロックの形成状態と濁度とをそれぞれ登録したデータベースを参照して前記凝集剤の注入による水質変動とそれ以外の処理水量等の水質変動要因とを区別する
ことを特徴としている。
In order to achieve the above-described object, a water treatment system according to the present invention includes a flocculation reaction tank for injecting a flocculant into raw water to agglomerate a suspension and / or a dissolved material in the raw water, and the flocculation reaction tank. A solid-liquid separation device such as a precipitation tank that obtains treated water from which the suspended suspension and / or dissolved matter has been removed by subjecting the discharged suspension to solid-liquid separation,
The suspension and / or turbidity is measured by measuring a floc formation state and turbidity in the suspension provided in a suspension supply path from the aggregation reaction tank or the aggregation reaction tank to the solid-liquid separation device. Or an aggregation state measuring means for detecting the aggregation state of the lysate;
A water quality evaluation means, such as a turbidimeter, which is provided in a discharge path of the treated water from the solid-liquid separation device and measures the floc formation state and turbidity in the treated water to evaluate the quality of the treated water; ,
By referring to a database that preliminarily organizes and stores changes in the state of suspension and treated water according to their factors, the state of aggregation of the suspension and / or dissolved matter obtained by the aggregation state measuring means and the water quality evaluation means ; and a factor determining means for determining the cause of quality variations in the treated water in accordance with a combination of the quality of the treated water obtained by,
The aggregation state measuring unit and the water quality evaluating unit detect scattered light in a minute region of the laser light irradiated into the measurement target water, and measure floc formation state and turbidity in the measurement target water. It consists of an aggregation sensor as shown in
The factor determination means responds to the water quality fluctuation factor in advance based on the fact that the floc formation state and / or the relative relationship between the turbidity obtained by each of the agglomeration sensors exhibits a behavior unique to the water quality fluctuation factor. In addition, referring to a database in which the state of floc formation and turbidity in the suspension and treated water are registered, the water quality fluctuation caused by the injection of the flocculant and other water quality fluctuation factors such as the amount of treated water are distinguished. <br/> It is characterized by that.

即ち、本発明に係る水処理システムは、処理水の水質変動の要因が凝集剤の注入量だけでなく、処理水量やpHの変動等によっても生じることに着目し、凝集反応槽等における懸濁液の凝集状態(濁度やフロックの粒径およびフロック数等)を検出すると共に、上記懸濁液を固液分離処理した処理水の水質(濁度等)を検出し、これらの各検出結果を相互に対比してその相関を調べることで、処理水の水質変動の要因が凝集剤の不適切な注入によるものか、或いは処理水量の変化等の凝集剤以外の要因によるものかを判定するようにしたことを特徴としている。   That is, the water treatment system according to the present invention pays attention to the fact that the cause of the water quality fluctuation of the treated water is caused not only by the amount of flocculant injected but also by the amount of treated water and pH, etc. Detects the state of liquid aggregation (turbidity, floc particle size, number of flocs, etc.), and also detects the quality of water (turbidity, etc.) of the treated water obtained by subjecting the above suspension to solid-liquid separation. By comparing each other and examining the correlation, it is determined whether the water quality fluctuation due to the treated water is due to inappropriate injection of the flocculant or due to factors other than the flocculant such as changes in the amount of treated water It is characterized by doing so.

また本発明に係る水処理システムにおいては、更に前記要因判定手段による判定結果が前記凝集剤の注入による水質変動である場合には、前記各凝集センサによりそれぞれ求められたフロックの形成状態および/または液層の濁度に従って前記凝集剤の注入量を適正化制御し、前記凝集剤の注入以外による水質変動の場合には前記凝集剤の注入量制御を禁止する制御手段を備えることが好ましい。具体的には水質変動の要因が凝集剤の注入による場合にだけその注入量を最適化制御し、凝集剤以外の要因である場合には、警報出力やスラッジの引き抜き量制御、更にはpH制御等の対策を施すことで、基本的な制御対象である凝集剤の注入量を不本意に変更しないことを特徴としている。 Further, in the water treatment system according to the present invention, when the determination result by the factor determination means is a change in water quality due to the injection of the flocculant, the floc formation state obtained by each of the flocculant sensors and / or It is preferable to provide control means for optimizing and controlling the injection amount of the flocculant according to the turbidity of the liquid layer and prohibiting the injection amount control of the flocculant in the case of water quality fluctuations other than the injection of the flocculant . Specifically, the injection amount is optimized and controlled only when the water quality fluctuation is caused by the injection of the flocculant, and if it is a factor other than the flocculant, the alarm output, sludge extraction amount control, and pH control are performed. By taking measures such as these, the injection amount of the flocculant, which is a basic control target, is not changed unintentionally.

上述した如く構成された水処理システムによれば、凝集反応槽における懸濁液の凝集状態のみならず上記懸濁液を固液分離処理した処理水の水質を検出し、これらの懸濁液および処理水の濁度やフロック状態を比較することで、水質変動の要因によって異なる検出情報の相対関係から水質変動の要因を凝集剤の注入量の過不足によるものか、或いは処理水量の変動等の凝集剤の注入量以外の要因であるかを容易に区別して判定することができる。従って凝集剤の注入量の過不足による水質変動が生じた場合にだけ、その注入量を適切に制御することが可能となる。   According to the water treatment system configured as described above, not only the state of aggregation of the suspension in the aggregation reaction tank, but also the quality of the treated water obtained by subjecting the suspension to solid-liquid separation treatment is detected. By comparing the turbidity and flock status of the treated water, the relative relationship between the detection information that varies depending on the cause of the water quality fluctuation may be caused by the excess or deficiency of the flocculant injection amount, It can be easily distinguished and determined whether it is a factor other than the injection amount of the flocculant. Therefore, the injection amount can be appropriately controlled only when the water quality changes due to the excessive or insufficient amount of the flocculant injection.

具体的には処理水の濁度の上昇が凝集剤の注入量に起因する凝集不良によるものか、或いはフロックリーク等によるものかを判別することが可能となり、また凝集反応槽等での凝集状態と処理水の濁度の上昇傾向とから、その濁度上昇の要因を特定することが可能となる。従って水質変動の要因に応じた適切な水処理制御が可能となる。   Specifically, it is possible to determine whether the increase in turbidity of the treated water is due to poor aggregation due to the amount of flocculant injected or due to floc leaks, etc. From the increasing tendency of the turbidity of the treated water, it is possible to specify the factor of the increase in turbidity. Therefore, it is possible to perform appropriate water treatment control according to the cause of water quality fluctuation.

以下、図面を参照して本発明の一実施形態に係る水処理システムについて凝集沈殿処理を例に説明する。
図1は用水・排水(被処理水)に対して凝集沈殿処理を行う水処理システムの概略構成図で、1は原水(被処理水)を受け入れると共に、原水に注入された凝集剤を用いて原水中に含まれる懸濁物や溶解物を凝集させて凝集フロックを生成する凝集反応槽である。また2は上記凝集反応槽1から導かれる懸濁液を沈殿処理して固液分離させた処理水を得る沈殿槽(固液分離装置)である。
Hereinafter, a water treatment system according to an embodiment of the present invention will be described with reference to the drawings, taking a coagulation sedimentation process as an example.
FIG. 1 is a schematic configuration diagram of a water treatment system that performs coagulation / sedimentation treatment on water / drainage (treated water), and 1 accepts raw water (treated water) and uses a flocculant injected into the raw water. This is an agglomeration reaction tank for agglomerating flocs by aggregating suspensions and dissolved substances contained in raw water. Reference numeral 2 denotes a sedimentation tank (solid-liquid separation device) that obtains treated water obtained by subjecting the suspension introduced from the agglomeration reaction tank 1 to precipitation treatment and solid-liquid separation.

原水への、例えば無機凝集剤Aの注入は、前記凝集反応槽1への原水の供給水系に対して、コンピュータからなる薬注制御装置3の制御の下でポンプ4を介して行われる。また凝集反応槽1にはポンプ5を介してpH調整剤Bが注入されるようになっている。このポンプ5によるpH調整剤Bの注入は、前記凝集反応槽1に設けられたpH計6により計測される懸濁液のpH値に基づき、pHコントローラ7の制御の下で所定のpH値となるように行われる。また前記凝集反応槽1から沈殿槽2に導かれる懸濁液には、ポンプ8を介して適宜、高分子凝集剤Cが注入されるようになっている。   The injection of, for example, the inorganic flocculant A into the raw water is performed via the pump 4 under the control of the chemical injection control device 3 composed of a computer with respect to the raw water supply water system to the agglomeration reaction tank 1. Further, the pH adjusting agent B is injected into the aggregation reaction tank 1 through a pump 5. The injection of the pH adjusting agent B by the pump 5 is performed based on the pH value of the suspension measured by the pH meter 6 provided in the aggregation reaction tank 1 under the control of the pH controller 7. To be done. In addition, a polymer flocculant C is appropriately injected into the suspension guided from the agglomeration reaction tank 1 to the precipitation tank 2 via a pump 8.

基本的には上述した凝集反応槽1と沈殿槽2とを備えて構成される水処理系において、この発明に係る水処理システムが特徴とするところは、凝集反応槽1に懸濁液の凝集状態を検出する凝集状態計測手段としての第1の凝集センサ11を設けると共に、前記沈殿槽2の出口側にその処理水の水質を評価する水質評価手段としての第2の凝集センサ12を設け、これらの各凝集センサ11,12にてそれぞれ検出された情報(濁度およびフロック形成状態)を前記薬注制御装置3に取り込むように構成した点にある。   Basically, in the water treatment system configured to include the agglomeration reaction tank 1 and the precipitation tank 2 described above, the water treatment system according to the present invention is characterized in that the agglomeration reaction tank 1 agglomerates the suspension. A first agglomeration sensor 11 is provided as an agglomeration state measuring means for detecting a state, and a second agglomeration sensor 12 is provided as a water quality evaluation means for evaluating the quality of the treated water on the outlet side of the settling tank 2, This is because the information (turbidity and floc formation state) detected by each of these aggregation sensors 11 and 12 is taken into the drug injection control device 3.

尚、凝集センサ11,12は、前述した特許文献2に詳しく紹介されるものであるが、簡単に説明すると、例えば図2に示すように投光部と受光部とを近接配置させて計測対象水(検水)中に設けられるプローブ13と、このプローブ13を介して検水中に振幅変調(AM変調)したレーザ光を照射する発光部14と、検水中の粒子への上記レーザ光の衝突により発生する散乱光を前記プローブ13を介して検出して該計測対象水の濁度やフロック形成状態を検出する検出部15とを備えたものである。特に検出部15においては、散乱光Sの受光量(受光強度)に応じた電気信号を発生する光電変換器の出力から帯域通過フィルタ(BPF)を介して前述した振幅変調した周波数成分Fだけを抽出した後、その振幅変調周波数成分を検波してその包絡線成分Eを求めるように構成される。   The agglomeration sensors 11 and 12 are introduced in detail in the above-mentioned Patent Document 2, but briefly described. For example, as shown in FIG. 2, a light projecting unit and a light receiving unit are arranged close to each other to be measured. A probe 13 provided in water (sample water), a light emitting unit 14 that irradiates laser light amplitude-modulated (AM-modulated) into the sample water via the probe 13, and collision of the laser beam with particles in the sample water And a detector 15 for detecting the turbidity and flock formation state of the measurement target water by detecting the scattered light generated by the above-described probe 13. In particular, in the detection unit 15, only the frequency component F that has been amplitude-modulated from the output of the photoelectric converter that generates an electric signal corresponding to the amount of received light (the received light intensity) of the scattered light S through the band-pass filter (BPF). After extraction, the amplitude modulation frequency component is detected and the envelope component E is obtained.

このようにしてレーザ光が照射された微小な領域Sにて生じる散乱光について考察すると、この領域Sにおいて懸濁物質からなる微小なコロイド粒子によって生じる散乱光の強度は、微小コロイド粒子の数に比例して大きくなる。そして微小コロイド粒子の数は、その凝集が進んで粒子径の大きいフロックが生成されるに従って減少する。これに対してフロックは微小コロイド粒子が凝集したものであるから、凝集が進むに従ってその数が増えるものの微小コロイド粒子に比較して遙かにその数が少ない。これ故、上記フロックが前述した微小な領域Sに存在する可能性は低く、一時的に微小領域Sに入り込むに過ぎない。但し、フロックが微小領域Sに入り込む頻度は、凝集の進行に伴ってフロックの数が増えるに従って高くなる。   Considering the scattered light generated in the minute region S irradiated with the laser light in this way, the intensity of the scattered light generated by the minute colloidal particles made of the suspended material in this region S is equal to the number of the minute colloidal particles. Increase proportionally. The number of microcolloid particles decreases as the aggregation progresses and flocs having a large particle diameter are generated. On the other hand, since flocs are formed by agglomerating fine colloidal particles, the number increases as the agglomeration proceeds, but the number is much smaller than that of fine colloidal particles. Therefore, the possibility that the flock exists in the above-described minute region S is low, and only enters the minute region S temporarily. However, the frequency at which the floc enters the minute region S increases as the number of flocs increases with the progress of aggregation.

従って前述したようにして微小領域Sにおける散乱光の強度を計測すると、検水中の懸濁物質の凝集が進んで微小コロイド粒子の数が減り、フロックの数が徐々に増えるに従って前記微小領域Sでの散乱光の強度が上記フロックにより一時的に高くなることがあるものの、全体的には低くなる。これ故、フロックの存在によって散乱光強度が一時的に高くなった場合を除いて、その全体的な散乱光の強度に着目すれば、そのときの散乱光強度はフロック化していない未凝集のコロイド粒子の数を示していると看做すことが可能となる。また前述した散乱光の強度に応じた包絡線成分の最低値を検出すれば、検水中における未凝集のコロイド粒子数を求めることができる。更にはフロックにより散乱光の強度が一時的に高くなる周期に着目すれば、凝集により生じたフロックの数(検水中におけるフロックの密度)を求めることが可能となり、一時的な散乱光強度の大きさからフロックの粒子径を求めることも可能となる。   Therefore, when the intensity of the scattered light in the minute region S is measured as described above, the aggregation of suspended substances in the test water proceeds, the number of minute colloidal particles decreases, and the number of flocs gradually increases in the minute region S. Although the intensity of the scattered light may temporarily increase due to the flocs, it generally decreases. Therefore, except for the case where the scattered light intensity is temporarily increased due to the presence of flocs, if we focus on the intensity of the scattered light, the scattered light intensity at that time is an unaggregated colloid that is not flocked. It can be regarded as indicating the number of particles. Moreover, if the minimum value of the envelope component according to the intensity of the scattered light described above is detected, the number of unaggregated colloidal particles in the test water can be obtained. Furthermore, if attention is paid to the period in which the intensity of scattered light temporarily increases due to flocs, the number of flocs generated by aggregation (the density of flocs in the test water) can be obtained, and the temporary scattered light intensity is increased. From this, the particle diameter of the floc can be obtained.

さてこのような凝集センサ11,12を用いて検出される懸濁液の凝集状態および処理水の水質情報をそれぞれ入力する前述した薬注制御装置3は、次のように情報処理して前記処理水の水質を監視し、水質変動が生じた場合にはその変動要因を求める。
<正常時>
凝集沈降処理が正常に実施されている場合、凝集反応槽1内でのフロックは原水中の懸濁成分を取り込んで成長する。これ故、凝集フロックを除去した液相の濁度(未凝集のコロイド粒子等による濁度)は最も低い状態となる。この際、凝集センサ11,12を介してそれぞれ検出されるフロック情報および濁度の内、第1の凝集センサ11を介して検出される懸濁液の濁度、特にフロックの影響を排した未凝集のコロイド粒子等に起因する濁度は最も低い値となる。また第1の凝集センサ11を介して検出される情報は、成長したフロックに関する情報を多く含むので前述したフロックによる一時的に高い散乱光の強度が大きくなる。
Now, the above-mentioned chemical injection control device 3 for inputting the aggregation state of the suspension detected by using the aggregation sensors 11 and 12 and the water quality information of the treated water respectively processes the processing by performing information processing as follows. Monitor the water quality and, if there is a change in water quality, find the cause of the change.
<Normal>
When the coagulation sedimentation process is normally performed, the floc in the coagulation reaction tank 1 grows by taking in the suspended components in the raw water. Therefore, the turbidity of the liquid phase from which the aggregated floc has been removed (turbidity due to unaggregated colloidal particles or the like) is in the lowest state. At this time, out of the floc information and turbidity detected through the aggregation sensors 11 and 12 respectively, the turbidity of the suspension detected through the first aggregation sensor 11, in particular, the influence of the floc has not been eliminated. Turbidity due to agglomerated colloidal particles is the lowest value. Further, the information detected via the first aggregation sensor 11 includes a lot of information about the grown floc, so that the intensity of scattered light temporarily increased due to the floc described above.

一方、第2の凝集センサ12を介して得られる処理水の濁度は、凝集処理と固液分離処理とが効率的に行われていれば、その濁度も十分に低い値となる。またフロックのリークも生じなければ、フロックによる一時的に高い散乱光が検出されなくなる。つまり凝集処理と固液分離処理とが正常に実施されている場合には、凝集反応槽1でのフロックの成長(形成)と沈殿槽2での固液分離(凝集フロックの除去)とがそれぞれ良好に行われるので、第1および第2の凝集センサ11,12にてそれぞれ検出される濁度は共に最も低い値となる。そしてフロックによる一時的に高い散乱光は、第1の凝集センサ11では大きくなり、第2の凝集センサ12では殆ど検出されなくなる。
<凝集薬液の不足>
これに対して無機凝集剤の注入量が不足した場合には、凝集反応槽1でのフロック形成が未熟となる。この結果、フロックが小さくなるので前述したフロックによる一時的に高く散乱光強度が小さくなる。またフロックに取り込まれない懸濁物質が液中に増えるので、懸濁液の濁度、特にフロックの影響を排した未凝集のコロイド粒子等に起因する濁度が上昇することになる。従って第1の凝集センサ11にて検出される情報の変化をモニタし、フロックにより一時的に高くなる散乱光強度が小さくなったこと、或いは懸濁液の濁度、特にフロックの影響を排した未凝集のコロイド粒子等に起因する濁度が上昇したことが検出されれば、その要因が凝集剤の不足であると判断することができる。
On the other hand, the turbidity of the treated water obtained through the second aggregation sensor 12 is sufficiently low when the aggregation process and the solid-liquid separation process are performed efficiently. Further, if no floc leak occurs, temporarily high scattered light due to the floc cannot be detected. That is, when the agglomeration process and the solid-liquid separation process are normally performed, floc growth (formation) in the agglomeration reaction tank 1 and solid-liquid separation (removal of the agglomeration floc) in the precipitation tank 2 are performed. Since it is performed satisfactorily, the turbidity detected by the first and second aggregation sensors 11 and 12 is the lowest value. The temporarily high scattered light due to the flocs becomes large in the first aggregation sensor 11 and is hardly detected by the second aggregation sensor 12.
<Insufficient aggregation chemical solution>
On the other hand, when the injection amount of the inorganic flocculant is insufficient, floc formation in the agglomeration reaction tank 1 becomes immature. As a result, the flocs are reduced, so that the scattered light intensity is temporarily reduced due to the aforementioned flocs. In addition, since suspended substances that are not taken into flocs increase in the liquid, the turbidity of the suspension, particularly turbidity due to unaggregated colloidal particles that eliminate the influence of flocs, increases. Therefore, the change in the information detected by the first aggregation sensor 11 is monitored, and the scattered light intensity temporarily increased by the floc is reduced, or the turbidity of the suspension, particularly the influence of the floc is eliminated. If it is detected that the turbidity due to unaggregated colloidal particles or the like has increased, it can be determined that the cause is the lack of the flocculant.

<凝集剤の過剰>
また無機凝集剤が過剰に注入された場合、フロックの成長に伴って前述したフロックによる散乱光の強度は或る程度の変化を呈する。しかし急激に大きく形成されたフロックは崩れ易く、これに起因して細かなフロック(ピンフロック)が多量に形成される。このピンフロックは微少でその数も多いので、第1の凝集センサ11では未凝集のコロイド粒子と区別することは困難である。この為、第1の凝集センサ11により検出される懸濁液の濁度やフロック(ピンフロックを除く)の影響を排した未凝集のコロイド粒子等に起因する濁度が上昇する。つまり凝集剤が過剰な場合には、凝集剤が不足する場合と同様に懸濁液の濁度やフロック(ピンフロックを除く)の影響を排した未凝集のコロイド粒子等に起因する濁度が上昇するが、フロックによる一時的に高い散乱光の強度は或る程度の大きさを持つ。従ってこの散乱光の強度の違いを判定することで、凝集剤が過剰であるか、逆に不足しているかを区別することができる。
<pH変動>
ところで懸濁液のpHが所定の値から外れた場合(pH変動が生じた場合)には、pHが所定の値に或る場合に比較して懸濁液の凝集剤注入量の過不足に対して懸濁液の凝集状態がより鋭敏に反応する。この為、第1の凝集センサ11を用いて検出される懸濁液の濁度やフロックの情報は、短い時間間隔で急激に変動するようになる。しかし沈殿槽2で固液分離された処理水に着目すると、pH変動による懸濁液の凝集状態の急激な変動は、容量の大きい沈殿槽2でのバッファ(緩衝)機能により平均化されるため、第2の凝集センサ12によって検出される情報はpH変動の影響を殆ど受けない。
<Excessive flocculant>
Further, when the inorganic flocculant is excessively injected, the intensity of the scattered light due to the flocs changes to some extent as the flocs grow. However, the suddenly large floc is easily broken, and as a result, a large amount of fine floc (pin floc) is formed. Since the pin flocs are very small and many, it is difficult for the first aggregation sensor 11 to distinguish them from unaggregated colloidal particles. For this reason, the turbidity due to the turbidity of the suspension detected by the first aggregation sensor 11 and the non-aggregated colloidal particles and the like excluding the influence of floc (excluding pin floc) is increased. In other words, when the flocculant is excessive, the turbidity caused by unaggregated colloidal particles that exclude the influence of floc (excluding pin floc), etc. Although it rises, the intensity of the temporarily high scattered light by the floc has a certain magnitude. Therefore, by determining the difference in intensity of the scattered light, it is possible to distinguish whether the coagulant is excessive or conversely insufficient.
<PH variation>
By the way, when the pH of the suspension deviates from a predetermined value (when pH fluctuation occurs), the amount of the flocculant injected into the suspension is excessive or insufficient as compared with the case where the pH is at the predetermined value. In contrast, the state of aggregation of the suspension reacts more sensitively. For this reason, the turbidity and floc information of the suspension detected using the first aggregation sensor 11 changes abruptly at short time intervals. However, paying attention to the treated water solid-liquid separated in the sedimentation tank 2, the rapid fluctuation of the suspension state due to the pH fluctuation is averaged by the buffer function in the sedimentation tank 2 having a large capacity. The information detected by the second aggregation sensor 12 is hardly affected by the pH fluctuation.

一方、pHが所定の値に制御されている場合には、凝集剤の注入量が過剰であり、又は不足すると、pH変動が生じている場合に比較して懸濁液の濁度は徐々に変動する。従って沈殿槽2で固液分離された処理水の濁度は、凝集反応槽1における懸濁液の濁度の上昇ほど早くはないが、次第に上昇することになる。この凝集反応槽1内における懸濁液の濁度の上昇と、固液分離された処理水の濁度の上昇の違いは、沈殿槽2における懸濁液の滞留時間だけ、処理水の濁度ピークが遅れて発生することから識別できる。   On the other hand, when the pH is controlled to a predetermined value, when the injection amount of the flocculant is excessive or insufficient, the turbidity of the suspension gradually increases as compared with the case where the pH fluctuation occurs. fluctuate. Therefore, the turbidity of the treated water solid-liquid separated in the precipitation tank 2 is not as fast as the increase in the turbidity of the suspension in the agglomeration reaction tank 1, but gradually increases. The difference between the increase in the turbidity of the suspension in the agglomeration reaction tank 1 and the increase in the turbidity of the treated water separated into solid and liquid is the turbidity of the treated water by the residence time of the suspension in the precipitation tank 2. It can be distinguished from the fact that the peak occurs late.

従って第1の凝集センサ11によって検出される懸濁液の凝集状態の変動の程度や、沈殿槽2における懸濁液の滞留時間分の時間的な遅れはあるものの、第2の凝集センサ12によって検出される処理水の情報を調べることでpHの変動の有無を容易に判定することが可能となる。また凝集反応槽1に設けた第1の凝集センサ11により検出される懸濁液の濁度、特にフロックの影響を排した未凝集のコロイド粒子等に起因する濁度の上昇の度合い(変動信号の平均値)をモニタすれば、凝集フロックの崩れの程度を判断することができる。従ってこの判断結果に基づいて第2の凝集センサ12にて検出される濁度がどの程度まで上昇するかを予想することが可能となるので、pH変動を考慮した凝集剤の過不足を判断することが可能となる。
<処理水量や界面変動の影響>
ところで処理水量の増加や界面の上昇に伴う処理水へのフロックの混入に起因する処理水濁度の上昇について考察する。この処理水量の増加や界面の上昇は、凝集反応槽1での凝集状態は殆ど関与しないので、第1の凝集センサ11により検出される情報(信号)の変化は殆どない。しかしフロックのリークによって第2の凝集センサ12により検出されるフロックの数が多くなる。従って第1の凝集センサ11により検出される情報に変化がなく、第2の凝集センサによって検出される処理水のフロックの数だけが上昇するような場合には、処理水量の増加や界面の上昇に伴ってフロックのリークが発生していると判断することができる。
Accordingly and degree of variation in the aggregation state of suspension to be detected by the first aggregation sensor 11, although the time delay of the residence time of the suspension in the precipitation tank 2 is, by the second aggregation sensor 12 By examining the information of the detected treated water, it is possible to easily determine the presence or absence of pH fluctuation. Further, the turbidity of the suspension detected by the first agglomeration sensor 11 provided in the agglomeration reaction tank 1, particularly the degree of increase in turbidity due to unaggregated colloidal particles and the like excluding the influence of floc (variation signal) The average value) can be monitored to determine the degree of collapse of the aggregated flocs. Accordingly, since it is possible to predict how much the turbidity detected by the second aggregation sensor 12 will increase based on the determination result, it is determined whether the coagulant is excessive or insufficient in consideration of pH fluctuation. It becomes possible.
<Influence of treated water volume and interface fluctuation>
By the way, the increase in the turbidity of the treated water due to the increase in the amount of treated water and the increase of the interface caused by the inclusion of floc into the treated water will be discussed. The increase in the amount of treated water and the increase in the interface hardly involve the aggregation state in the aggregation reaction tank 1, so there is almost no change in information (signal) detected by the first aggregation sensor 11. However, the number of flocs detected by the second aggregation sensor 12 increases due to the floc leak. Therefore, when there is no change in the information detected by the first agglomeration sensor 11 and only the number of flocs of treated water detected by the second agglomeration sensor increases, the amount of treated water increases and the interface rises. Accordingly, it can be determined that a floc leak has occurred.

このような場合にはフロックのリークが収まるのを待つか、フロックリークの発生をオペレータに通知し、敢えて凝集剤の注入制御を行わないことが望ましい。尚、流量計等を用いて処理水量を監視しているならば、その流量変動の情報を用いて上述したフロックリークが処理水量の増大に要因するものであるか、或いは界面の異常上昇に原因するものであるかを判断することが可能となる。   In such a case, it is desirable to wait for the floc leak to settle, or to notify the operator of the occurrence of the floc leak and not to control the injection of the flocculant. If the amount of treated water is monitored using a flow meter or the like, the above-mentioned flock leak may cause an increase in the amount of treated water using the information on the flow rate fluctuation, or may be caused by an abnormal rise in the interface. It is possible to determine whether or not to do.

前述した薬注制御装置3においては、その要因判定機能3aにて上述した第1および第2の凝集センサ11,12を用いてそれぞれ検出される懸濁液および処理水の濁度およびリーク情報を相互に比較判定し、その相対関係を調べることで上述した固液分離処理水の水質変動の要因をそれぞれ判定している。尚、このような要因判定を行う場合には、上述した懸濁液および処理水の状態変化を、例えば図3に示すように予めその要因別に整理してデータベース(DB)10に登録しておき、第1および第2の凝集センサ11,12によりそれぞれ検出される信号の相対関係に従って上記データベース10を検索して水質変動の要因を求めるようにすれば良い。   In the medicine injection control device 3 described above, the turbidity and leak information of the suspension and the treated water respectively detected by the factor determination function 3a using the first and second aggregation sensors 11 and 12 described above are obtained. By comparing and determining each other and examining the relative relationship, the factors of the water quality fluctuations of the solid-liquid separation treated water described above are respectively determined. When such factor determination is performed, the state changes of the suspension and treated water described above are arranged in advance according to the factor and registered in the database (DB) 10 as shown in FIG. 3, for example. The database 10 may be searched according to the relative relationship between the signals detected by the first and second agglomeration sensors 11 and 12 to determine the factor of water quality fluctuation.

そして薬注制御装置3においては、上述した如くして求めた水質変動の要因(判定結果)に従い、水質変動の要因が凝集剤の過不足である場合にだけ、ポンプ4の作動をフィードバック制御して凝集剤の注入量を適正化するものとなっている。換言すれば凝集剤の過不足以外の要因で水質変動が生じた場合には、凝集剤の注入量制御を禁止し、その時点での注入量を保つものとなっている。従って凝集条件に変動に対してその要因に応じた対策を適切に講じることが可能となり、安定した凝集剤の注入制御を行うことが可能となる。   The chemical injection control device 3 feedback-controls the operation of the pump 4 only when the water quality fluctuation factor is excessive or insufficient of the flocculant in accordance with the water quality fluctuation factor (determination result) obtained as described above. Thus, the injection amount of the flocculant is optimized. In other words, when the water quality fluctuates due to a factor other than the excess or deficiency of the flocculant, the injection amount control of the flocculant is prohibited and the injection amount at that time is maintained. Therefore, it is possible to appropriately take measures according to the factor against fluctuations in the agglomeration conditions, and it becomes possible to perform stable injection control of the aggregating agent.

尚、本発明は上述した実施形態に限定されるものではない。ここでは凝集沈殿を行う水処理システムを例に説明したが、加圧浮上処理により固液分離する水処理システムにも同様に適用することができる。この加圧浮上処理においては凝集剤が過剰な場合、フロック強度が低いことに起因して加圧処理時にフロックが壊れ、細かなフロック(ピンフロック)となる。逆に凝集剤が不足する場合には、前述した凝集沈殿処理の場合と同様にフロックに取り込まれない懸濁物質が多く残ることになる。従ってこの場合においても、凝集反応槽1における懸濁液と、加圧浮上処理により固液分離した処理水の濁度とフロック情報とをそれぞれ検出するべく2系統の凝集センサを設ければ、前述した実施形態と同様な効果が奏せられる。   The present invention is not limited to the embodiment described above. Here, a water treatment system that performs coagulation sedimentation has been described as an example, but the present invention can be similarly applied to a water treatment system that performs solid-liquid separation by pressure flotation treatment. If the flocculant is excessive in this pressure floating process, the floc breaks during the pressure process due to the low floc strength, resulting in a fine flock (pin flock). On the contrary, when the coagulant is insufficient, a large amount of suspended matter that is not taken into the floc remains as in the case of the above-described coagulation sedimentation treatment. Accordingly, even in this case, if two systems of aggregation sensors are provided to detect the suspension in the aggregation reaction tank 1 and the turbidity and floc information of the treated water solid-liquid separated by the pressure flotation process, The same effects as those of the embodiment described above can be obtained.

また実施形態においては、処理水を検査するべく凝集反応槽1に組み込む凝集センサ11と同様な凝集センサ12を用いたが、従来一般的な光学式の濁度計を用いることも可能である。また凝集剤の過不足以外の要因で水質が変動した場合には、その要因に応じて沈殿槽2におけるスラッジの引き抜き量を制御したり、pH調整剤の注入量を制御することも勿論可能である。更には水処理設備の運転情報(処理水量や界面位置、pH値等)を入力しながら水質変動の要因を更に精度良く特定するように構成すること可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   In the embodiment, the agglomeration sensor 12 similar to the agglutination sensor 11 incorporated in the agglutination reaction tank 1 is used to inspect the treated water, but a conventional optical turbidimeter can also be used. In addition, when the water quality fluctuates due to a factor other than the excess or deficiency of the flocculant, it is of course possible to control the amount of sludge withdrawn from the settling tank 2 or the injection amount of the pH adjusting agent according to the factor. is there. Furthermore, it is possible to configure the factor of the water quality fluctuation more accurately while inputting the operation information of the water treatment facility (treatment water amount, interface position, pH value, etc.). In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係る水処理システムの腰部概略構成図。The waist part schematic block diagram of the water treatment system which concerns on one Embodiment of this invention. 図1に示す水処理システムに用いられる凝集センサの例を示す図。The figure which shows the example of the aggregation sensor used for the water treatment system shown in FIG. 水質変動の要因を判定する為のデータベースに予め記憶しておく情報の例を示す図。The figure which shows the example of the information memorize | stored beforehand in the database for determining the factor of water quality fluctuation | variation.

符号の説明Explanation of symbols

1 凝集反応槽
2 沈殿槽
3 薬注制御装置
3a 要因判定機能
7 pHコントローラ
10 データベース
11 第1の凝集センサ
12 第2の凝集センサ
DESCRIPTION OF SYMBOLS 1 Coagulation reaction tank 2 Settling tank 3 Chemical injection control apparatus 3a Factor determination function 7 pH controller 10 Database 11 1st aggregation sensor 12 2nd aggregation sensor

Claims (2)

原水に凝集剤を注入して該原水中の懸濁物および/または溶解物を凝集化する凝集反応槽と、
この凝集反応槽から排出された懸濁液を固液分離処理して前記懸濁物および/または溶解物を除去した処理水を得る固液分離装置と、
前記凝集反応槽または前記凝集反応槽から前記固液分離装置に至る懸濁液の供給経路に設けられて前記懸濁液におけるフロックの形成状態と濁度とを計測して前記懸濁物および/または溶解物の凝集状態を検出する凝集状態計測手段と、
前記固液分離装置からの前記処理水の排出経路に設けられて該処理水におけるフロックの形成状態と濁度とを計測してその計測値を該処理水の水質として評価する水質評価手段と、
予め懸濁液および処理水の状態変化をその要因別に整理して記憶したデータベースを参照して、前記凝集状態計測手段により求められる前記懸濁物および/または溶解物の凝集状態と上記水質評価手段により求められる前記処理水の水質との組合せに応じて前記処理水の水質変動の要因を判定する要因判定手段と
を具備し、
前記凝集状態計測手段および前記水質評価手段は、計測対象水中に照射したレーザ光の微小領域における散乱光を検出して該計測対象水におけるフロックの形成状態と濁度とを計測する凝集センサからなり、
前記要因判定手段は、上記各凝集センサによりそれぞれ求められたフロックの形成状態および/または液層の濁度の相対関係から、予め水質変動の要因に対応付けて前記懸濁液および処理水におけるフロックの形成状態と濁度とをそれぞれ登録したデータベースを参照して前記凝集剤の注入による水質変動とそれ以外の水質変動要因とを区別することを特徴とする水処理システム。
An agglomeration reaction tank for injecting a flocculant into the raw water to agglomerate the suspension and / or dissolved matter in the raw water;
A solid-liquid separation device for obtaining treated water from which the suspension and / or dissolved matter has been removed by subjecting the suspension discharged from the agglomeration reaction vessel to solid-liquid separation, and
The suspension and / or turbidity is measured by measuring a floc formation state and turbidity in the suspension provided in a suspension supply path from the aggregation reaction tank or the aggregation reaction tank to the solid-liquid separation device. Or an aggregation state measuring means for detecting the aggregation state of the lysate;
Water quality evaluation means for measuring the floc formation state and turbidity in the treated water and evaluating the measured value as the quality of the treated water provided in the treated water discharge path from the solid-liquid separator,
By referring to a database that preliminarily organizes and stores changes in the state of suspension and treated water according to their factors, the state of aggregation of the suspension and / or dissolved matter obtained by the aggregation state measuring means and the water quality evaluation means ; and a factor determining means for determining the cause of quality variations in the treated water in accordance with a combination of the quality of the treated water obtained by,
The aggregation state measuring means and the water quality evaluating means comprise an aggregation sensor that detects scattered light in a minute region of the laser light irradiated into the measurement target water and measures the floc formation state and turbidity in the measurement target water. ,
The factor determination means determines whether the flocs in the suspension and the treated water are associated with factors of water quality fluctuations in advance from the floc formation state and / or the relative turbidity of the liquid layer obtained by the respective aggregation sensors. A water treatment system that distinguishes between water quality fluctuations caused by the injection of the flocculant and other water quality fluctuation factors with reference to databases in which the formation state and turbidity of water are registered .
請求項1に記載の水処理システムにおいて、
前記要因判定手段による判定結果が、前記凝集剤の注入による水質変動である場合には前記各凝集センサによりそれぞれ求められたフロックの形成状態および/または液層の濁度に従って前記凝集剤の注入量を適正化制御し、前記凝集剤の注入以外による水質変動の場合には前記凝集剤の注入量制御を禁止する制御手段を備えることを特徴とする水処理システム。
The water treatment system according to claim 1 ,
When the determination result by the factor determination means is a change in water quality due to the injection of the flocculant, the amount of the flocculant injected according to the floc formation state and / or the turbidity of the liquid layer respectively obtained by the respective flocculence sensors And a control means for prohibiting the control of the injection amount of the flocculant when the water quality changes due to other than the injection of the flocculant.
JP2004004299A 2004-01-09 2004-01-09 Water treatment system Expired - Lifetime JP4400721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004299A JP4400721B2 (en) 2004-01-09 2004-01-09 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004299A JP4400721B2 (en) 2004-01-09 2004-01-09 Water treatment system

Publications (2)

Publication Number Publication Date
JP2005193204A JP2005193204A (en) 2005-07-21
JP4400721B2 true JP4400721B2 (en) 2010-01-20

Family

ID=34818956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004299A Expired - Lifetime JP4400721B2 (en) 2004-01-09 2004-01-09 Water treatment system

Country Status (1)

Country Link
JP (1) JP4400721B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915109B2 (en) * 2006-03-03 2012-04-11 栗田工業株式会社 Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount
JP4915120B2 (en) * 2006-03-29 2012-04-11 栗田工業株式会社 Effect monitoring method and injection amount control method for papermaking chemicals
JP4743421B2 (en) * 2006-03-29 2011-08-10 栗田工業株式会社 Aggregation reactor
JP4793193B2 (en) * 2006-09-14 2011-10-12 栗田工業株式会社 Aggregation apparatus and aggregation method
JP5501146B2 (en) * 2010-08-03 2014-05-21 日鐵住金建材株式会社 Flock formation state determination method, flock formation state determination device, agglomeration reaction tank, pH adjustment tank, and abnormality occurrence notification system
CN105753121B (en) * 2016-04-11 2018-05-01 武汉理工大学 A kind of adjustable water handles coagulating system
JP7285138B2 (en) * 2019-05-31 2023-06-01 オルガノ株式会社 Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250919A (en) * 1986-04-25 1987-10-31 Meidensha Electric Mfg Co Ltd Floc formation monitor
JPH02258003A (en) * 1989-03-30 1990-10-18 Ebara Infilco Co Ltd Control method of chemical feeding to coagulator
JPH02258004A (en) * 1989-03-30 1990-10-18 Ebara Infilco Co Ltd Control method of chemical feeding to coagulator
JPH02261505A (en) * 1989-03-31 1990-10-24 Ebara Infilco Co Ltd Method for controlling chemical injection in flocculating and settling device
JP2912977B2 (en) * 1990-07-24 1999-06-28 株式会社日立製作所 Coagulation state monitoring device
JPH06327907A (en) * 1993-05-20 1994-11-29 Mitsubishi Electric Corp Flocculation controller
JP3231164B2 (en) * 1993-10-19 2001-11-19 富士電機株式会社 Control device for water purification plant coagulation process
JP3205450B2 (en) * 1994-01-17 2001-09-04 富士電機株式会社 Automatic injection rate determination device and automatic determination method
JPH08126802A (en) * 1994-10-31 1996-05-21 Nissin Electric Co Ltd Control of injection of flocculant
JPH10202013A (en) * 1997-01-22 1998-08-04 Fuji Electric Co Ltd Method for controlling water purifying and flocculating treatment
JP2001079310A (en) * 1999-09-10 2001-03-27 Meidensha Corp Water quality control method and device therefor
JP2002005814A (en) * 2000-06-16 2002-01-09 Hitachi Ltd Method for evaluating state of clean water floc formation, and system for controlling injection of flocculant
JP4505772B2 (en) * 2000-11-24 2010-07-21 横河電機株式会社 Coagulant injection control method for water purification plant
JP4605327B2 (en) * 2000-12-25 2011-01-05 栗田工業株式会社 Aggregation monitoring device
JP2002253905A (en) * 2001-03-05 2002-09-10 Kurita Water Ind Ltd Coagulation monitoring system
JP2002257715A (en) * 2001-03-05 2002-09-11 Kurita Water Ind Ltd Probe for detecting particle condition
JP3937826B2 (en) * 2001-12-05 2007-06-27 栗田工業株式会社 Aggregation processing equipment
JP3941595B2 (en) * 2002-06-05 2007-07-04 栗田工業株式会社 Drug injection control device
JP2004177122A (en) * 2002-11-22 2004-06-24 Kurita Water Ind Ltd Water quality detection method and operation method of water purifying apparatus
JP4244769B2 (en) * 2003-09-30 2009-03-25 栗田工業株式会社 Aggregation apparatus and aggregation method

Also Published As

Publication number Publication date
JP2005193204A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
TWI585389B (en) System and methods of determining liquid phase turbidity of multiphase wastewater
KR101439226B1 (en) Method of treating water by ballasted flocculation/settling, which includes a continuous measurement of the ballast, and corresponding installation
JP2009000672A (en) Method and device for deciding flocculating agent infusion rate in method for treating water which performs coagulation/sedimentation treatment
JP4400721B2 (en) Water treatment system
JP2002253905A (en) Coagulation monitoring system
JP3925621B2 (en) Water or sludge treatment system
JP4400720B2 (en) Water treatment system
WO2023017637A1 (en) Flocculation processing device
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP6699690B2 (en) Flocculant injection controller
JP4605327B2 (en) Aggregation monitoring device
WO2021020125A1 (en) Flocculation processing device
KR20080057364A (en) Method and device for adding flocculant in water treatment system
US10843945B2 (en) Pilot filter for a water treatment system
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
JPH03284305A (en) Control method for injecting flocculant
JP5168952B2 (en) Method of operating membrane filtration device and membrane filtration device
US20220144668A1 (en) Water treatment device and water treatment method
WO2021070545A1 (en) Monitoring device and monitoring method for belt press dehydration system, and control device
JP6328976B2 (en) Water treatment system
JP2022156300A (en) Monitoring device, monitoring method and control device for dehydration system
JP2024019027A (en) Method for measuring aluminum content aggregated particles, device for measuring the same, aggregation processing device for processed water, method for determining superiority of aggregation processing conditions, and device for determining the same
SE2150524A1 (en) Device and method for treating green liquor
KR20040057209A (en) Short time determination of coagulant dose and prediction of clear water quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4