JP4915109B2 - Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount - Google Patents

Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount Download PDF

Info

Publication number
JP4915109B2
JP4915109B2 JP2006058081A JP2006058081A JP4915109B2 JP 4915109 B2 JP4915109 B2 JP 4915109B2 JP 2006058081 A JP2006058081 A JP 2006058081A JP 2006058081 A JP2006058081 A JP 2006058081A JP 4915109 B2 JP4915109 B2 JP 4915109B2
Authority
JP
Japan
Prior art keywords
scattered light
papermaking
signal
measured
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058081A
Other languages
Japanese (ja)
Other versions
JP2007231487A (en
Inventor
茂 佐藤
仁樹 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006058081A priority Critical patent/JP4915109B2/en
Publication of JP2007231487A publication Critical patent/JP2007231487A/en
Application granted granted Critical
Publication of JP4915109B2 publication Critical patent/JP4915109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は製紙用薬剤の効果監視、注入量制御方法及び装置に係る。特に、抄紙工程において、紙の原料スラリーやインレットに添加される製紙用薬剤の効果を迅速かつ確実に確認する方法及び装置と、その監視結果に基づき製紙用薬剤の注入量を的確に制御する方法及び装置に関する。   The present invention relates to a method and an apparatus for monitoring the effect of an agent for papermaking and controlling an injection amount. In particular, in the papermaking process, a method and apparatus for quickly and surely confirming the effect of the papermaking chemical added to the paper raw slurry and inlet, and a method for accurately controlling the amount of papermaking chemical injection based on the monitoring result And an apparatus.

紙の原料には、LBKP、NBKP、TMPなどの他、近年は古紙の利用率の向上、ブロークパルプの配合率向上、系のクローズド化が進み、古紙、DIP、コートブロークなども多用されてきている。これらの原料にはアニオン性不純物、いわゆるアニオントラッシュが多く、アニオントラッシュによるピッチ、欠陥の発生だけでなく、断紙、生産スピードダウンといった生産性の低下を招いている。   In addition to LBKP, NBKP, TMP, etc., as a raw material for paper, in recent years, the utilization rate of waste paper has been improved, the blending ratio of broke pulp has been improved, and the system has been closed, and used paper, DIP, coat broke, etc. Yes. These raw materials contain many anionic impurities, so-called anionic trash, and not only pitch and defects are generated by the anionic trash, but also a decrease in productivity such as paper breakage and production speed reduction.

これらの問題に対して、カチオン性スターチ及びコロイドシリカを添加する方法(USP4388150)、合成カチオン性ポリマーを加えた後次のステップでベントナイトを添加する方法(EP235893、特開昭62−191598)、分子量の低いカチオン性ポリマーを添加し、次いでアニオン性ポリマーを添加する方法(特公平5−29719)等に開示されるような様々な薬剤添加により、アニオントラッシュをパルプ繊維に定着させ、系外へ除去することが行われている。   With respect to these problems, a method of adding cationic starch and colloidal silica (USP4388150), a method of adding bentonite in the next step after adding a synthetic cationic polymer (EP235893, JP-A-62-1191598), molecular weight The anionic trash is fixed to the pulp fiber and removed out of the system by adding various chemical agents as disclosed in a method of adding a cationic polymer having a low molecular weight and then adding an anionic polymer (Japanese Patent Publication No. 5-29719). To be done.

ここで、アニオントラッシュのパルプへの定着効果には、アニオントラッシュの粒径が大きな影響を及ぼすことが知られている。即ち、薬剤添加が過剰となり、アニオントラッシュ同士が凝集して粒径が大きくなると、一度パルプ繊維に結合しても容易に解離しやすくなる結果、アニオントラッシュが系以内に留まることとなる。   Here, it is known that the particle size of the anion trash has a great influence on the fixing effect of the anion trash on the pulp. That is, when the addition of the drug becomes excessive and the anion trash aggregates to increase the particle size, the anion trash stays within the system as a result of being easily dissociated even once bonded to the pulp fiber.

こうしたアニオントラッシュの粒径は薬剤添加量により影響を受けるため、アニオントラッシュの粒径をリアルタイムに監視することが望ましい。   Since the particle size of such anion trash is affected by the amount of drug added, it is desirable to monitor the particle size of the anion trash in real time.

また、インレットにおけるパルプスラリー中の微細フロックの粒径は最終製品の品質(地合い)に影響するため、微細フロックの粒径をリアルタイムに監視することが望ましい。   In addition, since the particle size of the fine flocs in the pulp slurry at the inlet affects the quality (texture) of the final product, it is desirable to monitor the particle size of the fine flocs in real time.

しかしながら、従来は、アニオントラッシュやパルプスラリー中の微細フロックの粒径をリアルタイムに監視することは行われておらず、薬剤の添加効果は下記のような間接的手法により断続的に管理していた。
(1) 出来上がった紙の品質及び欠陥の評価や生産スピードの管理
(2) 原料スラリー、インレットの粒子表面電荷(カチオン要求量)の測定
(3) 原料スラリー、インレットを濾過した濾液の透過光による濁度測定
USP4388150 EP235893 特開昭62−191598 特公平5−29719
However, conventionally, the particle size of fine flocs in anion trash and pulp slurry has not been monitored in real time, and the effect of adding chemicals has been managed intermittently by the following indirect method. .
(1) Evaluation of quality and defects of finished paper and management of production speed
(2) Measurement of particle surface charge (cation requirement) of raw slurry and inlet
(3) Turbidity measurement by transmitted light of filtrate obtained by filtering raw material slurry and inlet
USP4388150 EP235893 JP 62-191598 A Japanese Patent Publication No. 5-29719

上記従来の方法では、各々、次のような課題があった。   Each of the above conventional methods has the following problems.

(1) 出来上がった紙の品質及び欠陥の評価や生産スピードの管理:
直接的に薬剤効果の影響を確認できるものの、すでに生産が始まった後又は紙が出来上がった後での管理であり、トラブル解決への対応が著しく遅れるという課題がある。
(1) Evaluation of finished paper quality and defects and management of production speed:
Although the influence of the drug effect can be confirmed directly, it is management after the production has already started or after the paper has been completed, and there is a problem that the response to trouble solving is significantly delayed.

(2) 原料スラリー、インレットの粒子表面電荷(カチオン要求量)の測定:
表面電荷はあくまで間接的な評価であり、必ずしも表面電荷の変化とアニオントラッシュに起因する欠陥とは相関しない場合がある。
(2) Measurement of particle surface charge (cation requirement) of raw slurry and inlet:
The surface charge is merely an indirect evaluation, and the change in the surface charge and the defect caused by anion trash may not always be correlated.

(3) 原料スラリー、インレットを濾過した濾液の濁度測定:
アニオントラッシュ成分による濁度を直接測るものであり、信頼性が高いが、濾過工程が必須であるため、濾過装置の目詰まりトラブルが起き易いこと、メンテナンス頻度が高いこと、洗浄機構などを備えることにより装置が高価になることなど、課題が多い。
(3) Measurement of turbidity of filtrate obtained by filtering raw material slurry and inlet:
It is a direct measure of turbidity due to anionic trash components, and it is highly reliable, but it requires a filtration process, so it is prone to clogging troubles in the filtration device, frequent maintenance, and equipped with a cleaning mechanism. As a result, there are many problems such as an expensive apparatus.

本発明は上記従来の課題を解決し、抄紙工程において紙の原料スラリーやインレット等の抄紙工程水に添加される歩留向上剤、濾水性向上剤、凝結剤、ピッチコントロール剤等の製紙用薬剤の効果を迅速かつ確実に確認することができる製紙用薬剤の効果監視方法及び装置と、このような監視結果に基づいて製紙用薬剤の注入量を的確に制御する製紙用薬剤の注入量制御方法及び装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and a papermaking agent such as a yield improver, a drainage improver, a coagulant, and a pitch control agent added to papermaking process water such as paper raw slurry and inlet in the papermaking process. Effect monitoring method and apparatus for papermaking drug capable of quickly and surely confirming the effect of the papermaking method, and an injection amount control method for papermaking drug that accurately controls the injection amount of the papermaking drug based on such monitoring results And an apparatus.

本発明の製紙用薬剤の効果監視方法は、抄紙工程水に添加される製紙用薬剤の効果を監視する方法において、製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、該散乱光強度データに基づき前記被測定流体中の粒子の粒径分布を求める第三工程とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得ることを特徴とする。 The method for monitoring the effect of the papermaking chemical of the present invention is a method for monitoring the effect of the papermaking chemical added to the papermaking process water. A first step of irradiating the fluid under measurement with laser light amplitude-modulated (AM) at a predetermined frequency (hereinafter referred to as “modulation frequency”), and scattered light scattered by particles in the fluid under measurement; It is seen containing a second step of obtaining scattered light intensity data received by the photoelectric conversion circuit, and a third step of obtaining the particle size distribution of particles of the measured fluid based on the scattered light intensity data, the photoelectric conversion circuit Consists of a photo detector, a band pass filter and an amplifier. The optical signal of the scattered light is converted into an electric signal by the photo detector, and the modulation frequency component is converted from the electric signal to distinguish it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. The scattered light intensity data is obtained by detecting the signal intensity of the value .

本発明の製紙用薬剤の効果監視装置は、抄紙工程水に添加される製紙用薬剤の効果を監視する装置において、製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射するレーザ光照射手段と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光する散乱光受光手段と、該散乱光受光手段が受光した散乱光の強度データを電気信号に変換する光電変換手段と、該電気信号に基づき前記被測定流体中の粒子の粒径分布を提示する粒径分布提示手段とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得ることを特徴とする。 The apparatus for monitoring the effect of the papermaking chemical of the present invention is an apparatus for monitoring the effect of the papermaking chemical added to the papermaking process water.The papermaking process water to which the papermaking chemical is added or its diluted water is used as a fluid to be measured. Laser light irradiation means for irradiating the fluid to be measured with laser light amplitude-modulated (AM) at a predetermined frequency (hereinafter referred to as “modulation frequency”), and scattered light scattered by particles in the fluid to be measured Scattered light receiving means for receiving light by a photoelectric conversion circuit, photoelectric conversion means for converting intensity data of scattered light received by the scattered light receiving means into an electric signal, and particles of the fluid to be measured based on the electric signal look including the particle size distribution presenting means for presenting the particle size distribution, the photoelectric conversion circuit, the photodetector consists of a bandpass filter and an amplifier, converted into an electric signal the optical signal of the scattered light by the photodetector In order to distinguish it from natural light by a band pass filter, the modulation frequency component signal is extracted from the electric signal, amplified by an amplifier, AM detected by the detection circuit, and the detected signal output to the minimum value detection circuit The lowest value detecting circuit detects the lowest signal intensity from the input signal after the AM detection and obtains the scattered light intensity data .

本発明の製紙用薬剤の注入量制御方法は、抄紙工程水への製紙用薬剤の注入量を制御する方法において、製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、該散乱光強度データに基づき前記被測定流体中の粒子の粒径分布を求める第三工程と、該粒径分布に基づき前記製紙用薬剤の注入量を制御する第四工程とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得ることを特徴とする。 The method for controlling the injection amount of the papermaking chemical of the present invention is a method for controlling the injection amount of the papermaking chemical into the papermaking process water, the papermaking process water added with the papermaking chemical or its diluted water as the fluid to be measured, A first step of irradiating the fluid under measurement with laser light amplitude-modulated (AM) at a predetermined frequency (hereinafter referred to as “modulation frequency”), and scattered light scattered by particles in the fluid under measurement; A second step of obtaining scattered light intensity data by receiving light with a photoelectric conversion circuit ; a third step of obtaining a particle size distribution of particles in the fluid under measurement based on the scattered light intensity data; and look including a fourth step of controlling the injection amount of the papermaking agents, photoelectric conversion circuit, the photodetector consists of a bandpass filter and an amplifier, and converted into an electric signal the optical signal of the scattered light by the photodetector, Band pass In order to distinguish it from natural light by a filter, the signal of the modulation frequency component is extracted from the electric signal, amplified by an amplifier, AM detected by a detection circuit, and the detected signal is output to a minimum value detection circuit. The value detection circuit is characterized in that the scattered light intensity data is obtained by detecting the lowest signal intensity from the input signal after the AM detection .

本発明の製紙用薬剤の注入量制御装置は、抄紙工程水に添加される製紙用薬剤の効果を監視する装置において、製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射するレーザ光照射手段と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光する散乱光受光手段と、該散乱光受光手段が受光した散乱光の強度データを電気信号に変換する光電変換手段と、該電気信号に基づき前記被測定流体中の粒子の粒径分布を提示する粒径分布提示手段と、該粒径分布に基づき前記製紙用薬剤の注入量を制御する薬剤注入制御手段とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得ることを特徴とする。 The apparatus for controlling the injection amount of the papermaking chemical of the present invention is a device for monitoring the effect of the papermaking chemical added to the papermaking process water. The papermaking process water added with the papermaking chemical or its diluted water is used as a fluid to be measured. Laser light irradiation means for irradiating the fluid to be measured with laser light amplitude-modulated (AM) to a predetermined frequency (hereinafter referred to as “modulation frequency”), and scattering scattered by particles in the fluid to be measured Scattered light receiving means for receiving light by a photoelectric conversion circuit, photoelectric conversion means for converting intensity data of scattered light received by the scattered light receiving means into an electric signal, and particles in the fluid to be measured based on the electric signal and the particle size distribution presenting means for presenting the particle size distribution of, seen including a drug infusion control means for controlling the injection amount of the papermaking agent based on the particle size distribution, the photoelectric conversion circuit, photodetector, bandpass Filters and The optical signal of the scattered light is converted into an electric signal by a photo detector, and the signal of the modulation frequency component is extracted from the electric signal to be distinguished from natural light by a band pass filter, amplified by an amplifier, and then detected. The AM detection is performed by the circuit, and the signal after the detection is output to the minimum value detection circuit. The minimum value detection circuit detects the signal intensity of the minimum value from the input signal after the AM detection, and the scattered light intensity It is characterized by obtaining data .

本発明によれば、抄紙工程において紙の原料スラリーやインレット等の抄紙工程水に添加される歩留向上剤、濾水性向上剤、凝結剤、ピッチコントロール剤等の製紙用薬剤の効果を迅速かつ確実に確認することができ、この監視結果に基づいて製紙用薬剤の注入量を的確に制御することができる。   According to the present invention, the effects of papermaking agents such as a yield improver, a drainage improver, a coagulant, and a pitch control agent added to papermaking process water such as a paper raw material slurry and inlet in the papermaking process can be quickly and It is possible to confirm with certainty, and it is possible to accurately control the injection amount of the papermaking drug based on the monitoring result.

即ち、レーザ光の反射は、これが照射されて当たった粒子の大きさに関係し、大きい粒子に当たると大きな反射を起こし、小さな粒子に当たると小さな反射を起こす。従って、被測定流体にレーザ光を照射して、被測定流体中の粒子により散乱された散乱光の強度を計測することにより、抄紙工程水中のアニオントラッシュ等の粒子の大きさの変化(粒径情報)をとらえることができる。この作用機構を利用することにより、紙の原料スラリーやインレットなどに添加された製紙用薬剤の効果をモニタリングすることができ、さらには、このデータを使って、製紙用薬剤の薬注制御を的確に行うことが可能となる。   That is, the reflection of the laser beam is related to the size of the particles that have been irradiated and hit, causing a large reflection when hitting a large particle and a small reflection when hitting a small particle. Therefore, by irradiating the fluid to be measured with laser light and measuring the intensity of the scattered light scattered by the particles in the fluid to be measured, changes in the size of particles such as anion trash in the papermaking process water (particle size Information). By using this mechanism of action, the effects of papermaking chemicals added to paper raw slurry and inlets can be monitored, and this data can be used to accurately control the chemical injection of papermaking chemicals. Can be performed.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[抄紙工程水に添加される製紙用薬剤の効果の監視]
本発明に従って、抄紙工程水に添加される製紙用薬剤の効果を監視するには、製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体にレーザ光を照射し、該被測定流体中の粒子により散乱された散乱光を受光して散乱光強度データを得、この散乱光強度データに基づき被測定流体中の粒子の粒径の変化をとらえることができる。
[Monitoring the effects of papermaking chemicals added to papermaking process water]
According to the present invention, in order to monitor the effect of the papermaking chemical added to the papermaking process water, the papermaking process water to which the papermaking chemical is added or its diluted water is used as the fluid to be measured, and laser light is applied to the fluid to be measured. Irradiated, scattered light scattered by the particles in the fluid to be measured is received to obtain scattered light intensity data, and changes in the particle size of the particles in the fluid to be measured can be captured based on the scattered light intensity data .

1) 製紙用薬剤の効果監視装置
まず、図1〜4に基づいて、本発明に好適な製紙用薬剤の効果監視装置について説明する。
1) Effect monitoring apparatus for papermaking drug First, an effect monitoring apparatus for papermaking drug suitable for the present invention will be described with reference to FIGS.

図1は、本発明の好適例に係る製紙用薬剤の効果監視装置の概略構成を示す構成図であり、図2は、図1に示すレーザ光照射部と散乱光受光部の構成を示す拡大図である。なお、以下においては、抄紙工程水として紙の原料スラリーの計測を行う場合を示すが、後述の如く、本発明における被測定流体は何ら紙の原料スラリーに限定されず、その他インレットにおけるスラリー、プレス搾水等の各種の抄紙工程水及びその希釈水が挙げられる。   FIG. 1 is a block diagram showing a schematic configuration of a papermaking drug effect monitoring apparatus according to a preferred embodiment of the present invention, and FIG. 2 is an enlarged view showing a configuration of a laser beam irradiation unit and a scattered light receiving unit shown in FIG. FIG. In the following, the case where the paper raw slurry is measured as the papermaking process water is shown. However, as will be described later, the fluid to be measured in the present invention is not limited to the paper raw slurry, and the slurry in the inlet, press Various papermaking process waters, such as squeezed water, and its dilution water are mentioned.

この製紙用薬剤の効果監視装置は、レーザ発振器1、第1の光ファイバ2、レーザ光照射部3、散乱光受光部4、第2の光ファイバ5、光電変換回路6、検波回路7、最低値検出回路8から構成される。20は、原料スラリー21が貯えられる計測槽であり、計測槽20内の原料スラリー21中には、遮蔽部材22(以下「センサプローブ」と称す場合がある。)の底部に配設されたレーザ光照射部3と散乱光受光部4が投入されている。この遮蔽部材22は上方からの自然光がレーザ光照射部3と散乱光受光部4間の測定領域23に到るのを遮蔽している。   The effect monitoring apparatus for the paper-making drug includes a laser oscillator 1, a first optical fiber 2, a laser light irradiation unit 3, a scattered light receiving unit 4, a second optical fiber 5, a photoelectric conversion circuit 6, a detection circuit 7, It consists of a value detection circuit 8. Reference numeral 20 denotes a measuring tank in which the raw slurry 21 is stored. In the raw slurry 21 in the measuring tank 20, a laser disposed at the bottom of a shielding member 22 (hereinafter sometimes referred to as “sensor probe”). A light irradiation unit 3 and a scattered light receiving unit 4 are provided. The shielding member 22 shields natural light from above from reaching the measurement region 23 between the laser light irradiation unit 3 and the scattered light receiving unit 4.

即ち、遮蔽部材22は図3に示す通り、底面が下方に突出し、突出した両側面に溝部24が形成された五角柱であり、この溝部24に、第1の光ファイバ2と第2の光ファイバ5とが固定され、第1の光ファイバ2の一端であるレーザ光照射部3と第2の光ファイバ5の一端である散乱光受光部4が、図2中、左右対称(線対称)に配設されている。さらに第1の光ファイバ2のレーザ光照射部3と第2の光ファイバ5の散乱光受光部4の中心線は互いに90度で交差していることが好ましい。   That is, as shown in FIG. 3, the shielding member 22 is a pentagonal prism having a bottom surface projecting downward and groove portions 24 formed on both projecting side surfaces. The first optical fiber 2 and the second light are formed in the groove portions 24. The fiber 5 is fixed, and the laser beam irradiating unit 3 that is one end of the first optical fiber 2 and the scattered light receiving unit 4 that is one end of the second optical fiber 5 are symmetric (line symmetric) in FIG. It is arranged. Furthermore, it is preferable that the center lines of the laser light irradiation unit 3 of the first optical fiber 2 and the scattered light receiving unit 4 of the second optical fiber 5 intersect each other at 90 degrees.

また、一般にレーザ発振器1から発振されるレーザ光の強度は、自然光と区別するために変調することが好ましく、光電変換回路6で受光した散乱光強度を元の電気信号に戻すためには、70〜150kHz程度の変調が好ましい。そこで、本実施形態の構成において、レーザ発振器1はファンクションゼネレータ11とレーザダイオード12とからなり、ファンクションゼネレータ11から発生する所定周波数、例えば95kHzの電気信号で振幅変調(AM)したレーザ光をレーザダイオード12から第1の光ファイバ2の一端に出射している。このレーザ光は第1の光ファイバ2を介してレーザ光照射部3となっている光ファイバ2の他の一端から原料スラリー中に出射している。なお、レーザ発振器は、ファンクションゼネレータとレーザダイオードに限定されるものではなく、例えば発光ダイオード等を用いることも可能である。   In general, the intensity of the laser light oscillated from the laser oscillator 1 is preferably modulated so as to be distinguished from natural light. In order to return the scattered light intensity received by the photoelectric conversion circuit 6 to the original electric signal, 70 is used. A modulation of about ~ 150 kHz is preferred. Therefore, in the configuration of the present embodiment, the laser oscillator 1 includes a function generator 11 and a laser diode 12, and laser diode amplitude-modulated (AM) with a predetermined frequency, for example, 95 kHz electric signal generated from the function generator 11 is laser diode. 12 is emitted to one end of the first optical fiber 2. This laser beam is emitted from the other end of the optical fiber 2 serving as the laser beam irradiation unit 3 into the raw material slurry via the first optical fiber 2. The laser oscillator is not limited to the function generator and the laser diode, and for example, a light emitting diode or the like can be used.

原料スラリー中には、アニオントラッシュ成分の粒子が存在しており、レーザ光照射部3からアニオントラッシュ成分の粒子に照射されたレーザ光は散乱して散乱光となり、散乱光受光部4となっている第2の光ファイバ5の一端から光ファイバ5に入射している。本実施形態において、測定領域23は、レーザ光照射部3から出射されるレーザ光が照射する領域と、散乱光受光部4が散乱光を受光できる領域との重なり合った領域となっており、散乱光受光部4は測定領域23から90度(第2の光ファイバ5の中心線)方向に散乱した散乱光を受光している。   The anion trash component particles are present in the raw slurry, and the laser light applied to the anion trash component particles from the laser light irradiation unit 3 is scattered to be scattered light, thereby forming the scattered light receiving unit 4. The second optical fiber 5 is incident on the optical fiber 5 from one end thereof. In the present embodiment, the measurement region 23 is a region where the region irradiated with the laser light emitted from the laser light irradiation unit 3 and the region where the scattered light receiving unit 4 can receive the scattered light are overlapped, The light receiving unit 4 receives scattered light scattered by 90 degrees from the measurement region 23 (center line of the second optical fiber 5).

なお、遮蔽部材22におけるレーザ光照射部の構成は、図2に示すものに何ら限定されず、図4に示す如く、遮蔽部材22の測定領域23近傍にレーザーダイオード12を設けて電流ケーブル12Aを引き、遮蔽部材22の測定領域近傍で直接レーザ光を発光させるものであっても良く、この場合には、レーザ光照射部まで光ファイバを使用しないことにより、光ファイバの破損等を防止することができる。図4において、レーザ照射部以外の構成は図2に示すものと同様であり、同一機能を奏する部材には同一符号を付してある。   Note that the configuration of the laser beam irradiation section in the shielding member 22 is not limited to that shown in FIG. 2, and as shown in FIG. 4, a laser diode 12 is provided in the vicinity of the measurement region 23 of the shielding member 22 and the current cable 12A is connected. The laser beam may be emitted directly in the vicinity of the measurement region of the shielding member 22, and in this case, the optical fiber is not used up to the laser beam irradiation part, thereby preventing the optical fiber from being damaged. Can do. 4, the configuration other than the laser irradiation unit is the same as that shown in FIG. 2, and members having the same functions are denoted by the same reference numerals.

光電変換回路6は、フォトデテクター61、バンドパスフィルタ62及び増幅器63とからなり、第2の光ファイバ5の他の一端に接続されたフォトデテクター61によって散乱光の光信号を電気信号に変換し、バンドパスフィルタ62で自然光と区別するために電気信号から変調周波数成分の信号を取り出し、増幅器63において増幅して検波回路7に出力する。なお、光電変換回路6は、光信号を電気信号に変換するものであれば上記構成のものに限らず、例えばフォトデテクターの代わりにフォトダイオードを用いても良いし、バンドパスフィルタの代わりに低域フィルタを用いても良い。   The photoelectric conversion circuit 6 includes a photo detector 61, a band pass filter 62, and an amplifier 63. The photo detector 61 connected to the other end of the second optical fiber 5 converts the optical signal of the scattered light into an electric signal. Then, in order to distinguish it from natural light by the band pass filter 62, a signal of the modulation frequency component is taken out from the electric signal, amplified by the amplifier 63 and outputted to the detection circuit 7. The photoelectric conversion circuit 6 is not limited to the one described above as long as it converts an optical signal into an electric signal. For example, a photodiode may be used instead of a photodetector, or a low-pass filter may be used instead of a bandpass filter. A pass filter may be used.

変調周波数成分の信号は、散乱光強度の変化を測定するために、検波回路7にてAM検波を行ってその検波後の信号を最低値検出回路8に出力する。なお、検波回路7によって出力された信号は、低域フィルタを通過する信号と同等の信号処理が施されることとなる。従って、バンドパスフィルタ62のカットオフ周波数を適当に選択することによって、検波回路7はこのカットオフ周波数の変動を取り除いた直流分の出力波形の信号として検出し、最低値検出回路8に出力することができる。このように本実施形態では、フォトデテクター61で検出された光信号のうち、バンドパスフィルタ62で変調周波数成分を取り出し増幅器63で増幅した後、AM検波を行うことで、アニオントラッシュ成分の微小粒子の散乱に伴う光強度の変化を信号強度の変化として測定できる。ただし、AM検波は必ずしも必要とされず、変調周波数成分の信号を直接最低値検出回路8に出力しても良い。   The modulation frequency component signal is subjected to AM detection by the detection circuit 7 in order to measure the change in scattered light intensity, and the detected signal is output to the minimum value detection circuit 8. The signal output by the detection circuit 7 is subjected to signal processing equivalent to the signal passing through the low-pass filter. Accordingly, by appropriately selecting the cut-off frequency of the band-pass filter 62, the detection circuit 7 detects the signal as a DC output waveform signal from which the fluctuation of the cut-off frequency has been removed, and outputs it to the minimum value detection circuit 8. be able to. As described above, in the present embodiment, from the optical signal detected by the photodetector 61, the modulation frequency component is extracted by the bandpass filter 62, amplified by the amplifier 63, and then subjected to AM detection, whereby fine particles of anion trash component are obtained. The change in the light intensity accompanying the scattering of can be measured as the change in the signal intensity. However, AM detection is not necessarily required, and a modulation frequency component signal may be directly output to the minimum value detection circuit 8.

最低値検出回路8は、入力する直流分の信号から最低値の信号強度を検出している。この最低値の検出とは、図1に示した増幅器63から出力される信号波形で説明すると、波形のくびれ部分を測定することである。くびれ部分以外の部分は、粗大な紙原料及び微小なアニオントラッシュ成分粒子が測定領域23に存在している時であり、くびれ部分は、紙原料が、測定領域から出ていった時である。従って、最低値検出回路8が信号強度の最低値を検出することにより、アニオントラッシュ成分の微小粒子のみが存在する時の散乱光強度、即ちアニオントラッシュ成分の微小粒子の粒径を測定することが可能となる。そして、この最低値の減少は、測定領域でのアニオントラッシュ成分の微小粒子の粒径が小さくなったことを表し、また最低値の増大は、アニオントラッシュ成分の微小粒子の粒径が大きくなったことを表す。   The lowest value detection circuit 8 detects the lowest signal intensity from the input DC signal. This detection of the minimum value is to measure the constricted portion of the waveform, as explained by the signal waveform output from the amplifier 63 shown in FIG. The portion other than the constricted portion is when coarse paper raw material and fine anion trash component particles are present in the measurement region 23, and the constricted portion is when the paper raw material has left the measurement region. Accordingly, the minimum value detection circuit 8 detects the minimum value of the signal intensity, thereby measuring the scattered light intensity when only the fine particles of the anion trash component exist, that is, the particle size of the fine particles of the anion trash component. It becomes possible. This decrease in the minimum value indicates that the particle size of the fine particles of the anion trash component in the measurement region has decreased, and the increase in the minimum value has increased the particle size of the fine particles of the anion trash component. Represents that.

具体的に、薬剤効果の測定原理は以下のようなものである。即ち、計測槽20内の原料スラリー21の攪拌に伴って測定領域23にコロイド状の微小なアニオントラッシュ成分粒子(以下「微小コロイド粒子」と称す。)が流入出するときに散乱光の変動が生じることとなる。この変動の周期は、測定領域を粒子と見なして、微小コロイド粒子との間に生じる衝突回数を想定することにより概算することができる。即ち、測定領域23を直径Rの球体、微小コロイド粒子を直径rの球体でそれぞれ近似すると、この場合の衝突断面積Qは、Q=π(R+r)で与えられる。また、微小コロイド粒子密度をN、測定領域に対する粒子の相対速度をvとすると、単位時間当たりに微小コロイドが測定領域に流入する回数νは、ν=NQvとなる。同じく、微小コロイド粒子が測定領域から出て行く時にも同様の変動が生じるので、散乱光強度を微分した値の周期は、この回数の2倍の値となる。そして、散乱光強度は微小コロイド粒子の粒径のn乗に比例すると仮定し、多重散乱を無視すると、微小コロイド粒子1個の流出入に伴う散乱光強度の変動Aは、A=Aとなる。なお、Aは測定系に依存する定数であり、標準試料を用いて校正される。 Specifically, the measurement principle of the drug effect is as follows. That is, when colloidal minute anion trash component particles (hereinafter referred to as “micro colloidal particles”) flow into and out of the measurement region 23 as the raw slurry 21 in the measurement tank 20 is agitated, fluctuations in scattered light change. Will occur. The period of this fluctuation can be estimated by assuming the measurement region as a particle and assuming the number of collisions with the micro colloidal particle. That is, when the measurement region 23 is approximated by a sphere having a diameter R and a micro colloidal particle is approximated by a sphere having a diameter r, the collision cross-sectional area Q 0 in this case is given by Q 0 = π (R + r) 2 . Further, when the density of the microcolloid particles is N and the relative velocity of the particles with respect to the measurement region is v, the number of times the microcolloid flows into the measurement region per unit time is ν = NQ 0 v. Similarly, since the same fluctuation occurs when the fine colloidal particles exit the measurement region, the period of the value obtained by differentiating the scattered light intensity becomes a value twice this number. Assuming that the scattered light intensity is proportional to the nth power of the particle diameter of the fine colloidal particle, and ignoring multiple scattering, the fluctuation A of the scattered light intensity accompanying the inflow / outflow of one fine colloidal particle is A = A 0 r n . A 0 is a constant depending on the measurement system, and is calibrated using a standard sample.

ここで、微小コロイド粒子は、直径rが小さく粒子密度Nが大きいので、散乱光の微小な変動が短い周期で生じることとなる。そこで、検波回路7で変調周波数成分の検波を行うことにより、上述したごとく出力波形は低域フィルタを通過するのと等価な信号処理が施されるので、フィルタ62のカットオフ周波数を適当に選ぶことにより、この変動を取り除いた直流分の信号として検出することができる。   Here, since the micro colloidal particles have a small diameter r and a large particle density N, minute fluctuations in scattered light occur in a short cycle. Therefore, by detecting the modulation frequency component in the detection circuit 7, the output waveform is subjected to signal processing equivalent to passing through the low-pass filter as described above, and therefore the cutoff frequency of the filter 62 is appropriately selected. As a result, it can be detected as a DC signal from which this fluctuation has been removed.

一方、原料スラリー中の紙原料では、測定領域に流出入する際の変動が大きく、かつこの変動の平均周期は長くなる。従って紙原料の密度と測定領域体積との積が1より小さい時には、検波後の出力波形の最低値が微小コロイド粒子の散乱に対応していることになる。これにより本実施形態では、検波回路7の後段に最低値検出回路8を接続させることによって、原料スラリー中の微小コロイド粒子、即ちアニオントラッシュ成分による散乱光と紙原料による散乱光とを区別し、アニオントラッシュ成分による散乱光のみを取り出すことが可能となるので、薬剤によるアニオントラッシュ成分の低減効果が適切に把握できる。   On the other hand, the paper raw material in the raw material slurry has a large fluctuation when flowing into and out of the measurement region, and the average period of the fluctuation becomes long. Therefore, when the product of the density of the paper raw material and the measurement area volume is smaller than 1, the minimum value of the output waveform after detection corresponds to the scattering of the fine colloidal particles. Thereby, in this embodiment, the minimum value detection circuit 8 is connected to the subsequent stage of the detection circuit 7, thereby distinguishing the scattered light from the fine colloidal particles in the raw material slurry, that is, the anion trash component, and the scattered light from the paper raw material, Since it becomes possible to take out only the scattered light by the anion trash component, the effect of reducing the anion trash component by the drug can be properly grasped.

また、本実施形態の監視装置では、特別な測定部を別途設ける必要がなく、遮蔽部材に取り付けたレーザ光照射部と散乱光受光部を計測槽に投入するのみで散乱光を測定することができるので、簡易な装置構成の監視装置を提供することができる。さらに、本実施形態の監視装置は、装置構成が簡易で軽量、小型化が図られるため、投げ込み式の監視装置にすることも可能である。   Further, in the monitoring apparatus of the present embodiment, it is not necessary to provide a special measurement unit separately, and it is possible to measure the scattered light only by putting the laser light irradiation unit and the scattered light receiving unit attached to the shielding member into the measurement tank. Therefore, a monitoring device having a simple device configuration can be provided. Furthermore, the monitoring device of this embodiment can be a throw-in type monitoring device because the device configuration is simple, lightweight, and downsized.

2)散乱光強度
図1の装置において、測定領域23にて生じる散乱光について考察すると、この測定領域23に存在する微小コロイド粒子は薬剤の添加で微少フロック化し、フロック化とともに散乱光強度は大きくなる。
2) Scattered light intensity In consideration of the scattered light generated in the measurement region 23 in the apparatus shown in FIG. 1, the fine colloidal particles present in the measurement region 23 are slightly flocked by the addition of a drug. Become.

従って、前述した構造のセンサプローブ(図2に示す遮蔽部材22)を用いて微小測定領域23における散乱光の強度を計測すると、図5(a)〜(c)にその概念を示すように、凝集が進んで微小コロイド粒子が、微少フロック化し、プローブにて検出される微小測定領域23の散乱光の強度が上記フロックにより大きくなる。これ故、微少フロック化に至るまでの散乱光強度の変化をとらえることで、微少フロックの粒径情報を得ることができる。   Accordingly, when the intensity of the scattered light in the minute measurement region 23 is measured using the sensor probe having the structure described above (the shielding member 22 shown in FIG. 2), as shown in FIGS. 5 (a) to 5 (c), Aggregation progresses and the fine colloidal particles become slightly flocked, and the intensity of scattered light in the minute measurement region 23 detected by the probe increases due to the flock. Therefore, it is possible to obtain the particle size information of the minute floc by capturing the change in the scattered light intensity until the minute floc is obtained.

散乱強度はセンサによる計測の検波信号の標準偏差で扱う。電気信号mVとして表示する。通常は、散乱強度の変化を相対的にとらえて、粒径が大きく、または小さく変化した状況をとらえる。   The scattering intensity is handled as the standard deviation of the detection signal measured by the sensor. Displayed as electrical signal mV. Usually, a change in scattering intensity is detected relatively, and a situation where the particle size is changed large or small is detected.

3)抄紙工程水
本発明において、測定対象となる抄紙工程水としては、紙の原料スラリーやインレットが挙げられる。このうち、紙の原料スラリーは、通常の紙パルププロセスにおける原料スラリーであり、この原料スラリー中の紙原料としては、例えばLBKP、NBKP、TMP、古紙、DIP、コートブロークなどが挙げられ、これらの任意の2種以上の混合物でも良い。
3) Papermaking process water In the present invention, the papermaking process water to be measured includes paper raw material slurry and inlet. Among these, the paper raw material slurry is a raw material slurry in a normal paper pulp process, and examples of the paper raw material in the raw material slurry include LBKP, NBKP, TMP, waste paper, DIP, and coat broke. A mixture of two or more of them may be used.

4)製紙用薬剤
このような抄紙工程水に添加される製紙用薬剤としては特に制限はなく、紙パルププロセスにおいて通常使用されているカチオン系合成ポリマー、或いはカチオン系合成ポリマーとアニオン系合成ポリマーとの組み合わせ、両性合成ポリマーなど、任意のものを用いることができる。これらの製紙用薬剤の添加量は、通常、処理対象の紙パルププロセスの設定条件や原料スラリーの性状に応じて適宜決定される。
4) Papermaking chemicals The papermaking chemicals added to the papermaking process water are not particularly limited, and are cationic synthetic polymers or cationic synthetic polymers and anionic synthetic polymers that are usually used in the paper pulp process. Any combination of these, amphoteric synthetic polymers, etc. can be used. The amount of these papermaking chemicals added is usually appropriately determined according to the setting conditions of the paper pulp process to be treated and the properties of the raw slurry.

5)希釈用水及び計測濃度
測定にあたっては、製紙用薬剤が添加された原料スラリー等の抄紙工程水は原液のままでも良く、必要に応じて水で希釈して測定に供しても良い。即ち、抄紙工程水のパルプ繊維濃度が過度に高い場合には照射光やアニオントラッシュ成分からの散乱光が高濃度に存在するパルプ繊維により妨害を受けやすくなることにより、アニオントラッシュ成分に対応する正確な計測値を確実に得ることができない場合があるので、抄紙工程水は必要に応じて希釈する。希釈倍率については特に制限はなく、任意に決定することができるが、測定に供する抄紙工程水の固形分濃度としては、一般的には500〜60000mg/Lの範囲であることが好ましいことから、このような濃度となるように希釈を行うことが好ましい。
5) Dilution Water and Measurement Concentration In the measurement, the papermaking process water such as raw material slurry to which a papermaking chemical is added may remain as a stock solution, or may be diluted with water as necessary and used for measurement. In other words, when the pulp fiber concentration in the papermaking process water is excessively high, the irradiation light and scattered light from the anion trash component are likely to be disturbed by the pulp fiber present in a high concentration, so that the accuracy corresponding to the anion trash component is increased. Since it may not be possible to reliably obtain a measured value, the papermaking process water is diluted as necessary. The dilution factor is not particularly limited and can be arbitrarily determined. However, the solid content concentration of the papermaking process water used for the measurement is generally preferably in the range of 500 to 60000 mg / L. It is preferable to perform dilution so as to obtain such a concentration.

希釈用水としては特に制限はなく、水道水、工業用水、中水、白水の加圧浮上又は凝集沈殿処理水などを用いることができる。   There is no restriction | limiting in particular as water for dilution, Tap water, industrial water, middle water, the pressurization flotation of the white water, or the coagulation precipitation treated water etc. can be used.

6)流速
測定時の被測定流体は、濁度成分の沈降を防止して均一分散液状とするために、流動状態とし、必要に応じて攪拌を行ってもよい。この被測定流体の流速としては特に制限はなく、測定に供する被測定流体の濃度によっても異なるが、測定値の安定性の面から、0.2〜5.0m/s、特に0.5〜3.0m/sの範囲であることが好ましい。
6) Flow velocity The fluid to be measured at the time of measurement may be in a fluidized state in order to prevent sedimentation of turbidity components and form a uniformly dispersed liquid, and may be stirred as necessary. The flow rate of the fluid to be measured is not particularly limited and varies depending on the concentration of the fluid to be measured. However, from the viewpoint of the stability of the measured value, 0.2 to 5.0 m / s, particularly 0.5 to The range is preferably 3.0 m / s.

7)測定部のサイズ
測定部の大きさは、レーザー光発光面から壁面までの距離(図1において、レーザ光照射部3の先端と計測槽20の内壁面との距離)が1cm以上離れていることが好ましい。この距離が1cmよりも近いと、壁面でのレーザー光の反射が測定値に影響を及ぼす可能性があるため好ましくない。
7) Size of measuring unit The size of the measuring unit is such that the distance from the laser light emitting surface to the wall surface (in FIG. 1, the distance between the tip of the laser light irradiation unit 3 and the inner wall surface of the measuring tank 20) is 1 cm or more. Preferably it is. If this distance is shorter than 1 cm, reflection of laser light on the wall surface may affect the measurement value, which is not preferable.

8)被測定流体の採取箇所
本発明においては、紙パルププロセスの所定の箇所から紙の原料スラリー等の抄紙工程水を抜き出し、図1に示すような装置で測定を行っても良く、図2又は図4に示す遮蔽部材22を、紙パルププロセスの所定の箇所に直接投入して測定を行っても良い。紙パルププロセスから抄紙工程水を抜き出して測定を行う場合、図1に示す装置には更に必要に応じて希釈槽を設けることが好ましい。
8) Location for collecting fluid to be measured In the present invention, papermaking process water such as paper raw slurry may be extracted from a predetermined location in the paper pulp process, and measurement may be performed with an apparatus as shown in FIG. Alternatively, measurement may be performed by directly putting the shielding member 22 shown in FIG. 4 into a predetermined portion of the paper pulp process. In the case where the measurement is performed by extracting papermaking process water from the paper pulp process, it is preferable that the apparatus shown in FIG.

9)測定間隔
測定は連続的に行っても良く、間欠的に行っても良い。間欠的に測定を行う場合の測定頻度は、薬剤効果の推移を確認できれば良く、任意に設定することができ、例えば1〜2時間に1回の測定頻度とすることができる。測定を行っていない場合には、例えば、計測槽に水を流して、後述のレーザー光照射部/受光部の洗浄を行っても良い。
9) Measurement interval Measurement may be performed continuously or intermittently. The measurement frequency in the case of intermittent measurement may be arbitrarily set as long as the transition of the drug effect can be confirmed, and can be set to, for example, a measurement frequency once every 1 to 2 hours. When the measurement is not performed, for example, water may be supplied to the measurement tank to clean the laser light irradiation unit / light receiving unit described later.

10)検量線
通常は、前述の如く、散乱光強度の変化を相対的にとらえて、粒径の変化を検知するが、予め含有される粒子の粒径が既知のサンプル液を用いて同様の測定を行って、粒径又は散乱光強度と測定値との関係を示す検量線を作成しておき、この検量線に測定をあてはめて、被測定流体中の粒子の粒径を求めることもできる。
10) Calibration curve Normally, as described above, the change in the scattered light intensity is relatively detected and the change in the particle size is detected. A calibration curve showing the relationship between the particle size or scattered light intensity and the measured value is prepared by measurement, and the measurement can be applied to the calibration curve to determine the particle size of the particles in the fluid to be measured. .

11)計測部の洗浄
測定に用いるレーザ光照射部と散乱光受光部は、汚れの付着による測定精度の低下を防止するために、定期的に洗浄を行うことが好ましい。この照射部/受光部の洗浄は、空気又は水で行うことができる。
11) Cleaning of measuring unit It is preferable to periodically clean the laser beam irradiation unit and the scattered light receiving unit used for measurement in order to prevent a decrease in measurement accuracy due to adhesion of dirt. This irradiating part / light receiving part can be cleaned with air or water.

圧縮空気での洗浄の場合、被測定対象液である原料スラリー中で空気の散気による気液混合状態で行う。洗浄時間には特に制限はないが、計測の安定性の点からレーザ光照射部/受光部各々3〜5秒間が良い。洗浄間隔は特に制限はないが、計測の安定性のテンカラレーザ光照射部/受光部各々40〜120秒間隔での洗浄が良い。洗浄圧は特に制限はないが、計測の安定性の点から0.01MPa以上の圧力が良く、より好ましくは0.05〜0.5MPaである。   In the case of cleaning with compressed air, it is performed in a gas-liquid mixed state by air diffusion in the raw material slurry that is the liquid to be measured. The cleaning time is not particularly limited, but 3 to 5 seconds is preferable for each of the laser beam irradiation unit / light receiving unit from the viewpoint of measurement stability. Although there is no particular limitation on the cleaning interval, cleaning is preferably performed at intervals of 40 to 120 seconds for each of the tencalar laser beam irradiation unit / light receiving unit for measurement stability. The washing pressure is not particularly limited, but a pressure of 0.01 MPa or more is preferable from the viewpoint of measurement stability, and more preferably 0.05 to 0.5 MPa.

水での洗浄の場合、高圧水でセンサ先端を洗浄するか、計測槽に清水を0.5m/秒以上の流速で通水し、計測槽及びセンサ先端の洗浄を行う。洗浄時間は、高圧水の場合は1回あたり3〜60秒程度、通水の場合は、1回あたり130秒以上がよい。   In the case of washing with water, the sensor tip is washed with high-pressure water, or fresh water is passed through the measurement tank at a flow rate of 0.5 m / second or more to clean the measurement tank and the sensor tip. The washing time is preferably about 3 to 60 seconds per time in the case of high-pressure water, and 130 seconds or more per time in the case of water flow.

12)メンテナンス
前述の本発明の装置は、1ヶ月ないしは1週間に1回の頻度でレーザー光照射部/受光部の清浄度や照射されたレーザー光の輝度確認を行うことが好ましいが、このようなメンテナンス頻度は状況に応じて任意に決定することができる。
12) Maintenance The apparatus of the present invention described above preferably checks the cleanliness of the laser beam irradiation unit / light receiving unit and the brightness of the irradiated laser beam at a frequency of once a month or once a week. The maintenance frequency can be arbitrarily determined according to the situation.

13)製紙用薬剤の薬注制御
本発明の製紙用薬剤の効果監視装置及び方法により得られた薬注効果の情報は、これを出力信号として出力し、この信号に基づいて薬注ポンプや原料スラリーの送液ポンプの制御を行って、最適な薬注条件を維持することができる。
13) Chemical injection control of papermaking chemicals The chemical injection effect information obtained by the paper chemical effect monitoring apparatus and method of the present invention is output as an output signal, and based on this signal, chemical injection pumps and raw materials are output. It is possible to maintain the optimum chemical injection conditions by controlling the slurry feed pump.

即ち、例えば、前述の信号強度の最低値から薬注量を増減する方法と併用し、本発明の散乱光強度信号からの情報で薬注量を増減してもよく、又は本発明に係る散乱光強度信号からの情報のみで薬注量を増減して、制御してもよい。   That is, for example, it may be used in combination with the method for increasing or decreasing the dosage from the lowest signal intensity described above, and the dosage may be increased or decreased by the information from the scattered light intensity signal of the present invention, or the scattering according to the present invention. You may control by increasing / decreasing a chemical injection amount only by the information from a light intensity signal.

具体的には、次のような薬注制御を行うことができる。   Specifically, the following chemical injection control can be performed.

まず、最適薬注率における散乱光強度(mV)を数回測定して平均をとり、その値を散乱光強度目標値とする。実際の計測値が目標値を下回った場合には、目標値との差(mV)に応じて薬注ポンプ出力を上げる。実際の計測値が目標値を上回った場合は目標値との差(mV)に応じて、薬注ポンプ出力を下げる。この場合の計測頻度や、増減幅は任意に決めることができる。   First, the scattered light intensity (mV) at the optimum chemical injection rate is measured several times and an average is taken, and the value is set as the scattered light intensity target value. When the actual measured value falls below the target value, the medicine pump output is increased according to the difference (mV) from the target value. When the actual measured value exceeds the target value, the medicinal pump output is reduced according to the difference (mV) from the target value. In this case, the measurement frequency and the range of increase / decrease can be arbitrarily determined.

より具体的な薬注制御方法の一例を以下に説明する。   An example of a more specific medicine injection control method will be described below.

通常のマシン操作にて紙の製造を開始し、薬注量が最適で安定した生産状態にする。この時、インレットのサンプリング配管を分岐して、センサプローブを装着したセンサ計測槽を設置し、計測後のインレットは白水に戻るように配管を組む。センサ計測槽にてレーザー発光部で所定の流速が確保できていることを確認し、散乱強度計測を開始する。例として、2秒に1回200mS間欠発光レーザーでの計測を述べると、2秒ごとの散乱強度を5分間計測し、その散乱強度の平均値を粒径情報とする。同じ条件を5回行い、5点の粒径情報の平均を制御目標値として設定する。通常、この値は80〜120mV程度になる。制御目標値での歩留り剤注入のインバータポンプ出力%を現状値とする。ここで、実測値mV−制御目標値mV=偏差mVとし、例えば0≦偏差<10であれば、歩留り剤注入のインバータポンプの出力を現状値のまま、10≦偏差<25であればインバータポンプの出力を現状値−10%、25≦偏差<50であればインバータポンプの出力を現状値−20%、50≦偏差<80であればインバータポンプの出力を現状値−30%、80≦偏差であればインバータポンプの出力を現状値−50%、また−10≦偏差<0であればインバータポンプの出力を現状値+10%、−25≦偏差<−10であればインバータポンプの出力を現状値+15%、−50≦偏差<−25であればインバータポンプの出力を現状値+20%、−80≦偏差<−50であればインバータポンプの出力を現状値+25%、偏差≦−80であればインバータポンプの出力を現状値+30%、とするような一般的なプログラムをあらかじめセンサに組み込んでおき、センサから制御信号をインバータポンプに出力することにより、粒径情報に応じた薬注制御が可能となる。この時の計測頻度、偏差に対するインバータポンプへの出力%は、実際の製造おける条件変動に応じて任意に決めることができる。   Start paper production with normal machine operation, and achieve a stable production state with optimal dosage. At this time, the inlet sampling pipe is branched, a sensor measurement tank equipped with a sensor probe is installed, and the pipe is assembled so that the inlet after measurement returns to white water. After confirming that a predetermined flow velocity is secured in the laser emission section in the sensor measurement tank, the scattering intensity measurement is started. As an example, when measuring with a 200 mS intermittent emission laser once every 2 seconds, the scattering intensity every 2 seconds is measured for 5 minutes, and the average value of the scattering intensity is used as particle size information. The same condition is performed five times, and the average of the five particle size information is set as the control target value. Usually, this value is about 80 to 120 mV. The inverter pump output% of yield agent injection at the control target value is the current value. Here, when actual measurement value mV−control target value mV = deviation mV, for example, 0 ≦ deviation <10, the output of the inverter pump for injection of the yield agent remains the current value, and if 10 ≦ deviation <25, the inverter pump If the current output is -10%, 25≤deviation <50, the output of the inverter pump is -20%, and if 50≤dev <80, the output of the inverter pump is -30%, 80≤deviation. If it is, the output of the inverter pump is the current value −50%, and if −10 ≦ deviation <0, the output of the inverter pump is the current value + 10%, and if −25 ≦ deviation <−10, the output of the inverter pump is the current value. If the value + 15%, −50 ≦ deviation <−25, the output of the inverter pump is the current value + 20%, and if −80 ≦ deviation <−50, the output of the inverter pump is the current value + 25%, deviation ≦ −80. If so, a general program that sets the output of the inverter pump to the current value + 30% is pre-installed in the sensor, and a control signal is output from the sensor to the inverter pump, thereby controlling the chemical injection according to the particle size information. Is possible. The output frequency to the inverter pump with respect to the measurement frequency and the deviation at this time can be arbitrarily determined according to the condition fluctuation in actual manufacturing.

以下に比較例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.

以下の比較例及び実施例においては、添加薬剤、抄紙工程水として以下のものを用いた。
1)薬剤:カチオン系合成ポリマー
・構造,組成:ジメチルアミノエチルアクリレート塩化メチル四級化物/アクリル
アミド=25/75(モル%)
・固有粘度:12(dl/g)(溶媒=1N NaCl(30℃))
・使用濃度:0.2wt%
・添加率:0〜5.6mg/l(対スラリー)
2)抄紙工程水:インレット
・濃度:7200mg/l
・外観:繊維分含有の白色スラリー
In the following comparative examples and examples, the following were used as additive chemicals and papermaking process water.
1) Drug: Cationic synthetic polymer Structure / Composition: Dimethylaminoethyl acrylate methyl chloride quaternized / acrylic
Amide = 25/75 (mol%)
Intrinsic viscosity: 12 (dl / g) (Solvent = 1N NaCl (30 ° C.))
・ Use concentration: 0.2wt%
Addition rate: 0 to 5.6 mg / l (vs. slurry)
2) Papermaking process water: Inlet ・ Concentration: 7200 mg / l
・ Appearance: White slurry containing fiber

(比較例1)
以下の手順で濾液量の測定を行った。
(1) 500mlビーカーにインレットを180ml入れて、薬剤を所定量添加した。
(2) 撹拌機にて500rpmで40秒間攪拌した。
(3) 上記(2)の液を、直ちに60メッシュナイロン濾布を敷いたヌッチェロートにあけ、10秒間の濾水量を計測した。
(4) (1)の薬剤添加量と(3)で測定された濾液量との関係を図6に示した。
(Comparative Example 1)
The filtrate amount was measured by the following procedure.
(1) 180 ml of the inlet was put into a 500 ml beaker, and a predetermined amount of the drug was added.
(2) The mixture was stirred with a stirrer at 500 rpm for 40 seconds.
(3) The above solution (2) was immediately put into a Nutsche funnel covered with a 60 mesh nylon filter cloth, and the amount of filtered water for 10 seconds was measured.
(4) The relationship between the amount of drug added in (1) and the amount of filtrate measured in (3) is shown in FIG.

(実施例1)
図1に示す装置を用い、以下の手順で散乱光強度の測定を行った。
(1) 500mlビーカーにインレットを180ml入れて、薬剤を所定量添加した。
(2) 撹拌機にて500rpmで40秒間攪拌した。
(3) 上記(2)の液にレーザー散乱光のセンサプローブ(図2に示す遮蔽部材22)を浸漬し、250rpmの攪拌下(流速1.3m/s)で、センサによる計測を行った。計測項目は散乱光強度で、レーザー光を2分間隔で200m秒発光させ、120秒間の散乱光強度の平均値を求めた。
(4) (1)の薬剤添加量と(3)で求められた散乱光強度の計測値との関係を図7に示した。
Example 1
Using the apparatus shown in FIG. 1, the scattered light intensity was measured by the following procedure.
(1) 180 ml of the inlet was put into a 500 ml beaker, and a predetermined amount of the drug was added.
(2) The mixture was stirred with a stirrer at 500 rpm for 40 seconds.
(3) A sensor probe (laser member 22 shown in FIG. 2) of laser scattered light was immersed in the liquid (2), and measurement was performed with a sensor under stirring at 250 rpm (flow rate 1.3 m / s). The measurement item was scattered light intensity, and laser light was emitted for 200 milliseconds at intervals of 2 minutes, and the average value of scattered light intensity for 120 seconds was obtained.
(4) FIG. 7 shows the relationship between the amount of drug added in (1) and the measured value of scattered light intensity obtained in (3).

また、同一薬剤添加量における比較例1の濾液量と本実施例の散乱光強度の計測値との関係を図8に示した。   Moreover, the relationship between the filtrate amount of the comparative example 1 in the same chemical | medical agent addition amount and the measured value of the scattered light intensity of a present Example was shown in FIG.

図8より明らかなように、本発明に係る散乱光強度計測値と濾水量とには、明確な相関が認められ、センサによるレーザー光散乱光強度が、薬剤添加によるインレットの微細フロックの大きさを検知していることが確認された。   As is clear from FIG. 8, a clear correlation is observed between the measured value of scattered light intensity and the amount of drainage according to the present invention, and the intensity of laser light scattered by the sensor is the size of the fine floc of the inlet due to the addition of the drug. Was confirmed to be detected.

この結果により、レーザー光散乱方式センサを用いて、本発明に従って散乱光強度の測定を行うことにより、インレットに添加した歩留向上剤などの薬剤の効果を連続的にモニタリングできることが分かる。   From this result, it is understood that the effect of a drug such as a yield improver added to the inlet can be continuously monitored by measuring the scattered light intensity using the laser light scattering method sensor according to the present invention.

実施の形態に係る製紙用薬剤の効果監視装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the effect monitoring apparatus of the papermaking chemical | medical agent which concerns on embodiment. 図1に示したレーザ光照射部と散乱光受光部の構成を示す拡大図である。It is an enlarged view which shows the structure of the laser beam irradiation part and scattered light light-receiving part which were shown in FIG. 図2に示した遮蔽部材22の斜視図である。It is a perspective view of the shielding member 22 shown in FIG. レーザ光照射部と散乱光受光部の他の構成例を示す拡大図である。It is an enlarged view which shows the other structural example of a laser beam irradiation part and a scattered light light-receiving part. 微小コロイド粒子の凝集に伴う、微小測定領域での散乱光強度の変化の様子を示す模式図である。It is a schematic diagram which shows the mode of the change of the scattered light intensity in a micro measurement area | region accompanying aggregation of a micro colloid particle. 比較例1における薬剤添加量と濾液量との関係を示すグラフである。5 is a graph showing the relationship between the amount of drug added and the amount of filtrate in Comparative Example 1. 実施例1における薬剤添加量と散乱光強度の計測値との関係を示すグラフである。4 is a graph showing a relationship between a drug addition amount and a measured value of scattered light intensity in Example 1. 同一薬剤添加量における比較例1の濾液量と実施例1の散乱光強度の計測値との関係を示すグラフである。It is a graph which shows the relationship between the filtrate amount of the comparative example 1 in the same chemical | medical agent addition amount, and the measured value of the scattered light intensity of Example 1. FIG.

符号の説明Explanation of symbols

1 レーザ発振器
2 第1の光ファイバ
3 レーザ照射部
4 散乱光受光部
5 第2の光ファイバ
6 光電変換回路
7 検波回路
8 最低値検出回路
11 ファンクションゼネレータ
12 レーザダイオード
20 計測槽
22 遮蔽部材
23 測定領域
24 溝部
61 フォトデテクター
62 バンドパスフィルタ
63 増幅器
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 1st optical fiber 3 Laser irradiation part 4 Scattered light light-receiving part 5 2nd optical fiber 6 Photoelectric conversion circuit 7 Detection circuit 8 Minimum value detection circuit 11 Function generator 12 Laser diode 20 Measurement tank 22 Shielding member 23 Measurement Region 24 Groove 61 Photodetector 62 Bandpass filter 63 Amplifier

Claims (4)

抄紙工程水に添加される製紙用薬剤の効果を監視する方法において、
製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、
該散乱光強度データに基づき前記被測定流体中の粒子の粒径情報を求める第三工程と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る、製紙用薬剤の効果監視方法。
In the method of monitoring the effect of the papermaking chemicals added to the papermaking process water,
Papermaking process water to which a papermaking chemical is added or its diluted water is used as a fluid to be measured, and the fluid to be measured is irradiated with laser light amplitude-modulated (AM) to a predetermined frequency (hereinafter referred to as “modulation frequency”). The first step to
A second step of receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit to obtain scattered light intensity data;
A third step of, based on the scattered light intensity data obtaining the particle size information of particles of the measured fluid seen including,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. A method for monitoring the effect of a papermaking drug, wherein the scattered light intensity data is obtained by detecting the signal intensity of the value .
抄紙工程水に添加される製紙用薬剤の効果を監視する装置において、
製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射するレーザ光照射手段と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光する散乱光受光手段と、
該散乱光受光手段が受光した散乱光の強度データを電気信号に変換する光電変換手段と、
該電気信号に基づき前記被測定流体中の粒子の粒径情報を提示する粒径情報提示手段と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る、製紙用薬剤の効果監視装置。
In a device for monitoring the effect of papermaking chemicals added to papermaking process water,
Papermaking process water to which a papermaking chemical is added or its diluted water is used as a fluid to be measured, and the fluid to be measured is irradiated with laser light amplitude-modulated (AM) to a predetermined frequency (hereinafter referred to as “modulation frequency”). Laser light irradiating means,
A scattered light receiving means for receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit ;
Photoelectric conversion means for converting intensity data of scattered light received by the scattered light receiving means into an electrical signal;
And particle size information presenting means for presenting particle size data of particles of the measured fluid based on the electrical signal seen including,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. An apparatus for monitoring the effect of a papermaking drug, wherein the scattered light intensity data is obtained by detecting a signal intensity of a value .
抄紙工程水への製紙用薬剤の注入量を制御する方法において、
製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、
該散乱光強度データに基づき前記製紙用薬剤の注入量を制御する第三工程と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る、製紙用薬剤の注入量制御方法。
In the method of controlling the amount of papermaking chemicals injected into the papermaking process water,
Papermaking process water to which a papermaking chemical is added or its diluted water is used as a fluid to be measured, and the fluid to be measured is irradiated with laser light amplitude-modulated (AM) to a predetermined frequency (hereinafter referred to as “modulation frequency”). The first step to
A second step of receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit to obtain scattered light intensity data;
And a third step of controlling the injection amount of the papermaking agent based on the scattered light intensity data observed including,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. A method for controlling an injection amount of a papermaking drug, wherein the scattered light intensity data is obtained by detecting a signal intensity of a value .
抄紙工程水への製紙用薬剤の注入量を制御する装置において、
製紙用薬剤が添加された抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射するレーザ光照射手段と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光する散乱光受光手段と、
該散乱光受光手段が受光した散乱光の強度データを電気信号に変換する光電変換手段と、
該電気信号に基づき前記製紙用薬剤の注入量を制御する薬剤注入制御手段と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る、製紙用薬剤の注入量制御装置。
In an apparatus for controlling the amount of papermaking chemicals injected into the papermaking process water,
Papermaking process water to which a papermaking chemical is added or its diluted water is used as a fluid to be measured, and the fluid to be measured is irradiated with laser light amplitude-modulated (AM) to a predetermined frequency (hereinafter referred to as “modulation frequency”). Laser light irradiating means,
A scattered light receiving means for receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit ;
Photoelectric conversion means for converting intensity data of scattered light received by the scattered light receiving means into an electrical signal;
And a drug infusion control means for controlling the injection amount of the papermaking agent based on the electrical signal seen including,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. An apparatus for controlling an injection amount of a papermaking drug, wherein the scattered light intensity data is obtained by detecting a signal intensity of a value .
JP2006058081A 2006-03-03 2006-03-03 Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount Expired - Fee Related JP4915109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058081A JP4915109B2 (en) 2006-03-03 2006-03-03 Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058081A JP4915109B2 (en) 2006-03-03 2006-03-03 Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount

Publications (2)

Publication Number Publication Date
JP2007231487A JP2007231487A (en) 2007-09-13
JP4915109B2 true JP4915109B2 (en) 2012-04-11

Family

ID=38552362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058081A Expired - Fee Related JP4915109B2 (en) 2006-03-03 2006-03-03 Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount

Country Status (1)

Country Link
JP (1) JP4915109B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389137B2 (en) * 2015-03-31 2018-09-12 株式会社石垣 Fibrous material measuring apparatus and measuring method thereof
JP6281534B2 (en) * 2015-07-22 2018-02-21 栗田工業株式会社 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
WO2020102038A1 (en) * 2018-11-12 2020-05-22 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183010A (en) * 1984-03-02 1985-09-18 Toray Ind Inc Preparation of semi-permeable composite membrane having high permeability
JP2823136B2 (en) * 1989-07-10 1998-11-11 フラッダ,ゲルト,ハインリッヒ Measuring head
JP3635816B2 (en) * 1996-10-22 2005-04-06 栗田工業株式会社 White water recovery device
JP2002253905A (en) * 2001-03-05 2002-09-10 Kurita Water Ind Ltd Coagulation monitoring system
JP4396102B2 (en) * 2003-01-31 2010-01-13 星光Pmc株式会社 Coagulant and paper
JP4400721B2 (en) * 2004-01-09 2010-01-20 栗田工業株式会社 Water treatment system
JP4517662B2 (en) * 2004-02-10 2010-08-04 栗田工業株式会社 Paper and paperboard manufacturing method
JP4654908B2 (en) * 2005-07-28 2011-03-23 栗田工業株式会社 Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug

Also Published As

Publication number Publication date
JP2007231487A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP2007263856A (en) Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP4654908B2 (en) Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug
AU2012240348B2 (en) Method of monitoring macrostickies in a recycling and paper or tissue making process involving recycled pulp
KR102493112B1 (en) Coagulation monitoring device, coagulation monitoring method, and coagulation system
JP4779762B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
AU2010226846B2 (en) Use of hydrophobic dyes to monitor hydrophobic contaminants in a papermaking process
JP4915109B2 (en) Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount
CN102985149A (en) Method and system for monitoring properties of an aqueous stream
JP4915120B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
US20080151227A1 (en) Method for Determining a Sizing Agent Concentration, Particle Size and a Sizing Agent Particle Size Distribution in a Peper Pulp
WO2018110043A1 (en) Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system
Alfano et al. Characterization of the flocculation dynamics in a paperma king system by non-imaging reflectance scanning laser rnicroscopy (SLM)
JP6606961B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system
US20100236732A1 (en) Use of fluorescence to monitor hydrophobic contaminants in a papermaking process
JP4605327B2 (en) Aggregation monitoring device
JP2003161688A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP6881519B2 (en) Water treatment equipment and water treatment method
US20220326685A1 (en) Estimating risk level in an aqueous process
JP2004170298A (en) Probe and detector for detecting particle condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees