JP4915120B2 - Effect monitoring method and injection amount control method for papermaking chemicals - Google Patents

Effect monitoring method and injection amount control method for papermaking chemicals Download PDF

Info

Publication number
JP4915120B2
JP4915120B2 JP2006091459A JP2006091459A JP4915120B2 JP 4915120 B2 JP4915120 B2 JP 4915120B2 JP 2006091459 A JP2006091459 A JP 2006091459A JP 2006091459 A JP2006091459 A JP 2006091459A JP 4915120 B2 JP4915120 B2 JP 4915120B2
Authority
JP
Japan
Prior art keywords
scattered light
drug
process water
papermaking
papermaking process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006091459A
Other languages
Japanese (ja)
Other versions
JP2007262628A (en
Inventor
茂 佐藤
仁樹 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006091459A priority Critical patent/JP4915120B2/en
Publication of JP2007262628A publication Critical patent/JP2007262628A/en
Application granted granted Critical
Publication of JP4915120B2 publication Critical patent/JP4915120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は製紙用薬剤の効果監視、注入量制御方法に係る。特に、抄紙工程において、紙の原料スラリーやインレットに添加される製紙用薬剤の効果を迅速かつ確実に確認する方法と、その監視結果に基づき製紙用薬剤の注入量を的確に制御する方法に関する。   The present invention relates to a method for monitoring the effect of a papermaking drug and an injection amount control method. In particular, the present invention relates to a method for quickly and surely confirming the effect of a papermaking chemical added to a paper raw material slurry or an inlet in a papermaking process, and a method for accurately controlling the injection amount of the papermaking chemical based on the monitoring result.

紙の原料には、LBKP、NBKP、TMPなどの他、近年は古紙の利用率の向上、ブロークパルプの配合率向上、系のクローズド化が進み、古紙、DIP、コートブロークなども多用されてきている。これらの原料にはアニオン性不純物、いわゆるアニオントラッシュが多く、アニオントラッシュによるピッチ、欠陥の発生だけでなく、断紙、生産スピードダウンといった生産性の低下を招いている。   In addition to LBKP, NBKP, TMP, etc., as a raw material for paper, in recent years, the utilization rate of waste paper has been improved, the blending ratio of broke pulp has been improved, and the system has been closed, and used paper, DIP, coat broke, etc. Yes. These raw materials contain many anionic impurities, so-called anionic trash, and not only pitch and defects are generated by the anionic trash, but also a decrease in productivity such as paper breakage and production speed reduction.

これらの問題に対して、カチオン性スターチ及びコロイドシリカを添加する方法(USP4388150)、合成カチオン性ポリマーを加えた後次のステップでベントナイトを添加する方法(EP235893、特開昭62−191598)、分子量の低いカチオン性ポリマーを添加し、次いでアニオン性ポリマーを添加する方法(特公平5−29719)等に開示されるような様々な薬剤添加により、アニオントラッシュをパルプ繊維に定着させ、系外へ除去することが行われている。   With respect to these problems, a method of adding cationic starch and colloidal silica (USP4388150), a method of adding bentonite in the next step after adding a synthetic cationic polymer (EP235893, JP-A-62-1191598), molecular weight The anionic trash is fixed to the pulp fiber and removed out of the system by adding various chemical agents as disclosed in a method of adding a cationic polymer having a low molecular weight and then adding an anionic polymer (Japanese Patent Publication No. 5-29719). To be done.

また、従来、これらの薬剤の添加効果は下記のような間接的手法により断続的に管理されている。
(1) 出来上がった紙の品質及び欠陥の評価や生産スピードの管理
(2) 原料スラリー、インレット内スラリーの粒子表面電荷(カチオン要求量)の測定
(3) 原料スラリー、インレット内スラリーを濾過した濾液の透過光による濁度測定
Conventionally, the effect of adding these agents is intermittently managed by the following indirect method.
(1) Evaluation of quality and defects of finished paper and management of production speed
(2) Measurement of particle surface charge (cation requirement) of raw slurry and slurry in inlet
(3) Turbidity measurement by transmitted light of filtrate obtained by filtering raw material slurry and slurry in inlet

しかし、上記従来の方法では、各々、次のような課題があった。
(1) 出来上がった紙の品質及び欠陥の評価や生産スピードの管理:
直接的に薬剤効果の影響を確認できるものの、すでに生産が始まった後又は紙が出来上がった後での管理であり、トラブル解決への対応が著しく遅れるという課題がある。
However, the conventional methods have the following problems.
(1) Evaluation of finished paper quality and defects and management of production speed:
Although the influence of the drug effect can be confirmed directly, it is management after the production has already started or after the paper has been completed, and there is a problem that the response to trouble solving is significantly delayed.

(2) 原料スラリー、インレット内スラリーの粒子表面電荷(カチオン要求量)の測定:
表面電荷はあくまで間接的な評価であり、必ずしも表面電荷の変化とアニオントラッシュに起因する欠陥とは相関しない場合がある。
(2) Measurement of particle surface charge (cation requirement) of raw slurry and slurry in inlet:
The surface charge is merely an indirect evaluation, and the change in the surface charge and the defect caused by anion trash may not always be correlated.

(3) 原料スラリー、インレット内スラリーを濾過した濾液の濁度測定:
アニオントラッシュ成分による濁度を直接測るものであり、信頼性が高いが、濾過工程が必須であるため、濾過装置の目詰まりトラブルが起き易いこと、メンテナンス頻度が高いこと、洗浄機構などを備えることにより装置が高価になることなど、課題が多い。
(3) Turbidity measurement of filtrate obtained by filtering raw material slurry and slurry in inlet:
It is a direct measure of turbidity due to anionic trash components, and it is highly reliable, but it requires a filtration process, so it is prone to clogging troubles in the filtration device, frequent maintenance, and equipped with a cleaning mechanism. As a result, there are many problems such as an expensive apparatus.

上記の課題に対し、本願出願人は、特願2005−370143にて、レーザ光散乱方式のセンサにより、抄紙工程の薬剤効果を監視、及び薬注制御する方法を提案した。これにより、高精度に薬剤効果の監視ができ、紙製品の異常や製造時のトラブル発生を防止することができるが、場合によっては、計測対象の抄紙工程水の水質が変化し、センサ計測による絶対値だけでは完全な監視及び制御が難しいケースがあるため、その改善策の必要があった。   In order to solve the above-mentioned problems, the applicant of the present application has proposed in Japanese Patent Application No. 2005-370143 a method for monitoring the chemical effect of the paper making process and controlling the chemical injection by using a laser light scattering sensor. This makes it possible to monitor drug effects with high accuracy and prevent paper product abnormalities and troubles during production. However, depending on the case, the quality of the paper-making process water to be measured changes, Since there are cases where complete monitoring and control are difficult only with absolute values, there is a need for improvement.

なお、抄紙工程水の水質変動の理由は次の通りである。
即ち、紙の原料には、前述の如く、LBKP、NBKP、TMPなどの他、近年は古紙の利用率の向上、ブロークパルプの配合率向上、系のクローズド化が進み、古紙、DIP、コートブロークなどの回収原料も多用されてきている。特に、抄紙工程水の性状変動に大きく影響するのが回収原料の性状で、その品質、性状を一定に保つことは極めて困難である。つまり、単純に固形分濃度だけでなく、パルプ繊維の長さ、その分布、灰分の量と種類、色合いなど、変動因子は多く、基本的にこれらを制御することは困難と言わざるを得ないからである。
USP4388150 EP235893 特開昭62−191598 特公平5−29719 特願2005−370143
The reasons for fluctuations in the water quality of the papermaking process are as follows.
That is, as described above, the raw materials for paper include LBKP, NBKP, TMP, etc. In addition, in recent years, the utilization rate of waste paper, the blending ratio of broke pulp have been improved, and the system has been closed, and waste paper, DIP, coat broke Recovered raw materials such as these are also frequently used. Particularly, it is very difficult to keep the quality and properties of the recovered raw material having a great influence on the property fluctuation of the papermaking process water. In other words, not only the solid content concentration, but also the pulp fiber length, its distribution, the amount and type of ash, the color, etc., there are many variable factors and it must be said that it is basically difficult to control these. Because.
USP4388150 EP235893 JP 62-191598 A Japanese Patent Publication No. 5-29719 Japanese Patent Application No. 2005-370143

本発明は上記従来の課題を解決し、抄紙工程において紙の原料スラリーやインレット内スラリー等の抄紙工程水に添加される歩留向上剤、濾水性向上剤、凝結剤、ピッチコントロール剤等の製紙用薬剤の効果を迅速かつ確実に確認することができる製紙用薬剤の効果監視方法と、このような監視結果に基づいて製紙用薬剤の注入量を的確に制御する製紙用薬剤の注入量制御方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and makes paper such as a yield improver, a drainage improver, a coagulant, and a pitch control agent that are added to papermaking process water such as a paper raw slurry and an inlet slurry in the papermaking process. Method for monitoring the effect of a papermaking drug capable of quickly and reliably confirming the effect of the drug for papermaking, and a method for controlling the injection amount of a papermaking drug that accurately controls the injection amount of the papermaking drug based on such monitoring results The purpose is to provide.

本発明の製紙用薬剤の効果監視方法は、抄紙工程水に添加される製紙用薬剤の効果を監視する方法において、抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、該散乱光強度データに基づき前記被測定流体中の粒子の粒径情報及び/又は濁度情報を求める第三工程とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る製紙用薬剤の効果監視方法であって、前記抄紙工程水として前記薬剤の添加前の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と、前記抄紙工程水として前記薬剤の添加後の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報とを比較することにより、前記薬剤添加前後の比較データを得る第四工程とを有することを特徴とする。 The method for monitoring the effect of the papermaking chemical of the present invention is a method for monitoring the effect of the papermaking chemical added to the papermaking process water, wherein the papermaking process water or its diluted water is used as the fluid to be measured, and the fluid to be measured is predetermined. A first step of irradiating a laser beam amplitude-modulated (AM) at a frequency (hereinafter referred to as a “modulation frequency”), and scattered light scattered by particles in the fluid to be measured is received by a photoelectric conversion circuit. A second step of obtaining scattered light intensity data, and a third step of obtaining particle size information and / or turbidity information of particles in the fluid to be measured based on the scattered light intensity data , the photoelectric conversion circuit comprising: It consists of a photo detector, a band pass filter and an amplifier. The optical signal of the scattered light is converted into an electric signal by the photo detector, and the modulation frequency component of the modulation signal is separated from the natural signal by the band pass filter. The signal is taken out and amplified by the amplifier, then AM detection is performed by the detection circuit, and the signal after detection is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum value from the input signal after AM detection. A method for monitoring the effect of a papermaking chemical to obtain the scattered light intensity data by detecting the signal intensity of the paper, wherein the papermaking process water before the addition of the chemical is used as the papermaking process water, Particle size information obtained through the steps, and / or turbidity information, and using the papermaking process water after the addition of the drug as the papermaking process water, the particle size information obtained through the first to third steps and And / or a fourth step of obtaining comparison data before and after the addition of the drug by comparing with turbidity information.

本発明の製紙用薬剤の注入量制御方法は、抄紙工程水への製紙用薬剤の注入量を制御する方法において、抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、該散乱光強度データに基づき前記被測定流体中の粒子の粒径情報及び/又は濁度情報を求める第三工程とを含み、該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る製紙用薬剤の注入量制御方法であって、前記抄紙工程水として前記薬剤の添加前の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と、前記抄紙工程水として前記薬剤の添加後の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報とを比較することにより、前記薬剤添加前後の比較データを得る第四工程と、前記比較データに基づき前記製紙用薬剤の注入量を制御する第五工程とを有することを特徴とする。 The method for controlling the injection amount of a papermaking chemical according to the present invention is a method for controlling the injection amount of a papermaking chemical into papermaking process water. The papermaking process water or its diluted water is used as a fluid to be measured, and a predetermined fluid is measured. A first step of irradiating a laser beam amplitude-modulated (AM) at a frequency (hereinafter referred to as a “modulation frequency”), and scattered light scattered by particles in the fluid to be measured is received by a photoelectric conversion circuit. a second step of obtaining scattered light intensity data, look including a third step of obtaining a particle size information and / or turbidity particle information of the measured fluid based on the scattered light intensity data, the photoelectric conversion circuit , A photodetector, a bandpass filter, and an amplifier. The optical signal of the scattered light is converted into an electrical signal by the photodetector, and the signal of the modulation frequency component is converted from the electrical signal to be distinguished from natural light by the bandpass filter. After taking out and amplifying in the amplifier, AM detection is performed in the detection circuit, and the signal after the detection is output to the lowest value detection circuit. The lowest value detection circuit receives the signal of the lowest value from the input signal after the AM detection. A method for controlling the injection amount of a papermaking chemical to obtain intensity data by detecting the scattered light intensity data , wherein the papermaking process water before the addition of the chemical is used as the papermaking process water, and the first to third processes The particle size information obtained through the first to third steps and / or the turbidity information obtained through the above, and the paper making step water after the addition of the drug as the paper making step water. Alternatively, the method includes a fourth step of obtaining comparison data before and after the addition of the drug by comparing turbidity information, and a fifth step of controlling an injection amount of the papermaking drug based on the comparison data. To do.

本発明によれば、抄紙工程において紙の原料スラリーやインレット内スラリー等の抄紙工程水に添加される歩留向上剤、濾水性向上剤、凝結剤、ピッチコントロール剤等の製紙用薬剤の効果を迅速かつ確実に確認することができ、この監視結果に基づいて製紙用薬剤の注入量を的確に制御することができる。   According to the present invention, the effects of papermaking chemicals such as a yield improver, a drainage improver, a coagulant, and a pitch control agent that are added to papermaking process water such as a paper raw slurry and an inlet slurry in the papermaking process. It can be confirmed quickly and reliably, and the injection amount of the papermaking chemical can be accurately controlled based on the monitoring result.

即ち、レーザ光の反射は、これが照射されて当たった粒子の大きさに関係し、大きい粒子に当たると大きな反射を起こし、小さな粒子に当たると小さな反射を起こす。従って、被測定流体にレーザ光を照射して、被測定流体中の粒子により散乱された散乱光の強度を計測することにより、抄紙工程水中のアニオントラッシュ等の粒子の大きさの変化(粒径情報)をとらえることができる。また、この散乱光強度データの最低値は、粒子間の間隙を示す濁度情報を与えるため、この原理を利用することにより、紙の原料スラリーやインレット内スラリーなどに添加された製紙用薬剤の効果をモニタリングすることができ、さらには、このデータを使って、製紙用薬剤の薬注制御を的確に行うことが可能となる。   That is, the reflection of the laser beam is related to the size of the particles that have been irradiated and hit, causing a large reflection when hitting a large particle and a small reflection when hitting a small particle. Therefore, by irradiating the fluid to be measured with laser light and measuring the intensity of the scattered light scattered by the particles in the fluid to be measured, changes in the size of particles such as anion trash in the papermaking process water (particle size Information). In addition, since the minimum value of the scattered light intensity data gives turbidity information indicating gaps between particles, by utilizing this principle, the paper manufacturing chemical added to the paper raw material slurry or the slurry in the inlet is used. The effect can be monitored, and furthermore, this data can be used to accurately control the drug injection of the papermaking drug.

しかも、本発明では、薬剤添加後の抄紙工程水について散乱光強度データを計測するだけでなく、薬剤添加前の抄紙工程水についても散乱光強度データを計測し、その差を検知するため、抄紙工程水の水質が変動しても安定した結果を得ることができる。   Moreover, in the present invention, not only the scattered light intensity data is measured for the papermaking process water after the addition of the chemical, but also the scattered light intensity data is measured for the papermaking process water before the chemical addition, and the difference is detected. Stable results can be obtained even if the quality of the process water varies.

即ち、前述の如く、紙の原料スラリー、インレット内スラリー等の抄紙工程水の性状は変動し易いため、薬剤添加後の抄紙工程水のみについて計測したセンサ計測絶対値だけでは、処理の良し悪しが判断できず、管理が困難になる場合がある。本発明によれば、薬剤添加前後の抄紙工程水について散乱光強度データを計測し、これらを相対的に管理することにより、安定した監視及び薬注制御を行うことができる。   That is, as described above, the properties of the papermaking process water such as the paper raw slurry and the slurry in the inlet are likely to fluctuate. It cannot be determined and management may be difficult. According to the present invention, it is possible to perform stable monitoring and chemical injection control by measuring scattered light intensity data for papermaking process water before and after the addition of a drug and relatively managing them.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[抄紙工程水に添加される製紙用薬剤の効果の監視]
本発明に従って、抄紙工程水に添加される製紙用薬剤の効果を監視するには、抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体にレーザ光を照射し、該被測定流体中の粒子により散乱された散乱光を受光して散乱光強度データを得、この散乱光強度データに基づき被測定流体中の粒子の粒径及び/又は濁度の変化をとらえる。
[Monitoring the effects of papermaking chemicals added to papermaking process water]
According to the present invention, in order to monitor the effect of the papermaking chemical added to the papermaking process water, the papermaking process water or its dilution water is used as a fluid to be measured, the fluid to be measured is irradiated with laser light, and the fluid to be measured is measured. Scattered light intensity scattered by the particles therein is received to obtain scattered light intensity data, and changes in the particle size and / or turbidity of the particles in the fluid to be measured are captured based on the scattered light intensity data.

1) 製紙用薬剤の効果監視装置
まず、図1〜4に基づいて、本発明に好適な製紙用薬剤の効果監視装置について説明する。
1) Effect monitoring apparatus for papermaking drug First, an effect monitoring apparatus for papermaking drug suitable for the present invention will be described with reference to FIGS.

図1は、本発明の好適例に係る製紙用薬剤の効果監視装置の概略構成を示す構成図であり、図2は、図1に示すレーザ光照射部と散乱光受光部の構成を示す拡大図である。なお、以下においては、抄紙工程水として紙の原料スラリーの計測を行う場合を示すが、後述の如く、本発明における被測定流体は何ら紙の原料スラリーに限定されず、その他インレットにおけるスラリー、プレス搾水等の各種の抄紙工程水及びその希釈水が挙げられる。   FIG. 1 is a block diagram showing a schematic configuration of a papermaking drug effect monitoring apparatus according to a preferred embodiment of the present invention, and FIG. 2 is an enlarged view showing a configuration of a laser beam irradiation unit and a scattered light receiving unit shown in FIG. FIG. In the following, the case where the paper raw slurry is measured as the papermaking process water is shown. However, as will be described later, the fluid to be measured in the present invention is not limited to the paper raw slurry, and the slurry in the inlet, press Various papermaking process waters, such as squeezed water, and its dilution water are mentioned.

この製紙用薬剤の効果監視装置は、レーザ発振器1、第1の光ファイバ2、レーザ光照射部3、散乱光受光部4、第2の光ファイバ5、光電変換回路6、検波回路7、最低値検出回路8から構成される。20は、原料スラリー21が貯えられる計測槽であり、計測槽20内の原料スラリー21中には、遮蔽部材22(以下「センサプローブ」と称す場合がある。)の底部に配設されたレーザ光照射部3と散乱光受光部4が投入されている。この遮蔽部材22は上方からの自然光がレーザ光照射部3と散乱光受光部4間の測定領域23に到るのを遮蔽している。   The effect monitoring apparatus for the paper-making drug includes a laser oscillator 1, a first optical fiber 2, a laser light irradiation unit 3, a scattered light receiving unit 4, a second optical fiber 5, a photoelectric conversion circuit 6, a detection circuit 7, It consists of a value detection circuit 8. Reference numeral 20 denotes a measuring tank in which the raw slurry 21 is stored. In the raw slurry 21 in the measuring tank 20, a laser disposed at the bottom of a shielding member 22 (hereinafter sometimes referred to as “sensor probe”). A light irradiation unit 3 and a scattered light receiving unit 4 are provided. The shielding member 22 shields natural light from above from reaching the measurement region 23 between the laser light irradiation unit 3 and the scattered light receiving unit 4.

即ち、遮蔽部材22は図3に示す通り、底面が下方に突出し、突出した両側面に溝部24が形成された五角柱であり、この溝部24に、第1の光ファイバ2と第2の光ファイバ5とが固定され、第1の光ファイバ2の一端であるレーザ光照射部3と第2の光ファイバ5の一端である散乱光受光部4が、図2中、左右対称(線対称)に配設されている。さらに第1の光ファイバ2のレーザ光照射部3と第2の光ファイバ5の散乱光受光部4の中心線は互いに90度で交差していることが好ましい。   That is, as shown in FIG. 3, the shielding member 22 is a pentagonal prism having a bottom surface projecting downward and groove portions 24 formed on both projecting side surfaces. The first optical fiber 2 and the second light are formed in the groove portions 24. The fiber 5 is fixed, and the laser beam irradiating unit 3 that is one end of the first optical fiber 2 and the scattered light receiving unit 4 that is one end of the second optical fiber 5 are symmetric (line symmetric) in FIG. It is arranged. Furthermore, it is preferable that the center lines of the laser light irradiation unit 3 of the first optical fiber 2 and the scattered light receiving unit 4 of the second optical fiber 5 intersect each other at 90 degrees.

また、一般にレーザ発振器1から発振されるレーザ光の強度は、自然光と区別するために変調することが好ましく、光電変換回路6で受光した散乱光強度を元の電気信号に戻すためには、70〜150kHz程度の変調が好ましい。そこで、本実施形態の構成において、レーザ発振器1はファンクションゼネレータ11とレーザダイオード12とからなり、ファンクションゼネレータ11から発生する所定周波数、例えば95kHzの電気信号で振幅変調(AM)したレーザ光をレーザダイオード12から第1の光ファイバ2の一端に出射している。このレーザ光は第1の光ファイバ2を介してレーザ光照射部3となっている光ファイバ2の他の一端から原料スラリー中に出射している。なお、レーザ発振器は、ファンクションゼネレータとレーザダイオードに限定されるものではなく、例えば発光ダイオード等を用いることも可能である。   In general, the intensity of the laser light oscillated from the laser oscillator 1 is preferably modulated so as to be distinguished from natural light. In order to return the scattered light intensity received by the photoelectric conversion circuit 6 to the original electric signal, 70 is used. A modulation of about ~ 150 kHz is preferred. Therefore, in the configuration of the present embodiment, the laser oscillator 1 includes a function generator 11 and a laser diode 12, and laser diode amplitude-modulated (AM) with a predetermined frequency, for example, 95 kHz electric signal generated from the function generator 11 is laser diode. 12 is emitted to one end of the first optical fiber 2. This laser beam is emitted from the other end of the optical fiber 2 serving as the laser beam irradiation unit 3 into the raw material slurry via the first optical fiber 2. The laser oscillator is not limited to the function generator and the laser diode, and for example, a light emitting diode or the like can be used.

原料スラリー中には、アニオントラッシュ成分の粒子が存在しており、レーザ光照射部3からアニオントラッシュ成分の粒子に照射されたレーザ光は散乱して散乱光となり、散乱光受光部4となっている第2の光ファイバ5の一端から光ファイバ5に入射している。本実施形態において、測定領域23は、レーザ光照射部3から出射されるレーザ光が照射する領域と、散乱光受光部4が散乱光を受光できる領域との重なり合った領域となっており、散乱光受光部4は測定領域23から90度(第2の光ファイバ5の中心線)方向に散乱した散乱光を受光している。   The anion trash component particles are present in the raw slurry, and the laser light applied to the anion trash component particles from the laser light irradiation unit 3 is scattered to be scattered light, thereby forming the scattered light receiving unit 4. The second optical fiber 5 is incident on the optical fiber 5 from one end thereof. In the present embodiment, the measurement region 23 is a region where the region irradiated with the laser light emitted from the laser light irradiation unit 3 and the region where the scattered light receiving unit 4 can receive the scattered light are overlapped, The light receiving unit 4 receives scattered light scattered by 90 degrees from the measurement region 23 (center line of the second optical fiber 5).

なお、遮蔽部材22におけるレーザ光照射部の構成は、図2に示すものに何ら限定されず、図4に示す如く、遮蔽部材22の測定領域23近傍にレーザーダイオード12を設けて電流ケーブル12Aを引き、遮蔽部材22の測定領域近傍で直接レーザ光を発光させるものであっても良く、この場合には、レーザ光照射部まで光ファイバを使用しないことにより、光ファイバの破損等を防止することができる。図4において、レーザ照射部以外の構成は図2に示すものと同様であり、同一機能を奏する部材には同一符号を付してある。   Note that the configuration of the laser beam irradiation section in the shielding member 22 is not limited to that shown in FIG. 2, and as shown in FIG. 4, a laser diode 12 is provided in the vicinity of the measurement region 23 of the shielding member 22 and the current cable 12A is connected. The laser beam may be emitted directly in the vicinity of the measurement region of the shielding member 22, and in this case, the optical fiber is not used up to the laser beam irradiation part, thereby preventing the optical fiber from being damaged. Can do. 4, the configuration other than the laser irradiation unit is the same as that shown in FIG. 2, and members having the same functions are denoted by the same reference numerals.

光電変換回路6は、フォトデテクター61、バンドパスフィルタ62及び増幅器63とからなり、第2の光ファイバ5の他の一端に接続されたフォトデテクター61によって散乱光の光信号を電気信号に変換し、バンドパスフィルタ62で自然光と区別するために電気信号から変調周波数成分の信号を取り出し、増幅器63において増幅して検波回路7に出力する。なお、光電変換回路6は、光信号を電気信号に変換するものであれば上記構成のものに限らず、例えばフォトデテクターの代わりにフォトダイオードを用いても良いし、バンドパスフィルタの代わりに低域フィルタを用いても良い。   The photoelectric conversion circuit 6 includes a photo detector 61, a band pass filter 62, and an amplifier 63. The photo detector 61 connected to the other end of the second optical fiber 5 converts the optical signal of the scattered light into an electric signal. Then, in order to distinguish it from natural light by the band pass filter 62, a signal of the modulation frequency component is taken out from the electric signal, amplified by the amplifier 63 and outputted to the detection circuit 7. The photoelectric conversion circuit 6 is not limited to the one described above as long as it converts an optical signal into an electric signal. For example, a photodiode may be used instead of a photodetector, or a low-pass filter may be used instead of a bandpass filter. A pass filter may be used.

変調周波数成分の信号は、散乱光強度の変化を測定するために、検波回路7にてAM検波を行ってその検波後の信号を最低値検出回路8に出力する。なお、検波回路7によって出力された信号は、低域フィルタを通過する信号と同等の信号処理が施されることとなる。従って、バンドパスフィルタ62のカットオフ周波数を適当に選択することによって、検波回路7はこのカットオフ周波数の変動を取り除いた直流分の出力波形の信号として検出し、最低値検出回路8に出力することができる。このように本実施形態では、フォトデテクター61で検出された光信号のうち、バンドパスフィルタ62で変調周波数成分を取り出し増幅器63で増幅した後、AM検波を行うことで、アニオントラッシュ成分の微小粒子の散乱に伴う光強度の変化を信号強度の変化として測定できる。ただし、AM検波は必ずしも必要とされず、変調周波数成分の信号を直接最低値検出回路8に出力しても良い。   The modulation frequency component signal is subjected to AM detection by the detection circuit 7 in order to measure the change in scattered light intensity, and the detected signal is output to the minimum value detection circuit 8. The signal output by the detection circuit 7 is subjected to signal processing equivalent to the signal passing through the low-pass filter. Accordingly, by appropriately selecting the cut-off frequency of the band-pass filter 62, the detection circuit 7 detects the signal as a DC output waveform signal from which the fluctuation of the cut-off frequency has been removed, and outputs it to the minimum value detection circuit 8. be able to. As described above, in the present embodiment, from the optical signal detected by the photodetector 61, the modulation frequency component is extracted by the bandpass filter 62, amplified by the amplifier 63, and then subjected to AM detection, whereby fine particles of anion trash component are obtained. The change in the light intensity accompanying the scattering of can be measured as the change in the signal intensity. However, AM detection is not necessarily required, and a modulation frequency component signal may be directly output to the minimum value detection circuit 8.

最低値検出回路8は、入力する直流分の信号から最低値の信号強度を検出している。この最低値の検出とは、図1に示した増幅器63から出力される信号波形で説明すると、波形のくびれ部分を測定することである。くびれ部分以外の部分は、粗大な紙原料及び微小なアニオントラッシュ成分粒子が測定領域23に存在している時であり、くびれ部分は、紙原料が、測定領域から出ていった時である。従って、最低値検出回路8が信号強度の最低値を検出することにより、アニオントラッシュ成分の微小粒子のみが存在する時の散乱光強度、即ちアニオントラッシュ成分の微小粒子の粒径を測定することが可能となる。そして、この最低値の減少は、測定領域でのアニオントラッシュ成分の微小粒子の粒径が小さくなったことを表し、また最低値の増大は、アニオントラッシュ成分の微小粒子の粒径が大きくなったことを表す。   The lowest value detection circuit 8 detects the lowest signal intensity from the input DC signal. This detection of the minimum value is to measure the constricted portion of the waveform, as explained by the signal waveform output from the amplifier 63 shown in FIG. The portion other than the constricted portion is when coarse paper raw material and fine anion trash component particles are present in the measurement region 23, and the constricted portion is when the paper raw material has left the measurement region. Accordingly, the minimum value detection circuit 8 detects the minimum value of the signal intensity, thereby measuring the scattered light intensity when only the fine particles of the anion trash component exist, that is, the particle size of the fine particles of the anion trash component. It becomes possible. This decrease in the minimum value indicates that the particle size of the fine particles of the anion trash component in the measurement region has decreased, and the increase in the minimum value has increased the particle size of the fine particles of the anion trash component. Represents that.

具体的に、薬剤効果の測定原理は以下のようなものである。即ち、計測槽20内の原料スラリー21の攪拌に伴って測定領域23にコロイド状の微小なアニオントラッシュ成分粒子(以下「微小コロイド粒子」と称す。)が流入出するときに散乱光の変動が生じることとなる。この変動の周期は、測定領域を粒子と見なして、微小コロイド粒子との間に生じる衝突回数を想定することにより概算することができる。即ち、測定領域23を直径Rの球体、微小コロイド粒子を直径rの球体でそれぞれ近似すると、この場合の衝突断面積Qは、Q=π(R+r)で与えられる。また、微小コロイド粒子密度をN、測定領域に対する粒子の相対速度をvとすると、単位時間当たりに微小コロイドが測定領域に流入する回数νは、ν=NQvとなる。同じく、微小コロイド粒子が測定領域から出て行く時にも同様の変動が生じるので、散乱光強度を微分した値の周期は、この回数の2倍の値となる。そして、散乱光強度は微小コロイド粒子の粒径のn乗に比例すると仮定し、多重散乱を無視すると、微小コロイド粒子1個の流出入に伴う散乱光強度の変動Aは、A=Aとなる。なお、Aは測定系に依存する定数であり、標準試料を用いて校正される。 Specifically, the measurement principle of the drug effect is as follows. That is, when colloidal minute anion trash component particles (hereinafter referred to as “micro colloidal particles”) flow into and out of the measurement region 23 as the raw slurry 21 in the measurement tank 20 is agitated, fluctuations in scattered light change. Will occur. The period of this fluctuation can be estimated by assuming the measurement region as a particle and assuming the number of collisions with the micro colloidal particle. That is, when the measurement region 23 is approximated by a sphere having a diameter R and a micro colloidal particle is approximated by a sphere having a diameter r, the collision cross-sectional area Q 0 in this case is given by Q 0 = π (R + r) 2 . Further, when the density of the microcolloid particles is N and the relative velocity of the particles with respect to the measurement region is v, the number of times the microcolloid flows into the measurement region per unit time is ν = NQ 0 v. Similarly, since the same fluctuation occurs when the fine colloidal particles exit the measurement region, the period of the value obtained by differentiating the scattered light intensity becomes a value twice this number. Assuming that the scattered light intensity is proportional to the nth power of the particle diameter of the fine colloidal particle, and ignoring multiple scattering, the fluctuation A of the scattered light intensity accompanying the inflow / outflow of one fine colloidal particle is A = A 0 r n . A 0 is a constant depending on the measurement system, and is calibrated using a standard sample.

ここで、微小コロイド粒子は、直径rが小さく粒子密度Nが大きいので、散乱光の微小な変動が短い周期で生じることとなる。そこで、検波回路7で変調周波数成分の検波を行うことにより、上述したごとく出力波形は低域フィルタを通過するのと等価な信号処理が施されるので、フィルタ62のカットオフ周波数を適当に選ぶことにより、この変動を取り除いた直流分の信号として検出することができる。   Here, since the micro colloidal particles have a small diameter r and a large particle density N, minute fluctuations in scattered light occur in a short cycle. Therefore, by detecting the modulation frequency component in the detection circuit 7, the output waveform is subjected to signal processing equivalent to passing through the low-pass filter as described above, and therefore the cutoff frequency of the filter 62 is appropriately selected. As a result, it can be detected as a DC signal from which this fluctuation has been removed.

一方、原料スラリー中の紙原料では、測定領域に流出入する際の変動が大きく、かつこの変動の平均周期は長くなる。従って紙原料の密度と測定領域体積との積が1より小さい時には、検波後の出力波形の最低値が微小コロイド粒子の散乱に対応していることになる。これにより本実施形態では、検波回路7の後段に最低値検出回路8を接続させることによって、原料スラリー中の微小コロイド粒子、即ちアニオントラッシュ成分による散乱光と紙原料による散乱光とを区別し、アニオントラッシュ成分による散乱光のみを取り出すことが可能となるので、薬剤によるアニオントラッシュ成分の低減効果が適切に把握できる。   On the other hand, the paper raw material in the raw material slurry has a large fluctuation when flowing into and out of the measurement region, and the average period of the fluctuation becomes long. Therefore, when the product of the density of the paper raw material and the measurement area volume is smaller than 1, the minimum value of the output waveform after detection corresponds to the scattering of the fine colloidal particles. Thereby, in this embodiment, the minimum value detection circuit 8 is connected to the subsequent stage of the detection circuit 7, thereby distinguishing the scattered light from the fine colloidal particles in the raw material slurry, that is, the anion trash component, and the scattered light from the paper raw material, Since it becomes possible to take out only the scattered light by the anion trash component, the effect of reducing the anion trash component by the drug can be properly grasped.

また、本実施形態の監視装置では、特別な測定部を別途設ける必要がなく、遮蔽部材に取り付けたレーザ光照射部と散乱光受光部を計測槽に投入するのみで散乱光を測定することができるので、簡易な装置構成の監視装置を提供することができる。さらに、本実施形態の監視装置は、装置構成が簡易で軽量、小型化が図られるため、投げ込み式の監視装置にすることも可能である。   Further, in the monitoring apparatus of the present embodiment, it is not necessary to provide a special measurement unit separately, and it is possible to measure the scattered light only by putting the laser light irradiation unit and the scattered light receiving unit attached to the shielding member into the measurement tank. Therefore, a monitoring device having a simple device configuration can be provided. Furthermore, the monitoring device of this embodiment can be a throw-in type monitoring device because the device configuration is simple, lightweight, and downsized.

なお、本発明においては、このような装置を1台用意し、電磁弁等で自動的に計測対象液を薬剤添加前の原料スラリーと薬剤添加後の原料スラリーとで切り替えができるような構造・機構を取り入れてもよく、手動のバルブで切り替える構造でもよい。また、このような装置を2台用意し、薬剤添加前と後の原料スラリーを別々に計測してもよい。   In the present invention, such a device is prepared, and a structure and a liquid that can be automatically switched by a solenoid valve or the like between the raw material slurry before the addition of the chemical and the raw material slurry after the addition of the chemical. A mechanism may be incorporated or a manual valve may be used for switching. Two such devices may be prepared, and the raw material slurry before and after the addition of the chemical may be measured separately.

2)受光された散乱光から変換された電気信号の最低値及び散乱強度
図1の装置において、測定領域23にて生じる散乱光について考察すると、この測定領域23に存在する微小コロイド粒子は薬剤の添加で微少フロック化し、フロック化とともに散乱光強度は大きくなる。
2) Minimum value of electric signal and scattered intensity converted from received scattered light In the apparatus of FIG. 1, when considering the scattered light generated in the measurement region 23, the microcolloid particles present in the measurement region 23 are When added, the flocs are slightly flocked, and the scattered light intensity increases with flocking.

従って、前述した構造のセンサプローブ(図2に示す遮蔽部材22)を用いて微小測定領域23における散乱光の強度を計測すると、図5(a)〜(c)にその概念を示すように、凝集が進んで微小コロイド粒子数が減少し、フロックの数が徐々に増加しても、フロックの数は懸濁物質(微小コロイド)の減少に比べ遥かに少ないので、プローブで検出される微小測定領域23の散乱光の平均強度は低下する。このため、プローブで検出されるフロックの凝集状態は、希に微小測定領域23に入り込むフロックで上記散乱光の強度が一時的に強くなったときを除いて、平均的な散乱光の強度は未凝集の懸濁物質(微小コロイド)の粒子数、すなわち濁度を示しているとみなし得る。なお、図5(a)〜(c)の横軸は時間軸であり、tは時間を示す。   Accordingly, when the intensity of the scattered light in the minute measurement region 23 is measured using the sensor probe having the structure described above (the shielding member 22 shown in FIG. 2), as shown in FIGS. 5 (a) to 5 (c), Even if the number of fine colloid particles decreases and the number of flocs gradually increases, the number of flocs is much smaller than the decrease in suspended solids (microcolloids), so the minute measurement detected by the probe The average intensity of scattered light in the region 23 decreases. For this reason, the floc aggregation state detected by the probe is not the average intensity of the scattered light except when the intensity of the scattered light temporarily increases due to the floc rarely entering the minute measurement region 23. It can be regarded as indicating the number of particles of the aggregated suspended substance (microcolloid), ie, turbidity. In addition, the horizontal axis of Fig.5 (a)-(c) is a time axis, and t shows time.

前述した最低値検出回路8は、上記観点に立脚し、散乱光の強度に応じた光電変換回路6の出力から得られる振幅変調周波数成分の信号の包絡線成分から最低値を検出することで、原料スラリーの未凝集の微小コロイドの粒子数(濁度)を検知することを可能とする。また、凝集が進んで微小コロイド粒子が、微少フロック化し、プローブにて検出される微小測定領域23の散乱光の強度が上記フロックにより大きくなる。これ故、微少フロック化に至るまでの散乱光強度の変化をとらえることで、微少フロックの粒径情報を得ることができる。   The minimum value detection circuit 8 described above is based on the above viewpoint, and detects the minimum value from the envelope component of the signal of the amplitude modulation frequency component obtained from the output of the photoelectric conversion circuit 6 according to the intensity of the scattered light. It is possible to detect the number (turbidity) of unaggregated fine colloids in the raw slurry. Further, the aggregation progresses and the fine colloidal particles become slightly flocked, and the intensity of scattered light in the minute measurement region 23 detected by the probe is increased by the flock. Therefore, it is possible to obtain the particle size information of the minute floc by capturing the change in the scattered light intensity until the minute floc is obtained.

散乱強度はセンサによる計測の検波信号の標準偏差で扱う。電気信号mVとして表示する。通常は、散乱強度の変化を相対的にとらえて、粒径が大きく、又は小さく変化した状況をとらえる。   The scattering intensity is handled as the standard deviation of the detection signal measured by the sensor. Displayed as electrical signal mV. Usually, a change in scattering intensity is relatively detected, and a situation in which the particle size is large or small is detected.

3)抄紙工程水
本発明において、測定対象となる抄紙工程水としては、紙の原料スラリーやインレット内のスラリー、白水等が挙げられる。このうち、紙の原料スラリーは、通常の紙パルププロセスにおける原料スラリーであり、この原料スラリー中の紙原料としては、例えばLBKP、NBKP、TMP、古紙、DIP、コートブロークなどが挙げられ、これらの任意の2種以上の混合物でも良い。
4)被測定流体
本発明では、上記3)記載の抄紙工程水について、5)記載の製紙用薬剤を添加する前の抄紙工程水と添加後の抄紙工程水を被計測流体とし、薬剤添加前と後の抄紙工程水の両方について計測を行う。そして、薬剤添加前後の計測値を比較することにより、薬剤の効果判断を行う。なお、この場合、必要に応じて各抄紙工程水を6)の希釈用水で希釈して計測してもよい。
3) Papermaking process water In the present invention, the papermaking process water to be measured includes paper raw slurry, slurry in the inlet, white water, and the like. Among these, the paper raw material slurry is a raw material slurry in a normal paper pulp process, and examples of the paper raw material in the raw material slurry include LBKP, NBKP, TMP, waste paper, DIP, and coat broke. A mixture of two or more of them may be used.
4) Fluid to be measured In the present invention, for the papermaking process water described in 3) above, the papermaking process water before the addition of the papermaking chemical described in 5) and the papermaking process water after the addition are used as fluids to be measured, and before the chemical addition. Measurements are made for both water and subsequent papermaking process water. And the effect evaluation of a medicine is performed by comparing the measured value before and behind medicine addition. In this case, if necessary, each papermaking process water may be diluted with the water for dilution in 6) and measured.

5)製紙用薬剤
このような抄紙工程水に添加される製紙用薬剤としては特に制限はなく、紙パルププロセスにおいて通常使用されているカチオン系合成ポリマー、或いはカチオン系合成ポリマーとアニオン系合成ポリマーとの組み合わせ、両性合成ポリマーなど、任意のものを用いることができる。これらの製紙用薬剤の添加量は、通常、処理対象の紙パルププロセスの設定条件や原料スラリーの性状に応じて適宜決定される。
5) Papermaking chemicals The papermaking chemicals added to such papermaking process water are not particularly limited, and are cationic synthetic polymers or cationic synthetic polymers and anionic synthetic polymers that are usually used in the paper pulp process. Any combination of these, amphoteric synthetic polymers, etc. can be used. The amount of these papermaking chemicals added is usually appropriately determined according to the setting conditions of the paper pulp process to be treated and the properties of the raw slurry.

6)希釈用水及び計測濃度
測定にあたっては、製紙用薬剤の添加前後の原料スラリー等の抄紙工程水は原液のままでも良く、必要に応じて水で希釈して測定に供しても良い。即ち、抄紙工程水のパルプ繊維濃度が過度に高い場合には照射光やアニオントラッシュ成分からの散乱光が高濃度に存在するパルプ繊維により妨害を受けやすくなることにより、アニオントラッシュ成分に対応する正確な計測値を確実に得ることができない場合があるので、抄紙工程水は必要に応じて希釈する。希釈倍率については特に制限はなく、任意に決定することができるが、測定に供する抄紙工程水の固形分濃度としては、一般的には500〜60000mg/Lの範囲であることが好ましいことから、このような濃度となるように希釈を行うことが好ましい。
6) Dilution Water and Measurement Concentration In the measurement, the papermaking process water such as raw material slurry before and after the addition of the papermaking chemical may be used as it is, or may be diluted with water as necessary for measurement. In other words, when the pulp fiber concentration in the papermaking process water is excessively high, the irradiation light and scattered light from the anion trash component are likely to be disturbed by the pulp fiber present in a high concentration, so that the accuracy corresponding to the anion trash component is increased. Since it may not be possible to reliably obtain a measured value, the papermaking process water is diluted as necessary. The dilution factor is not particularly limited and can be arbitrarily determined. However, the solid content concentration of the papermaking process water used for the measurement is generally preferably in the range of 500 to 60000 mg / L. It is preferable to perform dilution so as to obtain such a concentration.

希釈用水としては特に制限はなく、水道水、工業用水、中水、白水の加圧浮上又は凝集沈殿処理水などを用いることができる。   There is no restriction | limiting in particular as water for dilution, Tap water, industrial water, middle water, the pressurization flotation of the white water, or the coagulation precipitation treated water etc. can be used.

7)流速
測定時の被測定流体は、濁度成分の沈降を防止して均一分散液状とするために、流動状態とし、必要に応じて攪拌を行ってもよい。この被測定流体の流速としては特に制限はなく、測定に供する被測定流体の濃度によっても異なるが、測定値の安定性の面から、0.2〜5.0m/s、特に0.5〜3.0m/sの範囲であることが好ましい。
7) Flow velocity The fluid to be measured at the time of measurement may be in a fluid state in order to prevent sedimentation of turbidity components and form a uniformly dispersed liquid, and may be stirred as necessary. The flow rate of the fluid to be measured is not particularly limited and varies depending on the concentration of the fluid to be measured. However, from the viewpoint of the stability of the measured value, 0.2 to 5.0 m / s, particularly 0.5 to The range is preferably 3.0 m / s.

8)測定部のサイズ
測定部の大きさは、レーザー光発光面から壁面までの距離(図1において、レーザ光照射部3の先端と計測槽20の内壁面との距離)が1cm以上離れていることが好ましい。この距離が1cmよりも近いと、壁面でのレーザー光の反射が測定値に影響を及ぼす可能性があるため好ましくない。
8) Size of measuring unit The size of the measuring unit is such that the distance from the laser light emitting surface to the wall surface (in FIG. 1, the distance between the tip of the laser light irradiation unit 3 and the inner wall surface of the measuring tank 20) is 1 cm or more away. Preferably it is. If this distance is shorter than 1 cm, reflection of laser light on the wall surface may affect the measurement value, which is not preferable.

9)被測定流体の採取箇所
本発明においては、紙パルププロセスの所定の箇所から紙の原料スラリー等の抄紙工程水を抜き出し、図1に示すような装置で測定を行っても良く、図2又は図4に示す遮蔽部材22を、紙パルププロセスの所定の箇所に直接投入して測定を行っても良い。紙パルププロセスから抄紙工程水を抜き出して測定を行う場合、図1に示す装置には更に必要に応じて希釈槽を設けることが好ましい。
9) Location for Collecting Fluid to be Measured In the present invention, papermaking process water such as paper raw material slurry may be extracted from a predetermined location in the paper pulp process, and measurement may be performed with an apparatus as shown in FIG. Alternatively, measurement may be performed by directly putting the shielding member 22 shown in FIG. 4 into a predetermined portion of the paper pulp process. In the case where the measurement is performed by extracting papermaking process water from the paper pulp process, it is preferable that the apparatus shown in FIG.

10)測定間隔
測定は連続的に行っても良く、間欠的に行っても良い。間欠的に測定を行う場合の測定頻度は、薬剤効果の推移を確認できれば良く、任意に設定することができ、例えば1〜2時間に1回の測定頻度とすることができる。測定を行っていない場合には、例えば、計測槽に水を流して、後述のレーザー光照射部/受光部の洗浄を行っても良い。
10) Measurement interval Measurement may be performed continuously or intermittently. The measurement frequency in the case of intermittent measurement may be arbitrarily set as long as the transition of the drug effect can be confirmed, and can be set to, for example, a measurement frequency once every 1 to 2 hours. When the measurement is not performed, for example, water may be supplied to the measurement tank to clean the laser light irradiation unit / light receiving unit described later.

11)検量線
通常は、散乱光の電気信号の最低値及び散乱強度の変化を相対的にとらえて、薬剤効果の変化を検知するが、予め電気信号の最低値及び散乱強度が既知のサンプル液を用いて同様の測定を行って、測定値との関係を示す検量線を作成しておき、この検量線に測定値をあてはめて、抄紙工程水での薬剤の効果判断及び、薬注制御を行うことができる。
11) Calibration curve Normally, the change in the drug effect is detected by relatively detecting the minimum value of the electrical signal of the scattered light and the change in the scattering intensity. However, the sample solution in which the minimum value of the electrical signal and the scattering intensity are known in advance. The same measurement is performed using the above, a calibration curve showing the relationship with the measurement value is prepared, and the measurement value is applied to this calibration curve to determine the effect of the drug in the papermaking process water and to control the chemical injection. It can be carried out.

12)計測部の洗浄
測定に用いるレーザ光照射部と散乱光受光部は、汚れの付着による測定精度の低下を防止するために、定期的に洗浄を行うことが好ましい。この照射部/受光部の洗浄は、空気又は水で行うことができる。
12) Cleaning of measuring unit It is preferable to periodically clean the laser beam irradiation unit and the scattered light receiving unit used for measurement in order to prevent a decrease in measurement accuracy due to adhesion of dirt. This irradiating part / light receiving part can be cleaned with air or water.

圧縮空気での洗浄の場合、被測定対象液である原料スラリー中で空気の散気による気液混合状態で行う。洗浄時間には特に制限はないが、計測の安定性の点からレーザ光照射部/受光部各々3〜5秒間が良い。洗浄間隔は特に制限はないが、計測の安定性の点からレーザ光照射部/受光部各々40〜120秒間隔での洗浄が良い。洗浄圧は特に制限はないが、計測の安定性の点から0.01MPa以上の圧力が良く、より好ましくは0.05〜0.5MPaである。   In the case of cleaning with compressed air, it is performed in a gas-liquid mixed state by air diffusion in the raw material slurry that is the liquid to be measured. The cleaning time is not particularly limited, but 3 to 5 seconds is preferable for each of the laser beam irradiation unit / light receiving unit from the viewpoint of measurement stability. Although there is no particular limitation on the cleaning interval, cleaning is preferably performed at intervals of 40 to 120 seconds for each of the laser beam irradiation unit / light receiving unit from the viewpoint of measurement stability. The washing pressure is not particularly limited, but a pressure of 0.01 MPa or more is preferable from the viewpoint of measurement stability, and more preferably 0.05 to 0.5 MPa.

水での洗浄の場合、高圧水でセンサ先端を洗浄するか、計測槽に清水を0.5m/秒以上の流速で通水し、計測槽及びセンサ先端の洗浄を行う。洗浄時間は、高圧水の場合は1回あたり3〜60秒程度、通水の場合は、1回あたり130秒以上がよい。   In the case of washing with water, the sensor tip is washed with high-pressure water, or fresh water is passed through the measurement tank at a flow rate of 0.5 m / second or more to clean the measurement tank and the sensor tip. The washing time is preferably about 3 to 60 seconds per time in the case of high-pressure water, and 130 seconds or more per time in the case of water flow.

13)メンテナンス
前述の本発明の装置は、1ヶ月ないしは1週間に1回の頻度でレーザー光照射部/受光部の清浄度や照射されたレーザー光の輝度確認を行うことが好ましいが、このようなメンテナンス頻度は状況に応じて任意に決定することができる。
13) Maintenance The apparatus of the present invention described above preferably checks the cleanliness of the laser beam irradiation unit / light receiving unit and the brightness of the irradiated laser beam at a frequency of once a month or once a week. The maintenance frequency can be arbitrarily determined according to the situation.

14)製紙用薬剤の薬注制御
本発明の製紙用薬剤の効果監視装置及び方法により得られた薬注効果の情報は、これを出力信号として出力し、この信号に基づいて薬注ポンプや原料スラリーの送液ポンプの制御を行って、最適な薬注条件を維持することができる。
14) Chemical injection control of papermaking chemicals The chemical injection effect information obtained by the paper chemical effect monitoring apparatus and method of the present invention is output as an output signal, and based on this signal, chemical injection pumps and raw materials are output. It is possible to maintain the optimum chemical injection conditions by controlling the slurry feed pump.

即ち、例えば、前述の信号強度の最低値から薬注量を増減する方法と併用し、本発明の散乱光強度信号からの情報で薬注量を増減してもよく、又は本発明に係る散乱光強度信号からの情報のみで薬注量を増減して、制御してもよい。   That is, for example, it may be used in combination with the method for increasing or decreasing the dosage from the lowest signal intensity described above, and the dosage may be increased or decreased by the information from the scattered light intensity signal of the present invention, or the scattering according to the present invention. You may control by increasing / decreasing a chemical injection amount only by the information from a light intensity signal.

具体的には、次のような薬注制御を行うことができる。
以下においては、抄紙工程水としてインレット内のスラリーへの適用例について説明する。
通常のマシン操作にて紙の製造を開始し、薬注量が最適で安定した生産状態にする。この時、歩留向上剤添加前のインレット内のスラリーのサンプリング配管と、歩留向上剤添加後のインレット内のスラリーのサンプリング配管をそれぞれ分岐して、センサプローブを装着したセンサ計測槽と流路を切り替えられるバルブを介して接続する。つまり、歩留向上剤添加前と後のインレット内スラリーをバルブ切換で交互にセンサ計測できるように配管する。計測後のインレット内スラリーは白水ビットに戻すようにする。センサ計測槽にてレーザー発光部で所定の流速が確保できていることを確認し、散乱強度計測及びセンサ出力信号の最低値の計測を開始する。例として、2秒に1回200mS間欠発光レーザーでの計測を述べる。
Specifically, the following chemical injection control can be performed.
Below, the example of application to the slurry in an inlet as papermaking process water is demonstrated.
Start paper production with normal machine operation, and achieve a stable production state with optimal dosage. At this time, the sampling pipe for the slurry in the inlet before the addition of the yield improving agent and the sampling pipe for the slurry in the inlet after the addition of the yield improving agent are branched, and the sensor measuring tank and the flow path in which the sensor probe is mounted. Is connected via a valve that can be switched. That is, piping is performed so that the slurry in the inlet before and after the addition of the yield improver can be alternately measured by switching the valve. The slurry in the inlet after measurement is returned to the white water bit. After confirming that a predetermined flow velocity is secured in the laser emission section in the sensor measurement tank, measurement of the scattering intensity and measurement of the minimum value of the sensor output signal are started. As an example, measurement with a 200 mS intermittent emission laser once every 2 seconds will be described.

(1)粒径情報を使った制御
薬剤添加前のインレット内スラリーについて2秒ごとの散乱強度を5分間計測し、その散乱強度の平均値を粒径情報とする。同じ操作を5回行い、5点の粒径情報の平均を確認する。通常、この値は30〜50mV程度になる。同じく、薬剤添加後のインレット内スラリーについて2秒ごとの散乱強度を5分間計測し平均した粒径情報5点の粒径情報の平均を確認する。通常、この値は80〜150mV程度になる。これらの変化幅は原料の変化やSS濃度の変動に由来するインレット内スラリーの性状変化である。センサ計測は、薬剤添加前と後のインレット内スラリーの粒径情報を任意の間隔で交互に計測する。常に薬剤添加前と後の状態を監視するので、インレット内スラリーの性状変動に影響されることなく計測ができる。また、薬注量が最適で安定した生産状態での歩留向上剤注入のインバータポンプの出力%を現状値とする。
(1) Control using particle size information For the slurry in the inlet before addition of the chemical, the scattering intensity every 2 seconds is measured for 5 minutes, and the average value of the scattering intensity is used as the particle size information. Repeat the same operation 5 times and confirm the average of the particle size information of 5 points. Usually, this value is about 30 to 50 mV. Similarly, the average of the particle size information of 5 particle size information obtained by measuring the scattering intensity every 2 seconds for 5 minutes and averaging the slurry in the inlet after the addition of the drug is confirmed. Usually, this value is about 80 to 150 mV. These change widths are changes in the properties of the slurry in the inlet resulting from changes in raw materials and SS concentrations. The sensor measurement alternately measures the particle size information of the slurry in the inlet before and after the addition of the drug at arbitrary intervals. Since the state before and after the addition of the drug is always monitored, measurement can be performed without being affected by fluctuations in the properties of the slurry in the inlet. In addition, the output% of the inverter pump that is injected with the yield-improving agent in an optimal and stable production state is assumed to be the current value.

制御方法としては、薬注後散乱強度(mV)−薬注前散乱強度(mV)=偏差(mV)とし、例えば80<偏差≦100の時インバーターポンプの出力は現状値のまま、50<偏差≦80の時は現状値+20%、30<偏差≦50の時は現状値+30%、偏差≦30の時は現状値+50%、100<偏差の時は現状値−20%、とするような一般的なプログラムを予めセンサに組み込んでおき、センサから制御信号をインバータポンプに出力することにより、粒径情報に応じた薬注制御が可能となる。この時の計測頻度、偏差に対するインバータポンプへの出力%は、実際の製造における条件変動に応じて任意に決めることができる。   As a control method, scattering intensity after drug injection (mV) −scattering intensity before drug injection (mV) = deviation (mV), for example, when 80 <deviation ≦ 100, the output of the inverter pump remains at the current value and 50 <deviation Current value + 20% when ≦ 80, current value + 30% when 30 <deviation ≦ 50, current value + 50% when deviation ≦ 30, current value −20% when 100 <deviation By incorporating a general program in the sensor in advance and outputting a control signal from the sensor to the inverter pump, it is possible to perform chemical injection control according to the particle size information. The output frequency to the inverter pump with respect to the measurement frequency and the deviation at this time can be arbitrarily determined according to the condition variation in actual manufacturing.

(2)濁度情報を使った制御
薬剤添加前のインレット内スラリーについて2秒ごとのセンサ出力最低値を5分間計測し、その平均値を濁度情報とする。同じ操作を5回行い、5点の濁度情報の平均を確認する。通常、この値は4000〜5000mV程度になる。同じく、薬剤添加後のインレット内スラリーについて2秒ごとの散乱強度を5分間計測し平均した濁度情報5点の濁度情報の平均を確認する。通常、この値は2000〜4000mV程度になる。これらの変化幅は原料の変化やSS濃度の変動に由来するインレット内スラリーの性状変化である。センサ計測は、薬剤添加前と後のインレット内スラリーの濁度情報を任意の間隔で交互に計測する。常に薬剤添加前と後の状態を監視するので、インレット内スラリーの性状変動に影響されることなく計測ができる。また、薬注量が最適で安定した生産状態での歩留向上剤注入のインバータポンプの出力%を現状値とする。
(2) Control using turbidity information For the slurry in the inlet before chemical addition, measure the sensor output minimum value every 2 seconds for 5 minutes, and use the average value as turbidity information. Repeat the same operation 5 times and check the average of 5 points of turbidity information. Usually, this value is about 4000 to 5000 mV. Similarly, the average of the turbidity information of 5 points of turbidity information obtained by measuring the scattering intensity every 2 seconds for 5 minutes and averaging the slurry in the inlet after the addition of the chemical is confirmed. Usually, this value is about 2000 to 4000 mV. These change widths are changes in the properties of the slurry in the inlet resulting from changes in raw materials and SS concentrations. The sensor measurement alternately measures the turbidity information of the slurry in the inlet before and after the addition of the drug at arbitrary intervals. Since the state before and after the addition of the drug is always monitored, measurement can be performed without being affected by fluctuations in the properties of the slurry in the inlet. In addition, the output% of the inverter pump that is injected with the yield-improving agent in an optimal and stable production state is assumed to be the current value.

制御方法としては、薬注前センサ出力最低値(mV)−薬注後センサ出力最低値(mV)=偏差(mV)とし、例えば2000<偏差≦3000の時インバーターポンプの出力は現状値のまま、1500<偏差≦2000の時は現状値+20%、1000<偏差≦1500の時は現状値+30%、偏差≦1000の時は現状値+50%、3000<偏差の時は現状値−20%、とするような一般的なプログラムを予めセンサに組み込んでおき、センサから制御信号をインバータポンプに出力することにより、濁度情報に応じた薬注制御が可能となる。この時の計測頻度、偏差に対するインバータポンプへの出力%は、実際の製造における条件変動に応じて任意に決めることができる。   As a control method, the sensor output minimum value before drug injection (mV) −the sensor output minimum value after drug injection (mV) = deviation (mV). For example, when 2000 <deviation ≦ 3000, the output of the inverter pump remains the current value. When 1500 <deviation ≦ 2000, current value + 20%, when 1000 <deviation ≦ 1500, current value + 30%, when deviation ≦ 1000, current value + 50%, when 3000 <deviation, current value−20%, Such a general program is incorporated in the sensor in advance, and a control signal is output from the sensor to the inverter pump, thereby enabling chemical injection control according to the turbidity information. The output frequency to the inverter pump with respect to the measurement frequency and the deviation at this time can be arbitrarily determined according to the condition variation in actual manufacturing.

以下に比較例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.

以下の比較例及び実施例においては、添加薬剤、抄紙工程水として以下のものを用いた。
1)薬剤:カチオン系合成ポリマー
・構造,組成:ジメチルアミノエチルアクリレート塩化メチル四級化物/アクリル
アミド=25/75(モル%)
・固有粘度:13.5(dl/g)(溶媒=1N NaCl(30℃))
・使用濃度:0.2wt%
・添加率:0〜5.6mg/l(対スラリー)
2)抄紙工程水:インレット内スラリー
・濃度:6850mg/l
・外観:繊維分含有の白色スラリー
In the following comparative examples and examples, the following were used as additive chemicals and papermaking process water.
1) Drug: Cationic synthetic polymer Structure / Composition: Dimethylaminoethyl acrylate methyl chloride quaternized / acrylic
Amide = 25/75 (mol%)
Intrinsic viscosity: 13.5 (dl / g) (solvent = 1N NaCl (30 ° C.))
・ Use concentration: 0.2wt%
Addition rate: 0 to 5.6 mg / l (vs. slurry)
2) Papermaking process water: slurry in the inlet ・ Concentration: 6850 mg / l
・ Appearance: White slurry containing fiber

(比較例1)
以下の手順で濾液量の測定を行った。
(1) 500mlビーカーにインレットから採取したスラリーを180ml入れて、薬剤を所定量添加した。
(2) 撹拌機にて500rpmで40秒間攪拌した。
(3) 上記(2)の液を、直ちに60メッシュナイロン濾布を敷いたヌッチェロートにあけ、10秒間の濾水量を計測した。
(4) (1)の薬剤添加率と(3)で測定された濾液量との関係を図6に示した。
(Comparative Example 1)
The filtrate amount was measured by the following procedure.
(1) 180 ml of the slurry collected from the inlet was placed in a 500 ml beaker, and a predetermined amount of drug was added.
(2) The mixture was stirred with a stirrer at 500 rpm for 40 seconds.
(3) The above solution (2) was immediately put into a Nutsche funnel covered with a 60 mesh nylon filter cloth, and the amount of filtered water for 10 seconds was measured.
(4) The relationship between the drug addition rate of (1) and the amount of filtrate measured in (3) is shown in FIG.

(実施例1)
図1に示す装置を用い、以下の手順で散乱光強度の測定を行った。
(1) 3000mlビーカーにインレットから採取したスラリーを1800ml入れて、薬剤を所定量添加した。
(2) 撹拌機にて500rpmで40秒間攪拌した。
(3) 上記(2)の液にレーザー散乱光のセンサプローブ(図2に示す遮蔽部材22)を浸漬し、250rpmの攪拌下(流速1.3m/s)で、センサによる計測を行った。計測項目は、薬剤添加前後のインレット内スラリーについて計測された散乱光の電気信号の最低値の差(以下「濁度情報(mV)」とする。)、及び散乱強度の差(以下「粒径情報法(mV)」とする)で、レーザー光を2分間隔で200m秒発光させ、120秒間の散乱強度の平均値を求めた。
(4) 解析は、薬剤無添加(0mg/l)時の計測値と薬剤添加時の計測値の差を求め、比較例で示した通常の濾水試験結果との関係を整理した。
Example 1
Using the apparatus shown in FIG. 1, the scattered light intensity was measured by the following procedure.
(1) 1800 ml of the slurry collected from the inlet was placed in a 3000 ml beaker, and a predetermined amount of drug was added.
(2) The mixture was stirred with a stirrer at 500 rpm for 40 seconds.
(3) A sensor probe (laser member 22 shown in FIG. 2) of laser scattered light was immersed in the liquid (2), and measurement was performed with a sensor under stirring at 250 rpm (flow rate 1.3 m / s). The measurement items are the difference in the minimum value of the electrical signal of the scattered light measured for the slurry in the inlet before and after the addition of the drug (hereinafter referred to as “turbidity information (mV)”), and the difference in the scattering intensity (hereinafter referred to as “particle size”). In the information method (mV) ”, laser light was emitted at intervals of 2 minutes for 200 milliseconds, and the average value of scattering intensity for 120 seconds was obtained.
(4) In the analysis, the difference between the measured value when no drug was added (0 mg / l) and the measured value when the drug was added was determined, and the relationship with the normal drainage test results shown in the comparative example was arranged.

薬剤添加率と、薬剤添加の場合と薬剤無添加の場合の濁度情報(mV)の差との関係を図7に、薬剤添加率と、薬剤添加の場合と薬剤無添加の場合の粒径情報(mV)の差との関係を図8に示した。   FIG. 7 shows the relationship between the drug addition rate and the difference in turbidity information (mV) between the case of drug addition and the case of no drug addition. FIG. 7 shows the drug addition rate and the particle size when the drug is added and when no drug is added. The relationship with the difference in information (mV) is shown in FIG.

また、同一薬剤添加率における比較例1の濾液量と、薬剤添加の場合と薬剤無添加の場合の濁度情報(mV)の差との関係を図9に、同一薬剤添加率における比較例1の濾液量と、薬剤添加の場合と薬剤無添加の場合の粒径情報(mV)の差との関係を図10に示した。
また、これらの結果を表1にまとめて示した。
Further, FIG. 9 shows the relationship between the filtrate amount of Comparative Example 1 at the same drug addition rate and the difference in turbidity information (mV) between the case of drug addition and the case of no drug addition, and Comparative Example 1 at the same drug addition rate. FIG. 10 shows the relationship between the amount of the filtrate and the difference in particle size information (mV) between when the drug was added and when no drug was added.
These results are summarized in Table 1.

Figure 0004915120
Figure 0004915120

これらの結果より、薬剤添加の前後の抄紙工程水について計測された散乱光の電気信号の最低値及び散乱強度の差から求めた濁度情報及び粒径情報と濾液量には明確な相関が認められ、センサによるレーザー光散乱光強度及び散乱光の電気信号の最低値が、薬剤添加によるインレット内スラリーの微細フロックの大きさと濁度を検知していることが確認された。   From these results, a clear correlation was found between the turbidity information and the particle size information obtained from the difference in the electrical signal of the scattered light and the scattering intensity measured for the papermaking process water before and after the addition of the chemical and the amount of filtrate. It was confirmed that the minimum value of the scattered light intensity of the laser light and the electrical signal of the scattered light detected by the sensor detected the size and turbidity of the fine floc of the slurry in the inlet due to the addition of the chemical.

この結果により、レーザー光散乱方式センサを用いて、本発明に従って薬剤添加前後の抄紙工程水について散乱光強度や散乱光の電気信号の最低値の測定を行うことにより、抄紙工程水に添加した歩留向上剤などの薬剤の効果を連続的にモニタリングできることが分かる。   Based on this result, by using a laser light scattering method sensor, the scattered light intensity and the minimum value of the electrical signal of the scattered light are measured for the paper making process water before and after the addition of the drug according to the present invention, thereby adding the steps added to the paper making process water. It can be seen that the effect of a drug such as a retention aid can be continuously monitored.

実施の形態に係る製紙用薬剤の効果監視装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the effect monitoring apparatus of the papermaking chemical | medical agent which concerns on embodiment. 図1に示したレーザ光照射部と散乱光受光部の構成を示す拡大図である。It is an enlarged view which shows the structure of the laser beam irradiation part and scattered light light-receiving part which were shown in FIG. 図2に示した遮蔽部材22の斜視図である。It is a perspective view of the shielding member 22 shown in FIG. レーザ光照射部と散乱光受光部の他の構成例を示す拡大図である。It is an enlarged view which shows the other structural example of a laser beam irradiation part and a scattered light light-receiving part. 微小コロイド粒子の凝集に伴う、微小測定領域での散乱光強度の変化の様子を示す模式図である。It is a schematic diagram which shows the mode of the change of the scattered light intensity in a micro measurement area | region accompanying aggregation of a micro colloid particle. 比較例1における、薬剤添加率と濾液量との関係を示すグラフである。6 is a graph showing a relationship between a drug addition rate and a filtrate amount in Comparative Example 1. 実施例1における、薬剤添加率と、薬剤添加の場合と薬剤無添加の場合の濁度情報(mV)の差との関係を示すグラフである。It is a graph which shows the relationship between the chemical | medical agent addition rate in Example 1, and the difference of the turbidity information (mV) in the case of chemical | medical agent addition and the case of no chemical | medical agent addition. 実施例1における、薬剤添加率と、薬剤添加の場合と薬剤無添加の場合の粒径情報(mV)の差との関係を示すグラフである。It is a graph which shows the relationship between the chemical | medical agent addition rate in Example 1, and the difference of the particle size information (mV) in the case of chemical | medical agent addition and the case of no chemical | medical agent addition. 同一薬剤添加率での、比較例1の濾液量と、実施例1における薬剤添加の場合と薬剤無添加の場合の濁度情報(mV)の差との関係を示すグラフである。It is a graph which shows the relationship between the amount of filtrate of the comparative example 1 in the same chemical | medical agent addition rate, and the difference of the turbidity information (mV) in the case of the chemical | medical agent addition in Example 1, and the chemical | medical agent non-addition. 同一薬剤添加率での、比較例1の濾液量と、実施例1における薬剤添加の場合と薬剤無添加の場合の粒径情報(mV)の差との関係を示すグラフである。It is a graph which shows the relationship between the amount of filtrate of the comparative example 1 in the same chemical | medical agent addition rate, and the difference of the particle size information (mV) in the case of chemical | medical agent addition in Example 1, and the case of no chemical | medical agent addition.

符号の説明Explanation of symbols

1 レーザ発振器
2 第1の光ファイバ
3 レーザ照射部
4 散乱光受光部
5 第2の光ファイバ
6 光電変換回路
7 検波回路
8 最低値検出回路
11 ファンクションゼネレータ
12 レーザダイオード
20 計測槽
22 遮蔽部材
23 測定領域
24 溝部
61 フォトデテクター
62 バンドパスフィルタ
63 増幅器
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 1st optical fiber 3 Laser irradiation part 4 Scattered light light-receiving part 5 2nd optical fiber 6 Photoelectric conversion circuit 7 Detection circuit 8 Minimum value detection circuit 11 Function generator 12 Laser diode 20 Measurement tank 22 Shielding member 23 Measurement Region 24 Groove 61 Photodetector 62 Bandpass filter 63 Amplifier

Claims (2)

抄紙工程水に添加される製紙用薬剤の効果を監視する方法において、
抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、
該散乱光強度データに基づき前記被測定流体中の粒子の粒径情報及び/又は濁度情報を求める第三工程と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る製紙用薬剤の効果監視方法であって、
前記抄紙工程水として前記薬剤の添加前の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と、
前記抄紙工程水として前記薬剤の添加後の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と
を比較することにより、前記薬剤添加前後の比較データを得る第四工程とを有する製紙用薬剤の効果監視方法。
In the method of monitoring the effect of the papermaking chemicals added to the papermaking process water,
A first step of irradiating the fluid to be measured with amplitude-modulated (AM) laser light having a predetermined frequency (hereinafter referred to as “modulation frequency”), using papermaking process water or diluted water thereof as a fluid to be measured;
A second step of receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit to obtain scattered light intensity data;
Based on said scattered light intensity data observed including a third step of obtaining a particle size information and / or turbidity information of particles in the fluid to be measured,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. A method for monitoring the effect of a papermaking drug to obtain the scattered light intensity data by detecting a signal intensity of a value ,
Using the papermaking process water before the addition of the drug as the papermaking process water, particle size information and / or turbidity information obtained through the first to third processes,
By using the papermaking process water after the addition of the drug as the papermaking process water, comparing the particle size information and / or turbidity information obtained through the first to third processes, before and after the drug addition And a fourth step of obtaining the comparison data.
抄紙工程水への製紙用薬剤の注入量を制御する方法において、
抄紙工程水もしくはその希釈水を被測定流体として、該被測定流体に、所定の周波数(以下「変調周波数」と称す。)に振幅変調(AM)したレーザ光を照射する第一工程と、
該被測定流体中の粒子により散乱された散乱光を光電変換回路で受光して散乱光強度データを得る第二工程と、
該散乱光強度データに基づき前記被測定流体中の粒子の粒径情報及び/又は濁度情報を求める第三工程と
を含み、
該光電変換回路は、フォトデテクター、バンドパスフィルタ及び増幅器とからなり、フォトデテクターによって散乱光の光信号を電気信号に変換し、バンドパスフィルタで自然光と区別するために電気信号から前記変調周波数成分の信号を取り出し、増幅器において増幅した後、検波回路にてAM検波を行ってその検波後の信号を最低値検出回路に出力し、最低値検出回路は、入力する該AM検波後の信号から最低値の信号強度を検出して前記散乱光強度データを得る製紙用薬剤の注入量制御方法であって、
前記抄紙工程水として前記薬剤の添加前の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と、
前記抄紙工程水として前記薬剤の添加後の抄紙工程水を使用して、前記第一〜第三工程を経て得た粒径情報及び/又は濁度情報と
を比較することにより、前記薬剤添加前後の比較データを得る第四工程と、
前記比較データに基づき前記製紙用薬剤の注入量を制御する第五工程と
を有する製紙用薬剤の注入量制御方法。
In the method of controlling the amount of papermaking chemicals injected into the papermaking process water,
A first step of irradiating the fluid to be measured with amplitude-modulated (AM) laser light having a predetermined frequency (hereinafter referred to as “modulation frequency”), using papermaking process water or diluted water thereof as a fluid to be measured;
A second step of receiving scattered light scattered by particles in the fluid to be measured by a photoelectric conversion circuit to obtain scattered light intensity data;
Based on said scattered light intensity data observed including a third step of obtaining a particle size information and / or turbidity information of particles in the fluid to be measured,
The photoelectric conversion circuit includes a photo detector, a band pass filter, and an amplifier, converts the optical signal of the scattered light into an electric signal by the photo detector, and distinguishes it from natural light by the band pass filter. After being amplified by the amplifier, AM detection is performed by the detection circuit, and the detected signal is output to the minimum value detection circuit. The minimum value detection circuit receives the minimum signal from the input signal after AM detection. A method for controlling the amount of injection of a papermaking drug to obtain the scattered light intensity data by detecting a signal intensity of a value ,
Using the papermaking process water before the addition of the drug as the papermaking process water, particle size information and / or turbidity information obtained through the first to third processes,
By using the papermaking process water after the addition of the drug as the papermaking process water, comparing the particle size information and / or turbidity information obtained through the first to third processes, before and after the drug addition A fourth step of obtaining comparison data of
And a fifth step of controlling the injection amount of the papermaking drug based on the comparison data.
JP2006091459A 2006-03-29 2006-03-29 Effect monitoring method and injection amount control method for papermaking chemicals Expired - Fee Related JP4915120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091459A JP4915120B2 (en) 2006-03-29 2006-03-29 Effect monitoring method and injection amount control method for papermaking chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091459A JP4915120B2 (en) 2006-03-29 2006-03-29 Effect monitoring method and injection amount control method for papermaking chemicals

Publications (2)

Publication Number Publication Date
JP2007262628A JP2007262628A (en) 2007-10-11
JP4915120B2 true JP4915120B2 (en) 2012-04-11

Family

ID=38635879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091459A Expired - Fee Related JP4915120B2 (en) 2006-03-29 2006-03-29 Effect monitoring method and injection amount control method for papermaking chemicals

Country Status (1)

Country Link
JP (1) JP4915120B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884644A (en) * 2012-12-21 2014-06-25 朱勇强 Determination method of colloid reservation index on papermaking net
JP2017191011A (en) * 2016-04-13 2017-10-19 株式会社村田製作所 Powder evaluation method
JP7452583B2 (en) 2022-07-22 2024-03-19 栗田工業株式会社 Method for determining agglomeration state and agglomeration treatment method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183010A (en) * 1984-03-02 1985-09-18 Toray Ind Inc Preparation of semi-permeable composite membrane having high permeability
JP2823136B2 (en) * 1989-07-10 1998-11-11 フラッダ,ゲルト,ハインリッヒ Measuring head
JP3205450B2 (en) * 1994-01-17 2001-09-04 富士電機株式会社 Automatic injection rate determination device and automatic determination method
JP3635816B2 (en) * 1996-10-22 2005-04-06 栗田工業株式会社 White water recovery device
JP2000185276A (en) * 1998-10-13 2000-07-04 Katayama Chem Works Co Ltd Water monitoring member and water monitor apparatus using the same and filter device of water monitoring member
JP4605327B2 (en) * 2000-12-25 2011-01-05 栗田工業株式会社 Aggregation monitoring device
JP2002253905A (en) * 2001-03-05 2002-09-10 Kurita Water Ind Ltd Coagulation monitoring system
JP4396102B2 (en) * 2003-01-31 2010-01-13 星光Pmc株式会社 Coagulant and paper
JP4400721B2 (en) * 2004-01-09 2010-01-20 栗田工業株式会社 Water treatment system
JP4654908B2 (en) * 2005-07-28 2011-03-23 栗田工業株式会社 Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection

Also Published As

Publication number Publication date
JP2007262628A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP2007263856A (en) Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP4654908B2 (en) Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug
TWI565939B (en) Method and apparatus for monitoring macrostickies in a recycling and paper or tissue making process involving recycled pulp
JP4779762B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
AU2010226846B2 (en) Use of hydrophobic dyes to monitor hydrophobic contaminants in a papermaking process
JP6281534B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
JP4915120B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
JP4915109B2 (en) Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount
US20080151227A1 (en) Method for Determining a Sizing Agent Concentration, Particle Size and a Sizing Agent Particle Size Distribution in a Peper Pulp
CN106471355B (en) It is aggregated monitoring arrangement, agglutination monitoring method and agglutination system
WO2018110043A1 (en) Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system
US20100236732A1 (en) Use of fluorescence to monitor hydrophobic contaminants in a papermaking process
NL1013701C2 (en) Performance determination of a filter.
JP4605327B2 (en) Aggregation monitoring device
JP2017072404A (en) Flocculation monitoring device, flocculation monitoring method, flocculation treatment system
JP4400721B2 (en) Water treatment system
JP2003161688A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP6881519B2 (en) Water treatment equipment and water treatment method
US20220326685A1 (en) Estimating risk level in an aqueous process
JP2004170298A (en) Probe and detector for detecting particle condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees