JP2017072404A - Flocculation monitoring device, flocculation monitoring method, flocculation treatment system - Google Patents

Flocculation monitoring device, flocculation monitoring method, flocculation treatment system Download PDF

Info

Publication number
JP2017072404A
JP2017072404A JP2015197789A JP2015197789A JP2017072404A JP 2017072404 A JP2017072404 A JP 2017072404A JP 2015197789 A JP2015197789 A JP 2015197789A JP 2015197789 A JP2015197789 A JP 2015197789A JP 2017072404 A JP2017072404 A JP 2017072404A
Authority
JP
Japan
Prior art keywords
aggregation
light
water
treated
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197789A
Other languages
Japanese (ja)
Other versions
JP6606961B2 (en
Inventor
長尾 信明
Nobuaki Nagao
信明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015197789A priority Critical patent/JP6606961B2/en
Publication of JP2017072404A publication Critical patent/JP2017072404A/en
Application granted granted Critical
Publication of JP6606961B2 publication Critical patent/JP6606961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flocculation monitoring device and a flocculation monitoring method which can measure a flocculation state in a flocculation treatment of treated water with high concentration of suspended solids (SS).SOLUTION: A measurement light irradiation part (laser beam irradiation part 10) irradiates a measurement area (18) of treated water (8) with measurement light, and a scattered light reception part (laser beam reception part 12) receives light scattered by particles (flocs 70) of the treated water, which exist in the measurement area. A measurement value calculation part (calculator 48) obtains an index of a flocculation state of the treated water from a change of a light reception level (scattered light level) of the scattered light in each flocculation treatment, which can be acquired by the scattered light reception part.SELECTED DRAWING: Figure 1

Description

本発明はたとえば、浄水、工業用水、排水などの被処理水の凝集処理のモニタリング技術およびその利用技術に関する。
The present invention relates to, for example, a monitoring technique for aggregating treatment of water to be treated such as purified water, industrial water, and wastewater, and a technique for using the same.

浄水、工業用水、排水などの被処理水の凝集処理ではたとえば、無機凝集剤または有機凝集剤などによって被処理水中のSS(Suspended Solid :懸濁物質)を凝集処理した後に、沈殿分離、加圧浮上分離、遠心分離、砂ろ過、膜分離などの固液分離が行われる。SSの凝集状態はpH、凝集剤薬注量、攪拌条件などで変動し、適切な条件下で凝集処理を行わなければ、被処理水の水質悪化を招き、次工程の固液分離処理に悪影響を及ぼすことがある。   In the flocculation treatment of treated water such as purified water, industrial water, and wastewater, for example, SS (Suspended Solid) in the treated water is flocculated by inorganic flocculant or organic flocculant, and then separated by precipitation and pressurized. Solid-liquid separation such as levitation separation, centrifugation, sand filtration, membrane separation is performed. The SS agglomeration state varies depending on pH, coagulant dosage, stirring conditions, etc. If the agglomeration treatment is not performed under appropriate conditions, the quality of the water to be treated will be deteriorated and the solid-liquid separation treatment in the next step will be adversely affected May affect.

このような凝集処理には室内試験で凝集条件を設定する方法があるが、実際の凝集処理では凝集条件の設定に時間を要すると、被処理水の水質が変動するため、SSの凝集状態を正確に把握できない場合がある。そのためpH、凝集剤薬注量、攪拌条件などの最適な凝集条件を設定するには凝集処理中の被処理水の処理状態をリアルタイムで監視し、SSの凝集状態をモニタリングすることが重要である。   In such agglomeration treatment, there is a method of setting agglomeration conditions in laboratory tests. However, in actual agglomeration treatment, if it takes time to set the agglomeration conditions, the quality of the water to be treated fluctuates. There are cases where it cannot be accurately grasped. Therefore, in order to set the optimum aggregation conditions such as pH, coagulant dosage, and stirring conditions, it is important to monitor the treatment state of the treated water during the aggregation process in real time and monitor the SS aggregation state. .

この凝集モニタリングに関し、被処理水にレーザ光を照射して被処理水中の粒子による散乱光を受光し、その受光信号にAM(Amplitude Modulation:振幅変調)検波を施した後、信号強度の最低値を求め、この最低値から凝集剤薬注量を求めることが知られている(たとえば、特許文献1)。この凝集モニタリングでは、散乱光の信号強度の最低値を求めることで、被処理水中の凝集物による散乱光から未凝集の懸濁物による散乱光を区別して検出している。   Regarding this coagulation monitoring, the treated water is irradiated with laser light to receive the scattered light from the particles in the treated water, and AM (Amplitude Modulation) detection is performed on the received light signal, and then the minimum value of the signal intensity It is known that the flocculant dosage is calculated from this minimum value (for example, Patent Document 1). In this aggregation monitoring, the minimum value of the signal intensity of the scattered light is obtained, and the scattered light from the unaggregated suspension is detected from the scattered light from the aggregate in the water to be treated.

また、この凝集モニタリングに用いられるレーザ光について、レーザダイオードを間欠的に駆動することにより、所定の時間間隔で発光するレーザ光を用いることが知られている(たとえば、特許文献2)。この発光時間を短縮する発光形態によって、レーザ発光素子の使用時間を延長している。
As for the laser light used for the aggregation monitoring, it is known to use laser light that emits light at predetermined time intervals by intermittently driving a laser diode (for example, Patent Document 2). The use time of the laser light emitting element is extended by the light emission mode for shortening the light emission time.

特開2002−195947号公報JP 2002-195947 A 特開2005−241338号公報JP 2005-241338 A

ところで、被処理水の凝集処理では、たとえば含有するSSの濃度が低い場合、凝集したフロック(floc)同士の隙間にある、フロックに取り込まれていない汚泥濃度を計測し、この計測値に基づいて凝集剤の薬注量を制御する薬注システムが用いられている。この濃度計測では、被処理水の計測領域にレーザ光を照射し、計測領域からの散乱光を受光して散乱光を光電変換した信号レベルから未凝集のSS濃度を表す計測値を得ている。   By the way, in the agglomeration treatment of the water to be treated, for example, when the concentration of SS contained is low, the concentration of sludge that is not taken into the flocs in the gap between the agglomerated flocs (floc) is measured, and based on this measured value A chemical injection system for controlling the chemical injection amount of the flocculant is used. In this concentration measurement, laser light is irradiated to the measurement area of the water to be treated, the scattered light from the measurement area is received, and the measurement value representing the unaggregated SS concentration is obtained from the signal level obtained by photoelectric conversion of the scattered light. .

また、被処理水のSS濃度が中濃度の場合の凝縮処理では、たとえばフロックが計測領域に常時存在するためにSS濃度の計測が困難となる場合があるが、計測領域に対するフロックの出入りにより生じる検出値を参照して凝集指標を算出する手法などがとられている。   Further, in the condensing process in the case where the SS concentration of the water to be treated is medium, for example, it may be difficult to measure the SS concentration because flocs are always present in the measurement region. A technique of calculating an aggregation index with reference to a detection value is used.

しかしながら薬注による凝集処理システムには適用する汚泥濃度に限界があり、たとえば余剰汚泥が含まれるなど被処理水のSS濃度が非常に高い場合、被処理水中にレーザ光を発しても、散乱光が汚泥によって遮光され受光できない状態となる。すなわち、計測領域に向けて発光したレーザ光は、発光面から計測領域までの空間に存在するフロックや汚泥によって減衰するほか、計測領域から受光面までの領域に存在するフロックや汚泥によっても遮光されてしまう。これにより散乱光が受光部に届く機会が極端に減ってしまうため、SSの濃度を把握できず、凝集状態を判断するための指標を算出できないという課題がある。そしてこの指標が算出できなければ、適切な凝集剤の注入量を決定できないという課題もある。   However, there is a limit to the sludge concentration to be applied to the agglomeration treatment system by chemical injection. For example, if the SS concentration of water to be treated is very high, for example, excessive sludge is contained, even if laser light is emitted into the water to be treated, scattered light Is blocked by sludge and cannot receive light. That is, laser light emitted toward the measurement area is attenuated by flocs and sludge existing in the space from the light emitting surface to the measurement area, and is also shielded by flocs and sludge existing in the area from the measurement area to the light receiving surface. End up. As a result, the chance that the scattered light reaches the light receiving portion is extremely reduced, so that there is a problem that the concentration of SS cannot be grasped and an index for judging the aggregation state cannot be calculated. If this index cannot be calculated, there is a problem that an appropriate injection amount of the flocculant cannot be determined.

斯かる課題について、特許文献1、2にはその開示や示唆はなく、それを解決する構成等についての開示や示唆もない。   With respect to such a problem, Patent Documents 1 and 2 do not disclose or suggest the problem, and do not disclose or suggest a configuration for solving the problem.

そこで、本発明の目的は上記課題に鑑み、SS濃度が高い被処理水の凝集処理において、凝集状態を計測できる凝集モニタリング装置または凝集モニタリング方法を提供することにある。   Then, the objective of this invention is providing the aggregation monitoring apparatus or the aggregation monitoring method which can measure an aggregation state in the aggregation process of the to-be-processed water with high SS density | concentration in view of the said subject.

また、本発明の他の目的は、上記の凝集モニタリング装置または凝集モニタリング方法を用いることにより、散乱光が受光し難い被処理水において、薬注制御を行うことができる凝集システムを実現することにある。
Another object of the present invention is to realize an agglomeration system that can perform chemical injection control in treated water that is difficult to receive scattered light by using the above-described agglomeration monitoring device or agglomeration monitoring method. is there.

上記目的を達成するため、本発明の凝集モニタリング装置の一側面によれば、凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、計測光を被処理水の計測領域に照射する計測光照射部と、前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、前記散乱光受光部に得られる凝集処理毎の前記散乱光の受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算部とを備えればよい。   In order to achieve the above object, according to one aspect of the coagulation monitoring apparatus of the present invention, the coagulation monitoring apparatus monitors the treatment state of the treated water to be coagulated, and the measurement light is applied to the measurement area of the treated water. A measurement light irradiating unit for irradiating; a scattered light receiving unit for receiving scattered light from particles of the water to be treated in the measurement region; and a received light level of the scattered light for each aggregation process obtained in the scattered light receiving unit. What is necessary is just to provide the measured value calculating part which calculates | requires the parameter | index of the aggregation state of the said to-be-processed water from a change.

上記凝集モニタリング装置において、前記計測値演算部は、受光した前記散乱光の受光信号の波高値と、所定値以上の波高値となる前記受光信号の出現数を用いて前記受光レベルの変化を求め、前記被処理水の凝集指標を求めてもよい。   In the aggregation monitoring device, the measurement value calculation unit obtains a change in the light reception level using a peak value of the received light signal of the scattered light and the number of appearances of the received light signal having a peak value equal to or greater than a predetermined value. The aggregation index of the water to be treated may be obtained.

上記凝集モニタリング装置において、前記計測値演算部は、前記受光信号の波高値を規定する第1の閾値と、該第1の閾値を満たす波高値の出現数を規定する第2の閾値を設定し、前記第1の閾値および前記第2の閾値に基づいて、前記被処理水の凝集状態を判断してもよい。   In the aggregation monitoring apparatus, the measurement value calculation unit sets a first threshold value that defines a peak value of the received light signal and a second threshold value that defines the number of appearance of the peak value that satisfies the first threshold value. The aggregation state of the water to be treated may be determined based on the first threshold value and the second threshold value.

上記凝集モニタリング装置において、前記被処理水は、前記凝集処理の開始時に、前記散乱光受光部が前記散乱光を受光できない状態または、前記受光レベルが所定レベル以下の状態であってもよい。   In the aggregation monitoring device, the water to be treated may be in a state in which the scattered light receiving unit cannot receive the scattered light or in a state in which the received light level is a predetermined level or less at the start of the aggregation treatment.

上記目的を達成するため、本発明の凝集モニタリング方法の一側面によれば、凝集処理される被処理水の処理状態を監視する凝集モニタリング方法であって、計測光を被処理水の計測領域に照射する計測光照射工程と、前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光工程と、受光した前記散乱光による受光信号の受光レベルの変化を計測する工程と、凝集処理毎の前記受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算工程とを含んでよい。   In order to achieve the above object, according to one aspect of the coagulation monitoring method of the present invention, the coagulation monitoring method monitors the treatment state of the water to be treated to be coagulated. A measuring light irradiation step for irradiating; a scattered light receiving step for receiving scattered light due to particles of the water to be treated in the measurement region; and a step for measuring a change in a received light level of a received light signal due to the received scattered light; A measurement value calculation step for obtaining an index of the aggregation state of the water to be treated from the change in the light receiving level for each aggregation treatment.

上記目的を達成するため、本発明の凝集システムの一側面によれば、被処理水の凝集処理を行う凝集処理システムであって、前記被処理水を貯める被処理水槽と、前記被処理水に対する凝集状態を監視する凝集モニタリング装置と、前記被処理水に対する前記凝集モニタリング装置の監視結果に基づいて薬剤を注入する薬注手段とを備え、前記凝集モニタリング装置は、凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、計測光を被処理水の計測領域に照射する計測光照射部と、前記計測領域にある被処理水の粒子による散乱光を受光する散乱光受光部と、前記散乱光受光部に得られる凝集処理毎の受光信号の受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算部とを含み、前記凝集状態の指標に基づいて、前記薬注手段が前記被処理水槽に薬剤の注入を制御すればよい。
In order to achieve the above object, according to one aspect of the flocculation system of the present invention, there is provided a flocculation treatment system that performs flocculation treatment of water to be treated. A coagulation monitoring device for monitoring a coagulation state; and a chemical injection means for injecting a drug based on a monitoring result of the coagulation monitoring device with respect to the water to be treated. A coagulation monitoring device for monitoring a processing state, a measurement light irradiating unit for irradiating measurement water with measurement light, and a scattered light receiving unit for receiving scattered light from particles of the water to be processed in the measurement region And a measurement value calculation unit for obtaining an indicator of the aggregation state of the water to be treated from a change in the light reception level of the light reception signal for each aggregation process obtained in the scattered light receiving unit, Based on the target, the chemical feed means may control the injection of the drug into the treated water tank.

本発明によれば、次のいずれかの効果が得られる。   According to the present invention, any of the following effects can be obtained.

<凝集モニタリング装置または凝集モニタリング方法>   <Aggregation monitoring device or aggregation monitoring method>

(1)SS濃度が高い場合であっても、散乱光の受光レベルの変化に基づいて凝集の進行状態を把握することができる。   (1) Even when the SS concentration is high, the progress of aggregation can be grasped based on the change in the light receiving level of scattered light.

(2) 凝集中の被処理水の処理状態をリアルタイムで把握することができる。これにより、その処理状態に応じた凝集剤の薬注量を選択することが可能となる。   (2) It is possible to grasp the treatment state of the water to be treated during flocculation in real time. Thereby, it becomes possible to select the dosage of the flocculant according to the processing state.

(3) 所定値以上の散乱光の波高値およびその発生回数を散乱光の受光レベルとして判断することで処理槽内の平均的な凝集状態を把握でき、凝集処理の安定的な制御を行うことができる。   (3) By determining the peak value of scattered light above the specified value and the number of occurrences as the received light level of the scattered light, the average aggregation state in the treatment tank can be grasped, and stable control of the aggregation process is performed. Can do.

<凝集システム>   <Aggregation system>

(1) SS濃度が高い場合であっても、凝集処理中の被処理水の処理状態をリアルタイムで把握でき、これに基づき、被処理水の凝集条件や凝集剤の薬注量を求めることができる。   (1) Even if the SS concentration is high, the treatment state of the water to be treated during the coagulation treatment can be grasped in real time, and based on this, the coagulation conditions of the water to be treated and the dosage of the coagulant can be obtained. it can.

(2) 受光レベルの変化に応じて凝集の進行によるフロックの成長状態を想定し、その成長状態に応じて薬注の制御が行えるので、過剰な薬注によるコストの抑制などが図れる。   (2) Since the state of floc growth due to the progress of agglomeration according to the change in the light reception level is assumed and the drug injection can be controlled according to the growth state, the cost can be reduced by excessive drug injection.

そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.

第1の実施の形態に係る凝集モニタリング装置の一例を示すブロック図である。It is a block diagram which shows an example of the aggregation monitoring apparatus which concerns on 1st Embodiment. 演算回路の一例を示すブロック図である。It is a block diagram which shows an example of an arithmetic circuit. 被処理水中のフロックの状態例を示す図である。It is a figure which shows the example of a state of the flock in to-be-processed water. フロックの成長に応じた散乱光レベルの検波波形の一例を示す図である。It is a figure which shows an example of the detection waveform of the scattered light level according to the growth of floc. フロックの成長に応じた散乱光レベルの検波波形の一例を示す図である。It is a figure which shows an example of the detection waveform of the scattered light level according to the growth of floc. フロックの成長に応じた散乱光レベルの検波波形の一例を示す図である。It is a figure which shows an example of the detection waveform of the scattered light level according to the growth of floc. 凝集モニタリングの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of aggregation monitoring. 第2の実施の形態に係る凝集システムの一例を示す図である。It is a figure which shows an example of the aggregation system which concerns on 2nd Embodiment. 凝集処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of an aggregation process. 凝集モニタリング装置の他の構成例を示す図である。It is a figure which shows the other structural example of an aggregation monitoring apparatus.

〔第1の実施の形態〕 [First Embodiment]

図1は、第1の実施の形態に係る凝集モニタリング装置を示している。図1に示す構成は一例であり、斯かる構成に本発明の凝集モニタリング装置、凝集モニタリング方法または凝集システムが限定されるものではない。   FIG. 1 shows an aggregation monitoring device according to the first embodiment. The configuration illustrated in FIG. 1 is an example, and the aggregation monitoring device, the aggregation monitoring method, or the aggregation system of the present invention is not limited to such a configuration.

この凝集モニタリング装置2は、被処理水中のSSの凝集状態を判定する装置であって、センサ部4を備える。被処理水の凝集処理には、被処理水の浄化を目的とする凝集沈殿工程のほか、被処理水に含まれる余剰汚泥の脱水を目的とする凝集工程も含まれる。このセンサ部4は、たとえば凝集槽6に溜められている被処理水8に水没状態に維持するほか、凝集槽6の底部に沈殿した汚泥中に投入される。凝集槽6は被処理水8を溜める被処理水槽の一例であり、被処理水8の凝集処理を行う機能を兼ね備えている。この凝集槽6は、たとえば沈殿池(シックナー)などであり、被処理水8が貯められるとともに底部に高濃度の汚泥が沈殿している。   The aggregation monitoring device 2 is a device that determines the aggregation state of SS in the water to be treated, and includes a sensor unit 4. The coagulation treatment of the water to be treated includes a coagulation process for the purpose of dehydrating excess sludge contained in the water to be treated, in addition to the coagulation sedimentation process for purifying the water to be treated. This sensor unit 4 is, for example, maintained in the water 8 to be treated stored in the coagulation tank 6 and submerged in the sludge that has settled at the bottom of the coagulation tank 6. The coagulation tank 6 is an example of the water tank to be treated for storing the water to be treated 8, and has a function of performing the coagulation treatment of the water to be treated 8. The coagulation tank 6 is, for example, a sedimentation basin (thickener) or the like, in which treated water 8 is stored, and high-concentration sludge is deposited at the bottom.

センサ部4にはレーザ光照射部10および散乱光受光部12が備えられる。レーザ光照射部10は、凝集のモニタリングに用いる計測光を照射する計測光照射部の一例であり、計測光の一例であるレーザ光を導く第1の光ファイバ14−1の出光端部で形成される。散乱光受光部12は、散乱光を導く第2の光ファイバ14−2の入光端部で形成される。   The sensor unit 4 includes a laser light irradiation unit 10 and a scattered light receiving unit 12. The laser light irradiation unit 10 is an example of a measurement light irradiation unit that irradiates measurement light used for aggregation monitoring, and is formed at a light exit end of a first optical fiber 14-1 that guides laser light, which is an example of measurement light. Is done. The scattered light receiving unit 12 is formed at the light incident end of the second optical fiber 14-2 that guides the scattered light.

レーザ光照射部10と散乱光受光部12の間には遮蔽部材16を介在させて計測領域18が設定されている。この計測領域18にはレーザ光発光部20で発光したレーザ光がレーザ光照射部10から照射される。この計測領域18はレーザ光の被処理水8における照射領域の一例である。また、レーザ光照射部10のレーザ発光面側から計測領域18までの間は、発光領域としてもよい。さらに散乱光受光部12から計測領域18で発生した散乱光が受光面に到達するまでの領域は受光領域としてもよい。この計測領域18にレーザ光が照射されると、被処理水8中の粒子によりレーザ光が散乱し、散乱光を生じる。したがって、散乱光受光部12は、この散乱光を計測領域18から受光する。この場合、計測領域18にフロックが存在すれば、そのフロックが散乱光に影響を与える。   A measurement region 18 is set between the laser beam irradiation unit 10 and the scattered light receiving unit 12 with a shielding member 16 interposed. The measurement region 18 is irradiated with laser light emitted from the laser light emitting unit 20 from the laser light irradiation unit 10. This measurement region 18 is an example of an irradiation region of the laser water 8 to be treated. Moreover, it is good also as a light emission area | region from the laser light emission surface side of the laser beam irradiation part 10 to the measurement area | region 18. FIG. Furthermore, a region from the scattered light receiving unit 12 until the scattered light generated in the measurement region 18 reaches the light receiving surface may be a light receiving region. When this measurement region 18 is irradiated with laser light, the laser light is scattered by particles in the water 8 to be treated, and scattered light is generated. Therefore, the scattered light receiving unit 12 receives this scattered light from the measurement region 18. In this case, if a floc exists in the measurement region 18, the floc affects the scattered light.

遮蔽部材16は各光ファイバ14−1、14−2の固定および支持手段であるとともに、計測領域18に対する自然光の遮断手段である。この遮蔽部材16では一例として、光ファイバ14−1を固定、支持する第1の支持部22−1と、光ファイバ14−2を支持する第2の支持部22−2とが一定角度を持つ頂角部24を備える。この頂角部24の角度はたとえば、90度が好ましいが、それ以外の角度であってもよい。この頂角部24を計測領域18に対向させるとともに、レーザ光照射部10と散乱光受光部12との間に介在させている。これにより、レーザ光照射部10からのレーザ光が散乱光受光部12に入射するのを回避でき、散乱光受光部12には計測領域18にある粒子側の散乱光を受光できる。   The shielding member 16 is a means for fixing and supporting the optical fibers 14-1 and 14-2 and a means for shielding natural light from the measurement region 18. In this shielding member 16, as an example, the first support portion 22-1 that fixes and supports the optical fiber 14-1 and the second support portion 22-2 that supports the optical fiber 14-2 have a certain angle. A vertex 24 is provided. For example, the angle of the apex portion 24 is preferably 90 degrees, but may be other angles. The apex portion 24 is opposed to the measurement region 18 and is interposed between the laser light irradiation unit 10 and the scattered light receiving unit 12. Thereby, it is possible to prevent the laser light from the laser light irradiation unit 10 from entering the scattered light receiving unit 12, and the scattered light receiving unit 12 can receive the scattered light on the particle side in the measurement region 18.

レーザ光発光部20には、たとえばレーザ発光素子26および発光回路28が備えられる。レーザ発光素子26はレーザ光を発光するレーザ光源の一例である。このレーザ光源にはレーザダイオードが好ましいが、レーザ光が得られる素子または装置であればよい。なお、凝集のモニタリングに用いる計測光はレーザ光に限定されるものではない。粒子に当たり散乱光を生じさせる光であれば凝集のモニタリングに用いることができ、レーザ光のように指向性に優れた計測光を用いることで、計測領域18に効率的に光を照射することができる。このような計測光を用いる場合には、計測光を発光する発光素子およびこの発光素子を駆動する発光回路を備える発光部を用いればよい。計測光にはたとえば、発光ダイオードを用いてもよい。   The laser light emitting unit 20 includes, for example, a laser light emitting element 26 and a light emitting circuit 28. The laser light emitting element 26 is an example of a laser light source that emits laser light. The laser light source is preferably a laser diode, but may be any element or device that can obtain laser light. Note that the measurement light used for monitoring aggregation is not limited to laser light. Any light that strikes particles and generates scattered light can be used for monitoring aggregation, and the measurement region 18 can be efficiently irradiated with light by using measurement light having excellent directivity such as laser light. it can. In the case of using such measurement light, a light emitting unit including a light emitting element that emits measurement light and a light emitting circuit that drives the light emitting element may be used. For example, a light emitting diode may be used as the measurement light.

発光回路28はレーザ発光素子26の駆動手段の一例である。この発光回路28には一例として、AM(Amplitude Modulation:振幅変調)変調回路30、タイミング回路32およびファンクションジェネレータ34が備えられる。AM変調回路30は、タイミング信号Tsに所定の周波数fを持つ変調信号Msで振幅変調(AM変調)を行い、所定の周波数fの振幅を持ちかつ所定の時間間隔で断続する発光信号Drを出力する。この発光信号Drを受け、レーザ発光素子26は変調信号Msで変化しかつタイミング信号Tsによる所定の時間間隔で発光、非発光を繰り返す。これにより、凝集モニタリングのためのレーザ発光素子26の発光時間が短縮される。レーザ発光素子26に発光寿命が数千時間と短いレーザダイオードなどの発光素子を用いた場合であっても、連続点灯による劣化を防止できるので、使用時間を延長できる。   The light emitting circuit 28 is an example of a driving unit for the laser light emitting element 26. As an example, the light emitting circuit 28 includes an AM (Amplitude Modulation) modulation circuit 30, a timing circuit 32, and a function generator 34. The AM modulation circuit 30 performs amplitude modulation (AM modulation) on the timing signal Ts with a modulation signal Ms having a predetermined frequency f, and outputs a light emission signal Dr having an amplitude of the predetermined frequency f and intermittent at predetermined time intervals. To do. In response to this light emission signal Dr, the laser light emitting element 26 changes with the modulation signal Ms and repeats light emission and non-light emission at a predetermined time interval according to the timing signal Ts. Thereby, the light emission time of the laser light emitting element 26 for aggregation monitoring is shortened. Even when a light emitting element such as a laser diode having a short light emission lifetime of several thousand hours is used for the laser light emitting element 26, deterioration due to continuous lighting can be prevented, so that the usage time can be extended.

タイミング回路32はタイミング信号Tsを発生する。このタイミング信号Tsはたとえば、一定周期で断続するパルス信号であればよい。このタイミング信号Tsは、被処理水8の凝集に関わる凝集指標の演算処理の同期情報として用いられる。つまり、このタイミング信号Tsは、レーザ発光素子26の発光と凝集指標の演算処理とを同期させている。   The timing circuit 32 generates a timing signal Ts. The timing signal Ts may be, for example, a pulse signal that is intermittent at a constant cycle. This timing signal Ts is used as synchronization information for the calculation processing of the aggregation index related to the aggregation of the water 8 to be treated. That is, the timing signal Ts synchronizes the light emission of the laser light emitting element 26 and the calculation processing of the aggregation index.

ファンクションジェネレータ34は変調信号Msを発振する発振器の一例である。この変調信号Msは、レーザ光に対する自然光の影響を回避可能な周波数fが好ましくたとえば、f=70〜150〔kHz〕を用いればよい。信号形態は同一振幅の周期信号であればよく、波形形態は正弦波、三角波、矩形波などのいずれでもよい。   The function generator 34 is an example of an oscillator that oscillates the modulation signal Ms. The modulation signal Ms preferably has a frequency f that can avoid the influence of natural light on the laser light. For example, f = 70 to 150 [kHz] may be used. The signal form may be a periodic signal having the same amplitude, and the waveform form may be any of a sine wave, a triangular wave, a rectangular wave, and the like.

このようなレーザ光発光部20で得られるレーザ光が計測領域18に照射されると、この計測領域18に存在する微小コロイド粒子で散乱した散乱光が散乱光受光部12に入射する。この場合、微小コロイド粒子は未凝集のコロイド粒子である。この微小コロイド粒子により得られる散乱光は、レーザ光照射部10から照射されるレーザ光と同様の周波数を持ち、一定の周期で間欠する態様となる。また、計測領域18に存在するフロックで反射した反射光が散乱光受光部12に入射する。   When the measurement region 18 is irradiated with the laser light obtained by the laser light emitting unit 20, the scattered light scattered by the microcolloid particles existing in the measurement region 18 enters the scattered light receiving unit 12. In this case, the fine colloidal particles are unaggregated colloidal particles. The scattered light obtained by the micro colloidal particles has a frequency similar to that of the laser light emitted from the laser light irradiation unit 10 and is intermittent in a constant cycle. Further, the reflected light reflected by the floc existing in the measurement region 18 enters the scattered light receiving unit 12.

またSS濃度が高い被処理水8では、計測領域18に加えて発光領域や受光領域側に汚泥や凝集したフロックが存在する。この場合、レーザ光発光部20から照射されたレーザ光が高濃度のSSやフロックによって減衰し、または遮光されることになる。この場合、計測領域18に存在する未凝集のコロイド粒子により散乱した散乱光やフロックで反射した反射光は、散乱光受光部12側に届く機会が極端に減少する。   In the treated water 8 having a high SS concentration, in addition to the measurement region 18, sludge and aggregated floc exist on the light emitting region and the light receiving region side. In this case, the laser light emitted from the laser light emitting unit 20 is attenuated or shielded by high concentration SS or floc. In this case, the chance that the scattered light scattered by the non-aggregated colloidal particles present in the measurement region 18 and the reflected light reflected by the floc will reach the scattered light receiving unit 12 side extremely.

散乱光受光部12の受光出力は、光ファイバ14−2により信号処理部36に導かれる。この信号処理部36は光電変換、ノイズ成分の除去、散乱光の強度を表すレベル信号、このレベル信号から散乱光の強度を表す計測値を取り出などの処理を行う。この信号処理部36には一例として、光電変換回路38および検波回路40が備えられている。   The light reception output of the scattered light receiving unit 12 is guided to the signal processing unit 36 by the optical fiber 14-2. The signal processing unit 36 performs processes such as photoelectric conversion, removal of noise components, a level signal representing the intensity of scattered light, and a measurement value representing the intensity of scattered light from the level signal. As an example, the signal processing unit 36 includes a photoelectric conversion circuit 38 and a detection circuit 40.

光電変換回路38は、フォトディテクタ42、バンドパスフィルタ44および増幅器46が備えられる。フォトディテクタ42は、光ファイバ14−2で導かれた散乱光を受け、電気信号Eiに変換する。バンドパスフィルタ44は電気信号Eiからノイズ成分をカットし、変調信号Msの信号成分を取り出す。バンドパスフィルタ44のカットオフ周波数を設定することにより、不要な変動成分を取り除き、変調信号Msの信号成分を出力する。増幅器46は、散乱光における変調信号Msの信号成分を増幅し、散乱光に応じた振幅レベルを持つ受光信号Eoを出力する。この光電変換回路38において、フォトディテクタ42に代えてフォトダイオードを用いてもよいし、バンドパスフィルタ44に代えてハイパスフィルタを用いてもよい。これらのフィルタを用いることで、自然光や照明光などの非計測光の受光により生じる直流ノイズ成分をカットすることができる。   The photoelectric conversion circuit 38 includes a photodetector 42, a band pass filter 44, and an amplifier 46. The photodetector 42 receives the scattered light guided by the optical fiber 14-2 and converts it into an electric signal Ei. The band pass filter 44 cuts a noise component from the electric signal Ei and extracts a signal component of the modulation signal Ms. By setting the cut-off frequency of the bandpass filter 44, unnecessary fluctuation components are removed and the signal component of the modulation signal Ms is output. The amplifier 46 amplifies the signal component of the modulated signal Ms in the scattered light and outputs a light reception signal Eo having an amplitude level corresponding to the scattered light. In the photoelectric conversion circuit 38, a photodiode may be used instead of the photodetector 42, or a high-pass filter may be used instead of the band-pass filter 44. By using these filters, it is possible to cut a DC noise component generated by receiving non-measurement light such as natural light or illumination light.

検波回路40は受光信号EoからAM検波(包絡線検波)により出力信号Doを検出する。この出力信号Doは、受光信号の一例であり、受光信号Eoの直流成分のレベルを表す。この出力信号Doのレベルが微小コロイド粒子を含む被処理水における粒子による散乱光レベルを表している。つまり、微小コロイド粒子以外の散乱光であるノイズ成分やフロックによる反射成分が含まれる。   The detection circuit 40 detects the output signal Do from the received light signal Eo by AM detection (envelope detection). This output signal Do is an example of a light reception signal and represents the level of the direct current component of the light reception signal Eo. The level of the output signal Do represents the level of light scattered by the particles in the water to be treated containing fine colloidal particles. That is, a noise component that is scattered light other than the fine colloidal particles and a reflection component due to flocs are included.

この検波回路40の出力は演算回路48に加えられる。この演算回路48は計測値演算部の一例であり、波高検出部50および比較部52を備えている。演算回路48は、演算回路48に入力される出力信号Doのレベル(信号強度)をメモリ部60(図2)のデータ記録部64に記録するとともに、波高検出部50により出力信号Doの計測を行う。演算回路48は、これらの計測結果を用いて被処理水の凝集レベルを判定し、この凝集レベルを表す凝集指標を出力する。凝集指標により表される凝集レベルはたとえば、「未凝集」、「凝集不足」、「現状十分」または「過剰」により表される。演算回路48はさらに、発光制御部54を備え、レーザ発光素子26の発光と凝集指標の演算処理に同期する制御信号(タイミング信号Ts)をタイミング回路32に出力する。   The output of the detection circuit 40 is applied to the arithmetic circuit 48. The calculation circuit 48 is an example of a measurement value calculation unit, and includes a wave height detection unit 50 and a comparison unit 52. The arithmetic circuit 48 records the level (signal intensity) of the output signal Do input to the arithmetic circuit 48 in the data recording unit 64 of the memory unit 60 (FIG. 2), and measures the output signal Do by the wave height detection unit 50. Do. The arithmetic circuit 48 determines the aggregation level of the water to be treated using these measurement results, and outputs an aggregation index representing the aggregation level. The aggregation level represented by the aggregation index is represented, for example, by “unaggregated”, “insufficient aggregation”, “currently sufficient”, or “excess”. The arithmetic circuit 48 further includes a light emission control unit 54, and outputs a control signal (timing signal Ts) synchronized with the light emission of the laser light emitting element 26 and the calculation processing of the aggregation index to the timing circuit 32.

波高検出部50は、受光した散乱光の波高である振幅検出、振幅計測およびピーク波形の出現数をカウントする機能を含んでいる。波高検出部50は、たとえばデータ記録部64に記録されている出力信号Doのレベルの変曲点を検出して、その変曲点のピーク値を計測する。変曲点の検出により、波高検出部50は出力信号Doの振幅の発生を検出する。つまり、波高検出部50は、出力信号Doが上昇から下降に変化する第1の変曲点および下降から上昇に変化する第2の変曲点を検出し、隣接する第1の変曲点および第2の変曲点の検出により振幅の発生を検出する。波高検出部50は、ピーク値の計測により、隣接する第1の変曲点および第2の変曲点のレベル差を求め、出力信号Doの振幅の大きさを計測する。これらの機能により波高検出部50は、出力信号Doのピーク波形の出現数を振幅の大きさ毎に計測することができる。   The wave height detection unit 50 includes a function of detecting the amplitude of the received scattered light, the amplitude measurement, and counting the number of appearances of the peak waveform. The wave height detection unit 50 detects an inflection point at the level of the output signal Do recorded in the data recording unit 64, for example, and measures the peak value of the inflection point. By detecting the inflection point, the wave height detection unit 50 detects the generation of the amplitude of the output signal Do. In other words, the wave height detection unit 50 detects the first inflection point where the output signal Do changes from rising to falling and the second inflection point where the output signal Do changes from falling to rising, and the adjacent first inflection point and Generation of amplitude is detected by detecting the second inflection point. The wave height detection unit 50 obtains a level difference between the adjacent first and second inflection points by measuring the peak value, and measures the amplitude of the output signal Do. With these functions, the wave height detection unit 50 can measure the number of appearances of the peak waveform of the output signal Do for each amplitude.

比較部52は、たとえばデータ記録部64に記録されている出力信号Doのレベルを、予め設定した閾値と比較し、閾値以上となるピーク波形の出現数をカウントする。この受光した散乱光の出力信号Doのレベル、または出力信号Doのレベルと閾値以上となる波形の出現数との組み合わせを散乱光の受光レベルとする。この閾値は、たとえば被処理水や汚泥の種類、用途、または凝集条件、添加する薬剤の種類などによって切り換えても良く、さらに、1または複数の閾値を設定すればよい。   For example, the comparison unit 52 compares the level of the output signal Do recorded in the data recording unit 64 with a preset threshold value, and counts the number of appearances of peak waveforms that are equal to or greater than the threshold value. The level of the output signal Do of the received scattered light, or the combination of the level of the output signal Do and the number of appearances of the waveform that is equal to or greater than the threshold value is set as the received light level of the scattered light. This threshold value may be switched depending on, for example, the type of water to be treated and sludge, the application, or the coagulation conditions, the type of chemical to be added, and one or more threshold values may be set.

演算回路48はたとえば、図2に示すように、マイクロプロセッサなどのコンピュータを含む回路によって実現される。この演算回路48にはアナログ・ディジタル変換器(A/D)56、プロセッサ58およびメモリ部60が備えられる。A/D56は出力信号Doをディジタル信号に変換する。A/D56の出力信号は出力信号Doのレベルをディジタル値で表し、振幅検出部50および最低値検出部52のディジタル処理に用いられる。   For example, as shown in FIG. 2, the arithmetic circuit 48 is realized by a circuit including a computer such as a microprocessor. The arithmetic circuit 48 includes an analog / digital converter (A / D) 56, a processor 58, and a memory unit 60. The A / D 56 converts the output signal Do into a digital signal. The output signal of the A / D 56 represents the level of the output signal Do as a digital value and is used for digital processing of the amplitude detector 50 and the minimum value detector 52.

プロセッサ58はメモリ部60のプログラム記憶部62にあるOS(Operating System)および凝集プログラムを実行し、既述の波高検出部50、比較部52および発光制御部54として機能する。   The processor 58 executes an OS (Operating System) and an aggregation program in the program storage unit 62 of the memory unit 60, and functions as the wave height detection unit 50, the comparison unit 52, and the light emission control unit 54 described above.

メモリ部60は記録部の一例であり、プログラム記憶部62、データ記録部64およびRAM(Random-Access Memory)66を備える。プログラム記憶部62にはプログラムとしてOSや既述の凝集プログラムなどが格納されている。データ記録部64には、出力信号Doのレベルのほか、既述のように凝集条件などに応じて設定される波高値やその出現数を規定した閾値データが記録される。RAM66は情報処理のワークエリアに用いられる。   The memory unit 60 is an example of a recording unit, and includes a program storage unit 62, a data recording unit 64, and a RAM (Random-Access Memory) 66. The program storage unit 62 stores an OS, the above-described aggregation program, and the like as programs. In addition to the level of the output signal Do, the data recording unit 64 records threshold value data that defines the peak value set according to the aggregation condition and the number of appearances as described above. The RAM 66 is used as a work area for information processing.

プロセッサ58の演算結果は表示部67に出力される。この表示部67にはたとえば、液晶ディスプレィ(LCD)が用いられる。この表示部67にはプロセッサ58の演算に用いられる計測値や、演算結果である出力信号Doの波高値の値、閾値毎の出現数のほか、判定された凝集指標などが表示される。   The calculation result of the processor 58 is output to the display unit 67. For example, a liquid crystal display (LCD) is used for the display unit 67. The display unit 67 displays the measurement value used for the calculation of the processor 58, the value of the peak value of the output signal Do as the calculation result, the number of appearances for each threshold, and the determined aggregation index.

<受光レベルの変化と凝集状態との関連について>   <Relationship between change in received light level and aggregation state>

SS濃度が高い被処理水における凝集状態と、凝集モニタリング装置2で検出した散乱光の受光レベルの変化との関連性について説明する。   The relationship between the aggregation state in the treated water having a high SS concentration and the change in the light reception level of the scattered light detected by the aggregation monitoring device 2 will be described.

図3は、被処理水または沈殿した汚泥に含まれる懸濁物質やフロックの状態例である。   FIG. 3 shows an example of the state of suspended matter and floc contained in the water to be treated or the precipitated sludge.

SS濃度が高い被処理水8や汚泥の内部には、凝集処理が十分に進んでいない場合、未凝集の懸濁物質や一定の大きさ以下のフロック70が密集状態となっている。このような凝集不足の被処理水8や汚泥では、レーザ光照射部10から照射されたレーザ光が計測領域18に達する前にフロック70に当たってしまうほか、計測領域18で散乱した光がレーザ光受光部12に入射する前に他のフロック70や汚泥に遮光される。このようにフロック70が密集状態となっている被処理水のフロック70同士の隙間について解析する。   In the treated water 8 or sludge having a high SS concentration, when the agglomeration treatment is not sufficiently advanced, unagglomerated suspended matter and floc 70 having a certain size or less are in a dense state. In the water 8 and sludge with insufficient aggregation, the laser light emitted from the laser light irradiation unit 10 hits the flock 70 before reaching the measurement region 18, and the light scattered in the measurement region 18 is received by the laser light. The light is shielded by other flocs 70 and sludge before entering the portion 12. Thus, the clearance gap between the flocs 70 of the to-be-processed water in which the flocks 70 are in a dense state is analyzed.

粒径2aのフロック70が密集した高濃度の被処理水について、たとえば近接する特定の4つのフロック70の中心同士を結んで仮想的な立方体の空間を想定し、この空間内におけるフロック70が占める割合を計算する。近接する球体によって作られる球で囲まれた空隙の割合については、たとえば次の資料を参照する。
(新潟大学工学部微粒子材料工学研究室、教授:木村勇雄、講義:「円と球の空間」http://www.gs.niigata-u.ac.jp/~kimlab/lecture/math/SpacingCirclesSpheres.html)
この立方体の内部には、立方体の辺によって分断されたフロック70を組み合わせることで、4個のフロック70が含まれていると想定できる。ここでフロック70の粒径が2aであるから、球全体の体積と立方体の体積とから球が占める割合は、約0.74となり、空間(空隙)の割合は、0.26となる。この空間の割合には、球径は影響しない。
With regard to the high-concentration treated water in which the flocs 70 having a particle diameter 2a are densely packed, for example, a virtual cubic space is assumed by connecting the centers of four adjacent specific flocs 70, and the flocs 70 occupy in this space. Calculate the percentage. For the ratio of voids surrounded by spheres created by adjacent spheres, refer to the following document, for example.
(Niigata University Faculty of Engineering, Particulate Materials Engineering Laboratory, Professor: Yukio Kimura, Lecture: “Space of Circle and Sphere” http://www.gs.niigata-u.ac.jp/~kimlab/lecture/math/SpacingCirclesSpheres.html )
It can be assumed that the inside of this cube includes four flocks 70 by combining the flocks 70 divided by the sides of the cube. Here, since the particle size of the floc 70 is 2a, the ratio of the sphere to the total volume of the sphere and the volume of the cube is about 0.74, and the ratio of the space (void) is 0.26. The sphere diameter does not affect the ratio of this space.

また想定した立方体の一辺は、対角線の長さが4aであるから、一辺の長さが、aとなる。これにより立方体における隙間の体積をVcとすると、
Vc=16×0.26=5.88a3 ・・・(1)
となる。
In addition, since one side of the assumed cube has a diagonal length of 4a, the length of one side is a. Thus, if the volume of the gap in the cube is Vc,
Vc = 16 × 0.26 = 5.88a 3 (1)
It becomes.

これにより汚泥の粒径がたとえば0.2〔mm〕から凝集剤の注入により粒径2〔mm〕まで成長したとすると、それぞれの粒径における隙間の体積は、以下のようになる。なお、この凝集剤は、被処理水中のSSを凝集させてフロック化する機能をもつものであればよく、被処理水中の汚泥の凝集と含水率の低下を図る脱水剤であってもよい。
(粒径0.2mmの場合) V0.2=0.047〔mm3〕 ・・・(2)
(粒径2mmの場合) V2 =47〔mm3〕 ・・・(3)
計測領域18とその周囲の発光領域および受光領域の合計体積がたとえば3〔mm3〕程度とすると、フロック70の成長により隙間が大きくなることで、この隙間を通じて散乱光が通過する可能性が高くなる。
As a result, assuming that the particle size of the sludge is increased from 0.2 [mm] to 2 [mm] by injecting the flocculant, the volume of the gap in each particle size is as follows. The flocculant only needs to have a function of aggregating SS in the water to be treated to form a floc, and may be a dehydrating agent for aggregating sludge in the water to be treated and reducing the water content.
(When the particle size is 0.2 mm) V 0.2 = 0.047 [mm 3 ] (2)
(When the particle size is 2 mm) V 2 = 47 [mm 3 ] (3)
If the total volume of the measurement region 18 and the surrounding light emitting region and light receiving region is, for example, about 3 [mm 3 ], the gap becomes larger due to the growth of the floc 70, so that there is a high possibility that scattered light will pass through this gap. Become.

〔フロックの成長に応じた散乱光の受光状態について〕   [Reception state of scattered light according to floc growth]

図4に示す散乱光の検出状態は、たとえば被処理水が未凝集の状態または凝集剤の添加量が少ない場合を示している。このとき、被処理水内の凝集処理が不十分であるため、散乱光受光部12において計測領域18で散乱した散乱光の受光ができず、またはその散乱光が減衰してしまい、散乱光レベルは0〔mV〕またはそれに近い値が維持される。   The detection state of the scattered light shown in FIG. 4 shows, for example, a state where the water to be treated is not aggregated or the amount of the flocculant added is small. At this time, since the coagulation treatment in the water to be treated is insufficient, the scattered light scattered by the measurement region 18 in the scattered light receiving unit 12 cannot be received, or the scattered light is attenuated, and the scattered light level is reduced. Is maintained at 0 [mV] or a value close thereto.

図5に示す散乱光の検出状態は、たとえば凝集処理が進み、フロック70が所定の大きさまで成長した場合を示しており、散乱光レベルが大きくなるとともに、受光回数が増加する。このとき成長したフロック70は、たとえばレーザ光の照射面積が大きくなることで、その表面に当たって発生する散乱光のレベルは高くなり、且つフロック70が大きくなったことでフロック70同士の隙間が拡大し、散乱光のレベルが高くなる機会が多くなる。逆に、フロック70が小さく、高密度になると、散乱光により照射されるフロック70の表面積が小さくなることで散乱光のレベルが小さくなる、かつフロック70の隙間が小さくなることにより散乱光受光部12に到達するまでに散乱光の減衰率が高くなり、受光レベルは低くなる。   The scattered light detection state shown in FIG. 5 shows a case in which, for example, the aggregation process has progressed and the floc 70 has grown to a predetermined size. The scattered light level increases and the number of received light increases. The floc 70 grown at this time has an increased laser light irradiation area, for example, so that the level of scattered light generated by hitting the surface of the floc 70 increases, and the increase in the floc 70 increases the gap between the flocs 70. There will be more opportunities for higher levels of scattered light. Conversely, if the floc 70 is small and has a high density, the surface area of the floc 70 irradiated with the scattered light is reduced, so that the level of the scattered light is reduced, and the gap between the flocks 70 is reduced, thereby causing the scattered light receiving unit. By the time it reaches 12, the attenuation rate of scattered light increases and the received light level decreases.

図6に示す散乱光の検出状態では、たとえば図5に示す凝集処理からさらに凝集剤を添加して凝集処理が進んだ場合であり、散乱光レベルがさらに大きくなるとともに、その受光回数が増加する。このとき、散乱光レベルのピーク値が大きな値となり、かつその高い散乱光レベルの出現回数が多くなっている。SS濃度が高い被処理水8において、高い散乱光レベルが多数検出できていることから、被処理水8内のフロックは十分に成長して凝集処理が進んでいるものと判断する。このような高い散乱光レベルの受光が可能になった場合には、薬注を中止させればよい。   In the scattered light detection state shown in FIG. 6, for example, the aggregating process further proceeds from the aggregating process shown in FIG. 5 and the aggregating process proceeds. The scattered light level further increases and the number of received light increases. . At this time, the peak value of the scattered light level becomes a large value, and the number of appearances of the high scattered light level increases. Since many high scattered light levels can be detected in the water to be treated 8 having a high SS concentration, it is determined that the flocs in the water to be treated 8 are sufficiently grown and the agglomeration process is proceeding. When such a high scattered light level can be received, the drug injection may be stopped.

<凝集指標の出力> <Output of aggregation index>

レーザ光発光部20より照射されたレーザ光は、たとえば光路上に存在するフロック70に当たり散乱光を発生させる。散乱光の発生地点から散乱光受光部12までの平均粒子密度がほぼ一定と仮定すれば、フロックの密度が高い場合(フロックが小さい場合)には、散乱光は粒子と発光面の距離の変化が小さく、大きなフロック70が発生している場合に比べて出力信号Doのレベルが小さくなる。逆に、フロック70が大きい場合には、粒子と発光面の距離の変化が大きくなり、小さなフロック70の場合に比べて出力信号Doのレベルが大きくなる。   The laser light emitted from the laser light emitting unit 20 hits the floc 70 existing on the optical path, for example, and generates scattered light. Assuming that the average particle density from the scattered light generation point to the scattered light receiving unit 12 is substantially constant, when the floc density is high (when the floc is small), the scattered light changes in the distance between the particle and the light emitting surface. And the level of the output signal Do is smaller than when the large flock 70 is generated. On the contrary, when the floc 70 is large, the change in the distance between the particle and the light emitting surface is large, and the level of the output signal Do is large compared to the case of the small floc 70.

被処理水8中の汚泥濃度が高い場合の凝集レベルの指標は、検出された散乱光のレベルにより、その波高値が所定閾値以上になるか否かおよびその閾値以上のレベルの出現数に基づいて設定される。すなわち、この凝集モニタリングでは、散乱光の受光信号の上昇量およびそのような信号が出現する出現数(発生頻度)と、凝集により成長したフロック同士の隙間の増大とを相関させて凝集指標としている。この表1には、散乱光レベルの波高値およびその出現数に基づく凝集指標を示す。   The index of the aggregation level when the sludge concentration in the water to be treated 8 is high is based on whether the peak value is equal to or higher than a predetermined threshold depending on the level of scattered light detected and the number of appearances of the level higher than the threshold. Is set. In other words, in this aggregation monitoring, the amount of increase in the received light signal of scattered light and the number of occurrences (occurrence frequency) of such a signal correlate with the increase in the gap between flocs grown by aggregation, which is used as an aggregation index. . Table 1 shows the aggregation index based on the peak value of the scattered light level and the number of appearances thereof.

Figure 2017072404
Figure 2017072404

表1において、L1〜L3は、散乱光レベルを示す出力信号Doの波高値(ピーク値)に対する第1の閾値の一例であり、たとえばL1=500〔mV〕、L2=1000〔mV〕、L3=2000〔mV〕が設定される。斯かるL1〜L3の閾値は、たとえば被処理水内の凝集汚泥の種類、性質、凝集条件などによって閾値を設定すればよい。通常、波高値の閾値は、L1<L2<L3の値で設定する。また、凝集レベルの判断では、波高値に対する閾値L1〜L3毎に、凝集状態の検出時間におけるその閾値を超える波形の出現数を判断する。この出現数に関する第2の閾値としてN1〜N3が設定され、一例としてN1=5〔回〕、N2=4〔回〕、N3=3〔回〕が設定される。出現数の閾値N1〜N3は、たとえば被処理水内において、部分的に凝集状態が進行している状態を排除して、凝集レベルを判断するものである。   In Table 1, L1 to L3 are examples of the first threshold value with respect to the peak value (peak value) of the output signal Do indicating the scattered light level. For example, L1 = 500 [mV], L2 = 1000 [mV], L3 = 2000 [mV] is set. What is necessary is just to set a threshold value with the threshold value of such L1-L3, for example according to the kind of coagulation sludge in to-be-processed water, a property, coagulation conditions, etc. Usually, the threshold value of the peak value is set as a value of L1 <L2 <L3. In the determination of the aggregation level, for each of the threshold values L1 to L3 with respect to the peak value, the number of appearances of the waveform exceeding the threshold value in the aggregation state detection time is determined. N1 to N3 are set as the second threshold regarding the number of appearances, and N1 = 5 [times], N2 = 4 [times], and N3 = 3 [times] are set as an example. For example, the thresholds N1 to N3 of the number of appearances are used to determine the aggregation level by excluding a state where the aggregation state is partially progressing in the water to be treated.

表1によれば、たとえば出力信号Doのレベル(散乱光レベル)の波高値が閾値L1〜L3以上か否かを判断し、かつその出現数が閾値N1〜N3を満たすか否かにより、現在の凝集状態が凝集レベル1〜レベル3のいずれに属するかを判断する指標となる。そして、この指標に基づいて凝集剤の添加量が不十分か、または過剰かを把握でき、添加制御を行なうことができる。   According to Table 1, for example, it is determined whether or not the peak value of the level (scattered light level) of the output signal Do is greater than or equal to the thresholds L1 to L3, and whether or not the number of appearances satisfies the thresholds N1 to N3 This is an index for determining which of the aggregation levels 1 to 3 belongs to the aggregation state. And based on this parameter | index, it can grasp | ascertain whether the addition amount of a flocculant is inadequate or excess, and addition control can be performed.

<信号処理および計測値の信号処理> <Signal processing and signal processing of measurement values>

ここで、モニタリング処理に用いる信号処理について一例を説明する。タイミング回路32が制御するタイミング信号Tsは、一定時間Tの間隔(周期)で一定のパルス幅twを持つパルス信号である。この場合、Hレベル区間(=パルス幅tw)がレーザ光の発光時間であり、Lレベル区間(=T−tw)がレーザ光の非発光時間である。一例として、T=2〔秒〕、tw=0.2〔秒〕に設定される。この場合、T−tw=2〔秒〕に設定してもよい。   Here, an example of signal processing used for monitoring processing will be described. The timing signal Ts controlled by the timing circuit 32 is a pulse signal having a constant pulse width tw at intervals (cycles) of a constant time T. In this case, the H level section (= pulse width tw) is the laser light emission time, and the L level section (= T-tw) is the laser light non-light emission time. As an example, T = 2 [seconds] and tw = 0.2 [seconds] are set. In this case, T-tw = 2 [seconds] may be set.

ファンクションジェネレータ34が処理する変調信号Msは、一定の周波数fおよび同一振幅の周期信号である。周波数fは、70〜150〔kHz〕のいずれかを選択すればよい。   The modulation signal Ms processed by the function generator 34 is a periodic signal having a constant frequency f and the same amplitude. The frequency f may be selected from 70 to 150 [kHz].

発光信号Drは、変調信号Msでタイミング信号Tsを変調するAM変調回路30の出力信号である。つまり、この発光信号Drは、タイミング信号TsのHレベル区間のパルス幅twに変調信号Msを重畳した周期信号である。つまり、発光信号Drは、パルス幅twが変調信号Msの振幅で変化し、タイミング信号Tsで間欠する周期信号である。   The light emission signal Dr is an output signal of the AM modulation circuit 30 that modulates the timing signal Ts with the modulation signal Ms. That is, the light emission signal Dr is a periodic signal in which the modulation signal Ms is superimposed on the pulse width tw in the H level section of the timing signal Ts. That is, the light emission signal Dr is a periodic signal whose pulse width tw changes with the amplitude of the modulation signal Ms and is intermittent with the timing signal Ts.

このような発光信号Drを用いれば、レーザ発光素子26から発光信号Drによる発光態様を持つレーザ光が得られる。   When such a light emission signal Dr is used, laser light having a light emission mode based on the light emission signal Dr can be obtained from the laser light emitting element 26.

このレーザ光をレーザ光照射部10から計測領域18に照射すると、計測領域18に滞在する被処理水8中の懸濁物質やフロック70などの粒子から散乱光が得られる。この散乱光が散乱光受光部12に受光される。   When this laser beam is irradiated from the laser beam irradiation unit 10 to the measurement region 18, scattered light is obtained from suspended substances in the treated water 8 staying in the measurement region 18 and particles such as the floc 70. This scattered light is received by the scattered light receiver 12.

そして、光電変換回路38の光電変換、フィルタ処理および増幅を経て、増幅器46の出力側には受光信号Eoが得られる。この受光信号Eoは、タイミング信号Tsで間欠し、変調信号Msの周波数を持ち、散乱光の強度に応じたレベルの振幅を持っている。   The light receiving signal Eo is obtained on the output side of the amplifier 46 through photoelectric conversion, filtering and amplification of the photoelectric conversion circuit 38. The light reception signal Eo is intermittent with the timing signal Ts, has the frequency of the modulation signal Ms, and has a level of amplitude corresponding to the intensity of the scattered light.

この受光信号Eoを検波回路40で検波すると、タイミング信号Tsで間欠し、散乱光の強度に応じた直流レベルを持つ出力信号Doが得られる。受光信号Eoの信号処理ではたとえば、バンドパスフィルタ44の出力を半波整流して検波した後、その検波出力のトップピークをピークホールドすれば出力信号Doが得られる。   When this light reception signal Eo is detected by the detection circuit 40, an output signal Do having a DC level corresponding to the intensity of the scattered light is obtained intermittently with the timing signal Ts. In the signal processing of the light reception signal Eo, for example, the output signal Do can be obtained by detecting the output of the bandpass filter 44 by half-wave rectification and then holding the top peak of the detection output.

これにより演算回路48では、出力信号DoからA/D変換を経て、既述の振幅および信号レベルのピーク値が計測される。   As a result, the arithmetic circuit 48 performs A / D conversion from the output signal Do and measures the peak values of the amplitude and signal level described above.

<凝集モニタリングの処理手順> <Procedure for aggregation monitoring>

図7は、凝集モニタリングの処理手順の一例を示している。この処理手順は、本発明の凝集モニタリング方法の一例である。この処理手順は、演算回路48に含まれるプロセッサ58およびメモリ部60を含むコンピューティング処理(情報処理)によって実行される。   FIG. 7 shows an example of the processing procedure of aggregation monitoring. This processing procedure is an example of the aggregation monitoring method of the present invention. This processing procedure is executed by a computing process (information processing) including the processor 58 and the memory unit 60 included in the arithmetic circuit 48.

この処理手順では、条件設定工程において、凝集モニタリングの条件設定を行う(S1)。この条件設定では、たとえば被処理水のSS濃度条件、被処理水や被処理汚泥の種類の条件、被処理水や被処理汚泥に応じた散乱光の波高値L1〜L3およびその出現数の閾値N1〜N3などを設定する。   In this processing procedure, conditions for aggregation monitoring are set in the condition setting step (S1). In this condition setting, for example, the SS concentration condition of the treated water, the condition of the type of the treated water and the treated sludge, the crest values L1 to L3 of the scattered light according to the treated water and the treated sludge, and the threshold of the number of appearances thereof N1 to N3 etc. are set.

この条件設定の後、凝集モニタリングの開始か否かを判断する(S2)。モニタリングを開始すると(S2のYES)、レーザ発光工程に移行してレーザ発光素子26を駆動し(S3)、レーザ光照射工程に移行する(S4)。レーザ光照射工程では既述したように、計測領域18にレーザ光を照射する。   After this condition setting, it is determined whether or not aggregation monitoring is started (S2). When monitoring is started (YES in S2), the process proceeds to the laser emission process to drive the laser emission element 26 (S3), and the process proceeds to the laser beam irradiation process (S4). In the laser beam irradiation process, as described above, the measurement region 18 is irradiated with the laser beam.

散乱光受光工程(S5)では既述したように、計測領域18から散乱光を受光し、散乱光の強度を表すレベルを持つ受光信号に変換する。   In the scattered light receiving step (S5), as described above, the scattered light is received from the measurement region 18 and converted into a received light signal having a level representing the intensity of the scattered light.

信号処理の工程として、出力信号Doの散乱光レベルについて、波形のピーク値を計測処理するとともに、ピーク値が閾値L1〜L3を超える波形の出現数を計測する(S6)。この出力信号Doのピーク値検出処理は、既述の計測値の信号処理に基づいて、演算回路48で演算処理される。   As a signal processing step, the peak value of the waveform is measured for the scattered light level of the output signal Do, and the number of appearances of the waveform whose peak value exceeds the thresholds L1 to L3 is measured (S6). The peak value detection processing of the output signal Do is arithmetically processed by the arithmetic circuit 48 based on the signal processing of the measurement value already described.

凝集状態の判断処理として、計測された出力信号Doについて、散乱光レベルが既述の表1に示す凝集レベル1の条件未満か否かを判断する(S7)。散乱光レベルのピーク値が閾値L1未満の場合(S7のYES)、散乱光受光部12は全く、または殆ど散乱光を受光出来ていないことから、被処理水内の凝集処理が進んでおらず、フロックの成長が不十分であると判断し、凝集指標「未凝集」を出力する(S8)。このような判断に基づいて、凝集処理では、凝集剤の添加率を増加させるなどの制御が行われる。   As the determination process of the aggregation state, it is determined whether or not the scattered light level is less than the condition of the aggregation level 1 shown in Table 1 described above for the measured output signal Do (S7). When the peak value of the scattered light level is less than the threshold value L1 (YES in S7), the scattered light receiving unit 12 has received no or almost no scattered light, and the aggregation process in the water to be treated has not progressed. Then, it is determined that the growth of floc is insufficient, and the aggregation index “unaggregated” is output (S8). Based on such determination, in the aggregating process, control such as increasing the addition rate of the aggregating agent is performed.

散乱光レベルが凝集レベル1未満でない場合(S7のNO)、すなわち、出力信号Doのピーク値が閾値L1以上であり、かつその波形の出現数が閾値N1以上の場合には、「凝集レベル1以上」が確定するとともに、凝集レベル2の条件未満か否かの判断が行われる(S9)。この判断では、出力信号Doのピーク値が閾値L2であるか、またそのような波形の出現数が閾値N2を越えるかが判断される。凝集レベル2の条件を満たさない場合(S9のYES)、凝集指標「凝集レベル1以上、2未満」を出力する(S10)。この判断に基づいて、凝集処理では、凝集不足又は成長過程のフロックであると判断され、凝集レベル1未満よりも少量の凝集剤の添加量を増加させる制御が行われる。   When the scattered light level is not less than the aggregation level 1 (NO in S7), that is, when the peak value of the output signal Do is equal to or greater than the threshold L1 and the number of appearances of the waveform is equal to or greater than the threshold N1, the “aggregation level 1 When “above” is confirmed, it is determined whether or not the condition is less than the aggregation level 2 condition (S9). In this determination, it is determined whether the peak value of the output signal Do is the threshold value L2 and whether the number of appearances of such a waveform exceeds the threshold value N2. When the condition of aggregation level 2 is not satisfied (YES in S9), the aggregation index “aggregation level 1 or more and less than 2” is output (S10). Based on this determination, in the flocculation process, it is determined that the flocculation is insufficient or the growth process is flocked, and control is performed to increase the addition amount of the flocculating agent smaller than the flocculation level 1 or less.

散乱光レベルが凝集レベル2未満でない場合(S9のNO)。凝集レベル3未満か否かの判断が行われる(S11)。この判断では、出力信号Doのピーク値が閾値L3であるか、またはそのような波形の出現数が閾値N3を越えるか否かが判断される。凝集レベル3の条件を満たさない場合(S11のYES)凝集指標「凝集レベル2以上3未満」を出力する(S12)。この判断に基づいて、凝集処理では、凝集十分と判断し、凝集剤の投入量を現状維持させる。   When the scattered light level is not less than the aggregation level 2 (NO in S9). It is determined whether or not the aggregation level is less than 3 (S11). In this determination, it is determined whether the peak value of the output signal Do is the threshold value L3, or whether the number of appearances of such a waveform exceeds the threshold value N3. When the condition of the aggregation level 3 is not satisfied (YES in S11), the aggregation index “aggregation level 2 or more and less than 3” is output (S12). Based on this determination, the aggregation process determines that the aggregation is sufficient, and maintains the current amount of the flocculant charged.

また、凝集レベル3の条件を満たす場合(S11のNO)、凝集指標「薬注過剰」を出力する(S13)。この場合、凝集処理では、凝集剤添加量を減少させる制御が行われる。   If the condition of aggregation level 3 is satisfied (NO in S11), the aggregation index “excess drug injection” is output (S13). In this case, in the flocculation process, control for reducing the addition amount of the flocculating agent is performed.

なお、この凝集モニタリング処理では、凝集状態の判断において、散乱光レベルが低い閾値が設定された凝集レベル1から判断したがこれに限らず、出力信号Doについて、凝集レベル3から判断してもよい。   In this aggregation monitoring process, the determination of the aggregation state is determined from the aggregation level 1 in which a threshold with a low scattered light level is set. However, the present invention is not limited to this, and the output signal Do may be determined from the aggregation level 3. .

<第1の実施の形態の作用および効果> <Operation and Effect of First Embodiment>

この第1の実施の形態によれば、次のような作用および効果が得られる。   According to the first embodiment, the following operations and effects can be obtained.

(1) 凝集モニタリング装置2は、演算回路48の波高検出部50、比較部52において、受光した散乱光の出力信号Doから信号波形のピーク値を求め、そのピーク値が閾値を超えること、およびその閾値を超える波形の出現数を求めることで、受光レベルの変化を判断する。そして、演算回路48は、この受光レベルの変化から被処理水の凝集状態の指標を求める。斯かる構成により、SS濃度が高く、未凝集の状態ではレーザ光によるSS濃度の計測が困難な被処理水であっても、薬注による凝集処理の進行状態を把握でき、適切な薬注処理による凝集制御を行うことが可能となる。   (1) The aggregation monitoring device 2 obtains the peak value of the signal waveform from the output signal Do of the received scattered light in the wave height detection unit 50 and the comparison unit 52 of the arithmetic circuit 48, and the peak value exceeds a threshold value. The change in the light reception level is determined by obtaining the number of appearances of the waveform exceeding the threshold. And the arithmetic circuit 48 calculates | requires the parameter | index of the aggregation state of to-be-processed water from the change of this received light level. With such a configuration, even when the SS concentration is high and it is difficult to measure the SS concentration by laser light in a non-aggregated state, the progress of the agglomeration process by the chemical injection can be grasped, and an appropriate chemical injection process is performed. It becomes possible to control the aggregation by.

(2) 凝集モニタリングでは、出力信号Doのピーク値に対する閾値を複数設定し、いずれの閾値を超えるか、かつ、この閾値を超える波形の出現数が幾つあるのかに基づいて、受光レベルの変化を判断する。この閾値の設定は、被処理水に含まれる被処理汚泥の性質や凝集目的、または添加される凝集剤の種類により設定される。これにより、SS濃度が高い被処理水においても、凝集状態を精緻に把握することができる。   (2) In aggregation monitoring, a plurality of threshold values for the peak value of the output signal Do are set, and the change in the light reception level is determined based on which threshold value is exceeded and the number of waveforms that exceed this threshold value. to decide. This threshold value is set according to the nature of the sludge to be treated and the purpose of coagulation contained in the water to be treated, or the type of coagulant added. Thereby, also in the to-be-processed water with high SS density | concentration, an aggregation state can be grasped | ascertained precisely.

(3) 凝集状態の判断において、出力信号Doのピーク値に対する閾値の判断のみではなく、この閾値を超える波形の出現数を組み合わせて凝集レベルを判断することで、被処理水中において凝集処理が部分的に偏って生じるなどの状態を排除することができる。   (3) In the determination of the aggregation state, not only the threshold value for the peak value of the output signal Do but also the aggregation level is determined by combining the number of appearances of waveforms exceeding the threshold value, so that the aggregation process is partially performed in the treated water. Therefore, it is possible to eliminate such a state that is unevenly generated.

(4) 上記実施の形態では、波形の出現数が第2の閾値を超えることで凝集レベルを判断しているが、これに限られない。出力信号Doのピーク値の発生数が少ない場合、または部分的に突出したピーク値が発生した場合には、その波形の出現数を判断せず、または第2の閾値を超えていなくても、ピーク値のみで凝集レベルを判断してもよい。これにより、フロックが大きく成長することでフロック間の隙間が大きくなり、散乱光のレベルに偏りが生じる場合でも、適切な薬注制御、凝集状態の把握が可能となる。   (4) In the above embodiment, the aggregation level is determined by the number of appearances of the waveform exceeding the second threshold, but the present invention is not limited to this. When the number of occurrences of the peak value of the output signal Do is small, or when a peak value that partially protrudes occurs, even if the number of appearances of the waveform is not judged or the second threshold value is not exceeded, The aggregation level may be determined only from the peak value. As a result, the gap between the flocs increases due to the large growth of the flocs, and even when the level of the scattered light is biased, it is possible to appropriately control the medicine injection and grasp the aggregation state.

〔第2の実施の形態〕 [Second Embodiment]

図8は、第2の実施の形態に係る凝集システムを示している。この凝集システム72は、第1の実施の形態に係る凝集モニタリング装置2を用いた凝集処理システムの一例である。図8において、図1と同一部分には同一符号を付し、その説明を割愛する。   FIG. 8 shows the aggregation system according to the second embodiment. The aggregation system 72 is an example of an aggregation processing system using the aggregation monitoring device 2 according to the first embodiment. In FIG. 8, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

凝集モニタリング装置2では、凝集槽6で凝集処理が行われている被処理水8の凝集指標が算出され、制御部74に提供される。この凝集指標は、凝集槽6内で凝集処理される被処理水8の処理状態から得られた凝集の指標を示している。   In the aggregation monitoring device 2, the aggregation index of the water to be treated 8 in which the aggregation treatment is performed in the aggregation tank 6 is calculated and provided to the control unit 74. This agglomeration index indicates an agglomeration index obtained from the treatment state of the water to be treated 8 that is agglomerated in the agglomeration tank 6.

この制御部74は凝集剤の薬注量や攪拌制御などの凝集槽6における被処理水8の凝集処理を制御する。凝集槽6の被処理水8には薬注部76から凝集剤が注入される。また、凝集槽6には、被処理水8を攪拌する攪拌機が設置されてもよい。この攪拌機は、制御部74によって制御される駆動部80によって駆動すればよい。   The controller 74 controls the agglomeration treatment of the water 8 to be treated in the agglomeration tank 6 such as the amount of the flocculant injected and the stirring control. A flocculant is injected into the water 8 to be treated in the flocculation tank 6 from the chemical injection section 76. The agglomeration tank 6 may be provided with a stirrer that stirs the water 8 to be treated. This stirrer may be driven by the drive unit 80 controlled by the control unit 74.

制御部74はたとえば、コンピュータによって構成され、凝集モニタリング装置2から提供される凝集指標を用いて凝集剤の薬注量が算出される。   The control unit 74 is configured by a computer, for example, and calculates the dosage of the flocculant using the aggregation index provided from the aggregation monitoring device 2.

<凝集システムの凝集処理> <Aggregating treatment of aggregating system>

図9は、凝集処理の処理手順の一例を示している。この処理手順では、凝集処理の開始か否かを判断し(S21)、その判断結果に応じて凝集処理を開始する。凝集処理を開始すると(S21のYES)、凝集槽6の被処理水8の処理状態について凝集モニタリングを実施する(S22)。この凝集モニタリングは凝集モニタリング装置2によって実施される。この処理内容の詳細は割愛する。この凝集モニタリング装置2では被処理水8の処理状態を表す凝集指標が算出され(S23)、凝集システム72の制御部74に提供される。   FIG. 9 shows an example of the processing procedure of the aggregation processing. In this processing procedure, it is determined whether or not the aggregation process is started (S21), and the aggregation process is started according to the determination result. When the coagulation process is started (YES in S21), coagulation monitoring is performed on the treatment state of the water 8 to be treated in the coagulation tank 6 (S22). This aggregation monitoring is performed by the aggregation monitoring device 2. Details of this processing content are omitted. In this aggregation monitoring device 2, an aggregation index indicating the treatment state of the water to be treated 8 is calculated (S 23) and provided to the control unit 74 of the aggregation system 72.

凝集指標を受けると、制御部74では凝集指標に基づき凝集剤薬注量が選定される(S24)。これにより、薬注部76から凝集剤の薬注が行われる(S25)。   When receiving the aggregation index, the control unit 74 selects the aggregating agent dosage based on the aggregation index (S24). Thereby, the chemical injection of the flocculant is performed from the chemical injection part 76 (S25).

この凝集処理を終了するか否かを監視し(S26)、凝集処理を終了しない場合には(S26のNO)、S22に戻り、S22〜S26の凝集処理を継続する。   It is monitored whether or not the aggregation process is terminated (S26). If the aggregation process is not terminated (NO in S26), the process returns to S22 and the aggregation processes of S22 to S26 are continued.

そして、凝集処理を終了する場合には(S26のYES)、凝集モニタリングを終了し(S27)、凝集処理を終了する。   When the aggregation process is terminated (YES in S26), the aggregation monitoring is terminated (S27), and the aggregation process is terminated.

<第2の実施の形態の作用および効果> <Operation and Effect of Second Embodiment>

この第2の実施の形態によれば、次のような機能および効果が得られる。   According to the second embodiment, the following functions and effects can be obtained.

(1) 凝集処理の状態がリアルタイムで把握され、フロックの有無にかかわらずに散乱光の計測値から凝集指標を生成し薬注制御に採用するので、安定した薬注制御を実現することができる。   (1) The state of agglomeration processing is grasped in real time, and an aggregation index is generated from the measured value of scattered light regardless of the presence or absence of flocs and used for drug injection control, so stable drug injection control can be realized. .

(2) 被処理水の凝集条件や凝集剤の薬注量が求められる。   (2) Coagulation conditions of the water to be treated and the dosage of coagulant are required.

(3) 被処理水に対する薬注量の適正化とともに、安定した凝集処理が行え、凝集効率を高めることができる。   (3) In addition to optimizing the amount of chemicals to be treated, stable agglomeration can be performed and the agglomeration efficiency can be increased.

(4) 凝集槽6の処理状態の測定に基づく凝集システムの補償機能を維持することができ、過剰な凝集剤の投与を防止して環境負荷への影響を回避でき、信頼性の高い凝集処理を実現できる。   (4) The compensation function of the agglomeration system based on the measurement of the treatment state of the agglomeration tank 6 can be maintained, and the influence on the environmental load can be avoided by preventing the administration of excessive aggregating agent, and the agglomeration process with high reliability Can be realized.

(5) 高濃度の汚泥処理であっても、添加した薬剤による凝集状態の変化を把握することができ、的確な薬注制御を行うことができる。   (5) Even in the case of high-concentration sludge treatment, it is possible to grasp the change in the agglomeration state due to the added chemical and to perform accurate chemical injection control.

〔他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、所定の時間間隔で発光しかつ所定周波数で振幅変調が施されたレーザ光を用いているが、レーザ発光素子の寿命を考慮することなく、濁度の計測を優先する場合には所定周波数で振幅変調が施されたレーザ光を用いてもよい。この場合、複数の最低レベルの信号を連続した受光信号から所定のタイミングで抽出すればよい。   (1) In the above embodiment, laser light that is emitted at a predetermined time interval and amplitude-modulated at a predetermined frequency is used, but turbidity is measured without considering the life of the laser light-emitting element. In the case of priority, laser light that has been subjected to amplitude modulation at a predetermined frequency may be used. In this case, a plurality of lowest level signals may be extracted from the continuous light reception signal at a predetermined timing.

(2) 上記実施の形態では、凝集状態の指標として、散乱光レベルである出力信号Doのピーク値が閾値以上であり、かつその閾値以上の波形の出現数の変化に基づいて凝集レベルを判断する場合を示したがこれに限られない。演算回路48は、たとえば測定した散乱光レベルの出力信号Doの合計を算出し、その合計値を所定の閾値と比較して凝集レベルの指標を求めてもよい。演算回路48は、たとえば積分回路を備え、測定された出力信号Doの波形からその合計値を求めても良く、またはデータ記録部64に記録されたピーク値を利用してその合計値を求めても良い。そして演算回路46には、所定の計測時間における散乱光レベルの合計値に基づく凝集レベルの指標が設定されてもよい。   (2) In the above embodiment, as the aggregation state index, the peak value of the output signal Do, which is the scattered light level, is equal to or greater than a threshold value, and the aggregation level is determined based on a change in the number of appearances of waveforms exceeding the threshold value However, the present invention is not limited to this. For example, the arithmetic circuit 48 may calculate the total of the output signals Do of the measured scattered light level and compare the total value with a predetermined threshold value to obtain the aggregation level index. The arithmetic circuit 48 includes, for example, an integration circuit, and may calculate the total value from the measured waveform of the output signal Do, or may calculate the total value using the peak value recorded in the data recording unit 64. Also good. The calculation circuit 46 may be set with an aggregation level index based on the total value of the scattered light levels in a predetermined measurement time.

(3) また、演算回路48は、たとえば散乱光レベルの出力信号Doの測定結果に対して所定の判定時間における出力信号Doの平均値を算出してもよい。そして凝集状態の判断では、斯かる平均値と凝集レベルとを関連付けた閾値を利用してもよい。   (3) Further, the arithmetic circuit 48 may calculate an average value of the output signal Do at a predetermined determination time with respect to the measurement result of the output signal Do at the scattered light level, for example. In the determination of the aggregation state, a threshold value that associates the average value with the aggregation level may be used.

(4) 上記実施の形態において、バンドパスフィルタ44および増幅器46はディジタル処理で実現してもよい。   (4) In the above embodiment, the bandpass filter 44 and the amplifier 46 may be realized by digital processing.

(5) 上記実施の形態では、凝集モニタリング装置2で処理状態をモニタリングする被処理水8として浄水、工業用水、排水などを例示しているが、この被処理水8は採石場などから廃出される高濃度の無機排水や果汁などの飲用液体であってもよい。   (5) In the above embodiment, purified water, industrial water, waste water, etc. are exemplified as the treated water 8 whose treatment state is monitored by the aggregation monitoring device 2, but this treated water 8 is discarded from a quarry or the like. It may be a drinking liquid such as highly concentrated inorganic wastewater or fruit juice.

(6) 凝集状態の判断は、たとえば1回のみで凝集状態を判断する場合に限らず、所定時間おきに複数回の散乱光レベルを測定し、計測された出力信号Doの閾値以上の波形となるピーク値の合計回数、または平均発生回数を利用してもよい。また、薬注処理を行ってから経過時間を計測し、その経過時間の相違による散乱光の受光レベルの変化も合せて凝集状態の指標を求めてもよい。   (6) The determination of the aggregation state is not limited to the determination of the aggregation state only once, for example, the scattered light level is measured a plurality of times at predetermined intervals, and the waveform exceeding the threshold value of the measured output signal Do The total number of peak values or the average number of occurrences may be used. Alternatively, the elapsed time after the chemical injection process is measured, and the change in the received light level of the scattered light due to the difference in the elapsed time may be combined to determine the aggregation state index.

(7) また、凝集モニタリング装置2は、計測した出力信号Doのみから凝集状態を判断する場合に限られず、たとえばデータ記録部64に蓄積された前回またはそれ以前の出力信号Doのデータを利用して凝集状態を判断してもよい。演算回路48は、たとえば今回測定した出力信号Doの値とともに、直前に判断した出力信号Doの値との差分値を求め、その変化量も考慮して凝集レベルの指標を設定してもよい。   (7) In addition, the aggregation monitoring device 2 is not limited to the case of determining the aggregation state from only the measured output signal Do, and for example, uses the data of the output signal Do of the previous or previous time stored in the data recording unit 64. Thus, the aggregation state may be determined. For example, the arithmetic circuit 48 may obtain a difference value from the value of the output signal Do determined immediately before together with the value of the output signal Do measured this time, and may set the aggregation level index in consideration of the change amount.

(8) 上記実施の形態では、閾値を超える出力信号Doのピーク値と、その出現数に基づいて凝集レベルを判断しているが、これに限らない。演算回路48は、たとえば閾値を超える出力信号Doの出現回数のみが増減した場合にも凝集レベルの指標を設定し、判断を行ってもよい。   (8) In the above embodiment, the aggregation level is determined based on the peak value of the output signal Do exceeding the threshold and the number of appearances thereof, but the present invention is not limited to this. The arithmetic circuit 48 may set and determine the aggregation level index even when only the number of appearances of the output signal Do exceeding the threshold value increases or decreases, for example.

(9) 凝集モニタリング装置2には、たとえば図10に示すように、レーザ発光素子26や散乱光の受光部であるフォトディテクタ42の前面側に、それぞれフィルタ部材80、82を備えるとともに、このフィルタ部材80、82の一面を洗浄処理する洗浄装置90を備えてもよい。フィルタ部材80、82は、被処理水や汚泥をレーザ発光素子26やフォトディテクタ42に接触させない防護手段の一例であって、たとえばアクリルやガラスなどレーザ光やその散乱光の透過を妨げない透明な部材で形成されていればよい。洗浄装置90は、たとえばフィルタ部材80、82に対して、水や空気、その他、被処理水8や汚泥に影響を与えない洗浄剤などを吹き付けるノズル92、94を備えている。洗浄装置90は、被処理水8の計測領域18から離間させ、被処理水8のモニタリングに影響を与えないように離間して配置されればよい。また洗浄装置90は、たとえば凝集モニタリング装置2の演算回路48にある発光制御部54や凝集システム72の制御部74に接続されており、レーザ光の発光タイミングや薬注処理タイミング等に重ならないように、動作制御が行われればよい。このような構成によれば、常に、レーザ光の発光部および散乱光の受光部分を清浄に維持することができ、SS濃度が高い被処理水8中の汚泥などの影響を受けずに、凝集状態を把握することができる。   (9) As shown in FIG. 10, for example, the aggregation monitoring device 2 includes filter members 80 and 82 on the front side of the laser light emitting element 26 and the photodetector 42 which is a light receiving unit for scattered light. You may provide the washing | cleaning apparatus 90 which carries out the cleaning process of 80,82 one surface. The filter members 80 and 82 are an example of protective means that prevents the water to be treated or sludge from coming into contact with the laser light-emitting element 26 or the photodetector 42, and are transparent members that do not hinder the transmission of laser light or its scattered light, such as acrylic or glass. What is necessary is just to be formed. The cleaning device 90 includes, for example, nozzles 92 and 94 for spraying water, air, and other cleaning agents that do not affect the water to be treated 8 and sludge to the filter members 80 and 82. The cleaning device 90 may be spaced apart from the measurement region 18 of the water to be treated 8 and spaced apart so as not to affect the monitoring of the water to be treated 8. Further, the cleaning device 90 is connected to, for example, the light emission control unit 54 in the arithmetic circuit 48 of the aggregation monitoring device 2 or the control unit 74 of the aggregation system 72 so that it does not overlap with the light emission timing of the laser light, the chemical injection processing timing, or the like. In addition, operation control may be performed. According to such a configuration, the light emitting part of the laser light and the light receiving part of the scattered light can always be kept clean and agglomerated without being affected by sludge in the water to be treated 8 having a high SS concentration. The state can be grasped.

(10) 凝集モニタリング装置2は、凝集処理の開始時に、凝集剤が添加される前の被処理水8の凝集状態の測定処理を行い、未凝集の状態で散乱光の受光レベルが検出できない、または極めて微小な値のみが検出されることの判断を行ってもよい。すなわち、上記実施の形態に示す凝集状態の判断手法は、SS濃度が極めて高い場合を想定したものであることから、凝集処理の開始時に従来の未凝集のSS濃度の凝集監視が行えないことを確認する工程を行ってもよい。   (10) The aggregation monitoring device 2 performs a measurement process of the aggregation state of the water to be treated 8 before the addition of the flocculant at the start of the aggregation process, and cannot detect the light reception level of the scattered light in an unaggregated state. Alternatively, it may be determined that only a very small value is detected. That is, since the method for determining the aggregation state shown in the above embodiment assumes that the SS concentration is extremely high, the conventional aggregation monitoring of the unaggregated SS concentration cannot be performed at the start of the aggregation processing. You may perform the process to confirm.

以上説明したように、本発明の凝集モニタリング装置、凝集モニタリング方法および凝集システムの最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the aggregation monitoring device, the aggregation monitoring method, and the aggregation system of the present invention has been described. The present invention is not limited to the above description. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the embodiments for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present invention.

本発明によれば、浄水、工業用水、排水などの被処理水の凝集処理の処理状況を安定して的確に把握でき、効率的な凝集処理に寄与することができる。
ADVANTAGE OF THE INVENTION According to this invention, the process condition of the coagulation process of to-be-processed water, such as purified water, industrial water, and waste_water | drain, can be grasped | ascertained accurately and can contribute to an efficient coagulation process.

2 凝集モニタリング装置
4 センサ部
6 凝集槽
8 被処理水
10 レーザ光照射部
12 散乱光受光部
14−1 第1の光ファイバ
14−2 第2の光ファイバ
16 遮蔽部材
18 計測領域
20 レーザ光発光部
22−1 第1の支持部
22−2 第2の支持部
24 頂角部
26 レーザ発光素子
28 発光回路
30 AM変調回路
32 タイミング回路
34 ファンクションジェネレータ
36 信号処理部
38 光電変換回路
40 検波回路
42 フォトディテクタ
44 バンドパスフィルタ
46 増幅器
48 演算回路
50 波高検出部
52 比較部
54 発光制御部
56 A/D
58 プロセッサ
60 メモリ部
62 プログラム記憶部
64 データ記録部
66 RAM
70 フロック
72 凝集システム
74 制御部
76 薬注部
80、82 フィルタ部材
90 洗浄装置
92、94 ノズル
DESCRIPTION OF SYMBOLS 2 Aggregation monitoring apparatus 4 Sensor part 6 Aggregation tank 8 Water to be treated 10 Laser light irradiation part 12 Scattered light receiving part 14-1 1st optical fiber 14-2 2nd optical fiber 16 Shielding member 18 Measurement area | region 20 Laser light emission Unit 22-1 first support unit 22-2 second support unit 24 apex angle unit 26 laser light emitting element 28 light emitting circuit 30 AM modulation circuit 32 timing circuit 34 function generator 36 signal processing unit 38 photoelectric conversion circuit 40 detection circuit 42 Photodetector 44 Band pass filter 46 Amplifier 48 Arithmetic circuit 50 Wave height detection unit 52 Comparison unit 54 Light emission control unit 56 A / D
58 processor 60 memory unit 62 program storage unit 64 data recording unit 66 RAM
70 Flock 72 Aggregation System 74 Control Unit 76 Chemical Injection Unit 80, 82 Filter Member 90 Cleaning Device 92, 94 Nozzle

Claims (6)

凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
計測光を被処理水の計測領域に照射する計測光照射部と、
前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、
前記散乱光受光部に得られる凝集処理毎の前記散乱光の受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算部と、
を備えることを特徴とする凝集モニタリング装置。
A coagulation monitoring device for monitoring the treatment state of the water to be coagulated,
A measurement light irradiating unit for irradiating the measurement area with the measurement light; and
A scattered light receiving unit that receives scattered light from particles of the water to be treated in the measurement region;
A measurement value calculation unit for obtaining an indicator of the aggregation state of the water to be treated from a change in the light reception level of the scattered light for each aggregation process obtained in the scattered light receiving unit;
An agglomeration monitoring device comprising:
前記計測値演算部は、受光した前記散乱光の受光信号の波高値と、所定値以上の波高値となる前記受光信号の出現数を用いて前記受光レベルの変化を求め、前記被処理水の凝集指標を求めることを特徴とする請求項1に記載の凝集モニタリング装置。   The measurement value calculation unit obtains a change in the received light level using a peak value of the received light signal of the scattered light received and the number of appearances of the received light signal having a peak value equal to or greater than a predetermined value, and the treated water The aggregation monitoring apparatus according to claim 1, wherein an aggregation index is obtained. 前記計測値演算部は、前記受光信号の波高値を規定する第1の閾値と、該第1の閾値を満たす波高値の出現数を規定する第2の閾値を設定し、前記第1の閾値および前記第2の閾値に基づいて、前記被処理水の凝集状態を判断することを特徴とする請求項2に記載の凝集モニタリング装置。   The measurement value calculation unit sets a first threshold value that defines a peak value of the received light signal, and a second threshold value that defines the number of occurrences of a peak value that satisfies the first threshold value, and the first threshold value The coagulation monitoring apparatus according to claim 2, wherein the coagulation state of the water to be treated is determined based on the second threshold value. 前記被処理水は、前記凝集処理の開始時に、前記散乱光受光部が前記散乱光を受光できない状態または、前記受光レベルが所定レベル以下の状態であることを特徴とする、請求項1ないし3のいずれかに記載の凝集モニタリング装置。   The said to-be-processed water is the state which the said scattered light light-receiving part cannot receive the said scattered light at the time of the start of the said aggregation process, or the said light reception level is a state below a predetermined level, It is characterized by the above-mentioned. The aggregation monitoring apparatus according to any one of the above. 凝集処理される被処理水の処理状態を監視する凝集モニタリング方法であって、
計測光を被処理水の計測領域に照射する計測光照射工程と、
前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光工程と、
受光した前記散乱光による受光信号の受光レベルの変化を計測する工程と、
凝集処理毎の前記受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算工程と、
を含むことを特徴とする凝集モニタリング方法。
A coagulation monitoring method for monitoring the treatment state of water to be coagulated,
A measurement light irradiation step of irradiating the measurement area with the measurement light; and
A scattered light receiving step for receiving scattered light from particles of the water to be treated in the measurement region;
Measuring the change in the light receiving level of the received light signal due to the scattered light received;
A measurement value calculation step for obtaining an indicator of the aggregation state of the water to be treated from the change in the light reception level for each aggregation treatment;
A method for monitoring aggregation.
被処理水の凝集処理を行う凝集処理システムであって、
前記被処理水を貯める被処理水槽と、
前記被処理水に対する凝集状態を監視する凝集モニタリング装置と、
前記被処理水に対する前記凝集モニタリング装置の監視結果に基づいて薬剤を注入する薬注手段と、
を備え、前記凝集モニタリング装置は、
凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
計測光を被処理水の計測領域に照射する計測光照射部と、
前記計測領域にある被処理水の粒子による散乱光を受光する散乱光受光部と、
前記散乱光受光部に得られる凝集処理毎の受光信号の受光レベルの変化から前記被処理水の凝集状態の指標を求める計測値演算部と、
を含み、前記凝集状態の指標に基づいて、前記薬注手段が前記被処理水槽に薬剤の注入を制御することを特徴とする凝集処理システム。

A coagulation treatment system for coagulating water to be treated,
A treated water tank for storing the treated water;
A coagulation monitoring device for monitoring the coagulation state of the water to be treated;
A chemical injection means for injecting a medicine based on a monitoring result of the aggregation monitoring device for the treated water;
The aggregation monitoring device comprises:
A coagulation monitoring device for monitoring the treatment state of the water to be coagulated,
A measurement light irradiating unit for irradiating the measurement area with the measurement light; and
A scattered light receiving unit that receives scattered light from particles of water to be treated in the measurement region;
A measurement value calculation unit for obtaining an indicator of the aggregation state of the water to be treated from a change in the light reception level of the light reception signal for each aggregation process obtained in the scattered light receiving unit;
And the chemical injection means controls the injection of the chemical into the water tank to be treated based on the aggregation state index.

JP2015197789A 2015-10-05 2015-10-05 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system Active JP6606961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197789A JP6606961B2 (en) 2015-10-05 2015-10-05 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197789A JP6606961B2 (en) 2015-10-05 2015-10-05 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system

Publications (2)

Publication Number Publication Date
JP2017072404A true JP2017072404A (en) 2017-04-13
JP6606961B2 JP6606961B2 (en) 2019-11-20

Family

ID=58537249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197789A Active JP6606961B2 (en) 2015-10-05 2015-10-05 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system

Country Status (1)

Country Link
JP (1) JP6606961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046352A (en) * 2018-09-20 2020-03-26 栗田工業株式会社 Aggregation state monitoring sensor
CN115072850A (en) * 2022-08-16 2022-09-20 山东仲良格环保技术有限公司 Intelligent optimization control method and PAC (programmable automation controller) dosing control system based on same
CN115808421A (en) * 2023-02-09 2023-03-17 广州誉康医药有限公司 Agglutination state interpretation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334596A (en) * 1976-09-10 1978-03-31 Yoshimichi Yonezawa Detecting method of coagulation state in blood and the like
JPS59208443A (en) * 1983-05-02 1984-11-26 ソシエテ・ア・レスポンサビリテ・リミテ・デツテ・ル・マテリエル・ビオメデイカル Method and device for detecting and measuring flock
JPH0329836A (en) * 1989-06-28 1991-02-07 Olympus Optical Co Ltd Measuring method of immunoreaction
JPH10311784A (en) * 1997-03-10 1998-11-24 Fuji Electric Co Ltd Method and device for measuring turbidity
JP2002107365A (en) * 2000-07-27 2002-04-10 Sysmex Corp Whole blood immunoassay
JP2005249538A (en) * 2004-03-03 2005-09-15 Kurita Water Ind Ltd Calibration period deciding method of optical turbid substance densitometer
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334596A (en) * 1976-09-10 1978-03-31 Yoshimichi Yonezawa Detecting method of coagulation state in blood and the like
JPS59208443A (en) * 1983-05-02 1984-11-26 ソシエテ・ア・レスポンサビリテ・リミテ・デツテ・ル・マテリエル・ビオメデイカル Method and device for detecting and measuring flock
JPH0329836A (en) * 1989-06-28 1991-02-07 Olympus Optical Co Ltd Measuring method of immunoreaction
JPH10311784A (en) * 1997-03-10 1998-11-24 Fuji Electric Co Ltd Method and device for measuring turbidity
JP2002107365A (en) * 2000-07-27 2002-04-10 Sysmex Corp Whole blood immunoassay
JP2005249538A (en) * 2004-03-03 2005-09-15 Kurita Water Ind Ltd Calibration period deciding method of optical turbid substance densitometer
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046352A (en) * 2018-09-20 2020-03-26 栗田工業株式会社 Aggregation state monitoring sensor
KR20210064103A (en) * 2018-09-20 2021-06-02 쿠리타 고교 가부시키가이샤 agglomeration condition monitoring sensor
KR102561382B1 (en) 2018-09-20 2023-07-28 쿠리타 고교 가부시키가이샤 Aggregation status monitoring sensor
CN115072850A (en) * 2022-08-16 2022-09-20 山东仲良格环保技术有限公司 Intelligent optimization control method and PAC (programmable automation controller) dosing control system based on same
CN115808421A (en) * 2023-02-09 2023-03-17 广州誉康医药有限公司 Agglutination state interpretation method
CN115808421B (en) * 2023-02-09 2023-04-14 广州誉康医药有限公司 Agglutination state interpretation method

Also Published As

Publication number Publication date
JP6606961B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6281534B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
JP6606961B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system
JP5430788B1 (en) Biological particle counting method, biological particle counter, and water purification monitoring system
JP5920409B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
JP2011047760A (en) Detection method of interface level, and management method of solid-liquid separation tank
JP2007263856A (en) Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP4654908B2 (en) Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug
JP2002253905A (en) Coagulation monitoring system
JP4605327B2 (en) Aggregation monitoring device
JP2018096768A (en) Method for aggregation monitoring, aggregation monitoring device, aggregation monitoring probe, and aggregation system
JP2005241338A (en) Coagulation sensor and coagulation control device using the same
JP2007271333A (en) Method for monitoring effect of agent for paper making and injection amount control method
JP7140250B1 (en) Aggregation processing equipment
JP4915109B2 (en) Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount
JP4831290B2 (en) Activated sludge monitoring method and activated sludge monitoring device
JP4915120B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
JP2005265687A (en) State monitor device
JP2002257715A (en) Probe for detecting particle condition
JP6881519B2 (en) Water treatment equipment and water treatment method
JP2021020158A (en) Coagulation treatment device
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
JP2003161689A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP2005214652A (en) Flocculation sensor and flocculated state measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6606961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250