JP2003161689A - Probe for detecting states of particles and aggregation monitoring apparatus - Google Patents

Probe for detecting states of particles and aggregation monitoring apparatus

Info

Publication number
JP2003161689A
JP2003161689A JP2001359483A JP2001359483A JP2003161689A JP 2003161689 A JP2003161689 A JP 2003161689A JP 2001359483 A JP2001359483 A JP 2001359483A JP 2001359483 A JP2001359483 A JP 2001359483A JP 2003161689 A JP2003161689 A JP 2003161689A
Authority
JP
Japan
Prior art keywords
light
calibration
air
region
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001359483A
Other languages
Japanese (ja)
Inventor
Nobuaki Nagao
信明 長尾
Tadahiro Hozumi
直裕 穂積
Masayuki Nagao
雅行 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001359483A priority Critical patent/JP2003161689A/en
Publication of JP2003161689A publication Critical patent/JP2003161689A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe for detecting states of particles with a simple structure, which can easily carry out the calibration of a measuring system. <P>SOLUTION: The apparatus is provided with a first optical fiber (light emitting section) which emits laser from the edge into water to be tested, a second optical fiber (photo detecting section) which guides scattering light occurring because of collisions of the laser with the particles in the water to be tested from the edge into a detecting section, a table (support member) which supports both the optical fibers in such a condition that a laser projecting region and a photo receiving region of the scattering light cross each other and specifies a region for measuring the state of the particles in the water to be tested, and a fluid guiding opening which is formed in the table so that pure water or air for the calibration introduced from the outside is injected to an area including each edge of the optical fibers and the specified measurement region and so that the area is filled with the pure water or the air for the calibration. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、凝集処理工程から
サンプリングされたフロックを含む凝集処理水(検水)
中に含まれる粒子の状態を計測するに好適な粒子状態検
出用プローブおよび凝集モニタ装置に関する。
TECHNICAL FIELD The present invention relates to coagulated water containing flocs sampled from a coagulation process (test water).
The present invention relates to a particle state detection probe and an agglutination monitor device suitable for measuring the state of particles contained therein.

【0002】[0002]

【関連する背景技術】上水や工業用水、更には下水や排
水等の浄化処理(水質改善処理)は、例えば被処理水に
凝集剤を投入して該被処理水中の懸濁物質を凝集処理し
た後、凝集したフロックを沈殿分離、加圧浮上分離、遠
心分離、砂ろ過、膜分離等の手法を用いて固液分離する
ことにより実現される。しかしながらフロックを含む凝
集処理水(検水)中における懸濁物質の凝集状態は、被
処理水の水質(pHや懸濁物質の濃度)、更には凝集処
理工程における凝集剤の添加量やその撹拌条件等によっ
て変化することが否めない。ちなみに凝集処理条件が適
切に設定されない場合には、その後の固液分離処理に悪
影響を及ぼしたり、固液分離後における処理水の水質が
悪化する要因となる。
[Related Background Art] For purification treatment (water quality improvement treatment) of tap water, industrial water, sewage and drainage, for example, an aggregating agent is added to the water to be treated to agglomerate suspended substances in the water to be treated. After that, flocculated flocs are solid-liquid separated by a method such as sedimentation separation, pressure floating separation, centrifugation, sand filtration, and membrane separation. However, the agglomeration state of suspended solids in flocculated treated water (sample water) that contains flocs depends on the water quality of the water to be treated (pH and concentration of suspended solids), as well as the amount of flocculant added in the flocculation process and its stirring. It cannot be denied that it will change depending on the conditions. By the way, if the coagulation treatment conditions are not set appropriately, it may adversely affect the subsequent solid-liquid separation treatment or may deteriorate the quality of treated water after solid-liquid separation.

【0003】そこで従来、検水中に光を照射したときに
該検水により生じる散乱光の強度から上記検水の濁度を
測定し、この濁度に基づいて検水中における懸濁物質の
凝集状態をリアルタイムに評価して凝集処理工程におけ
る凝集条件を最適化することが提唱されている(特表平
5−505026号公報)。しかしながらこの場合、検
水による平均的な散乱光強度を測定しているだけなの
で、検水中の凝集物による散乱光と未凝集物(懸濁物
質)による散乱光との区別がつかないと言う問題があ
る。
Therefore, conventionally, the turbidity of the test water is measured from the intensity of scattered light generated by the test water when the test water is irradiated with light, and the agglomeration state of the suspended substance in the test water is measured based on this turbidity. Has been proposed to optimize the aggregating conditions in the aggregating treatment step in real time (Japanese Patent Publication No. 5-505026). However, in this case, since only the average scattered light intensity by the test water is measured, it is impossible to distinguish between the scattered light by the aggregates in the test water and the scattered light by the non-aggregates (suspended substances). There is.

【0004】ちなみに上記散乱光強度は、検水中におけ
る懸濁物質の粒子数に比例すると共に、その粒子径の4
〜6乗に比例する。そして凝集処理において懸濁物質の
凝集が進むと、検水中の粒子数の減少に伴って散乱光強
度が次第に低下し、その反面、懸濁物質の凝集によって
その粒子径が大きくなり、粒子(フロック)1個当たり
の散乱光強度が増加する。従って前述した平均的な散乱
光強度の測定においては、上述したような散乱光強度の
変化を示す凝集物および未凝集物による各散乱光が混在
したものを検出することになるので、その凝集状態を適
切に把握することができないと言う問題がある。
Incidentally, the intensity of the scattered light is proportional to the number of particles of the suspended substance in the test water, and is 4 times the particle size.
~ Proportional to 6th power. Then, when the agglomeration of the suspended substance progresses in the aggregating treatment, the scattered light intensity gradually decreases as the number of particles in the test water decreases, but on the other hand, the agglomeration of the suspended substance increases the particle diameter, which causes ) The intensity of scattered light per unit increases. Therefore, in the above-mentioned measurement of the average scattered light intensity, since the scattered light due to the aggregate and the non-aggregate showing the change of the scattered light intensity as described above are mixed, the aggregated state There is a problem that you can not grasp properly.

【0005】[0005]

【発明が解決しようとする課題】そこで本出願人は、先
に検水中にレーザ光を照射し、このレーザ光の上記検水
中の粒子への衝突により発生する散乱光を微小な計測領
域において検出することで、凝集物および未凝集物によ
る各散乱光成分を互いに区別して検水中の粒子の状態を
精度良く検出する凝集モニタリング装置を提唱した(特
願2000−392442)。この装置においては、レ
ーザ光を導いてその端面から射出する第1の光ファイバ
と、端面から導入する散乱光を光電変換素子に導く第2
の光ファイバの各端面を互いに近接させ、且つ各光ファ
イバの端面における中心軸が交差するように支持部材に
取り付けることで、光ファイバの端面近傍に微小な計測
領域を設定したプローブを構成している。そしてこのプ
ローブを検水中に浸漬して上記微小な計測領域における
粒子の状態(粒子数および粒子径)を検出するものとな
っている。
Therefore, the applicant of the present invention first irradiates a laser beam into the test water, and detects the scattered light generated by the collision of the laser beam with the particles in the test water in a minute measurement area. By doing so, an aggregation monitoring device was proposed in which each scattered light component due to an aggregate and an unaggregate is distinguished from each other and the state of particles in test water is accurately detected (Japanese Patent Application No. 2000-392442). In this device, a first optical fiber that guides laser light and emits from the end face thereof, and a second optical fiber that guides scattered light introduced from the end face to a photoelectric conversion element
By making each end face of the optical fiber close to each other and attaching it to the support member so that the central axes of the end faces of the respective optical fibers intersect, a probe with a minute measurement region set near the end face of the optical fiber is constructed. There is. Then, this probe is immersed in test water to detect the state of particles (the number of particles and the particle diameter) in the minute measurement region.

【0006】しかしながら上述したプローブを用いて検
水中の粒子の状態を検出している際、検水に含まれる不
純物がファイバ端面に次第に付着する。するとファイバ
端面の汚れに起因して検水に照射されるレーザ光の強度
が低下し、検出誤差を招く要因となる。しかもレーザ光
を生成する光源(レーザ発振器)の経時変化により、レ
ーザ光の出力強度自体が低下することもある。これ故、
計測信頼性を維持するには、ファイバ端面の汚れを清掃
したり、レーザ発振器の出力を校正する等のメンテナン
スが不可欠である。
However, when the state of particles in the test water is detected using the above-mentioned probe, impurities contained in the test water gradually adhere to the end face of the fiber. Then, the intensity of the laser beam with which the test water is irradiated is reduced due to the contamination of the fiber end face, which causes a detection error. Moreover, the output intensity itself of the laser light may decrease due to the change over time of the light source (laser oscillator) that generates the laser light. Therefore,
In order to maintain the measurement reliability, maintenance such as cleaning dirt on the fiber end surface and calibrating the output of the laser oscillator is essential.

【0007】本発明はこのような事情を考慮してなされ
たもので、その目的は、検水中にレーザ光を照射し、こ
のレーザ光の上記検水中の粒子への衝突により発生する
散乱光を検出する粒子状態検出用プローブに係り、特に
レーザ光出力の経時変化や汚れに起因する検出精度の劣
化に対して、その計測系の校正を簡易に行うことのでき
る簡易な構成の粒子状態検出用プローブおよび凝集モニ
タ装置を提供することにある。
The present invention has been made in consideration of such circumstances, and an object thereof is to irradiate a laser beam into the test water and to scatter the scattered light generated by the collision of the laser beam with the particles in the test water. Regarding the particle state detection probe, especially for detecting the particle state with a simple configuration that can easily calibrate the measurement system against deterioration in detection accuracy due to changes in laser light output over time and dirt. It is to provide a probe and an agglutination monitor.

【0008】[0008]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る粒子状態検出用プローブは、例えばレ
ーザ光を導いてその端面から射出する第1の光ファイバ
からなり、検水中にレーザ光を照射する投光部と、この
投光部の近傍に設けられて前記レーザ光の上記検水中の
粒子への衝突により発生する散乱光を、例えばその端面
から導入して光電変換部に導く第2の光ファイバからな
る受光部と、前記投光部による前記レーザ光の照射領域
と前記受光部による前記散乱光の受光領域とが交差する
状態に前記投光部(投光用の光ファイバ)と受光部(受
光用の光ファイバ)とをそれぞれ支持して前記検水中に
おける粒子状態の計測領域を規定する支持部材と、この
支持部材に設けられ、外部から導入される校正用の清水
または空気を前記投光部のレーザ光出射面、前記受光部
の散乱光受光面、および前記計測領域を含む領域に噴出
して、該領域を上記校正用の清水または空気により満た
す校正環境設定手段とを備えたことを特徴としている。
In order to achieve the above-mentioned object, a particle state detecting probe according to the present invention comprises, for example, a first optical fiber which guides laser light and emits the laser light from its end face. A light projecting unit that irradiates light and scattered light that is provided in the vicinity of the light projecting unit and is generated by collision of the laser light with the particles in the test water are introduced from, for example, the end face thereof and guided to the photoelectric conversion unit. The light projecting unit (the optical fiber for projecting light) is in a state in which a light receiving unit formed of a second optical fiber, an irradiation region of the laser light by the light projecting unit, and a light receiving region of the scattered light by the light receiving unit intersect with each other. ) And a light receiving portion (optical fiber for receiving light) respectively to define the measurement region of the particle state in the test water, and fresh water for calibration provided from the support member and introduced from the outside or The air And a calibration environment setting means for ejecting the laser light emitting surface of the light section, the scattered light receiving surface of the light receiving section, and the area including the measurement area and filling the area with fresh water or air for calibration. Is characterized by.

【0009】好ましくは前記校正環境設定手段は、前記
支持部材に穿たれて外部から供給される校正用の清水ま
たは空気を導き、前記支持部材が規定する計測領域の近
傍に設けた噴出口から前記校正用の清水または空気を噴
出する流体導入孔として実現される。この際、前記校正
用の清水または空気の噴出口を、前記第1および第2の
光ファイバの各端面に近接して設け、該噴出口から噴出
させる前記校正用の清水または空気により上記各光ファ
イバの端面を清浄する役割を持たせることも好ましい。
[0009] Preferably, the calibration environment setting means introduces calibration fresh water or air that is pierced in the support member and is supplied from the outside, and the calibration environment setting means is provided from an ejection port provided in the vicinity of a measurement region defined by the support member. It is realized as a fluid introduction hole for jetting fresh water or air for calibration. At this time, a jet of fresh water or air for calibration is provided close to each end face of the first and second optical fibers, and each of the above-mentioned light is jetted by the fresh water or air for calibration jetted from the jet. It is also preferable to have a role of cleaning the end face of the fiber.

【0010】また本発明に係る凝集モニタ装置は、上述
した粒子状態検出用プローブを用いて構成されるもので
あって、前記投光部のレーザ光出射面、前記受光部の散
乱光受光面、および前記計測領域を含む領域が前記校正
用の清水または空気により満たした状態で前記粒子状態
検出用プローブを用いて検出される検出出力に従って、
例えば前記投光部から検水に照射するレーザ光の強度お
よび/または前記受光部にて受光された散乱光の検出強
度を補正することで、その計測系を校正する計測系校正
手段を備えることを特徴としている。
The agglutination monitor according to the present invention is constructed by using the above-mentioned particle state detecting probe, and comprises a laser beam emitting surface of the light projecting portion, a scattered light receiving surface of the light receiving portion, And in accordance with the detection output detected by using the particle state detection probe in a state in which the region including the measurement region is filled with fresh water or air for calibration,
For example, a measurement system calibrating unit is provided to calibrate the measurement system by correcting the intensity of the laser beam applied to the test water from the light projecting unit and / or the detection intensity of the scattered light received by the light receiving unit. Is characterized by.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態に係る粒子状態検出用プローブとこの粒子状態検
出用プローブを用いた凝集モニタ装置について説明す
る。この凝集モニタ装置は、例えば凝集処理に供された
検水中にレーザ光を照射し、このレーザ光の上記検水中
の粒子への衝突により発生する散乱光を検出すること
で、上記検水中に含まれる粒子の状態を計測するように
構成される。この凝集モニタ装置に用いられる粒子状態
検出用プローブは、概略的には図1に示すように、所定
の周波数で振幅変調したレーザ光を検水中に照射する為
の第1の光ファイバ1と、上記レーザ光の検水中に含ま
れる粒子への衝突により発生する散乱光を受光する為の
第2の光ファイバ2とを、そのファイバ端面を近接させ
て所定の台座(支持部材)3に固定した構造を有する。
またこのプローブは、例えば全体的には10〜20mm
程度の大きさのものからなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a particle state detecting probe and an agglutination monitoring apparatus using the particle state detecting probe according to an embodiment of the present invention will be described with reference to the drawings. This agglutination monitor is, for example, by irradiating laser light into the test water that has been subjected to the agglutination treatment, by detecting the scattered light generated by the collision of the laser light to the particles in the test water, contained in the test water. Is configured to measure the state of the particles that are exposed. As schematically shown in FIG. 1, a particle state detection probe used in this agglutination monitor includes a first optical fiber 1 for irradiating a test water with laser light whose amplitude is modulated at a predetermined frequency. The second optical fiber 2 for receiving the scattered light generated by the collision of the laser light with the particles contained in the sample water is fixed to a predetermined pedestal (support member) 3 with its fiber end faces being close to each other. Have a structure.
Also, this probe is, for example, 10 to 20 mm as a whole.
It is made of medium size.

【0012】尚、上記光ファイバ1,2としては、その
コア径が0.1mm程度のものが用いられ、各ファイバ
端面での中心軸が90°の角度を以て交差するように前
記台座3に固定される。そして光ファイバ1,2におけ
る各端面の中心軸が交差する部位での0.2〜0.4mm
径程度の微小な領域Sにレーザ光を照射し、当該領域S
に生じた散乱光を受光するように構成される。また前記
台座3は、プローブの上方から入り込む外来光(自然
光)の前記領域Sへの到達を遮る役割も担う。
The optical fibers 1 and 2 each have a core diameter of about 0.1 mm, and are fixed to the pedestal 3 so that the central axes of the respective fiber end faces intersect at an angle of 90 °. To be done. And 0.2 to 0.4 mm at the portion where the central axes of the end faces of the optical fibers 1 and 2 intersect
A region S having a small diameter is irradiated with laser light, and the region S
It is configured to receive the scattered light generated in. The pedestal 3 also plays a role of blocking the arrival of extraneous light (natural light) entering from above the probe to the region S.

【0013】このような構造のプローブを用いた凝集モ
ニタ装置による検水中の懸濁物質(微小コロイド粒子)
やその凝集により生じたフロックからなる粒子の状態の
検出は、図1にその処理概念を示すように発光部10が
出力する変調レーザ光L、例えば所定の周波数で振幅変
調したレーザ光Lを前記プローブにおける第1の光ファ
イバ1を介して検水中に照射し、検水中に含まれる粒子
に上記レーザ光が衝突した際に発生する散乱光Sを前記
プローブにおける第2の光ファイバ2を介して検出部2
0にて受光することによりなされる。
Suspended substances (microcolloid particles) in test water by an agglutination monitor using a probe having such a structure
The detection of the state of particles composed of flocs caused by agglomeration of the particles or the agglomeration thereof is performed by using the modulated laser light L output from the light emitting unit 10, for example, the laser light L amplitude-modulated at a predetermined frequency as shown in the processing concept of FIG. Irradiation into the test water through the first optical fiber 1 in the probe, and scattered light S generated when the laser light collides with particles contained in the test water is passed through the second optical fiber 2 in the probe. Detector 2
This is done by receiving light at 0.

【0014】上記発光部10は、例えば波長が630n
mのレーザ光Lを発振出力するレーザダイオード等のレ
ーザ発振器11と、このレーザ発振器11が発振出力す
る上記レーザ光Lを70〜150kHz(例えば95k
Hz)で電気的に振幅変調(AM変調)するファンクシ
ョンジェネレータ等の振幅変調器12とを備えて構成さ
れる。また前記検出部20は、散乱光Sの受光量(受光
強度)に応じた電気信号を発生するフォトトランジスタ
等の光電変換器21と、その光電変換出力から前述した
振幅変調した周波数成分だけを抽出する帯域通過フィル
タ(BPF)22と、この帯域通過フィルタ22の出力
を増幅器23を介して増幅した前記振幅変調周波数成分
の信号Fを検波して、その包絡線成分Eを求める検波器
24とを備えて構成される。
The light emitting section 10 has, for example, a wavelength of 630n.
The laser oscillator 11 such as a laser diode that oscillates and outputs the laser beam L of m and the laser beam L that is oscillated and output by the laser oscillator 11 are 70 to 150 kHz (for example, 95 kHz).
Hz) and an amplitude modulator 12 such as a function generator that electrically performs amplitude modulation (AM modulation). Further, the detection unit 20 extracts only the above-mentioned amplitude-modulated frequency component from a photoelectric converter 21 such as a phototransistor that generates an electric signal according to the amount of received light (received light intensity) of the scattered light S and its photoelectric conversion output. A band pass filter (BPF) 22 for detecting the amplitude modulated frequency component signal F obtained by amplifying the output of the band pass filter 22 through an amplifier 23, and a detector 24 for obtaining an envelope component E thereof. It is equipped with.

【0015】尚、上記レーザ光Lの振幅変調は、検水中
へのレーザ光Lの照射によって生じる散乱光を変調させ
ることで、検水中に混入する自然光等の外来光とを区別
する役割を担っている。従って前記光電変換器21の出
力を帯域通過フィルタ22を介してフィルタリングする
ことで、上記振幅変調の周波数成分として前記検水中に
照射したレーザ光Lによる散乱光の成分だけを抽出する
ことが可能となる。
The amplitude modulation of the laser light L plays a role of distinguishing from external light such as natural light mixed in the test water by modulating scattered light generated by irradiating the test water with the laser light L. ing. Therefore, by filtering the output of the photoelectric converter 21 through the bandpass filter 22, it is possible to extract only the scattered light component by the laser light L irradiated into the test water as the frequency component of the amplitude modulation. Become.

【0016】ところでレーザ光Lが照射される前述した
微小な領域Sにて生じる散乱光について考察すると、こ
の領域Sにおいて懸濁物質からなる微小なコロイド粒子
によって生じる散乱光の強度は、微小コロイド粒子の数
に比例して大きくなる。そして微小コロイド粒子の数
は、その凝集が進んで粒子径の大きいフロックが生成さ
れるに従って減少する。これに対してフロックは、微小
コロイド粒子が凝集したものであるから、凝集が進むに
従ってその数が増えるものの微小コロイド粒子に比較し
て遙かにその数が少ない。これ故、上記フロックが前述
した微小な領域Sに存在する可能性は非常に低く、希に
微小領域Sに入り込むに過ぎない。但し、フロックが微
小領域Sに入り込む頻度は、凝集の進行に伴ってフロッ
クの数が増えるに従って高くなる。
Considering the scattered light generated in the above-mentioned minute region S irradiated with the laser light L, the intensity of the scattered light generated by the minute colloid particles made of the suspended substance in this region S is equal to that of the minute colloid particles. It increases in proportion to the number of. The number of fine colloidal particles decreases as the flocculation progresses and flocs having a large particle size are generated. On the other hand, flocs are aggregates of fine colloidal particles, and thus the number increases as aggregation progresses, but the number is far smaller than that of fine colloidal particles. Therefore, it is extremely unlikely that the above-mentioned flocs are present in the minute area S described above, and rarely enters the minute area S. However, the frequency with which the flocs enter the minute region S increases as the number of flocs increases as the aggregation progresses.

【0017】従って前述した構造のプローブを用いて微
小領域Sにおける散乱光の強度を計測すると、図2(a)
〜(c)にその概念を示すように、懸濁物質の凝集が進ん
で微小コロイド粒子の数が減り、フロックの数が徐々に
増えるに従って、プローブ8にて検出される微小領域S
の散乱光の強度が上記フロックにより一時的に高くなる
ことがあるものの、全体的には低くなる。これ故、フロ
ックの存在によって散乱光強度が一時的に高くなった場
合を除いて、その全体的な散乱光の強度に着目すれば、
そのときの散乱光強度は未凝集のコロイド粒子の数を示
していると看做すことが可能となる。
Therefore, when the intensity of the scattered light in the minute area S is measured using the probe having the above-mentioned structure, FIG.
As the concept is shown in (c) to (c), as the number of fine colloid particles decreases and the number of flocs gradually increases due to the progress of the aggregation of suspended substances, the fine region S detected by the probe 8 is detected.
The intensity of the scattered light may temporarily increase due to the above-mentioned flocs, but it generally decreases. Therefore, except for the case where the scattered light intensity is temporarily increased due to the presence of flocs, focusing on the overall scattered light intensity,
The scattered light intensity at that time can be regarded as indicating the number of unaggregated colloidal particles.

【0018】前述した図1に示す最低値検出回路25
は、このような観点に立脚して前述した散乱光の強度に
応じた光電変換出力から求められる前記振幅変調周波数
成分の信号Fの包絡線成分Eの最低値を検出すること
で、検水中における粒子の状態(未凝集のコロイド粒子
数)を求めるものとなっている。尚、フロックにより散
乱光の強度が一時的に高くなる周期に着目すれば、凝集
により生じたフロックの数(検水中におけるフロックの
密度)を求めることが可能となり、上記一時的な散乱光
強度の大きさから、フロックの粒子径を求めることも可
能となる。
The minimum value detection circuit 25 shown in FIG.
Based on such a viewpoint, by detecting the minimum value of the envelope component E of the signal F of the amplitude modulation frequency component obtained from the photoelectric conversion output corresponding to the intensity of the scattered light described above, The state of particles (the number of unaggregated colloidal particles) is obtained. Note that if attention is paid to the period in which the intensity of scattered light temporarily increases due to flocs, it becomes possible to determine the number of flocs generated by aggregation (the density of flocs in the test water), and the temporary scattered light intensity It is also possible to determine the particle size of flocs from the size.

【0019】さて基本的には上述したようにレーザ光を
照射する第1の光ファイバ1と散乱光受光用の第2の光
ファイバ2とを、その支持部材である台座3に取り付け
た構造の粒子状態検出用プローブにおいて、この発明が
特徴とするところは、図3にその実施形態を示すよう
に、光ファイバ1,2を支持し、これらの光ファイバ1,
2における各端面の中心軸が交差する部位に検水中の粒
子の状態を検出するべく微小領域Sを設定した台座(支
持部材)3に、その外部の清水供給源(空気供給源)3
0から供給される清水(空気)を前記光ファイバ1,2
の各端面および上記微小領域Sを含む領域Cに噴出し
て、該領域Cを清水(空気)により満たす流体導入孔
(校正環境設定手段)5を備えている点にある。
Basically, as described above, the first optical fiber 1 for irradiating the laser beam and the second optical fiber 2 for receiving the scattered light are attached to the pedestal 3 which is a supporting member thereof. In the particle state detection probe, the feature of the present invention is that it supports optical fibers 1 and 2 as shown in the embodiment in FIG.
2, a pedestal (support member) 3 in which a minute region S is set to detect the state of particles in the test water at a position where the central axes of the respective end faces intersect, and a fresh water supply source (air supply source) 3 outside the pedestal 3
The fresh water (air) supplied from the optical fiber 1, 2
Is provided with a fluid introduction hole (calibration environment setting means) 5 that jets to each end face and a region C including the minute region S and fills the region C with fresh water (air).

【0020】この流体導入孔5は、前記台座3に穿た
れ、清水(空気)を噴出する噴出口6を前記光ファイバ
1,2の各端面に近接させて設けたもので、チューブ等
を介して前記清水供給源(空気供給源)30に連結され
る。特に台座3の先端部に設けられた噴出口6は、光フ
ァイバ1,2の各端面に沿って清水(空気)を噴出する
ように設定されており、清水(空気)の噴出流にて光フ
ァイバ1,2の各端面に付着した汚れを除去する役割も
担っている。
The fluid introduction hole 5 is formed in the pedestal 3 and is provided with a jet port 6 for jetting fresh water (air) in close proximity to each end face of the optical fibers 1 and 2, and through a tube or the like. And is connected to the fresh water supply source (air supply source) 30. In particular, the jet port 6 provided at the tip of the pedestal 3 is set so as to jet fresh water (air) along each end face of the optical fibers 1 and 2, and the jet flow of the fresh water (air) causes light to be emitted. It also plays a role of removing dirt attached to the end faces of the fibers 1 and 2.

【0021】このような流体導入孔5を備えたプローブ
によれば、該プローブを検水中に浸漬し、発光部10か
らのレーザ光を検水中に照射してその散乱光を検出して
いる状態において、前記清水供給源(空気供給源)30
から流体導入孔5を介して供給される清水(空気)を噴
出口6から噴出させると、その清水(空気)は検水を押
し退けて光ファイバ1,2の各端面および上記微小領域
Sを含む領域Cに清水塊(空気溜まり)を形成し、領域
Cを清水(空気)にて満たす。この状態で前記微小領域
Sにおいて生じる散乱光を検出すれば、その散乱光強度
は検水とは無関係な清水(空気)の状態を示すものであ
るから、この散乱光強度を以てその計測系を校正する為
の評価値とすることができる。そこで上述したプローブ
を備えた凝集モニタ装置は、図3に示すように清水供給
源(空気供給源)30の作動に同期して前記検出部20
の出力(散乱光強度)から、その計測系の特性を評価す
る評価部31を備えて構成される。
According to the probe having such a fluid introduction hole 5, the probe is immersed in the test water, and the scattered light is detected by irradiating the test light with the laser beam from the light emitting section 10. In the above, the fresh water supply source (air supply source) 30
When fresh water (air) supplied from the fluid through the fluid introduction hole 5 is ejected from the ejection port 6, the fresh water (air) pushes away the test water and includes each end face of the optical fibers 1 and 2 and the minute region S. A fresh water lump (air pool) is formed in the area C, and the area C is filled with fresh water (air). If the scattered light generated in the minute area S is detected in this state, the scattered light intensity indicates the state of fresh water (air) that is unrelated to the test water, so the measurement system is calibrated with this scattered light intensity. It can be used as an evaluation value for doing. Therefore, as shown in FIG. 3, the agglutination monitor device equipped with the above-mentioned probe synchronizes with the operation of the fresh water supply source (air supply source) 30 and the detection unit 20.
From the output (scattered light intensity) of Eq.

【0022】このように構成された凝集モニタ装置によ
れば、清水供給源30を作動させてプローブ先端部の前
記光ファイバ1,2の各端面および上記微小領域Sを含
む領域Cに清水塊を形成し、この清水供給源30の作動
に同期して前記評価部31を作動させることにより、前
記検出部20の出力(散乱光強度)から前記発光部10
から検出部20に至る計測系の特性を評価することが可
能となる。そして清水塊から得られる散乱光強度に応じ
て、例えば発光部10におけるレーザ光の出力強度を調
整したり、或いは検出部20における散乱光の受光感度
等を調整(補正)すれば、これによってその計測系を簡
易にして効果的に校正することが可能となる。
According to the agglomeration monitor thus constructed, the fresh water supply source 30 is actuated so as to collect fresh water lumps in the end faces of the optical fibers 1 and 2 at the probe tip and in the region C including the minute region S. By forming and operating the evaluation unit 31 in synchronization with the operation of the fresh water supply source 30, the light emitting unit 10 is output from the output (scattered light intensity) of the detection unit 20.
It is possible to evaluate the characteristics of the measurement system from the detection unit 20 to the detection unit 20. If, for example, the output intensity of the laser light in the light emitting unit 10 is adjusted or the light receiving sensitivity of the scattered light in the detection unit 20 is adjusted (corrected) according to the scattered light intensity obtained from the fresh water mass, the It is possible to simplify the measurement system and effectively calibrate it.

【0023】また上記清水塊から得られる散乱光強度
が、その校正基準値(正常時の散乱光強度)よりも大き
く下回るような場合には、例えばレーザ光を出力する発
光部10に何等かの障害が発生した、或いは光ファイバ
1,2の端面の汚れがひどく、レーザ光の射出および/
または散乱光の受光が正常に行われていないと判断する
ことができる。従ってこのような場合には、発光部10
のメンテナンスを行ったり、或いは清水の噴出によって
も光ファイバ1,2の端面の汚れをぬぐいきれなかった
として、別の手段による該端面の清掃を促すようにすれ
ば良い。この光ファイバ1,2の端面の清掃(プローブ
の清掃)については、プローブを検水から引き上げ、専
用のブラシ等を用いるようにすれば良い。
If the scattered light intensity obtained from the fresh water mass is much lower than the calibration reference value (scattered light intensity under normal conditions), for example, some kind of light is emitted to the light emitting section 10 that outputs laser light. If a failure occurs or the end faces of the optical fibers 1 and 2 are badly contaminated, laser light emission and / or
Alternatively, it can be determined that the scattered light is not normally received. Therefore, in such a case, the light emitting unit 10
If it is not possible to wipe off the dirt on the end surfaces of the optical fibers 1 and 2 even if the maintenance is performed or if the fresh water is ejected, cleaning of the end surfaces by another means may be prompted. For cleaning the end faces of the optical fibers 1 and 2 (cleaning of the probe), the probe may be pulled up from the sample water and a dedicated brush or the like may be used.

【0024】かくして上述した如く構成された粒子状態
検出用プローブを用いた凝集モニタ装置によれば、発光
部10から受光部20に至る計測系の特性を簡易に校正
することができる。しかもこの校正時に、噴出口6から
噴出させる清水(空気)を用いて光ファイバ1,2の各
端面を清掃し、端面に付着した汚れを除去することが可
能となる。従ってプローブを清浄な状態に保ちながら、
その計測系の校正を簡単に行うことができ、メンテナン
スの容易化を図ることが可能となる等の実用上多大なる
効果が奏せられる。
Thus, according to the agglomeration monitor using the probe for detecting the particle state constructed as described above, the characteristics of the measurement system from the light emitting section 10 to the light receiving section 20 can be easily calibrated. Moreover, at the time of this calibration, it is possible to clean each end surface of the optical fibers 1 and 2 by using clean water (air) ejected from the ejection port 6 to remove the dirt attached to the end surfaces. So while keeping the probe clean,
The measurement system can be easily calibrated, and the maintenance can be facilitated.

【0025】尚、本発明は上述した実施形態に限定され
るものではない。例えば噴出口6から清水(空気)を噴
出し、プローブ先端の領域Cに清水塊(空気溜まり)を
形成しながら検出される散乱光強度をモニタしながら、
光ファイバ1,2の端面の清浄度を判定するようにして
も良い。そして上記散乱光強度が正常時のレベルとなっ
たとき、或いは所定のレベルに達したとき、その清掃
(洗浄)が終了したと判断するようにしても良い。また
予めプローブ先端の領域Cを清水塊にて満たした状態に
おいて散乱光強度を検出し、この検出散乱光強度を検水
に含まれる懸濁物質が凝集処理されて浄化された状態の
標準値(基準値)として設定する。そしてこの標準値
を、凝集処理した被処理水(検水)の清浄化の程度を判
定する上での目標値としても良い。
The present invention is not limited to the above embodiment. For example, while ejecting fresh water (air) from the ejection port 6 and forming a fresh water mass (air pool) in the region C at the tip of the probe and monitoring the scattered light intensity detected,
The cleanliness of the end faces of the optical fibers 1 and 2 may be determined. Then, when the scattered light intensity reaches the normal level or reaches a predetermined level, it may be determined that the cleaning (washing) is completed. Further, the scattered light intensity is detected in a state where the region C at the tip of the probe is filled with a fresh water lump in advance, and the detected scattered light intensity is a standard value in a state where the suspended substance contained in the test water is purified by aggregating treatment ( (Reference value). Then, this standard value may be used as a target value for determining the degree of cleaning of the coagulated treated water (test water).

【0026】また実施形態においては、検水中の粒子の
状態を検出するための変調レーザ光として、所定の周波
数で振幅変調したレーザ光を用いたが、レーザ光を位相
変調したり、周波数変調して用いるようにしても良い。
この場合には、散乱光の強度に応じた光電変換出力か
ら、その位相変調成分や周波数変調成分をそれぞれ検出
して検水中の粒子の状態を検出すれば良い。その他、本
発明はその要旨を逸脱しない範囲において種々変形して
実施することができる。
Further, in the embodiment, the laser light amplitude-modulated at a predetermined frequency is used as the modulated laser light for detecting the state of the particles in the test water, but the laser light is phase-modulated or frequency-modulated. You may use it.
In this case, the phase modulation component or frequency modulation component may be detected from the photoelectric conversion output according to the intensity of scattered light to detect the state of particles in the test water. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、プ
ローブ先端近傍に形成する検水の粒子の状態を検出する
為の微小領域を含む領域を清水または空気により満たす
校正環境設定手段を備えるので、その計測系の校正を簡
易に行うことができる。また上記領域に噴出する清水ま
たは空気によりファイバ端面を洗浄する役割を持たせる
ことで、ファイバ端面に付着した汚れを落としながら検
水中の粒子の状態を信頼性良く確実に検出することがで
きる。従ってその計測精度を容易に高め得る等の実用上
多大なる効果が奏せられる。
As described above, according to the present invention, there is provided the calibration environment setting means for filling the region including the minute region for detecting the state of the particles of the sample water formed near the tip of the probe with fresh water or air. Therefore, the measurement system can be easily calibrated. Further, by providing the role of cleaning the fiber end face with the fresh water or air jetted into the above-mentioned region, it is possible to reliably and reliably detect the state of the particles in the test water while removing the dirt attached to the fiber end face. Therefore, practically great effects such as easily improving the measurement accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子状態検出用プローブを用いた
凝集モニタ装置によるフロックを含む凝集処理水(検
水)中における粒子の状態検出の処理概念を示す図。
FIG. 1 is a diagram showing the concept of processing for detecting the state of particles in a flocculation-treated water (fluid test water) containing flocs by an agglutination monitoring apparatus using a particle state detection probe according to the present invention.

【図2】懸濁物質(微小コロイド粒子)の凝集に伴う、
微小領域Sでの散乱光強度の変化の様子を模式的に示す
図。
FIG. 2 shows the state of aggregation of suspended substances (microcolloid particles),
The figure which shows typically the mode of the change of the scattered light intensity in the minute area | region S.

【図3】本発明の実施形態に係る粒子状態検出用プロー
ブの概略構成図。
FIG. 3 is a schematic configuration diagram of a particle state detection probe according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 第1の光ファイバ(投光部) 2 第2の光ファイバ(受光部) 3 台座(支持部材) 5 流体導入孔(校正環境設定手段) 6 噴出口 30 清水供給源(空気供給源) 1 First optical fiber (projector) 2 Second optical fiber (light receiving part) 3 pedestal (support member) 5 Fluid introduction hole (calibration environment setting means) 6 spouts 30 Fresh water supply source (air supply source)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 雅行 愛知県豊橋市天伯町雲雀ヶ丘1−1 豊橋 技術科学大学内 Fターム(参考) 2G059 AA05 BB05 CC19 DD12 EE02 FF07 FF08 GG01 GG02 GG06 HH02 HH06 JJ17 KK01 LL01 MM01 MM03 MM14 MM15 NN01 NN07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masayuki Nagao             Toyohashi 1-1, Hibarigaoka, Tenhaku Town, Toyohashi City, Aichi Prefecture             Inside the University of Technology F-term (reference) 2G059 AA05 BB05 CC19 DD12 EE02                       FF07 FF08 GG01 GG02 GG06                       HH02 HH06 JJ17 KK01 LL01                       MM01 MM03 MM14 MM15 NN01                       NN07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 検水中にレーザ光を照射し、このレーザ
光の上記検水中の粒子への衝突により発生する散乱光を
検出する粒子状態検出用プローブであって、 前記検水中にレーザ光を照射する投光部と、 この投光部の近傍に設けられて前記散乱光を受光する受
光部と、 前記投光部による前記レーザ光の照射領域と前記受光部
による前記散乱光の受光領域とが交差する状態に前記投
光部と受光部とをそれぞれ支持して前記検水中における
粒子状態の計測領域を規定する支持部材と、 この支持部材に設けられ、外部から導入される校正用の
清水または空気を前記投光部のレーザ光出射面、前記受
光部の散乱光受光面、および前記計測領域を含む領域に
噴出して、該領域を上記校正用の清水または空気により
満たす校正環境設定手段とを具備したことを特徴とする
粒子状態検出用プローブ。
1. A particle state detection probe for irradiating laser light into test water and detecting scattered light generated by collision of the laser light with particles in the test water. A light projecting unit for irradiating, a light receiving unit provided near the light projecting unit for receiving the scattered light, an irradiation region of the laser light by the light projecting unit, and a light receiving region of the scattered light by the light receiving unit. And a support member that supports the light projecting unit and the light receiving unit in a state of intersecting each other to define the measurement region of the particle state in the test water, and fresh water for calibration that is provided to the support member and is introduced from the outside. Alternatively, a calibration environment setting means for ejecting air onto the laser light emitting surface of the light projecting portion, the scattered light receiving surface of the light receiving portion, and a region including the measurement region and filling the region with fresh water or air for calibration. Equipped with Particle state detection probe according to claim.
【請求項2】 前記投光部は、光源から発せられたレー
ザ光を導いてその端面から射出する第1の光ファイバで
あって、 前記受光部は、その端面から入射する散乱光を検出部に
導く第2の光ファイバからなる請求項1に記載の粒子状
態検出用プローブ。
2. The light projecting unit is a first optical fiber that guides laser light emitted from a light source and emits it from an end face thereof, and the light receiving unit detects scattered light incident from the end face thereof. The particle state detection probe according to claim 1, comprising a second optical fiber for guiding to the particle.
【請求項3】 前記校正環境設定手段は、前記支持部材
に穿たれて外部から供給される校正用の清水または空気
を導き、前記支持部材が規定する計測領域の近傍に設け
た噴出口から前記校正用の清水または空気を噴出する流
体導入孔からなる請求項1に記載の粒子状態検出用プロ
ーブ。
3. The calibration environment setting means introduces fresh water or air for calibration that is pierced in the support member and is supplied from the outside, and the calibration environment setting means is provided from an ejection port provided in the vicinity of a measurement region defined by the support member. The particle state detection probe according to claim 1, comprising a fluid introduction hole for ejecting calibration fresh water or air.
【請求項4】 前記校正用の清水または空気の噴出口
は、第1および第2の光ファイバの各端面に近接して設
けられるものであって、該噴出口から噴出させる前記校
正用の清水または空気により上記各光ファイバの端面を
清浄する役割を担うものである請求項3に記載の粒子状
態検出用プローブ。
4. The calibration fresh water or air jet outlet is provided close to each end face of the first and second optical fibers, and the calibration fresh water jetted from the jet outlet. 4. The particle state detection probe according to claim 3, which plays a role of cleaning the end faces of the respective optical fibers with air.
【請求項5】 請求項1〜4のいずれかに記載の粒子状
態検出用プローブを用いて構成される凝集モニタ装置で
あって、 前記投光部のレーザ光出射面、前記受光部の散乱光受光
面、および前記計測領域を含む領域が前記校正用の清水
または空気により満たした状態で前記粒子状態検出用プ
ローブを用いて検出される検出出力に従って、その計測
系を校正する計測系校正手段を備えることを特徴とする
凝集モニタ装置。
5. An agglutination monitor configured by using the particle state detection probe according to claim 1, wherein the laser light emitting surface of the light projecting portion and the scattered light of the light receiving portion. A measurement system calibrating means for calibrating the measurement system according to the detection output detected by using the particle state detection probe in a state where the light receiving surface and the area including the measurement area are filled with the calibration fresh water or air. An agglutination monitoring device comprising.
【請求項6】 前記計測系校正手段は、前記投光部から
検水に照射するレーザ光の強度および/または前記受光
部にて受光された散乱光の検出強度を補正するものであ
る請求項5に記載の凝集モニタ装置。
6. The measuring system calibrating means corrects the intensity of the laser beam applied to the test water from the light projecting unit and / or the detected intensity of the scattered light received by the light receiving unit. The agglutination monitor device according to item 5.
JP2001359483A 2001-11-26 2001-11-26 Probe for detecting states of particles and aggregation monitoring apparatus Pending JP2003161689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359483A JP2003161689A (en) 2001-11-26 2001-11-26 Probe for detecting states of particles and aggregation monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359483A JP2003161689A (en) 2001-11-26 2001-11-26 Probe for detecting states of particles and aggregation monitoring apparatus

Publications (1)

Publication Number Publication Date
JP2003161689A true JP2003161689A (en) 2003-06-06

Family

ID=19170482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359483A Pending JP2003161689A (en) 2001-11-26 2001-11-26 Probe for detecting states of particles and aggregation monitoring apparatus

Country Status (1)

Country Link
JP (1) JP2003161689A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064702A (en) * 2004-08-02 2011-03-31 Furukawa Electric Co Ltd:The Specimen optical information recognizing device and method of recognizing the same
JP2012532386A (en) * 2009-07-07 2012-12-13 エックストラリス・テクノロジーズ・リミテッド Chamber condition
JP5861010B2 (en) * 2013-12-11 2016-02-16 オリンパス株式会社 Calibrator and calibration device
JP2018096768A (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Method for aggregation monitoring, aggregation monitoring device, aggregation monitoring probe, and aggregation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064702A (en) * 2004-08-02 2011-03-31 Furukawa Electric Co Ltd:The Specimen optical information recognizing device and method of recognizing the same
JP2012532386A (en) * 2009-07-07 2012-12-13 エックストラリス・テクノロジーズ・リミテッド Chamber condition
JP5861010B2 (en) * 2013-12-11 2016-02-16 オリンパス株式会社 Calibrator and calibration device
JP2018096768A (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Method for aggregation monitoring, aggregation monitoring device, aggregation monitoring probe, and aggregation system

Similar Documents

Publication Publication Date Title
KR900001575B1 (en) Detectin system for impurity in water
AU652553B2 (en) Turbidity measurement
US5245200A (en) Apparatus and method for preventing blockage of a measuring head for effecting measurements of suspended substances
US5012119A (en) Method and apparatus for monitoring particles using back-scattered light without interference by bubbles
EP0340184A3 (en) Method and apparatus for determining the concentration of a substance which is bonded to particles in a flowing medium
JPS6123947A (en) Method and device for measuring turbidity of liquid
JP2007263856A (en) Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP2002253905A (en) Coagulation monitoring system
JP4654908B2 (en) Apparatus and method for monitoring effect of paper-making drug, and apparatus and method for supplying paper-making drug
JP2002505438A (en) How to monitor the integrity of hollow fiber filtration modules.
JP2003161689A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP3925621B2 (en) Water or sludge treatment system
JP4605327B2 (en) Aggregation monitoring device
JP4779762B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
JP4359769B2 (en) Sensor dirt detection method
JP2003161688A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP2003161690A (en) Aggregation monitoring apparatus
JP4915120B2 (en) Effect monitoring method and injection amount control method for papermaking chemicals
JP3922365B2 (en) Particle state detection apparatus and particle state detection method
JP2008070245A (en) Flow cell for fluid sample
JP4915109B2 (en) Method and apparatus for monitoring effect of chemical for papermaking and method and apparatus for controlling injection amount
JP4390053B2 (en) Calibration time determination method for optical turbidity concentration meter
JPH11344443A (en) Highly sensitive turbidimeter for measuring filtered water
JP3265361B2 (en) Apparatus and method for measuring particles in liquid
JP2005083746A (en) Probe for detecting particle state in treatment water