JP4359769B2 - Sensor dirt detection method - Google Patents

Sensor dirt detection method Download PDF

Info

Publication number
JP4359769B2
JP4359769B2 JP2004084916A JP2004084916A JP4359769B2 JP 4359769 B2 JP4359769 B2 JP 4359769B2 JP 2004084916 A JP2004084916 A JP 2004084916A JP 2004084916 A JP2004084916 A JP 2004084916A JP 4359769 B2 JP4359769 B2 JP 4359769B2
Authority
JP
Japan
Prior art keywords
measured
sensor
water
light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004084916A
Other languages
Japanese (ja)
Other versions
JP2005274216A (en
Inventor
誠 埜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004084916A priority Critical patent/JP4359769B2/en
Publication of JP2005274216A publication Critical patent/JP2005274216A/en
Application granted granted Critical
Publication of JP4359769B2 publication Critical patent/JP4359769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、投光部と受光部とを被計測水中に浸漬して用いられる光学式センサの汚れ検出方法に関する。 The present invention relates to a stain detection method for an optical sensor that is used by immersing a light projecting unit and a light receiving unit in measured water .

従来から、例えば粒子状態検出用プローブを用いて被計測水に含まれる懸濁物の濃度または懸濁物の物性を検知するセンサが知られている(例えば、特許文献1を参照)。この種のセンサは、図7に示すように被計測水中にレーザ光を照射する投光部2と、この投光部の近傍に設けられて被計測水を透過した透過光を受光する透過光受光部3T、被計測水に含まれる懸濁物により散乱または反射した光をそれぞれ受光する散乱光受光部3Sおよび反射光受光部3Rの少なくとも一つが設けられて、これらの受光部3(3T,3S,3R)が受光した光のレベルから、被計測水に含まれる懸濁物の濃度または懸濁物の物性を検知する測定部10を備えて構成される。   2. Description of the Related Art Conventionally, there is known a sensor that detects the concentration of a suspension contained in water to be measured or the physical properties of the suspension using, for example, a particle state detection probe (see, for example, Patent Document 1). As shown in FIG. 7, this type of sensor includes a light projecting unit 2 that irradiates laser light into the measured water and a transmitted light that is provided near the light projecting unit and receives transmitted light that has passed through the measured water. At least one of a light receiving unit 3T, a scattered light receiving unit 3S that receives light scattered or reflected by a suspended matter contained in the water to be measured, and a reflected light receiving unit 3R is provided, and these light receiving units 3 (3T, 3T, 3S, 3R) is configured to include a measuring unit 10 that detects the concentration of the suspension contained in the water to be measured or the physical properties of the suspension from the level of the light received by 3S, 3R).

例えば透過光型の光学式センサは、被計測水Mを透過する光、即ち、被計測水Mに含まれる濁質(粒子)によって遮られる光の遮蔽度を透過光受光部3Tが受光した光のレベルとして測定部10が測定するものである。例えば被計測水に含まれる懸濁物濃度を計測するセンサ(濃度センサ)は、透過光受光部3Tが出力する検出信号のレベル(信号強度)が図8に示すように被計測水Mの濁質濃度に比例して減少することを利用して計測する。
特願2002−337778号
For example, the transmitted light type optical sensor is a light received by the transmitted light receiving unit 3T with respect to the light transmitted through the water M to be measured, that is, the degree of light blocked by the turbidity (particles) contained in the water M to be measured. Is measured by the measuring unit 10. For example, a sensor (concentration sensor) that measures the concentration of suspended matter contained in the water to be measured has a level (signal intensity) of the detection signal output from the transmitted light receiving unit 3T as shown in FIG. Measured by using the decrease in proportion to the quality concentration.
Japanese Patent Application No. 2002-337778

上述した光を利用した光学式センサにあっては、投光部2や各受光部3(3T,3S,3R)に被計測水に含まれる懸濁物質が付着して汚れることがある。それ故、センサに付着した懸濁物質によって本来、受光部3が受光する光のレベルが低下し、被計測水の濁質濃度(真値)と異なった濃度または懸濁物の物性を検知されるという問題があった。しかしながら、またこのような光学式センサは、被計測水の濁質濃度が高い(または低い)のか、それとも上述したようなセンサの汚れによるものかの判定を行うことができないという問題もあり、安定した計測が行えているか確認ができず、つまり計測値が信頼できるものであるかどうか判らないまま被計測水の懸濁物濃度または物性を検知しているという問題があった。   In the above-described optical sensor using light, suspended matter contained in the water to be measured may adhere to the light projecting unit 2 and each light receiving unit 3 (3T, 3S, 3R) and become dirty. Therefore, the level of the light received by the light receiving unit 3 is reduced due to the suspended substance adhering to the sensor, and a concentration different from the turbidity concentration (true value) of the measured water or the physical property of the suspended matter is detected. There was a problem that. However, such an optical sensor also has a problem that it cannot be determined whether the turbidity concentration of the water to be measured is high (or low) or due to the contamination of the sensor as described above. Therefore, there is a problem that it is not possible to confirm whether or not the measurement has been performed, that is, the suspension concentration or physical property of the water to be measured is detected without knowing whether or not the measurement value is reliable.

本発明はこのような従来の事情に対処してなされたものであり、その目的は、センサ、特に光学式センサに付着した汚れの有無を判定するセンサの汚れ検出方法を提供することにある。 The present invention has been made in response to such a conventional situation, and an object of the present invention is to provide a sensor dirt detection method for determining the presence or absence of dirt adhered to a sensor, particularly an optical sensor .

上述した目的を達成するため、本発明に係るセンサの汚れ検出方法は、被計測水中に投光部と受光部とが浸漬され、前記投光部から被計測水中に照射した光の被計測水中を透過した透過光、被計測水中に含まれる懸濁物により散乱された散乱光、および前記懸濁物により反射された反射光の少なくとも一つを受光して、被計測水中の懸濁物濃度を求めるセンサまたは懸濁物の物性を検出するセンサにおいて、
(1)予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入して前記被計測水を計測して求められる計測値との差[ΔD]を求める。
(2)次に前記センサを用いて前記被計測水を計測する計測過程で求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入したとき求められる計測値との差[Δd]を求める。
(3)そして[ΔD]と[Δd]とを比較して前記センサの汚れの有無を判定する。
In order to achieve the above-described object, a sensor dirt detection method according to the present invention includes a light projecting unit and a light receiving unit immersed in measured water, and the measured water of light irradiated from the light projecting unit into the measured water. Receiving at least one of the transmitted light that has passed through, the scattered light scattered by the suspension contained in the measurement water, and the reflected light reflected by the suspension, and the concentration of the suspension in the measurement water In a sensor for determining the physical property of a suspended matter,
(1) A measurement value obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance, and in this state, air bubbles are introduced between the light projecting unit and the light receiving unit to remove the water to be measured. The difference [ΔD] from the measured value obtained by measurement is obtained.
(2) Next, a measurement value obtained in a measurement process of measuring the water to be measured using the sensor, and a measurement value obtained when bubbles are introduced between the light projecting unit and the light receiving unit in this state The difference [Δd] is obtained.
(3) Then, [ΔD] and [Δd] are compared to determine whether the sensor is dirty.

上述したセンサの汚れ検出方法によれば、例えば被計測水の懸濁物濃度を測定するセンサ(濃度センサ)の場合、前記投光部と受光部との間に気泡を導入すると、この気泡によって前記投光部と受光部との間に存在する懸濁物質が減少する。したがってこの分、濃度センサが検出する懸濁物濃度が低下する。この気泡を投光部と受光部との間に導入した際の懸濁物濃度の変化[Δd]を予め前記濃度センサに汚れがない状態で得たときの変化[ΔD]と比較し、[ΔD]と[Δd]とを比較して前記濃度センサの汚れ度合いを判定する。センサ部の洗浄については、従来法(気体噴射法、液体噴射法、気液混合法、ブラシやスポンジ、ワイパ等による機械的洗浄法等がある)を採用することができる。   According to the sensor dirt detection method described above, for example, in the case of a sensor (concentration sensor) that measures the suspension concentration of water to be measured, if bubbles are introduced between the light projecting unit and the light receiving unit, Suspended substances existing between the light projecting part and the light receiving part are reduced. Accordingly, the suspension concentration detected by the concentration sensor is reduced accordingly. The change [Δd] in the suspension concentration when this bubble is introduced between the light projecting unit and the light receiving unit is compared with the change [ΔD] obtained when the concentration sensor is not contaminated in advance. [Delta] D] and [[Delta] d] are compared to determine the degree of contamination of the density sensor. Conventional methods (gas injection method, liquid injection method, gas-liquid mixing method, mechanical cleaning method using a brush, sponge, wiper, etc.) can be employed for cleaning the sensor unit.

好ましくは、前記投光部と受光部との間への気泡の導入は、前記センサの投光部および受光部を洗浄するものであって、
(4)予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入して前記被計測水を計測して求められる計測値との差[ΔD]を求める。
(5)次に前記気泡の導入を間欠的に繰り返しながら、前記投光部と受光部との間へ気泡を導入していないときに求められ計測値と、気泡を導入したときに求められる計測値との差[Δd]を求める。
(6)そして[ΔD]と[Δd]とを比較して前記センサの汚れ除去の程度を判定することが望ましい。
Preferably, the introduction of the bubble between the light projecting unit and the light receiving unit is to wash the light projecting unit and the light receiving unit of the sensor,
(4) A measurement value obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance, and in this state, air bubbles are introduced between the light projecting unit and the light receiving unit to remove the water to be measured. The difference [ΔD] from the measured value obtained by measurement is obtained.
(5) Next, while intermittently repeating the introduction of the bubble, the measurement value obtained when the bubble is not introduced between the light projecting unit and the light receiving unit, and the measurement obtained when the bubble is introduced The difference [Δd] from the value is obtained.
(6) It is desirable to compare the [ΔD] and [Δd] to determine the degree of dirt removal of the sensor.

尚、前記[ΔD]は、計測した懸濁物濃度によって数値が異なり、かつ被計測懸濁物の物性、例えば粒子径や粒子形状、色調、密度によって異なるので、該センサの構成時に図9に示すような[ΔDs]と懸濁物濃度[S](若しくはセンサ出力[S])との関係式を作成しておくのがよい。[Δd]計測時に対応する[ΔD]は、[Δd]計測時の懸濁物濃度とこの関係式から求めて使用することができる。   Note that [ΔD] varies depending on the measured suspension concentration and varies depending on the physical properties of the suspension to be measured, such as the particle diameter, particle shape, color tone, and density. It is preferable to create a relational expression between [ΔDs] and the suspension concentration [S] (or sensor output [S]) as shown. [ΔD] corresponding to the time of [Δd] measurement can be obtained from the suspension concentration at the time of [Δd] measurement and this relational expression.

上述したセンサの汚れ検出方法によれば、例えば被計測水の懸濁物濃度を測定するセンサ(濃度センサ)の場合、前記投光部と受光部との間に気泡を導入すると、この気泡によって前記投光部と受光部との間に存在する懸濁物質が減少する。したがってこの分、濃度センサが検出する懸濁物濃度が低下する。この気泡を投光部と受光部との間に導入した際に得られる懸濁物濃度の変化[Δd]を予め前記濃度センサに汚れがない状態で得たときの変化[ΔD]と比較して濃度センサに付着した汚れの程度を判定する。   According to the sensor dirt detection method described above, for example, in the case of a sensor (concentration sensor) that measures the suspension concentration of water to be measured, if bubbles are introduced between the light projecting unit and the light receiving unit, Suspended substances existing between the light projecting part and the light receiving part are reduced. Accordingly, the suspension concentration detected by the concentration sensor is reduced accordingly. The change [Δd] in the suspension concentration obtained when this bubble is introduced between the light projecting part and the light receiving part is compared with the change [ΔD] obtained when the density sensor is not contaminated in advance. To determine the degree of dirt adhering to the concentration sensor.

より好ましくは、予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値[D1]と、この状態において前記投光部と受光部との間に気泡を導入して前記被計測水を計測して求められる計測値[D2]との差[ΔD=D1−D2]は、汚れ判定基準としてメモリに記憶されてセンサの汚れ判定に供することが望ましい。 More preferably, the measurement value [D1] obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance, and in this state, air bubbles are introduced between the light projecting unit and the light receiving unit, The difference [ΔD = D1−D2] from the measured value [D2] obtained by measuring the water to be measured is preferably stored in the memory as a soil determination criterion and used for sensor soil determination .

以上説明したように、本発明のセンサの汚れ検出方法においては、予めセンサに汚れがない状態で被計測水を計測して求められる計測値と、この状態において投光部と受光部との間に気泡を導入して被計測水を計測して求められる計測値との差[ΔD]と、センサを用いた被計測水の計測過程において求められる計測値と、この状態において投光部と受光部との間に気泡を導入して被計測水を計測して求められる計測値との差[Δd]とを比較して前記センサの汚れの有無を判定している。このためセンサの汚れ、例えば濃度センサに付着した懸濁物の有無を確実に検出することができる。   As described above, in the sensor dirt detection method of the present invention, the measured value obtained by measuring the water to be measured in a state in which the sensor is not soiled in advance, and in this state, between the light projecting unit and the light receiving unit. The difference [ΔD] between the measured value obtained by introducing air bubbles into the measured water and the measured value obtained in the process of measuring the measured water using the sensor, and the light projecting unit and the light receiving in this state The presence or absence of contamination of the sensor is determined by comparing the difference [Δd] with the measured value obtained by introducing air bubbles between the two parts and measuring the water to be measured. For this reason, it is possible to reliably detect the presence or absence of dirt on the sensor, for example, the suspension adhered to the concentration sensor.

また本発明のセンサの汚れ検出方法にあっては、予めセンサに汚れがない状態で被計測水を計測して求められる計測値と、この状態において投光部と受光部との間に気泡を導入して被計測水を計測して求められる計測値との差と、気泡の導入を間欠的に繰り返しながら被計測水を計測して求められる計測値と、投光部と受光部との間に気泡を導入して被計測水を計測して求められる計測値との差とを比較してセンサの汚れ除去の程度を判定している。このため例えば濃度センサに付着した懸濁物の状態を確実に検出することができる。   In the sensor dirt detection method of the present invention, the measurement value obtained by measuring the water to be measured in a state where the sensor is not soiled in advance, and bubbles are formed between the light projecting part and the light receiving part in this state. The difference between the measured value obtained by introducing and measuring the measured water, the measured value obtained by measuring the measured water while intermittently introducing air bubbles, and between the light projecting part and the light receiving part The degree of dirt removal of the sensor is determined by comparing the difference with the measured value obtained by introducing bubbles into the water and measuring the water to be measured. For this reason, for example, the state of the suspension adhering to the concentration sensor can be reliably detected.

以下、本発明の一実施形態に係るセンサの汚れ検出方法について図面を参照しながら説明する。この形態は本発明の一実施形態に係るセンサの汚れ検出方法に関し、被計測水の懸濁物濃度を計測する濃度センサを一例として示すものであって、本発明の実施形態に制限を与えるものではない。
図1は本発明に係るセンサの汚れ検出方法が適用される光学式濁質濃度計の概略構成を示すブロック図である。この図において1は、被計測水Mに含まれる懸濁物の濃度を検出する濃度センサであり、濃度測定部10に検出した懸濁物濃度を表す検出信号を出力する。
Hereinafter, a sensor dirt detection method according to an embodiment of the present invention will be described with reference to the drawings. This embodiment relates to a method for detecting contamination of a sensor according to an embodiment of the present invention, and shows a concentration sensor that measures the concentration of suspended matter in the water to be measured as an example, and restricts the embodiment of the present invention. is not.
FIG. 1 is a block diagram showing a schematic configuration of an optical turbidity concentration meter to which a sensor dirt detection method according to the present invention is applied. In this figure, reference numeral 1 denotes a concentration sensor that detects the concentration of the suspension contained in the water M to be measured, and outputs a detection signal representing the detected suspension concentration to the concentration measuring unit 10.

被計測水中に置かれる濃度センサ1は、例えば透過型濃度計の場合、概略的には図2に示すように、後述する発光部11により所定の周波数で振幅変調されたレーザ光をその端面(投光部2)から被計測水中に導いて照射する第1の光ファイバ4と、投光部2から照射されたレーザ光が被計測水Mに含まれる懸濁物(粒子)により妨げられることなく透過した透過光をその端面(受光部3)により受光して後述する検出部12導く第2の光ファイバ5とから構成される。この濃度センサ1は、投光部2と受光部3とが互いに近接するよう所定の台座(支持部材)6に固定されて、それぞれの端面の光軸を一致させている。   For example, in the case of a transmission type densitometer, the concentration sensor 1 placed in the water to be measured schematically shows a laser beam amplitude-modulated at a predetermined frequency by a light emitting unit 11 to be described later, as shown in FIG. The first optical fiber 4 that is guided from the light projecting unit 2) into the measured water and irradiated, and the laser light irradiated from the light projecting unit 2 is blocked by the suspended matter (particles) contained in the measured water M. The second optical fiber 5 is configured to receive transmitted light that has passed through the end surface (light receiving unit 3) and guide the detection unit 12 described later. The density sensor 1 is fixed to a predetermined pedestal (support member) 6 so that the light projecting unit 2 and the light receiving unit 3 are close to each other, and the optical axes of the respective end surfaces are made to coincide with each other.

被計測水Mを蓄える水槽7には、外部からポンプP等によって供給される空気等を被計測水中に導入し、その空気等により生成される気泡を投光部2および受光部3に吹き付けるノズル8が取り付けられている。このノズル8から被計測水中に導入される空気等は、後述する濃度測定部10に設けられた制御部13によって制御される弁9の開閉によって制御される。   A nozzle 7 that introduces air or the like supplied from the outside by a pump P or the like into the water to be measured, and blows bubbles generated by the air or the like to the light projecting unit 2 and the light receiving unit 3 in the water tank 7 that stores the water M to be measured. 8 is attached. Air or the like introduced into the measurement water from the nozzle 8 is controlled by opening and closing a valve 9 controlled by a control unit 13 provided in a concentration measuring unit 10 described later.

一方、濃度測定部10には、投光部2からレーザ光を照射する発光部11および受光部3が受光した光のレベルを検出する検出部12が設けられている。詳しくは発光部11が生成したレーザ光は、例えば所定の周波数で振幅変調されて第1の光ファイバ4を介してその端部の投光部2から被計測水中に照射される。投光部2から被計測水中に照射された光は、受光部3により受光されてその受光レベルを検出するべく第2の光ファイバ5を介して検出部12へ与えられる。   On the other hand, the concentration measuring unit 10 is provided with a light emitting unit 11 that emits laser light from the light projecting unit 2 and a detection unit 12 that detects the level of light received by the light receiving unit 3. Specifically, the laser light generated by the light emitting unit 11 is, for example, amplitude-modulated at a predetermined frequency and irradiated from the light projecting unit 2 at the end thereof into the measurement target water via the first optical fiber 4. The light emitted from the light projecting unit 2 into the measured water is received by the light receiving unit 3 and supplied to the detection unit 12 via the second optical fiber 5 in order to detect the received light level.

検出部12は、受光部3が受光した光の受光レベルに相当した電気信号レベルに変換する光電変換機能を備えている。この検出部12で得られた電気信号レベルは、詳細は後述するが演算部14に与えられて所定の演算が施されると共に、検出部12によって変換された電気信号レベルを保持する記憶部15に与えられるようになっている。
また濃度測定部10には、計測過程において得られた受光レベル(電気信号レベル)と記憶部15に保持された電気信号レベルとを比較して濃度センサ1の汚れの有無および汚れの程度を判定する判定部16が設けられている。
The detection unit 12 has a photoelectric conversion function for converting it to an electric signal level corresponding to the light reception level of the light received by the light receiving unit 3. The electric signal level obtained by the detection unit 12 is given to the calculation unit 14 as will be described in detail later, and is subjected to a predetermined calculation, and a storage unit 15 that holds the electric signal level converted by the detection unit 12. Is to be given to.
Further, the concentration measuring unit 10 compares the light reception level (electric signal level) obtained in the measurement process with the electric signal level held in the storage unit 15 to determine whether or not the concentration sensor 1 is contaminated and the degree of contamination. A determination unit 16 is provided.

概略的には上述した本発明に係るセンサの汚れ検出方法が特徴とするところは、予めセンサに汚れがない状態で被計測水Mを計測して求められる計測値と、この状態において投光部2と受光部3との間に気泡を導入して被計測水Mを計測して求められる計測値との差[ΔD]を保持する点、センサを用いた被計測水Mの計測値と、この状態において投光部2と受光部3との間に気泡を導入して被計測水Mを計測して求められる計測値との差[Δd]を求める点、これら求めた差[ΔD]と差[Δd]とを比較してセンサの汚れの有無、あるいはセンサの汚れの程度を判定する点にある。   Schematically, the sensor dirt detection method according to the present invention described above is characterized in that a measured value obtained by measuring the water to be measured M in advance in a state in which the sensor is not dirty, and a light projecting unit in this state A point that holds a difference [ΔD] from a measurement value obtained by introducing bubbles between 2 and the light receiving unit 3 and measuring the measurement water M, a measurement value of the measurement water M using a sensor, In this state, the difference [Δd] from the measured value obtained by measuring the measured water M by introducing bubbles between the light projecting unit 2 and the light receiving unit 3 and the obtained difference [ΔD] The difference [Δd] is compared to determine whether the sensor is dirty or not, or the degree of sensor dirt.

このような特徴ある本発明に係るセンサの汚れ検出方法についてより詳細に説明する。尚、センサとして被計測水の懸濁物濃度を計測する濃度センサを取り上げて、以下説明する。
図3(a)に示すように投光部2から被計測水中に照射された光は、受光部3へ到達する。このとき投光部2から被計測水中に照射した光の一部は、被計測水中に含まれる懸濁物Gによって遮られる。したがって透過光型の濃度センサ1にあっては、前述したように被計測水Mに含まれる懸濁物濃度が高くなるほど懸濁物Gによって遮られる光が増加し、それ故、受光部3が受光する光の受光レベルが低下する。ここでは、このようにして検出された受光レベル、即ち検出部12よって変換された電気信号(検出信号)のレベルが図3(b)に示すように[S1]であったとする。
The sensor dirt detection method according to the present invention having such characteristics will be described in more detail. A concentration sensor that measures the suspension concentration of the water to be measured will be described below as a sensor.
As shown in FIG. 3A, the light emitted from the light projecting unit 2 into the measurement target water reaches the light receiving unit 3. At this time, a part of the light irradiated from the light projecting unit 2 into the measurement target water is blocked by the suspension G contained in the measurement target water. Therefore, in the transmitted light type concentration sensor 1, the light blocked by the suspension G increases as the concentration of the suspension contained in the water M to be measured increases as described above. The light reception level of the received light is lowered. Here, it is assumed that the light reception level detected in this way, that is, the level of the electric signal (detection signal) converted by the detection unit 12 is [S1] as shown in FIG.

次に濃度測定部10の制御部13は、弁9を開操作して濃度センサ1の検出領域、すなわち図4(a)に示すように投光部2と受光部3との間に気泡Bを導入する。すると被計測水Mに含まれる懸濁物Gの一部が、導入した気泡Bによって排除される。したがってこのとき投光部2と受光部3との間に存在する懸濁物Gが気泡Bの導入前に比べて少なくなることになる。つまり検出領域における懸濁物濃度が低下することになる。すると受光部3が受光する受光レベルが増加し、それ故、検出部12が出力する検出信号のレベルが増加する。これは、前述した図8の検出信号レベルと懸濁物濃度を示すグラフが示すとおりである。   Next, the control unit 13 of the concentration measuring unit 10 opens the valve 9 to detect bubbles B between the light projecting unit 2 and the light receiving unit 3 as shown in the detection region of the concentration sensor 1, that is, as shown in FIG. Is introduced. Then, a part of the suspension G contained in the water M to be measured is excluded by the introduced bubbles B. Accordingly, at this time, the suspended matter G existing between the light projecting unit 2 and the light receiving unit 3 is reduced as compared with that before the introduction of the bubbles B. That is, the suspension concentration in the detection region is lowered. Then, the light receiving level received by the light receiving unit 3 increases, and therefore the level of the detection signal output by the detecting unit 12 increases. This is as shown in the graph showing the detection signal level and the suspension concentration in FIG.

詳しくは投光部2と受光部3との間に存在する気泡Bの状態によって、受光部3が受光する受光レベル、すなわち検出部12が出力する検出信号のレベルが変動する。例えば、投光部2と受光部3との間(検出領域)に気泡Bがほとんど存在しないときは、元々の懸濁物濃度(検出信号のレベル)が[S1]となる一方、投光部2と受光部3との間(検出領域)に気泡Bが多く存在する場合は、懸濁物濃度が低下する。ここで、気泡Bが検出領域に多く存在したときの懸濁物濃度(検出信号のレベル)を[S2]とすれば、気泡Bの導入によって検出部12が出力する検出信号のレベルは、図4(b)に示すように[S1]〜[S2]の間を変動する。   Specifically, depending on the state of the bubble B existing between the light projecting unit 2 and the light receiving unit 3, the light reception level received by the light receiving unit 3, that is, the level of the detection signal output by the detection unit 12 varies. For example, when there is almost no bubble B between the light projecting unit 2 and the light receiving unit 3 (detection region), the original suspension concentration (detection signal level) is [S1], while the light projecting unit When there are many bubbles B between 2 and the light receiving unit 3 (detection region), the suspension concentration decreases. Here, if the suspended matter concentration (the level of the detection signal) when there are many bubbles B in the detection region is [S2], the level of the detection signal output by the detection unit 12 when the bubble B is introduced is as shown in FIG. As shown in FIG. 4 (b), it fluctuates between [S1] and [S2].

このようにして得られた検出信号のレベル最小値[S1]および最大値[S2]は、演算部14によってその差分[ΔD=S2−S1]が求められて、検出部12が検出した検出信号のレベル[S1]と共に、気泡Bを検出領域に導入したときの検出信号のレベルの差分[ΔD]が記憶部15に保持される。勿論、記憶部15には、最大値[S2]と差分[ΔD]或いは最小値[S1]と最大値[S2]または最小値[S1]、最大値[S2]、差分[ΔD]のすべてを保持してもかまわない。   The level minimum value [S1] and the maximum value [S2] of the detection signal obtained in this way are obtained as the difference [ΔD = S2−S1] by the calculation unit 14, and the detection signal detected by the detection unit 12 is detected. A level difference [ΔD] of the detection signal when the bubble B is introduced into the detection region is held in the storage unit 15 together with the level [S1]. Of course, the storage unit 15 stores all of the maximum value [S2] and the difference [ΔD] or the minimum value [S1] and the maximum value [S2] or the minimum value [S1], the maximum value [S2], and the difference [ΔD]. You can hold it.

このように被計測水Mに気泡Bを導入することによって受光部3が受光する受光レベル、すなわち検出部12が出力する検出信号のレベルが変化する。本発明に係るセンサの汚れ検出方法は、この点に着目してなされたものである。そして、濃度センサ1に汚れがない状態で、被計測水Mの種々の濃度における検出信号のレベルと、投光部2と受光部3との間に気泡Bを導入したときの検出レベルとの差分を演算部14で求めて、予め記憶部15に保持させておく。光学式濁質濃度計には、このような初期化を予め行っておく。   Thus, by introducing the bubble B into the water to be measured M, the light receiving level received by the light receiving unit 3, that is, the level of the detection signal output by the detecting unit 12 is changed. The sensor dirt detection method according to the present invention has been made paying attention to this point. The level of the detection signal at various concentrations of the water M to be measured and the detection level when the bubble B is introduced between the light projecting unit 2 and the light receiving unit 3 while the concentration sensor 1 is not contaminated. The difference is obtained by the calculation unit 14 and stored in the storage unit 15 in advance. Such initialization is previously performed for the optical turbidity concentration meter.

また、被計測水中に含まれる懸濁物の濃度や物性によって[S1]が変化し、かつ気泡の導入量によっても[S2]は変化する。気泡の導入量を一定としたとき、懸濁物濃度[S]と差分[ΔD]との関係は一次関数として表すことができる。つまり、この関数の傾きを[α]、[ΔD]軸の切片を[β]とすれば、[ΔD=α×S+β]と表せる。この[ΔD]は、[S]の関数なので、図9に示すような関係を予め求めて記憶部15に保持し、濃度センサによって計測した[S1]と、保持している関係式から、その計測水にあった[ΔD]を求めて[Δd]との比較に用いることができる。   [S1] varies depending on the concentration and physical properties of the suspension contained in the water to be measured, and [S2] also varies depending on the amount of bubbles introduced. When the amount of bubbles introduced is constant, the relationship between the suspension concentration [S] and the difference [ΔD] can be expressed as a linear function. That is, if the slope of this function is [α] and the intercept of the [ΔD] axis is [β], it can be expressed as [ΔD = α × S + β]. Since this [ΔD] is a function of [S], the relationship as shown in FIG. 9 is obtained in advance and stored in the storage unit 15, and [S1] measured by the density sensor and the stored relational expression are used. [ΔD] in the measurement water can be obtained and used for comparison with [Δd].

次に上述したようにして初期化が完了した光学式濁質濃度計を用いて被計測水Mの濁質濃度を計測する場合において、濃度センサ1の汚れ検出方法について説明する。
例えば図5(a)に示すように被計測水Mに含まれる懸濁物Gが受光部3に付着したとすると、投光部2が被計測水中に照射した光は、受光部3に付着した懸濁物G(汚れ)によって遮られて受光部3に到達しない。このとき、受光部3が受光した受光レベル、すなわち検出部12が出力する検出信号のレベルが図5(b)に示すように[S1]であったとする。このとき光学式濁質濃度計が測定した被計測水Mの懸濁物濃度は、受光部3に付着した懸濁物G(汚れ)によって実際の懸濁物濃度に比べて高い値を示していることになる。つまり受光部3に付着した懸濁物G(汚れ)によって、被計測水Mの懸濁物濃度が高くなったことと等価になる。
Next, a method for detecting the contamination of the concentration sensor 1 when measuring the turbidity concentration of the water M to be measured using the optical turbidity concentration meter that has been initialized as described above will be described.
For example, as shown in FIG. 5A, when the suspended matter G contained in the measured water M adheres to the light receiving unit 3, the light irradiated by the light projecting unit 2 into the measured water adheres to the light receiving unit 3. It is blocked by the suspended suspension G (dirt) and does not reach the light receiving unit 3. At this time, it is assumed that the light receiving level received by the light receiving unit 3, that is, the level of the detection signal output by the detecting unit 12 is [S1] as shown in FIG. At this time, the suspension concentration of the water to be measured M measured by the optical turbidity concentration meter shows a higher value than the actual suspension concentration due to the suspension G (dirt) adhering to the light receiving unit 3. Will be. In other words, this is equivalent to an increase in the suspended matter concentration of the water M to be measured due to the suspended matter G (dirt) adhering to the light receiving unit 3.

次に制御部13は、弁9を開き、投光部2および受光部3との間に気泡Bを導入する。すると、前述したように投光部2および受光部3との間に存在する懸濁物が気泡により押しのけられて検出領域における懸濁物Gが減少し(図6(a))、検出部12が出力する検出信号のレベルが高くなる。しかしこのとき検出部12が出力する検出レベルは、受光部3に懸濁物Gが付着しているため、濃度センサ1に汚れがないとき(懸濁物Gが付着していないとき)、投光部2および受光部3との間(検出領域)に気泡Bを導入したときに比べて、その検出レベルは低くなる。つまり、検出領域に汚れがあるときに気泡を導入したとき、検出部12が出力する検出信号のレベルを[S3]とすれば、[S3]<[S2]となる。   Next, the control unit 13 opens the valve 9 and introduces the bubbles B between the light projecting unit 2 and the light receiving unit 3. Then, as described above, the suspended matter existing between the light projecting unit 2 and the light receiving unit 3 is pushed away by the bubbles, and the suspended matter G in the detection region is reduced (FIG. 6A), and the detecting unit 12. The level of the detection signal output from becomes higher. However, the detection level output by the detection unit 12 at this time is that when the suspension G is attached to the light receiving unit 3, the concentration sensor 1 is not contaminated (when the suspension G is not attached). The detection level is lower than when the bubble B is introduced between the light unit 2 and the light receiving unit 3 (detection region). In other words, if the level of the detection signal output from the detection unit 12 is [S3] when bubbles are introduced when the detection area is dirty, [S3] <[S2].

詳しくは受光部3に汚れが付着しているとき、投光部2と受光部3との間に気泡B導入したとき、検出部12が出力した検出信号が図6(b)に示すように[S1]〜[S3]の間で変化したとする。
このとき演算部14は、その検出信号の差分[Δd=S3−S1]を求める。そして判定部16は、演算部14の演算の結果、得られた差分[Δd]と、記憶部15に予め保持された濃度センサ1に汚れがないときの差分[ΔD]とを比較して、差分[Δd]と[ΔD]の値が異なるとき、濃度センサ1に汚れがあると判定する。
Specifically, as shown in FIG. 6B, when the light receiving unit 3 is contaminated, or when the bubble B is introduced between the light projecting unit 2 and the light receiving unit 3, the detection signal output by the detection unit 12 is as shown in FIG. It is assumed that there is a change between [S1] and [S3].
At this time, the calculation unit 14 obtains a difference [Δd = S3−S1] between the detection signals. Then, the determination unit 16 compares the difference [Δd] obtained as a result of the calculation of the calculation unit 14 with the difference [ΔD] when the density sensor 1 previously stored in the storage unit 15 is not contaminated. When the difference [Δd] and [ΔD] are different, it is determined that the density sensor 1 is dirty.

尚、上述した汚れの判定方法は、受光部3に汚れがある場合を例示したが、投光部2に汚れがある場合や、或いは投光部2および受光部3のそれぞれが汚れている場合であっても同様に検出することが可能である。
また濃度センサ1に汚れがない状態で被計測水Mを計測して求められる懸濁物濃度と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる懸濁物濃度との差[ΔD]と、計測過程において求められる懸濁物濃度と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる懸濁物濃度との差[Δd]とを比較することで、濃度センサ1に付着した汚れの程度を判定することも可能である。つまり[ΔD]と[Δd]の値が近いほど、濃度センサ1の汚れが少なく、[ΔD]と[Δd]の値が離れているほど、濃度センサ1の汚れが多いものと判定することができる。
In the above-described stain determination method, the light receiving unit 3 is illustrated as being dirty. However, the light projecting unit 2 is dirty, or each of the light projecting unit 2 and the light receiving unit 3 is dirty. However, it can be detected in the same manner.
In addition, the concentration of the suspended matter obtained by measuring the water to be measured M in a state in which the concentration sensor 1 is not contaminated, and in this state, bubbles B are introduced between the light projecting unit 2 and the light receiving unit 3 to measure the water to be measured. The difference [ΔD] from the suspension concentration obtained by measuring M, the suspension concentration obtained in the measurement process, and the bubble B is introduced between the light projecting unit 2 and the light receiving unit 3 in this state. It is also possible to determine the degree of dirt attached to the concentration sensor 1 by comparing the difference [Δd] with the suspension concentration obtained by measuring the water to be measured M. That is, it is determined that the closer the values of [ΔD] and [Δd] are, the less the contamination of the density sensor 1 is, and the greater the values of [ΔD] and [Δd] are, the more dirty the concentration sensor 1 is. it can.

かくして上述したセンサの汚れ検出方法は、予めセンサに汚れがない状態で被計測水Mを計測して求められる計測値と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる計測値との差[ΔD]と、センサを用いて計測して得られた被計測水Mの計測値と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる計測値との差[Δd]とを比較してセンサの汚れの有無を判定しているので、投光部2や受光部3の汚れを確実に検出することが可能である。   Thus, the above-described sensor contamination detection method includes the measurement value obtained by measuring the water to be measured M in a state where the sensor is not contaminated in advance, and the bubble B between the light projecting unit 2 and the light receiving unit 3 in this state. The difference [ΔD] between the measured value obtained by introducing and measuring the measured water M, the measured value of the measured water M obtained by measuring using the sensor, and the light projecting unit 2 in this state Since the bubble [B] is introduced between the light receiving unit 3 and the measured water M is measured to compare the difference [Δd] with the measured value, the presence or absence of dirt on the sensor is determined. It is possible to reliably detect the contamination of the unit 2 and the light receiving unit 3.

また、上述したようにして検出されたセンサの汚れは、一般に被計測水Mに含まれる懸濁物Gが投光部2または受光部3に付着することによって生じることが多い。この汚れの除去には、気液噴射法や気液混合法を利用することができる。したがって、制御部13は、弁9を間欠的に開閉して投光部2と受光部3との間に気泡Bを導入することにより、投光部2または受光部3に付着した懸濁物G(汚れ)を除去することができ、かつ同時に汚れの検出に利用することができる。つまり、センサに汚れがない状態で被計測水Mを計測して求められる計測値と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる計測値との差[ΔD]と、計測過程において求められる計測値と、この状態において投光部2と受光部3との間に洗浄のために気泡Bを導入したときの被計測水Mを計測して求められる計測値との差[Δd]とを比較することで、度センサに付着した汚れの程度を判定することも可能である。   Further, the contamination of the sensor detected as described above often occurs when the suspended matter G contained in the water to be measured M adheres to the light projecting unit 2 or the light receiving unit 3. A gas-liquid injection method or a gas-liquid mixing method can be used to remove the dirt. Therefore, the control unit 13 intermittently opens and closes the valve 9 to introduce the bubbles B between the light projecting unit 2 and the light receiving unit 3, so that the suspended matter attached to the light projecting unit 2 or the light receiving unit 3. G (dirt) can be removed, and at the same time, it can be used to detect dirt. That is, the measured water M is measured by measuring the measured water M with no dirt on the sensor, and the measured water M is measured by introducing the bubbles B between the light projecting unit 2 and the light receiving unit 3 in this state. The difference [ΔD] from the measured value obtained in this way, the measured value obtained in the measurement process, and the object when the bubble B is introduced for cleaning between the light projecting unit 2 and the light receiving unit 3 in this state. By comparing the difference [Δd] with the measured value obtained by measuring the measured water M, it is also possible to determine the degree of dirt attached to the degree sensor.

このようなセンサの汚れの検出方法を適用するとセンサ1に気泡Bを導入して汚れを除去する洗浄時間を決定するセンサの洗浄方法を提供することができる。具体的に被計測水の懸濁物濃度を計測する濃度センサを一例として本発明に係るセンサの洗浄方法を示す。
先ず濃度センサ1に汚れがない状態で被計測水Mを計測して求められる懸濁物濃度と、この状態において投光部2と受光部3との間に気泡Bを導入して被計測水Mを計測して求められる懸濁物濃度との差分[ΔD]と、計測過程において求められる懸濁物濃度と、この状態において投光部2と受光部3との間に気泡を導入して被計測水Mを計測して求められる懸濁物濃度との差分[Δd]とを比較する。
When such a sensor dirt detection method is applied, it is possible to provide a sensor cleaning method for determining the cleaning time for introducing bubbles B into the sensor 1 and removing the dirt. Specifically, a sensor cleaning method according to the present invention will be described by taking as an example a concentration sensor that measures the suspension concentration of water to be measured.
First, the concentration of the suspended matter obtained by measuring the water to be measured M in a state where the concentration sensor 1 is not contaminated, and in this state, bubbles B are introduced between the light projecting unit 2 and the light receiving unit 3 to measure the water to be measured. The difference [ΔD] from the suspension concentration obtained by measuring M, the suspension concentration obtained in the measurement process, and air bubbles are introduced between the light projecting unit 2 and the light receiving unit 3 in this state. The difference [Δd] with the suspension concentration obtained by measuring the water to be measured M is compared.

これら差分の比である差分比[Δd/ΔD]は、濃度センサ1に付着した汚れの程度を示す指標となる。つまり、差分比[Δd/ΔD]の値が[1]に近いほど濃度センサ1の汚れが少ない一方、この差分比[Δd/ΔD]の値が小さいほど([1]以下)汚れが多いと判定することができる。一般に洗浄時間の経過に伴い、濃度センサの汚れが除去され、[Δd/ΔD]は、図10に示すように単調増加してやがて[1]に近づく。したがって投光部2と受光部3との間に気泡Bを導入した際、図10に示されるように差分比[Δd/ΔD]の値が[1]に近づく時間的変化を捉えて、気泡Bの導入時間と差分比との相関をとればセンサの洗浄時間を予測したり決定したりすることが可能となる。   The difference ratio [Δd / ΔD], which is the ratio of these differences, serves as an index indicating the degree of dirt attached to the density sensor 1. That is, as the value of the difference ratio [Δd / ΔD] is closer to [1], the density sensor 1 is less contaminated. On the other hand, the value of the difference ratio [Δd / ΔD] is smaller ([1] or less). Can be determined. In general, as the cleaning time elapses, the concentration sensor is removed, and [Δd / ΔD] monotonically increases as shown in FIG. 10 and eventually approaches [1]. Therefore, when the bubble B is introduced between the light projecting unit 2 and the light receiving unit 3, as shown in FIG. 10, the time change in which the value of the difference ratio [Δd / ΔD] approaches [1] is captured. The correlation between the introduction time of B and the difference ratio makes it possible to predict or determine the sensor cleaning time.

尚、上述した本発明に係るセンサの汚れ検出方法、センサとして例示した濃度センサだけではなく、その他の被計測水の物性を検知するセンサにも適用することが可能であることは言うまでもない。 Needless to say, the above-described method for detecting contamination of a sensor according to the present invention can be applied not only to the concentration sensor exemplified as the sensor but also to other sensors that detect physical properties of water to be measured.

本発明の一実施形態に係るセンサの汚れ検出方法適用される光学式濁質濃度計の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical turbidity concentration meter to which the dirt detection method of the sensor which concerns on one Embodiment of this invention is applied. 図1に示すセンサに適用される透過型濃度計の概略構成を示す図である。It is a figure which shows schematic structure of the transmission-type densitometer applied to the sensor shown in FIG. 図2に示すセンサと被計測水に含まれる懸濁物を模式的に描いた図と、そのとき検出部から出力される検出信号の経時変化を示すグラフである。FIG. 3 is a diagram schematically showing a suspension contained in the sensor and the water to be measured shown in FIG. 2, and a graph showing a change over time of a detection signal output from a detection unit at that time. 図3に示すセンサの投光部と受光部との間に気泡を導入したことを模式的に示した図と、そのとき検出部から出力される検出信号の経時変化を示すグラフである。It is the figure which showed typically that the bubble was introduce | transduced between the light projection part and light-receiving part of the sensor shown in FIG. 3, and the graph which shows a time-dependent change of the detection signal output from a detection part at that time. 図2に示すセンサに汚れがある場合において、被計測水に含まれる懸濁物を模式的に描いた図と、そのとき検出部から出力される検出信号の経時変化を示すグラフである。FIG. 3 is a diagram schematically illustrating a suspension contained in water to be measured and a graph showing a change over time in a detection signal output from a detection unit when the sensor shown in FIG. 2 is contaminated. 図4に示すセンサの投光部と受光部との間に気泡を導入したことを模式的に示した図と、そのとき検出部から出力される検出信号の経時変化を示すグラフである。It is the figure which showed typically that the bubble was introduce | transduced between the light projection part of the sensor shown in FIG. 4, and the graph which shows the time-dependent change of the detection signal output from a detection part at that time. 従来の光学式濁質濃度計に用いられるセンサの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the sensor used for the conventional optical turbidity concentration meter. 透過光型濃度計が出力する検出レベルと懸濁物濃度との関係を示す図である。It is a figure which shows the relationship between the detection level which a transmitted-light type | mold densitometer outputs, and suspension concentration. 透過光型濃度計が出力するΔDと懸濁物濃度との関係を示す図である。It is a figure which shows the relationship between (DELTA) D which a transmitted-light type | mold densitometer outputs, and suspension concentration. 洗浄継続時TとΔdの変化、並びに洗浄終了時間の関係を示す図である。It is a figure which shows the relationship between the time of washing | cleaning continuation T, the change of (DELTA) d, and washing | cleaning completion time.

符号の説明Explanation of symbols

1 センサ
8 ノズル
9 弁
10 濃度測定部
11 発光部
12 検出部
13 制御部
14 演算部
15 記憶部
16 判定部
M 被計測水
DESCRIPTION OF SYMBOLS 1 Sensor 8 Nozzle 9 Valve 10 Concentration measurement part 11 Light emission part 12 Detection part 13 Control part 14 Calculation part 15 Storage part 16 Judgment part M Water to be measured

Claims (3)

被計測水中に投光部と受光部とが浸漬され、前記投光部から被計測水中に照射した光の被計測水中を透過した透過光、被計測水中に含まれる懸濁物により散乱された散乱光、および前記懸濁物により反射された反射光の少なくとも一つを前記受光部にて受光して、被計測水中の懸濁物濃度または懸濁物の物性を検出するセンサにおいて、
予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入して前記被計測水を計測して求められる計測値との差と、
前記センサを用いて前記被計測水を計測する計測過程で求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入したとき求められる計測値との差と
を比較して前記センサの汚れの有無を判定することを特徴とするセンサの汚れ検出方法。
The light projecting unit and the light receiving unit are immersed in the measured water, and the light irradiated from the light projecting unit into the measured water is transmitted through the measured water and scattered by the suspension contained in the measured water. In the sensor for detecting at least one of the scattered light and the reflected light reflected by the suspension by the light receiving unit, and detecting the suspension concentration in the measurement water or the physical properties of the suspension,
A measurement value obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance, and in this state, bubbles are introduced between the light projecting unit and the light receiving unit to measure the water to be measured. The difference from the required measurement value,
The difference between the measured value obtained in the measurement process of measuring the water to be measured using the sensor and the measured value obtained when bubbles are introduced between the light projecting unit and the light receiving unit in this state is compared. And determining whether the sensor is dirty or not.
前記投光部と受光部との間への気泡の導入は、前記センサの投光部および受光部を洗浄するものであって、
予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入して前記被計測水を計測して求められる計測値との差と、
前記気泡の導入を間欠的に繰り返しながら、前記投光部と受光部との間へ気泡を導入していないときに求められ計測値と、気泡を導入したときに求められる計測値との差と
を比較して前記センサの汚れ除去の程度を判定することを特徴とする請求項1に記載のセンサの汚れ検出方法。
The introduction of air bubbles between the light projecting unit and the light receiving unit is to wash the light projecting unit and the light receiving unit of the sensor,
A measurement value obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance, and in this state, bubbles are introduced between the light projecting unit and the light receiving unit to measure the water to be measured. The difference from the required measurement value,
While intermittently repeating the introduction of the bubble, the difference between the measured value obtained when the bubble is not introduced between the light projecting unit and the light receiving unit, and the measured value obtained when the bubble is introduced 2. The sensor dirt detection method according to claim 1, wherein the degree of dirt removal of the sensor is determined by comparing the two.
予め前記センサに汚れがない状態で前記被計測水を計測して求められる計測値と、この状態において前記投光部と受光部との間に気泡を導入したときに求められる計測値との差は、汚れ判定基準としてメモリに記憶されて汚れ判定に供せられる請求項1または2に記載のセンサの汚れ検出方法。   A difference between a measured value obtained by measuring the water to be measured in a state where the sensor is not contaminated in advance and a measured value obtained when bubbles are introduced between the light projecting unit and the light receiving unit in this state. The method for detecting dirt on a sensor according to claim 1 or 2, wherein the dirt is stored in a memory as a dirt judgment criterion and used for dirt judgment.
JP2004084916A 2004-03-23 2004-03-23 Sensor dirt detection method Expired - Lifetime JP4359769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084916A JP4359769B2 (en) 2004-03-23 2004-03-23 Sensor dirt detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084916A JP4359769B2 (en) 2004-03-23 2004-03-23 Sensor dirt detection method

Publications (2)

Publication Number Publication Date
JP2005274216A JP2005274216A (en) 2005-10-06
JP4359769B2 true JP4359769B2 (en) 2009-11-04

Family

ID=35174065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084916A Expired - Lifetime JP4359769B2 (en) 2004-03-23 2004-03-23 Sensor dirt detection method

Country Status (1)

Country Link
JP (1) JP4359769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936416B1 (en) 2018-05-24 2019-01-08 (주)태영필트레이션시스템 Coagulant feeding device and sludge filtering system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8473262B2 (en) 2008-08-14 2013-06-25 ARETé ASSOCIATES Self-cleaning submerged instrumentation
JP4658917B2 (en) * 2006-12-28 2011-03-23 株式会社堀場製作所 Analysis equipment for semiconductor manufacturing systems
JP5843284B2 (en) * 2011-11-28 2016-01-13 横河電機株式会社 Impurity removing device and spectroscopic analyzer
CN103645162A (en) * 2013-12-02 2014-03-19 中山欧麦克仪器设备有限公司 System for monitoring suspended solids in water in real time
KR101730144B1 (en) 2015-09-09 2017-05-11 웨스글로벌 주식회사 Ultrasonic sensor with built-in cleaning device
CN106248438B (en) * 2016-08-26 2023-07-07 浙江横浦科技有限公司 Sampling detection device for sewage treatment control system
JP6780683B2 (en) 2018-09-20 2020-11-04 栗田工業株式会社 Aggregation status monitoring sensor
CN115417492B (en) * 2022-08-30 2023-06-20 同济大学建筑设计研究院(集团)有限公司 Advanced oxidation system based on underwater vision and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920662Y2 (en) * 1979-01-12 1984-06-15 株式会社明電舎 Water quality measuring device
JPH0194242A (en) * 1987-10-05 1989-04-12 Meidensha Corp Turbidity measuring apparatus
JP3922365B2 (en) * 2002-11-21 2007-05-30 栗田工業株式会社 Particle state detection apparatus and particle state detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936416B1 (en) 2018-05-24 2019-01-08 (주)태영필트레이션시스템 Coagulant feeding device and sludge filtering system

Also Published As

Publication number Publication date
JP2005274216A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4359769B2 (en) Sensor dirt detection method
KR101832074B1 (en) Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter
US5245200A (en) Apparatus and method for preventing blockage of a measuring head for effecting measurements of suspended substances
US9671339B2 (en) Method for determining a turbidity and turbidity sensor for implementing the method
US4827143A (en) Monitor for particles of various materials
US6396576B1 (en) Method for determining shadowline location on a photosensitive array and critical angle refractometer employing the method
EP0150875B1 (en) Method and arrangement for determining the stopping time of a process for renewing a fluid
CN113588564B (en) Diaphragm and optical detection device
JP2803443B2 (en) Surface inspection method and device
JP2001074644A (en) Device and method for measuring particle in liquid
KR100327125B1 (en) Automatic measuring apparatus of mixed liquid suspended solid
JPH09287920A (en) Method for evaluating shape of object to be measured, shape of bubble inside glass and degree of defect of glass
JP4390053B2 (en) Calibration time determination method for optical turbidity concentration meter
JP2003161689A (en) Probe for detecting states of particles and aggregation monitoring apparatus
CN100374847C (en) Rear light scattering signal inductive probes
Park et al. Determination of the Minimum Detectability of Surface Plasmon Resonance Devices by Using the 3σ Rule
JPH08271519A (en) Method for determining accuracy of photometric system in automatic chemical analyzer
WO2023218672A1 (en) Water quality analyzing device
JP2022153125A (en) Treatment determination device
KR20240020180A (en) Water quality analysis device
CN213301467U (en) Fluorescent brightness detector for fluorescent penetrating fluid by direct method
JPH05332946A (en) Surface inspection instrument
Sasaki et al. Evaluation of particles on a Si wafer before and after cleaning using a new laser particle counter
Fetisov et al. Industrial turbidimeters with automatic cleaning of measuring cells
JPH0799354B2 (en) Foreign object detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Ref document number: 4359769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140821

Year of fee payment: 5