JP2002253905A - Coagulation monitoring system - Google Patents

Coagulation monitoring system

Info

Publication number
JP2002253905A
JP2002253905A JP2001059872A JP2001059872A JP2002253905A JP 2002253905 A JP2002253905 A JP 2002253905A JP 2001059872 A JP2001059872 A JP 2001059872A JP 2001059872 A JP2001059872 A JP 2001059872A JP 2002253905 A JP2002253905 A JP 2002253905A
Authority
JP
Japan
Prior art keywords
treated water
particles
water
state
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001059872A
Other languages
Japanese (ja)
Inventor
Nobuaki Nagao
信明 長尾
Tadahiro Hozumi
直裕 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001059872A priority Critical patent/JP2002253905A/en
Publication of JP2002253905A publication Critical patent/JP2002253905A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coagulation monitoring system suitable for grasping the coagulated state of suspended matters in treated water in a coagulation treatment process, and optimizing coagulation conditions. SOLUTION: The system is provided with a measurement tank 5 which selectively stores the treated water sampled from the upstream side and downstream side of a coagulation tank 4, respectively, a probe 8 which irradiates the treated water housed in the measurement tank with a laser beam which is amplitude- modulated at a prescribed frequency, and receives scattered light generated by the collision of the laser beam with particles in the treated water, an operation part 30 which determines the state of the particles in the treated water on the basis of amplitude-modulated frequency components in the photoelectric conversion outputs of the scattered light received through the probe, and a coagulation process control part 40 which evaluates the coagulation reaction of the treated water from the state of the particles in each treated water of the upstream side and downstream side of the coagulation treatment process obtained by the operation part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝集剤が添加され
た後、凝集処理工程を経て凝集処理される処理水の凝集
反応状態を評価するに好適な凝集モニタリングシステム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation monitoring system suitable for evaluating the coagulation reaction state of treated water subjected to coagulation treatment after a coagulation agent is added thereto after the coagulation agent is added.

【0002】[0002]

【関連する背景技術】浄水や工業用水や排水等の浄化処
理(水質改善処理)は、例えば被処理水に凝集剤を投入
して該被処理水中の懸濁物質を凝集処理した後、凝集し
たフロックを沈殿分離、加圧浮上分離、遠心分離、砂ろ
過、膜分離等の手法を用いて固液分離することにより実
現される。しかしながら処理水中における懸濁物質の凝
集状態は、被処理水の水質(pH濃度)、更には凝集処
理工程における凝集剤の添加量やその撹拌条件等によっ
て変化することが否めず、凝集処理条件が適切に設定さ
れない場合には、その後の固液分離処理に悪影響を及ぼ
したり、処理水の水質が悪化する要因となる。
[Related Background Art] In the purification treatment (water quality improvement treatment) of purified water, industrial water, waste water, etc., for example, a coagulant is added to the water to be treated, and a suspended substance in the water to be treated is subjected to a flocculation treatment. It is realized by solid-liquid separation of floc using a method such as sedimentation separation, pressure flotation separation, centrifugation, sand filtration, membrane separation and the like. However, the coagulation state of the suspended solids in the treated water cannot be changed depending on the water quality (pH concentration) of the water to be treated, the amount of the coagulant added in the coagulation process, the stirring conditions, and the like. If it is not set properly, it will adversely affect the subsequent solid-liquid separation treatment or cause the quality of the treated water to deteriorate.

【0003】[0003]

【発明が解決しようとする課題】そこで従来、処理水中
に光を照射したときに該処理水により生じる散乱光の強
度から上記処理水の濁度を測定し、この濁度に基づいて
処理水中における懸濁物質の凝集状態をリアルタイムに
評価して凝集処理工程における凝集条件を最適化するこ
とが提唱されている(特表平5−505026号公
報)。しかしながらこの場合、処理水による平均的な散
乱光強度を測定しているだけなので、処理水中の凝集物
による散乱光と未凝集物(懸濁物質)による散乱光との
区別がつかないと言う問題がある。
Therefore, conventionally, the turbidity of the treated water is measured from the intensity of the scattered light generated by the treated water when the treated water is irradiated with light, and the turbidity of the treated water is measured based on the turbidity. It has been proposed that the state of aggregation of the suspended substance be evaluated in real time to optimize the aggregation conditions in the aggregation treatment step (Japanese Patent Application Laid-Open No. Hei 5-505026). However, in this case, since only the average scattered light intensity due to the treated water is measured, it is not possible to distinguish between the scattered light due to the aggregates in the treated water and the scattered light due to the non-aggregates (suspended matter). There is.

【0004】ちなみに上記散乱光強度は、処理水中にお
ける懸濁物質の粒子数に比例すると共に、その粒子径の
4〜6乗に比例する。そして凝集処理において懸濁物質
の凝集が進むと、処理水中の粒子数の減少に伴って散乱
光強度が次第に低下し、その反面、懸濁物質の凝集によ
ってその粒子径が大きくなり、粒子(フロック)1個当
たりの散乱光強度が増加する。従って前述した平均的な
散乱光強度の測定においては、上述したような散乱光強
度の変化を示す凝集物および未凝集物による各散乱光が
混在したものを検出することになるので、その凝集状態
を適切に把握することができないと言う問題がある。
[0004] Incidentally, the scattered light intensity is proportional to the number of particles of the suspended substance in the treated water and is proportional to the fourth to sixth power of the particle diameter. When the flocculation of the suspended substance progresses in the flocculation treatment, the intensity of the scattered light gradually decreases as the number of particles in the treated water decreases. On the other hand, the particle diameter increases due to the flocculation of the suspended substance. ) The scattered light intensity per one increases. Therefore, in the above-described measurement of the average scattered light intensity, since a mixture of the scattered light due to the aggregate and the unaggregate exhibiting the change in the scattered light intensity as described above is detected, the aggregation state There is a problem that can not be properly grasped.

【0005】また仮に処理水中における懸濁物質の凝集
状態を把握できたとしても、その凝集速度を(フロック
の成長速度)を把握することができないので、凝集処理
工程における凝集条件を最適化する上での要因が何であ
るかを知ることができない。これ故、その凝集条件、具
体的には凝集剤の注入量、更には凝集剤添加後の撹拌槽
による急速撹拌時間や、その後の凝集槽における緩速凝
集(滞留)時間等をそれぞれ最適化することが困難であ
る。
[0005] Even if the state of aggregation of the suspended substance in the treated water can be ascertained, the aggregation rate (flock growth rate) cannot be ascertained. Can't know what the factors are. Therefore, the coagulation conditions, specifically, the injection amount of the coagulant, the rapid stirring time in the stirring tank after the addition of the coagulant, and the slow coagulation (residence) time in the subsequent coagulation tank are optimized. It is difficult.

【0006】本発明はこのような事情を考慮してなされ
たもので、その目的は、凝集剤が添加された後、凝集処
理工程を経て凝集処理される処理水の凝集反応状態を評
価してその凝集条件を最適化するに好適な凝集モニタリ
ングシステムを提供することにある。特に本発明は、処
理水中における懸濁物質の凝集状態をリアルタイムに高
精度に把握すると共に、その凝集速度を(懸濁物質の凝
集によるフロックの成長速度)を把握して凝集処理工程
における凝集条件を容易に最適化することのできる凝集
モニタリングシステムを提供することを目的としてい
る。
The present invention has been made in view of such circumstances, and an object of the present invention is to evaluate the coagulation reaction state of treated water subjected to coagulation through an agglomeration process after a coagulant is added. An object of the present invention is to provide a coagulation monitoring system suitable for optimizing the coagulation conditions. In particular, the present invention grasps the state of aggregation of the suspended substance in the treated water with high precision in real time, and grasps the aggregation rate (the growth rate of floc due to the aggregation of the suspended substance) to determine the aggregation conditions in the aggregation processing step. It is an object of the present invention to provide an agglutination monitoring system that can easily optimize the agglutination.

【0007】[0007]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る凝集モニタリングシステムは、(a)
凝集処理工程の、特に凝集槽の上流側と下流側とからそ
れぞれサンプリングした処理水を選択的に収容する計測
槽と、(b) この計測槽に設けられるプローブであっ
て、例えば所定の周波数で振幅変調してなる変調レーザ
光を該計測槽に収容された処理水中に照射すると共に、
該レーザ光の上記処理水中の粒子への衝突により発生す
る散乱光を受光するプローブと、(c) このプローブを
介して受光された上記散乱光の光電変換出力における前
記レーザ光の変調成分(例えば振幅変調周波数成分)に
基づいて前記処理水中における粒子の状態(懸濁物質の
凝集の状態)を求める演算処理装置と、(d) 前記計測
槽に収容した前記凝集処理工程の上流側の処理水中の上
記演算処理装置により求められる粒子の状態、および前
記計測槽に収容した前記凝集処理工程の下流側の処理水
中の前記演算処理装置により求められる粒子の状態とを
比較して前記凝集処理工程における前記処理水の凝集反
応を評価する凝集工程管理手段とを具備したことを特徴
としている(第1の発明)。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, an agglutination monitoring system according to the present invention comprises:
A measuring tank for selectively containing treated water sampled from the upstream and downstream sides of the flocculation tank in the flocculation treatment step, and (b) a probe provided in the measurement tank, for example, at a predetermined frequency. Along with irradiating the treated water contained in the measuring tank with the modulated laser light obtained by amplitude modulation,
A probe for receiving scattered light generated by collision of the laser light with the particles in the treated water; and (c) a modulation component of the laser light in a photoelectric conversion output of the scattered light received via the probe (for example, An arithmetic processing unit for obtaining a state of particles in the treated water (aggregation state of suspended matter) based on the amplitude modulation frequency component); and (d) treated water upstream of the agglutination treatment step accommodated in the measurement tank. Comparing the state of the particles obtained by the arithmetic processing device and the state of the particles obtained by the arithmetic processing device in the processing water downstream of the aggregating process housed in the measurement tank in the aggregating process An agglomeration process management means for evaluating the agglutination reaction of the treated water is provided (first invention).

【0008】即ち、本発明(第1の発明)は、変調レー
ザ光を処理水中に照射し、該レーザ光の上記処理水中の
粒子への衝突により発生する散乱光を受光するプローブ
を用い、このプローブを介して検出される上記散乱光の
光電変換出力における前記レーザ光の変調成分を求める
ことで前記プローブに混入する外来光の影響を除去し、
その上で上記光電変換出力の前記レーザ光の変調成分に
基づいて前記処理水中における粒子の状態(懸濁物質の
凝集の状態)を求めるようにしたものであって、特に上
記プローブを、凝集処理工程(凝集槽)の上流側と下流
側とからそれぞれサンプリングした処理水を選択的に収
容する計測槽に設けて、該計測槽に収容した上記凝集処
理工程(凝集槽)の上流側における処理水中の粒子の状
態と、凝集処理工程(凝集槽)の下流側における処理水
中の粒子の状態とを求め、これらの処理水中の粒子の状
態を比較することで前記凝集処理工程における処理水の
凝集反応(凝集速度)を評価することを特徴としてい
る。
That is, the present invention (the first invention) uses a probe that irradiates a modulated laser beam into treated water and receives scattered light generated by collision of the laser beam with particles in the treated water. Eliminating the influence of extraneous light mixed into the probe by determining the modulation component of the laser light in the photoelectric conversion output of the scattered light detected via a probe,
Then, the state of the particles in the treated water (the state of aggregation of the suspended matter) is determined based on the modulated component of the laser light of the photoelectric conversion output. The treatment water sampled from the upstream side and the downstream side of the process (coagulation tank) is provided in a measurement tank for selectively storing the treated water, and the treated water on the upstream side of the coagulation treatment step (coagulation tank) stored in the measurement tank is provided. Of the particles in the treated water downstream of the flocculation treatment step (coagulation tank) and the state of the particles in the treated water are compared to determine the state of the treated water in the flocculation treatment step. (Aggregation rate) is evaluated.

【0009】好ましくは前記計測槽には、該計測槽に収
納した処理水に凝集剤を追加投入する手段が設けられ
る。そして凝集剤の追加投入後の処理水中における粒子
の状態(懸濁物質の凝集の状態)を求め、凝集剤の追加
投入前の処理水中における粒子の状態と比較すること
で、凝集剤の添加量の適否の判断を可能としたことを特
徴としている。尚、凝集処理工程(凝集槽)の下流側か
らサンプリングした処理水を計測槽に収納したときの、
該処理水中における粒子の状態と、所定時間経過後の上
記処理水中における粒子の状態とを比較することで、凝
集槽における滞留時間の適否を判断することも可能であ
る。
Preferably, the measuring tank is provided with a means for additionally adding a flocculant to the treated water stored in the measuring tank. Then, the state of the particles in the treated water after the additional addition of the flocculant (the state of aggregation of the suspended substance) is determined, and compared with the state of the particles in the treated water before the additional supply of the flocculant, the amount of the flocculant added is determined. It is characterized in that it is possible to judge the suitability of the above. When the treated water sampled from the downstream side of the coagulation treatment step (coagulation tank) is stored in the measurement tank,
By comparing the state of the particles in the treated water with the state of the particles in the treated water after the elapse of a predetermined time, it is possible to determine whether the residence time in the flocculation tank is appropriate.

【0010】また本発明に係る凝集モニタリングシステ
ムは、(e) 凝集処理工程の、例えば凝集槽の上流側と
下流側とにそれぞれ設けられ、変調レーザ光を上記凝集
処理工程の上流側と下流側とにおける処理水中に照射す
ると共に、該レーザ光の上記各処理水中の粒子への衝突
により発生する散乱光を受光する第1および第2のプロ
ーブと、(f) これらの第1および第2のプローブを介
してそれぞれ受光された上記散乱光の光電変換出力にお
ける前記レーザ光の変調成分に基づいて前記凝集処理工
程の上流側と下流側とにおける各処理水中の粒子の状態
をそれぞれ求める演算処理装置と、(g) この演算処理
装置により求められる前記凝集処理工程の上流側におけ
る処理水中の粒子の状態と、前記凝集処理工程の下流側
における処理水中の粒子の状態とを比較して前記凝集処
理工程における前記処理水の凝集反応を評価する凝集工
程管理手段とを具備することを特徴としている(第2の
発明)。
Further, the coagulation monitoring system according to the present invention is provided with (e) a coagulation treatment step, for example, provided on the upstream side and the downstream side of the coagulation tank, respectively. And (f) first and second probes for irradiating the laser light into the treated water and receiving the scattered light generated by the collision of the laser light with the particles in the treated water. Arithmetic processing apparatus for respectively obtaining the state of particles in each of the processing water on the upstream side and the downstream side of the aggregation processing step based on the modulated component of the laser light in the photoelectric conversion output of the scattered light received via the probe. And (g) the state of the particles in the treated water on the upstream side of the agglutination treatment step obtained by the arithmetic processing unit, and the particles in the treated water on the downstream side of the agglutination treatment step By comparing the state is characterized by comprising the aggregation process control means for evaluating the agglutination of the treated water in the coagulation process (second invention).

【0011】即ち、本発明(第2の発明)は、前述した
プローブを凝集処理工程(凝集槽)の上流側と下流側と
にそれぞれ設けることで、凝集処理工程の上流側と下流
側とにおける各処理水中の粒子の状態をそれぞれ直接
的、且つリアルタイムに求め、これらの粒子の状態を比
較することで前記凝集処理工程における処理水の凝集反
応(凝集速度)を評価することを特徴としている。
That is, the present invention (second invention) provides the above-described probe on the upstream side and the downstream side of the agglutination treatment step (aggregation tank), respectively, so that the upstream and downstream sides of the agglutination treatment step are provided. The state of the particles in each treatment water is obtained directly and in real time, and the state of these particles is compared to evaluate the aggregation reaction (aggregation rate) of the treatment water in the aggregation treatment step.

【0012】更に本発明に係る凝集モニタリングシステ
ムは、上記第2の発明に加えて、(h) 更に前記凝集処
理工程の下流側における処理水をサンプリングして収容
する計測槽と、(i) この計測槽に収容した処理水に凝
集剤を追加投入する手段と、(j) 前記計測槽に設けら
れて変調レーザ光を上記計測槽に収容した処理水中に照
射すると共に、該レーザ光の上記各処理水中の粒子への
衝突により発生する散乱光を受光する第3のプローブと
を備え、(k) 前記凝集処理工程管理手段においては、
演算処理装置により求められる前記凝集処理工程の上流
側における処理水中の粒子の状態、前記凝集処理工程の
下流側における処理水中の粒子の状態、および前記計測
槽に収容した処理水中の粒子の状態をそれぞれ比較して
前記凝集処理工程における前記処理水の凝集反応を評価
することを特徴としている(第3の発明)。
Further, in addition to the second invention, the coagulation monitoring system according to the present invention further comprises: (h) a measuring tank for sampling and storing treated water downstream of the coagulation treatment step; Means for additionally adding a coagulant to the treated water contained in the measuring tank; and (j) irradiating the modulated water provided in the measuring tank with the modulated laser light into the treated water contained in the measuring tank, and A third probe for receiving scattered light generated by collision with particles in the treated water, and (k) in the aggregating treatment step managing means,
The state of the particles in the processing water on the upstream side of the aggregation processing step, the state of the particles in the processing water on the downstream side of the aggregation processing step, and the state of the particles in the processing water stored in the measurement tank determined by the arithmetic processing device The third embodiment is characterized in that the agglutination reaction of the treated water in the agglutination treatment step is evaluated in comparison with each other (third invention).

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態に係る凝集モニタリングシステムについて説明す
る。図1は第1の実施形態に係る凝集モニタリングシス
テムの概略構成図である。この凝集モニタリングシステ
ムが組み込まれる水処理装置の凝集処理工程は、浄水や
工業用水や排水等からなる被処理水(原水)RWと、有
機または無機の凝集剤Cとをポンプ1,2を介して撹拌
槽3に一定の割合で供給し、この撹拌槽2にて上記原水
RWと凝集剤Cとを急速撹拌して混合した後、この混合
水(処理水)MWを凝集槽4に導いて緩速撹拌しながら
所定の時間に亘って処理水中の懸濁物を凝集させ、その
後、その処理水PWを図示しない次工程(固液分離工
程)に送り出すように構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an aggregation monitoring system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the aggregation monitoring system according to the first embodiment. The coagulation treatment step of the water treatment apparatus in which this coagulation monitoring system is incorporated is a method in which treated water (raw water) RW composed of purified water, industrial water, waste water, etc., and an organic or inorganic coagulant C are pumped through pumps 1 and 2. The raw water RW and the coagulant C are supplied to the stirring tank 3 at a constant rate, and the raw water RW and the coagulant C are rapidly stirred and mixed. The suspension in the treated water is agglomerated for a predetermined period of time with rapid stirring, and then the treated water PW is sent to the next step (solid-liquid separation step) not shown.

【0014】しかしてこの凝集モニタリングシステムが
特徴とするところは、上記凝集処理工程における凝集槽
4の上流側から混合水(処理水)MWをサンプリングし
て計測槽5に導く第1のバルブ6と、上記凝集槽4の下
流側からその処理水PWをサンプリングして前記計測槽
5に導く第2のバルブ7とを備え、該計測槽5に設けた
プローブ8を用いて前記計測槽5に選択的に収容された
前記処理水MWおよび処理水PW中の懸濁物やそのフロ
ックからなる粒子の状態をそれぞれ検出し、これらの粒
子の状態を比較することで、前記凝集処理工程、特に凝
集槽4における処理水の凝集反応を評価するように構成
した点にある。
The feature of this coagulation monitoring system is that a first valve 6 which samples mixed water (processed water) MW from the upstream side of the coagulation tank 4 in the coagulation treatment step and guides the mixed water (treatment water) to the measurement tank 5 is provided. A second valve 7 for sampling the treated water PW from the downstream side of the coagulation tank 4 and guiding the treated water PW to the measurement tank 5, and selecting the measurement tank 5 by using a probe 8 provided in the measurement tank 5. The state of the suspended particles in the treated water MW and the treated water PW and the state of the particles composed of the flocs thereof are respectively detected, and the states of the particles are compared, whereby the aggregation treatment step, particularly the aggregation tank, is performed. 4 is configured to evaluate the aggregation reaction of the treated water.

【0015】ちなみに上記プローブ8は、後述するよう
に変調レーザ光、例えば所定の周波数で振幅変調したレ
ーザ光を処理水中に照射する為の第1の光ファイバ8a
と、上記レーザ光の処理水中に含まれる粒子への衝突に
より発生する散乱光を受光する為の第2の光ファイバ8
bとを、図2に示すようにそのファイバ端面を近接させ
て所定の台座8cに固定した構造を有する。またこのプ
ローブ8は、全体的には1〜2mm程度の大きさのもの
からなる。
The probe 8 has a first optical fiber 8a for irradiating a modulated laser beam, for example, a laser beam amplitude-modulated at a predetermined frequency into the treated water, as will be described later.
And a second optical fiber 8 for receiving scattered light generated by collision of the laser light with particles contained in the treated water.
and b is fixed to a predetermined base 8c with the fiber end faces close to each other as shown in FIG. The probe 8 has a size of about 1 to 2 mm as a whole.

【0016】尚、上記光ファイバ8a,8bとしては、
そのコア径が0.1mm程度のものが用いられ、各ファ
イバ端面での中心軸が90°の角度を以て交差するよう
に前記台座8cに固定される。そして光ファイバ8a,
8bにおける各端面の中心軸が交差する部位での0.2
〜0.4mm径程度の微小な領域Sにレーザ光を照射
し、当該領域Sに生じた散乱光を受光するように構成さ
れる。また前記台座8cは、プローブ8の上方から入り
込む外来光(自然光)の前記領域Sへの到達を遮る役割
も担う。
The optical fibers 8a and 8b include:
A fiber having a core diameter of about 0.1 mm is used and fixed to the pedestal 8c so that the central axes at the end faces of the fibers intersect at an angle of 90 °. And the optical fiber 8a,
8b at a position where the central axes of the respective end faces intersect.
It is configured to irradiate a laser beam to a minute area S having a diameter of about 0.4 mm and receive scattered light generated in the area S. The pedestal 8c also has a role of blocking external light (natural light) entering from above the probe 8 from reaching the region S.

【0017】このような構造のプローブ8を用いた処理
水MW,PW中の懸濁物質やそのフロックからなる粒子
の状態の検出は、図3にその処理概念を示すように発光
部10が出力する変調レーザ光(所定の周波数で振幅変
調したレーザ光)Lを前記プローブ8(第1の光ファイ
バ8a)を介して処理水中に照射し、処理水中に含まれ
る粒子に上記レーザ光が衝突した際に発生する散乱光S
を前記プローブ8(第2の光ファイバ8b)を介して受
光部20にて受光することによりなされる。
The state of the suspended matter in the treated water MW, PW and the state of the particles composed of the flocs thereof using the probe 8 having such a structure is detected by the light emitting unit 10 as shown in FIG. The modulated laser light (laser light amplitude-modulated at a predetermined frequency) L is irradiated into the treated water via the probe 8 (first optical fiber 8a), and the laser light collides with particles contained in the treated water. Scattered light S generated
Is received by the light receiving section 20 via the probe 8 (second optical fiber 8b).

【0018】上記発光部10は、例えば波長が630n
mのレーザ光Lを発振出力するレーザダイオード等のレ
ーザ発振器11と、このレーザ発振器11が発振出力す
る上記レーザ光Lを70〜150kHz(例えば95k
Hz)で電気的に振幅変調(AM変調)するファンクシ
ョンジェネレータ等の振幅変調器12とを備えて構成さ
れる。また前記受光部20は、散乱光Sの受光量(受光
強度)に応じた電気信号を発生するフォトトランジスタ
等の光電変換器21と、その光電変換出力から前述した
振幅変調した周波数成分だけを抽出する帯域通過フィル
タ(BPF)22と、この帯域通過フィルタ22の出力
を増幅器23を介して増幅した前記振幅変調周波数成分
の信号Fを検波して、その包絡線成分Eを求める検波器
24とを備えて構成される。
The light emitting section 10 has, for example, a wavelength of 630 n.
and a laser oscillator 11 such as a laser diode which oscillates and outputs the laser light L of m.
And an amplitude modulator 12 such as a function generator for electrically performing amplitude modulation (AM modulation) at Hz). Further, the light receiving unit 20 includes a photoelectric converter 21 such as a phototransistor that generates an electric signal corresponding to the amount of received scattered light S (received light intensity), and extracts only the amplitude-modulated frequency component from the photoelectric conversion output. A band-pass filter (BPF) 22 that performs the above-described operation, and a detector 24 that detects the signal F of the amplitude modulation frequency component obtained by amplifying the output of the band-pass filter 22 through an amplifier 23 and obtains an envelope component E thereof. It is configured with.

【0019】尚、上記レーザ光Lの振幅変調は、処理水
中へのレーザ光Lの照射によって生じる散乱光Sを変調
させることで、処理水中に混入する自然光等の外来光と
を区別する役割を担っている。従って前記光電変換器2
1の出力を帯域通過フィルタ22を介してフィルタリン
グすることで、上記振幅変調の周波数成分として前記処
理水中に照射したレーザ光Lによる散乱光Sの成分だけ
を抽出することが可能となる。
The amplitude modulation of the laser beam L modulates the scattered light S generated by the irradiation of the laser beam L into the treated water, thereby playing a role of distinguishing it from extraneous light such as natural light mixed into the treated water. I am carrying it. Therefore, the photoelectric converter 2
By filtering the output of No. 1 through the band-pass filter 22, it is possible to extract only the component of the scattered light S by the laser light L irradiated into the treated water as the frequency component of the amplitude modulation.

【0020】ところでレーザ光Lが照射される前述した
微小な領域Sにて生じる散乱光について考察すると、こ
の領域Sにおいて懸濁物質からなる微小なコロイド粒子
によって生じる散乱光の強度は、微小コロイド粒子の数
に比例して大きくなる。そして微小コロイド粒子の数
は、その凝集が進んで粒子径の大きいフロックが生成さ
れるに従って減少する。これに対してフロックは、微小
コロイド粒子が凝集したものであるから、凝集が進むに
従ってその数が増えるものの微小コロイド粒子に比較し
て遙かにその数が少ない。これ故、上記フロックが前述
した微小な領域Sに存在する可能性は非常に低く、希に
微小領域Sに入り込むに過ぎない。但し、フロックが微
小領域Sに入り込む頻度は、凝集の進行に伴ってフロッ
クの数が増えるに従って高くなる。
Considering the scattered light generated in the above-mentioned minute area S irradiated with the laser beam L, the intensity of the scattered light generated by the minute colloid particles made of the suspended substance in this area S is small. It increases in proportion to the number of. The number of microcolloid particles decreases as flocculation proceeds and flocs having a large particle diameter are generated. On the other hand, since flocs are formed by agglomeration of fine colloid particles, the number thereof increases as the aggregation proceeds, but the number is much smaller than that of the fine colloid particles. Therefore, the possibility that the flocks are present in the above-described minute area S is extremely low, and the flocks rarely enter the minute area S. However, the frequency of the flocks entering the minute area S increases as the number of flocs increases with the progress of aggregation.

【0021】従って前述したプローブ8を用いて微小領
域Sにおける散乱光の強度を計測すると、図4(a)〜
(c)にその概念を示すように、懸濁物質の凝集が進んで
微小コロイド粒子の数が減り、フロックの数が徐々に増
えるに従って、プローブ8にて検出される微小領域Sの
散乱光の強度が上記フロックにより一時的に高くなるこ
とがあるものの、全体的には低くなる。これ故、フロッ
クの存在によって散乱光強度が一時的に高くなった場合
を除いて、その全体的な散乱光の強度に着目すれば、そ
のときの散乱光強度は未凝集のコロイド粒子の数を示し
ていると看做すことが可能となる。
Accordingly, when the intensity of the scattered light in the minute area S is measured using the probe 8 described above, FIG.
As shown in (c), the scattered light of the micro area S detected by the probe 8 is detected as the number of micro colloid particles decreases and the number of flocs gradually increases as the aggregation of the suspended substance progresses. Although the strength may temporarily increase due to the floc, the strength is reduced as a whole. Therefore, except for the case where the scattered light intensity is temporarily increased due to the presence of the floc, focusing on the overall scattered light intensity, the scattered light intensity at that time is determined by the number of unaggregated colloid particles. It can be regarded as indicating.

【0022】前述した図3に示す最低値検出回路25
は、このような観点に立脚して前述した散乱光の強度に
応じた光電変換出力から求められる前記振幅変調周波数
成分の信号Fの包絡線成分Eの最低値を検出すること
で、処理水中における粒子の状態(未凝集のコロイド粒
子数)を求めるものとなっている。尚、フロックにより
散乱光の強度が一時的に高くなる周期に着目すれば、凝
集により生じたフロックの数(処理水中におけるフロッ
クの密度)を求めることが可能となり、上記一時的な散
乱光強度の大きさから、フロックの粒子径を求めること
も可能となる。
The minimum value detection circuit 25 shown in FIG.
Based on such a viewpoint, by detecting the lowest value of the envelope component E of the signal F of the amplitude modulation frequency component obtained from the photoelectric conversion output according to the intensity of the scattered light described above, in the treated water. The state of the particles (the number of unagglomerated colloid particles) is determined. By paying attention to the period in which the intensity of the scattered light temporarily increases due to the floc, it is possible to obtain the number of flocs generated by the aggregation (the density of the floc in the treated water). It is also possible to determine the particle size of the floc from the size.

【0023】さて図1に示す凝集モニタリングシステム
の説明に戻ると、このシステムにおいては凝集工程管理
部40の管理の前記第1のバルブ6と第2のバルブ7と
を選択的に開弁し、先ず前記凝集槽4の上流側から混合
水(処理水)MWをサンプリングして計測槽5に収容
し、演算部30において前記プローブ8を用いて検出さ
れる散乱光の強度から前記凝集槽4にて凝集処理が行わ
れる前の状態における粒子の状態を求めている。その
後、上記混合水(処理水)MWを排水し、第1のバルブ
6に代えて第2のバルブ7を開弁して前記凝集槽4の下
流側から処理水PWをサンプリングして計測槽5に収容
し、同様にして上記演算部30において前記凝集槽4に
て凝集処理が行われた後の状態における粒子の状態を求
めている。
Returning to the description of the coagulation monitoring system shown in FIG. 1, in this system, the first valve 6 and the second valve 7 managed by the coagulation process management unit 40 are selectively opened, First, the mixed water (treated water) MW is sampled from the upstream side of the coagulation tank 4 and stored in the measurement tank 5, and the calculation unit 30 supplies the mixed water (processed water) to the coagulation tank 4 based on the intensity of the scattered light detected using the probe 8. Thus, the state of the particles in the state before the aggregation treatment is performed is determined. Thereafter, the mixed water (treated water) MW is drained, the second valve 7 is opened in place of the first valve 6, and the treated water PW is sampled from the downstream side of the coagulation tank 4 to measure the measurement water 5. In the same manner, the state of the particles in the state after the aggregation processing is performed in the aggregation tank 4 in the arithmetic unit 30 is obtained.

【0024】しかして凝集工程管理部40は、上述した
如くして求められる前記凝集槽4の上流側での処理水M
W中における粒子の状態と、該凝集槽4の下流側での処
理水PW中における粒子の状態とを比較することで、凝
集槽4における凝集の進行状況を求めている。具体的に
は、凝集槽4の上流側における粒子の状態(散乱光強
度)と、凝集槽4の下流側における粒子の状態(散乱光
強度)との差から、該凝集槽4における凝集の進行に伴
って減少した懸濁物質(微小コロイド粒子)の数を求め
ることで、その凝集の進行状況を評価している。
Thus, the coagulation process management section 40 is provided with the treated water M on the upstream side of the coagulation tank 4 obtained as described above.
By comparing the state of the particles in W and the state of the particles in the treated water PW on the downstream side of the flocculation tank 4, the state of progress of the flocculation in the flocculation tank 4 is obtained. Specifically, from the difference between the state of the particles (scattered light intensity) on the upstream side of the coagulation tank 4 and the state of the particles (scattered light intensity) on the downstream side of the coagulation tank 4, the progress of the coagulation in the coagulation tank 4 is determined. By calculating the number of suspended substances (micro colloid particles) that decreased with the evaluation, the progress of the aggregation is evaluated.

【0025】特に凝集工程管理部40においては前記凝
集槽4における緩速凝集(滞留)時間を加味して上記凝
集の進行状況を評価することで、凝集の反応速度(フロ
ックの成長速度)を評価するものとなっている。尚、上
記凝集槽4における緩速凝集(滞留)時間は、例えば原
水RWと凝集剤Cとを送り込む単位時間当たりの量と、
凝集槽4の容量とから算出することができる。
In particular, the coagulation process control section 40 evaluates the progress of the coagulation in consideration of the slow coagulation (residence) time in the coagulation tank 4 to evaluate the coagulation reaction rate (flock growth rate). It is something to do. The slow coagulation (residence) time in the coagulation tank 4 is, for example, an amount per unit time for feeding the raw water RW and the coagulant C,
It can be calculated from the capacity of the coagulation tank 4.

【0026】また凝集工程管理部40は、計測槽5にサ
ンプリングした凝集槽4の下流側での処理水PWを所定
の時間に亘って保持してその凝集を更に進行させた後、
そのときの粒子の状態(散乱光強度)を求める機能を備
えている。つまり凝集槽4における緩速凝集(滞留)時
間に、更に計測槽5での緩速凝集(滞留)時間を加える
ことで、凝集条件の1つである緩速凝集(滞留)時間を
延ばしたときの状態を設定し、そのときの粒子の状態
(散乱光強度)を求めている。そしてこのときの粒子の
状態を加味して凝集の進行状況を評価することで、緩速
凝集(滞留)時間の適否を判定するものとなっている。
The coagulation process management unit 40 holds the treated water PW sampled in the measurement tank 5 on the downstream side of the coagulation tank 4 for a predetermined time to further advance the coagulation.
It has a function to determine the state of the particles (scattered light intensity) at that time. In other words, when the slow aggregation (residence) time, which is one of the aggregation conditions, is extended by adding the slow aggregation (residence) time in the measurement tank 5 to the slow aggregation (residence) time in the aggregation tank 4. Is set, and the state of the particles (scattered light intensity) at that time is obtained. The progress of the aggregation is evaluated in consideration of the state of the particles at this time to determine whether the slow aggregation (residence) time is appropriate.

【0027】ちなみに緩速凝集(滞留)時間を延ばした
とき、その散乱光強度が低下する場合(懸濁物質である
微小コロイド粒子の数が減少した場合)には、凝集剤C
の添加量が不足しているか、または凝集槽4での緩速凝
集(滞留)時間が不足していると判断される。逆に緩速
凝集(滞留)時間を延ばしてもその散乱光強度が変化し
ない場合には、凝集剤Cの添加量が過剰であると判断さ
れる。
When the slow coagulation (residence) time is prolonged and the scattered light intensity is reduced (when the number of microcolloid particles as a suspended substance is reduced), the coagulant C is used.
Is determined to be insufficient or the slow aggregation (residence) time in the aggregation tank 4 is insufficient. Conversely, if the scattered light intensity does not change even if the slow aggregation (residence) time is extended, it is determined that the amount of the coagulant C added is excessive.

【0028】更に凝集工程管理部40は、前記凝集槽4
の下流側での処理水PWを計測槽5にサンプリングした
とき、ポンプ9を用いて計測槽5に収容した処理水PW
に前述した凝集剤Cを所定量、追加添加する機能を備え
ている。そして凝集剤Cの添加量を増やしたときの粒子
の状態(散乱光強度)を求めることで、凝集剤Cの添加
量の過不足を判断するものとなっている。ちなみに凝集
剤Cの添加量を増やしたときに散乱光強度が低下する場
合(懸濁物質である微小コロイド粒子の数が減少した場
合)には、凝集剤Cの添加量が不足していると判断され
る。しかし凝集剤Cの添加量を増やしても散乱光強度に
変化がない場合には、逆に凝集剤Cの添加量が過剰であ
る、または前記凝集槽4での緩速凝集(滞留)時間が長
すぎると判断される。
Further, the coagulation process management section 40 is provided with the coagulation tank 4
When the treated water PW on the downstream side of the sampler is sampled in the measuring tank 5, the treated water PW stored in the measuring tank 5 using the pump 9
Has a function of additionally adding a predetermined amount of the coagulant C described above. By determining the state of the particles (scattered light intensity) when the amount of the coagulant C is increased, it is determined whether the amount of the coagulant C is excessive or insufficient. Incidentally, when the scattered light intensity decreases when the amount of the coagulant C added is increased (when the number of the microcolloidal particles as the suspended substance decreases), it is determined that the amount of the coagulant C is insufficient. Is determined. However, when the scattered light intensity does not change even when the amount of the coagulant C is increased, the amount of the coagulant C is excessively large, or the slow coagulation (residence) time in the coagulation tank 4 is increased. Determined to be too long.

【0029】かくして上述した如くして計測槽5に選択
的にサンプリングした凝集処理工程(凝集槽4)の上流
側および下流側における処理水MW,PW中の粒子の状
態をそれぞれ検出し、凝集処理工程における懸濁物質の
凝集反応状態を評価する本凝集モニタリングシステムに
よれば、処理水の凝集状態を的確に捉えることができ
る。しかも原水RWの水質変化に伴う凝集反応状況の変
化のみならず、凝集剤Cの添加量の過不足や、凝集槽4
での緩速凝集(滞留)時間の過不足等の凝集条件を的確
に評価することが可能となる。従ってその評価結果に従
って凝集処理工程における凝集条件の適正化を図ること
が容易であり、凝集処理工程の効率的な運用を図ること
が可能となる。
As described above, the states of the particles in the treated water MW and PW on the upstream side and the downstream side of the flocculation treatment step (coagulation vessel 4) selectively sampled in the measurement tank 5 are detected, and the flocculation treatment is performed. According to the present agglutination monitoring system for evaluating the agglutination reaction state of a suspended substance in a process, the agglutination state of treated water can be accurately grasped. In addition, not only changes in the coagulation reaction state due to changes in the water quality of the raw water RW, but also an excess or deficiency in the amount of coagulant C
It is possible to accurately evaluate coagulation conditions such as excessive and insufficient slow coagulation (residence) time. Therefore, it is easy to optimize coagulation conditions in the coagulation process according to the evaluation result, and it is possible to efficiently operate the coagulation process.

【0030】ところで上述した実施形態においては、第
1および第2のバルブ6,7を用いて凝集槽4の上流側
および下流側から、その処理水を選択的にサンプリング
して計測槽5に収容し、その処理水中に含まれる懸濁物
質(微小コロイド粒子)や教習により生じたフロックの
状態を検出したが、例えば図5に示すように撹拌槽3お
よび凝集槽4のそれぞれに前述したプローブ8を設け
て、凝集処理工程の上流側および下流側での処理水中の
粒子の状態をそれぞれリアルタイムに計測するようにし
ても良い。
In the embodiment described above, the treated water is selectively sampled from the upstream and downstream sides of the coagulation tank 4 using the first and second valves 6 and 7 and stored in the measurement tank 5. Then, the suspended substances (micro colloid particles) contained in the treated water and the state of flocs generated by the training were detected. For example, as shown in FIG. May be provided, and the state of the particles in the treated water on the upstream side and the downstream side of the aggregation treatment step may be measured in real time.

【0031】尚、図5に示す凝集モニタリングシステム
の第2の実施形態においては、前述した図1に示した凝
集モニタリングシステムと同一部分に同じ参照符号を付
している。即ち、この図5に示す凝集モニタリングシス
テムにおいては、撹拌槽3に設けたプローブ(第1のプ
ローブ)8を用いて凝集処理工程(凝集槽5)の上流側
における処理水中の粒子の状態を直接、リアルタイムに
検出し、また凝集槽4に設けたプローブ(第1のプロー
ブ)8により、特に該凝集槽4から排出される処理水
(凝集槽5の下流側の処理水)中の粒子の状態を直接、
リアルタイムに検出するように構成される。
In the second embodiment of the coagulation monitoring system shown in FIG. 5, the same parts as those of the coagulation monitoring system shown in FIG. 1 are denoted by the same reference numerals. That is, in the agglutination monitoring system shown in FIG. 5, the state of the particles in the treated water on the upstream side of the aggregating treatment step (aggregation tank 5) is directly measured using the probe (first probe) 8 provided in the stirring tank 3. The state of particles in the treated water (treated water downstream of the flocculation tank 5) discharged from the flocculation tank 4 by the probe (first probe) 8 which is detected in real time and provided in the flocculation tank 4 Directly
It is configured to detect in real time.

【0032】またこの凝集モニタリングシステムにおい
ても、凝集槽5から排出される処理水PWをサンプリン
グするバルブ7と、このバルブ7を介してサンプリング
された処理水PWを収容する計測槽5も設けられる。こ
の計測槽5にもプローブ8が設けられ、この計測槽5を
用いた処理水中の粒子の状態の検出は、先の実施形態と
同様に実施される。
Also in this coagulation monitoring system, a valve 7 for sampling the treated water PW discharged from the coagulation tank 5 and a measuring tank 5 for accommodating the treated water PW sampled via the valve 7 are provided. The measurement tank 5 is also provided with a probe 8, and the detection of the state of the particles in the treated water using the measurement tank 5 is performed in the same manner as in the previous embodiment.

【0033】このように構築された凝集モニタリングシ
ステムによれば、先の実施形態と同様な効果が奏せられ
ることのみならず、原水RWの水質変化等をリアルタイ
ムに検出しながらその凝集条件を適正に設定することが
可能となる等の効果が奏せられる。更には2つのバルブ
6,7を選択的に開弁して凝集槽5の上流側および下流
側の処理水をそれぞれサンプリングし、計測槽5に選択
的に収容する必要がないので、計測槽5に収容する処理
水の入れ換えに要する時間が不要であり、凝集反応状態
を把握するまでの処理時間を大幅に短縮することが可能
である等の効果も奏せられる。
According to the coagulation monitoring system constructed in this manner, not only the same effects as in the previous embodiment can be obtained, but also the coagulation conditions can be adjusted while detecting a change in water quality of the raw water RW in real time. And the like. Further, since it is not necessary to selectively open the two valves 6 and 7 to sample the treated water on the upstream side and the downstream side of the coagulation tank 5 and to selectively store them in the measurement tank 5, the measurement tank 5 is not required. There is no need for the time required for changing the processing water to be stored in the container, and it is also possible to greatly reduce the processing time required to grasp the state of the agglutination reaction.

【0034】尚、本発明は上述した各実施形態に限定さ
れるものではない。例えば実施形態においては、散乱光
の光電変換出力の振幅変調周波数成分を抽出した後、そ
の包絡線成分Eの最低値レベルから処理水中の粒子の状
態を求めたが、上記光電変換出力の振幅変調周波数成分
を平滑化処理したとき信号レベル等から処理水中の粒子
の状態を求めるようにしても良い。また凝集処理工程に
おける互いに異なる3点以上の計測点における処理水中
の粒子の状態をそれぞれ計測して、その凝集処理の状態
を監視することも可能である。
The present invention is not limited to the above embodiments. For example, in the embodiment, after extracting the amplitude modulation frequency component of the photoelectric conversion output of the scattered light, the state of the particles in the treatment water is obtained from the lowest value of the envelope component E. When the frequency component is smoothed, the state of the particles in the treated water may be obtained from the signal level or the like. It is also possible to measure the state of the particles in the treated water at three or more different measurement points in the aggregation processing step, respectively, and to monitor the state of the aggregation processing.

【0035】また実施形態においては、処理水中の粒子
の状態を検出するための変調レーザ光として、所定の周
波数で振幅変調したレーザ光を用いたが、レーザ光を位
相変調したり、周波数変調して用いるようにしても良
い。この場合には、散乱光の強度に応じた光電変換出力
から、その位相変調成分や周波数変調成分をそれぞれ検
出して処理水中の粒子の状態を検出すれば良い。その
他、本発明はその要旨を逸脱しない範囲で種々変形して
実施することができる。
In the embodiment, the laser light amplitude-modulated at a predetermined frequency is used as the modulated laser light for detecting the state of the particles in the treated water. However, the laser light is phase-modulated or frequency-modulated. May be used. In this case, the phase modulation component and the frequency modulation component may be respectively detected from the photoelectric conversion output corresponding to the intensity of the scattered light to detect the state of the particles in the treated water. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、凝
集処理工程における処理水中の粒子の状態を簡易に、し
かも精度良く計測することができることのみならず、フ
ロックの成長速度等の凝集反応時間までを把握すること
ができるので、処理水の水質に応じた凝集条件を容易に
最適化することができる等の実用上多大なる効果が奏せ
られる。
As described above, according to the present invention, not only the state of the particles in the treated water in the agglutination treatment step can be easily and accurately measured, but also the agglutination reaction such as the growth rate of floc. Since it is possible to grasp the time, it is possible to obtain a great effect in practical use, such as easily optimizing the coagulation conditions according to the quality of the treated water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る凝集モニタリン
グシステムの概略構成図。
FIG. 1 is a schematic configuration diagram of an aggregation monitoring system according to a first embodiment of the present invention.

【図2】凝集モニタリングシステムで用いられるプロー
ブの概略的な構成を示す図。
FIG. 2 is a diagram showing a schematic configuration of a probe used in the aggregation monitoring system.

【図3】図2に示すプローブを用いた処理水中における
粒子の状態検出の処理概念を示す図。
FIG. 3 is a view showing the concept of processing for detecting the state of particles in treated water using the probe shown in FIG. 2;

【図4】懸濁物質(微小コロイド粒子)の凝集に伴う、
微小領域Sでの散乱光強度の変化の様子を模式的に示す
図。
FIG. 4 shows the aggregation of suspended substances (micro colloid particles).
The figure which shows typically the mode of the change of the scattered light intensity in the micro area | region S.

【図5】本発明の第2の実施形態に係る凝集モニタリン
グシステムの概略構成図。
FIG. 5 is a schematic configuration diagram of an aggregation monitoring system according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 撹拌槽 4 凝集槽 5 計測槽 6 バルブ(処理水のサンプリング手段) 7 バルブ(処理水のサンプリング手段) 8 プローブ 10 発光部 20 受光部 30 演算部 40 凝集工程管理部 Reference Signs List 3 Stirring tank 4 Coagulation tank 5 Measurement tank 6 Valve (Sampling means of treated water) 7 Valve (Sampling means of treated water) 8 Probe 10 Light emitting unit 20 Light receiving unit 30 Operation unit 40 Aggregation process management unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/18 G01N 33/18 A Fターム(参考) 2G059 AA05 BB06 DD03 DD05 DD12 EE02 GG01 GG06 JJ17 KK01 LL04 MM01 MM04 4D015 BA21 BB06 EA03 EA07 EA32──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 33/18 G01N 33/18 A F term (Reference) 2G059 AA05 BB06 DD03 DD05 DD12 EE02 GG01 GG06 JJ17 KK01 LL04 MM01 MM04 4D015 BA21 BB06 EA03 EA07 EA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 凝集処理工程の上流側と下流側とからそ
れぞれサンプリングした処理水を選択的に収容する計測
槽と、 この計測槽に設けられて変調レーザ光を該計測槽に収容
された処理水中に照射すると共に、該レーザ光の上記処
理水中の粒子への衝突により発生する散乱光を受光する
プローブと、 このプローブを介して受光された上記散乱光の光電変換
出力における前記レーザ光の変調成分に基づいて前記処
理水中における粒子の状態を求める演算処理装置と、 前記計測槽に収容した前記凝集処理工程の上流側の処理
水中の上記演算処理装置により求められる粒子の状態、
および前記計測槽に収容した前記凝集処理工程の下流側
の処理水中の前記演算処理装置により求められる粒子の
状態とを比較して前記凝集処理工程における前記処理水
の凝集反応を評価する凝集工程管理手段とを具備したこ
とを特徴とする凝集モニタリングシステム。
1. A measuring tank for selectively storing treated water sampled from each of an upstream side and a downstream side of an agglomeration processing step, and a processing provided in the measuring tank and receiving modulated laser light in the measuring tank. A probe that irradiates the water with water and receives scattered light generated by collision of the laser light with particles in the treated water; and modulation of the laser light in a photoelectric conversion output of the scattered light received via the probe. An arithmetic processing device that determines the state of the particles in the treated water based on the components, and the state of the particles determined by the arithmetic processing device in the treated water upstream of the aggregating process housed in the measurement tank,
And a flocculation process management for evaluating the flocculation reaction of the treated water in the flocculation treatment process by comparing the state of the particles obtained by the arithmetic processing device in the treatment water downstream of the flocculation treatment process accommodated in the measurement tank. And a means for monitoring coagulation.
【請求項2】 前記計測槽は、該計測槽に収納した処理
水に凝集剤を追加投入する手段を備えてなる請求項1に
記載の凝集モニタリングシステム。
2. The coagulation monitoring system according to claim 1, wherein the measurement tank includes means for additionally adding a coagulant to the treated water stored in the measurement tank.
【請求項3】 凝集処理工程の上流側と下流側とにそれ
ぞれ設けられて変調レーザ光を上記凝集処理工程の上流
側と下流側とにおける処理水中に照射すると共に、該レ
ーザ光の上記各処理水中の粒子への衝突により発生する
散乱光を受光する第1および第2のプローブと、 これらの第1および第2のプローブを介してそれぞれ受
光された上記散乱光の光電変換出力における前記レーザ
光の変調成分に基づいて前記凝集処理工程の上流側と下
流側とにおける各処理水中の粒子の状態をそれぞれ求め
る演算処理装置と、 この演算処理装置により求められる前記凝集処理工程の
上流側における処理水中の粒子の状態と、前記凝集処理
工程の下流側における処理水中の粒子の状態とを比較し
て前記凝集処理工程における前記処理水の凝集反応を評
価する凝集工程管理手段とを具備したことを特徴とする
凝集モニタリングシステム。
3. A method of irradiating a modulated laser beam, which is provided on each of the upstream side and the downstream side of the aggregating process step, into the processing water on the upstream side and the downstream side of the aggregating process step, and performing the respective processes of the laser beam First and second probes for receiving scattered light generated by collision with particles in water; and the laser light in a photoelectric conversion output of the scattered light received via the first and second probes, respectively. An arithmetic processing unit that obtains the state of the particles in each processing water on the upstream side and the downstream side of the aggregation processing step based on the modulation component of the processing water; and the processing water on the upstream side of the aggregation processing step obtained by the arithmetic processing unit. The state of the particles and the state of the particles in the treatment water on the downstream side of the aggregation treatment step are compared to evaluate the aggregation reaction of the treated water in the aggregation treatment step. Aggregation monitoring system characterized by comprising a coagulation process control means.
【請求項4】 請求項2に記載の凝集モニタリングシス
テムにおいて、 更に前記凝集処理工程の下流側における処理水をサンプ
リングして収容する計測槽と、この計測槽に収容した処
理水に凝集剤を追加投入する手段と、前記計測槽に設け
られて変調レーザ光を上記計測槽に収容した処理水中に
照射すると共に、該レーザ光の上記各処理水中の粒子へ
の衝突により発生する散乱光を受光する第3のプローブ
を備え、 前記凝集処理工程管理手段は、演算処理装置により求め
られる前記凝集処理工程の上流側における処理水中の粒
子の状態、前記凝集処理工程の下流側における処理水中
の粒子の状態、および前記計測槽に収容した処理水中の
粒子の状態をそれぞれ比較して前記凝集処理工程におけ
る前記処理水の凝集反応を評価することを特徴とする凝
集モニタリングシステム。
4. The flocculation monitoring system according to claim 2, further comprising: a measuring tank for sampling and storing the treated water downstream of the flocculation treatment step; and adding a flocculant to the treated water contained in the measuring tank. Means for inputting, irradiating the modulated water provided in the measuring tank with the modulated laser light into the processing water contained in the measuring tank, and receiving scattered light generated by collision of the laser light with the particles in each of the processing waters. A third probe, wherein the aggregation processing step management means is configured to determine a state of particles in the processing water on the upstream side of the aggregation processing step and a state of the particles in the processing water on the downstream side of the aggregation processing step, which are determined by an arithmetic processing unit. And evaluating the agglutination reaction of the treated water in the aggregating treatment step by comparing the state of the particles in the treated water accommodated in the measurement tank, respectively. Aggregation monitoring system that.
JP2001059872A 2001-03-05 2001-03-05 Coagulation monitoring system Pending JP2002253905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059872A JP2002253905A (en) 2001-03-05 2001-03-05 Coagulation monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059872A JP2002253905A (en) 2001-03-05 2001-03-05 Coagulation monitoring system

Publications (1)

Publication Number Publication Date
JP2002253905A true JP2002253905A (en) 2002-09-10

Family

ID=18919370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059872A Pending JP2002253905A (en) 2001-03-05 2001-03-05 Coagulation monitoring system

Country Status (1)

Country Link
JP (1) JP2002253905A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170298A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Probe and detector for detecting particle condition
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2006272228A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Dewatering method and apparatus for sludge
JP2007231487A (en) * 2006-03-03 2007-09-13 Kurita Water Ind Ltd Method and apparatus for monitoring effect of papermaking chemical and method and apparatus for controlling amount injected
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP2007262628A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring effect of papermaking chemical and method for controlling injection rate of the papermaking chemical
WO2012010744A1 (en) 2010-07-20 2012-01-26 Kemira Oyj Method and system for treating aqueous streams
JP2012035152A (en) * 2010-08-03 2012-02-23 Nippon Steel & Sumikin Metal Products Co Ltd METHOD OF AND DEVICE FOR DETERMINING FLOC FORMATION STATE, FLOCCULATION REACTION TANK, pH CONTROL BATH, AND ABNORMALITY OCCURRENCE-REPORTING SYSTEM
CN104122263A (en) * 2013-04-26 2014-10-29 济南大学 Imaging method for laser detection of floc dynamic state
JP2015192960A (en) * 2014-03-31 2015-11-05 メタウォーター株式会社 water treatment system
JP2018161637A (en) * 2017-03-27 2018-10-18 住友重機械エンバイロメント株式会社 Flocculation precipitation treatment apparatus
KR102000885B1 (en) * 2018-12-27 2019-10-01 주식회사 태영건설 Measurement of suspended solids concentration using turbidity sensor and Apparatus for determining the fraction of aerobic granule sludge
JP2021023908A (en) * 2019-08-08 2021-02-22 栗田工業株式会社 Water treatment apparatus and water treatment method
WO2022034710A1 (en) * 2020-08-12 2022-02-17 栗田工業株式会社 Sampling device for coagulation treatment device, coagulation treatment device, and water treatment method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170298A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Probe and detector for detecting particle condition
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2006272228A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Dewatering method and apparatus for sludge
JP2007231487A (en) * 2006-03-03 2007-09-13 Kurita Water Ind Ltd Method and apparatus for monitoring effect of papermaking chemical and method and apparatus for controlling amount injected
JP2007263856A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring chemical effect on white water recovering process and method for controlling amount of injection
JP2007262628A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Method for monitoring effect of papermaking chemical and method for controlling injection rate of the papermaking chemical
WO2012010744A1 (en) 2010-07-20 2012-01-26 Kemira Oyj Method and system for treating aqueous streams
JP2012035152A (en) * 2010-08-03 2012-02-23 Nippon Steel & Sumikin Metal Products Co Ltd METHOD OF AND DEVICE FOR DETERMINING FLOC FORMATION STATE, FLOCCULATION REACTION TANK, pH CONTROL BATH, AND ABNORMALITY OCCURRENCE-REPORTING SYSTEM
CN104122263A (en) * 2013-04-26 2014-10-29 济南大学 Imaging method for laser detection of floc dynamic state
JP2015192960A (en) * 2014-03-31 2015-11-05 メタウォーター株式会社 water treatment system
EP3127590A4 (en) * 2014-03-31 2017-11-08 Metawater Co., Ltd. Water treatment system
US10351447B2 (en) 2014-03-31 2019-07-16 Metawater Co., Ltd. Water treatment system
JP2018161637A (en) * 2017-03-27 2018-10-18 住友重機械エンバイロメント株式会社 Flocculation precipitation treatment apparatus
KR102000885B1 (en) * 2018-12-27 2019-10-01 주식회사 태영건설 Measurement of suspended solids concentration using turbidity sensor and Apparatus for determining the fraction of aerobic granule sludge
JP2021023908A (en) * 2019-08-08 2021-02-22 栗田工業株式会社 Water treatment apparatus and water treatment method
WO2022034710A1 (en) * 2020-08-12 2022-02-17 栗田工業株式会社 Sampling device for coagulation treatment device, coagulation treatment device, and water treatment method
JPWO2022034710A1 (en) * 2020-08-12 2022-02-17
JP7294415B2 (en) 2020-08-12 2023-06-20 栗田工業株式会社 Sampling device for flocculation treatment device, flocculation treatment device, and water treatment method

Similar Documents

Publication Publication Date Title
JP2002253905A (en) Coagulation monitoring system
TWI585389B (en) System and methods of determining liquid phase turbidity of multiphase wastewater
JP6281534B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
JP3925621B2 (en) Water or sludge treatment system
JP4605327B2 (en) Aggregation monitoring device
JPS61102541A (en) Method and instrument for analyzing impurity in liquid
JP3912535B2 (en) Biological sludge monitoring device
JP3263729B2 (en) Apparatus and method for measuring particles in liquid
JP4400721B2 (en) Water treatment system
JP2003161690A (en) Aggregation monitoring apparatus
WO2023017637A1 (en) Flocculation processing device
JP2003161688A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP2005241338A (en) Coagulation sensor and coagulation control device using the same
JP3922365B2 (en) Particle state detection apparatus and particle state detection method
JP7389570B2 (en) Water treatment equipment and water treatment method
TW202109011A (en) Flocculation processing device
KR100549170B1 (en) Floc growth measurement system for water treatment
JP2003161689A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP4400720B2 (en) Water treatment system
JP2002257715A (en) Probe for detecting particle condition
JP2006272228A (en) Dewatering method and apparatus for sludge
JP2006272227A (en) Method and apparatus for monitoring activated sludge
JPH0817893B2 (en) Coagulant injection controller for water purification plants
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
JPS6321297Y2 (en)