JPS6321297Y2 - - Google Patents

Info

Publication number
JPS6321297Y2
JPS6321297Y2 JP1985065721U JP6572185U JPS6321297Y2 JP S6321297 Y2 JPS6321297 Y2 JP S6321297Y2 JP 1985065721 U JP1985065721 U JP 1985065721U JP 6572185 U JP6572185 U JP 6572185U JP S6321297 Y2 JPS6321297 Y2 JP S6321297Y2
Authority
JP
Japan
Prior art keywords
water
light
sludge
turbidity
detection end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985065721U
Other languages
Japanese (ja)
Other versions
JPS61812U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6572185U priority Critical patent/JPS61812U/en
Publication of JPS61812U publication Critical patent/JPS61812U/en
Application granted granted Critical
Publication of JPS6321297Y2 publication Critical patent/JPS6321297Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Activated Sludge Processes (AREA)

Description

【考案の詳細な説明】 本考案は、水質監視装置に関し、その目的とす
るところは低濃度汚泥の濃度分布測定により処理
水の水質監視と制御を適確にできるようにした水
質監視装置を提供するにある。
[Detailed description of the invention] The present invention relates to a water quality monitoring device, and its purpose is to provide a water quality monitoring device that can accurately monitor and control the quality of treated water by measuring the concentration distribution of low-concentration sludge. There is something to do.

下水処理場は、その放流水が下流水域の水質汚
濁を起さないための水処理を施すことを目的と
し、処理の良否は放流水質から評価される。処理
水の評価項目としてはBOD(生物学的酸素要求
量)がよく使われる。ところで、比較的安定な運
転状態の処理場における放流水のBODとSS(懸
濁物質)は第1図に示すように相関が強い。これ
は放流水のBODの主たる原因が最終沈澱池にお
けるSSが沈澱しきれずに流出するか、あるいは
一旦沈澱したが沈澱池内の水流によつて舞い上つ
た汚泥によることを示している。
The purpose of a sewage treatment plant is to treat the discharged water so that it does not cause water pollution in downstream water areas, and the quality of the treatment is evaluated based on the quality of the discharged water. BOD (biological oxygen demand) is often used as an evaluation item for treated water. By the way, there is a strong correlation between the BOD and SS (suspended solids) of effluent water in a treatment plant under relatively stable operating conditions, as shown in Figure 1. This indicates that the main cause of the BOD of the effluent is either the SS in the final settling tank that is not completely settled and flows out, or the sludge that has settled once but is thrown up by the water flow in the settling tank.

そこで、水質監視装置としては、最終沈澱池に
おける汚泥の沈澱状態を監視した放流制御をする
ことになるが、汚泥の沈澱状態を測定する計器と
しては、汚泥界面計あるいは、汚泥濃度分布計が
ある。汚泥界面計は汚泥による超音波の減衰を利
用して、最終沈澱池ピツト内の汚泥レベルを測定
する計器であり、汚泥界面の位置に検出端を追従
させ、界面の位置を検出する。汚泥濃度分布計
は、センサを一定速度、一定周期で上下させ、そ
の間超音波の減衰量の変化を記録し、水面から底
までの汚泥濃度の分布を測定する。
Therefore, as a water quality monitoring device, discharge control is performed by monitoring the settling state of sludge in the final settling tank, but instruments for measuring the settling state of sludge include a sludge interface meter or a sludge concentration distribution meter. . The sludge interface meter is an instrument that measures the sludge level in the final settling tank pit by using the attenuation of ultrasonic waves by sludge, and detects the position of the interface by following the detection end to the position of the sludge interface. A sludge concentration distribution meter measures the distribution of sludge concentration from the water surface to the bottom by moving the sensor up and down at a constant speed and in a constant cycle, recording changes in the amount of attenuation of ultrasonic waves during that time.

第2図は一般的な下水処理プロセスの一部を示
す。最終沈澱池で予備的な処理をされた汚水1は
活性汚泥が加えられた曝気槽2で曝気され、好気
性微生物の働きで汚水中の有機物が除去される。
曝気槽2からの浄化水と活性汚泥の混合液は沈澱
池3で浄化水(上澄水)4と活性汚泥(沈澱物)
5に分離され、浄化水4は越流水6として放流さ
れ、活性汚泥5は返送汚泥ポンプ7によつて曝気
槽2へ送られるし、余剰汚泥ポンプ8によつて最
初沈澱池へ送られる。汚泥界面計(あるいは汚泥
濃度分布計)9はその検出端10を沈澱池3内に
浸漬駆動し、ある一定濃度(例えば8000ppm)の
位置を汚泥界面51として検出するし、検出端1
0を一定速度で上下駆動することで沈澱汚泥の濃
度分布を測定する。
Figure 2 shows part of a typical sewage treatment process. The sewage 1 that has undergone preliminary treatment in the final settling tank is aerated in the aeration tank 2 to which activated sludge is added, and organic matter in the sewage is removed by the action of aerobic microorganisms.
The mixed solution of purified water and activated sludge from the aeration tank 2 is sent to the sedimentation tank 3 where it is mixed with purified water (supernatant water) 4 and activated sludge (sediment).
The purified water 4 is discharged as overflow water 6, and the activated sludge 5 is sent to the aeration tank 2 by the return sludge pump 7, and is sent to the initial settling tank by the excess sludge pump 8. The sludge interface meter (or sludge concentration distribution meter) 9 has its detection end 10 immersed in the sedimentation tank 3 and detects a position at a certain concentration (for example, 8000 ppm) as the sludge interface 51.
The concentration distribution of settled sludge is measured by driving the 0 up and down at a constant speed.

したがつて、汚泥界面計あるいは汚泥濃度分布
計によつて、返送汚泥ポンプおよび余剰汚泥ポン
プを制御して、沈澱池にある沈澱汚泥の量,濃度
を適当な値にすることは可能である。
Therefore, it is possible to control the return sludge pump and surplus sludge pump using a sludge interface meter or a sludge concentration distribution meter to adjust the amount and concentration of settled sludge in the settling tank to appropriate values.

しかし、超音波式汚泥濃度分布計で測定できる
汚泥濃度の下限は500〜1000ppm程度である。ま
た、汚泥界面より上の上澄水中に浮遊している低
濃度の汚泥の状態は超音波式汚泥濃度分布計では
検知できない。また、処理水質のBODは、数
ppm〜数+ppmのオーダーのSSの流出に原因し
ている。
However, the lower limit of sludge concentration that can be measured with an ultrasonic sludge concentration distribution meter is about 500 to 1000 ppm. Furthermore, the state of low-concentration sludge suspended in supernatant water above the sludge interface cannot be detected by an ultrasonic sludge concentration distribution meter. In addition, the BOD of treated water quality is
This is caused by the outflow of SS on the order of ppm to several + ppm.

従つて、適確な水処理には上澄水中に浮遊して
いる微小なSS分の濃度、および濃度分布を測定、
監視する必要が生じる。現在SSを直接測定する
適当なプロセス計器はなく、濁度計を利用する方
法が多く用いられている。本質的には、SSは質
量を、濁度は光の非透過度を計量するものである
ので、両者は異質のものである。
Therefore, for proper water treatment, it is necessary to measure the concentration and concentration distribution of minute SS components suspended in supernatant water.
It becomes necessary to monitor. Currently, there are no suitable process instruments to directly measure SS, and methods using turbidity meters are often used. Essentially, SS measures mass and turbidity measures opacity of light, so they are different.

しかし、下水処理場の処理水の場合には、第3
図,第4図に示すように両者に高い相関が得られ
ている。第3図は、2次処理水のSSと濁度計の
指示との関係(白丸)と、その2次処理水を原水
とした砂ろ過3次処理水のSSと濁度計の読みの
関係(黒丸)を示している。第4図は、処理水と
終沈の汚泥を混合して疑似的な高SS濃度の検水
を作り、テストした結果である。
However, in the case of treated water from a sewage treatment plant, the third
As shown in Fig. 4, a high correlation is obtained between the two. Figure 3 shows the relationship between the SS of the secondary treated water and the turbidity meter reading (white circles), and the relationship between the SS of the sand-filtered tertiary treated water using the secondary treated water as raw water and the turbidity meter reading. (black circle) is shown. Figure 4 shows the results of a test made by mixing treated water and final sedimentation sludge to create a simulated test water with a high SS concentration.

以上の様に、濁度は、SSおよびBODと相関が
あり、沈澱池の上澄水の濁度の分布を測定するこ
とは非常に重要である。
As mentioned above, turbidity is correlated with SS and BOD, and it is very important to measure the turbidity distribution of supernatant water in a sedimentation pond.

しかし、現在の濁度計はサンプリング形が主と
してプロセス計器として市販されており、浸漬形
はポータブル形が主である。更に光源として直流
光(例えば直流電源によるタングステンランプ発
光)を用いているので、迷光の影響をうけ、更
に、可視光を用いるので、着色液の場合誤差を生
じる。
However, current sampling type turbidimeters are mainly commercially available as process instruments, and immersion type turbidimeters are mainly portable types. Furthermore, since direct current light (for example, tungsten lamp light emitted by a direct current power supply) is used as a light source, it is affected by stray light, and furthermore, since visible light is used, errors occur in the case of colored liquids.

ところで最終沈澱池からの放流水を市販の濁度
計を用いて計測すれば、第1図のような関係によ
り、BODについての情報が得られるが、その防
止策に対する情報は得られない。しかし本考案の
装置を用いれば、これが可能となる。即ち、最終
沈澱池における汚泥の沈澱状態は、1〜2mまで
の水深は殆どSSがなく、目視できる汚泥界面は
2m以深であるのが普通である。しかし超音波を
用いる方式のものは原理的には500〜1000ppm以
上の濃度を測定できるが、実際は信頼できるのは
3000ppm以上の濃度である。従つて0〜2m又は
0〜3mまでの水深の間のSS又は濁度の分布を
知ることができれば、現在超音波式汚泥界面計又
は濃度分布計での信号により最終沈澱池の汚泥引
抜を行つているが、これを本考案の装置の信号に
よりSS分の越流を最小限にできる汚泥引抜制御
が可能となる。更に水深0〜3m程度のSS分布
と処理方式との関係を追究することができ、より
質的に向上した処理方式を解明できる可能性があ
る。第5図は、本考案の水質監視装置を最終沈澱
池に適用した場合の概念図を示す。曝気槽で得ら
れた活性汚泥と浄化水の混合液は沈澱池に流入し
て上澄水11と沈澱汚泥12に分離され、その汚
泥界面12Aが形成される。しかし、汚泥の状態
や沈澱池内の流れの状態によつては沈澱しきれな
い汚泥13が浮遊し、オーバフロー板14を越え
る越流水15に混入する場合がある。このような
沈澱池において、上澄水中に浮遊する懸濁物によ
り濁度を検出するために、地上16側に設けた測
定部17の駆動機構からワイヤ18によつて濁度
検出端19が検水中に吊り下げられ、駆動機構に
よる吊り下げ制御によつて検出端19が昇降制御
される。また、濁度検出端19での検出信号はケ
ーブル20によつて測定部17に取込まれ、濁度
検出の演算がなされる。
By the way, if you measure the water discharged from the final sedimentation basin using a commercially available turbidity meter, you can obtain information about BOD based on the relationship shown in Figure 1, but you cannot obtain information about measures to prevent it. However, using the device of the present invention, this becomes possible. That is, in the settling state of sludge in the final settling tank, there is almost no SS at a water depth of 1 to 2 m, and the visually visible sludge interface is usually at a depth of 2 m or more. However, although methods that use ultrasonic waves can in principle measure concentrations of 500 to 1000 ppm or more, in reality they are not reliable.
The concentration is over 3000ppm. Therefore, if it is possible to know the distribution of SS or turbidity between water depths of 0 to 2 m or 0 to 3 m, it is currently possible to extract sludge from the final settling tank using signals from an ultrasonic sludge interface meter or concentration distribution meter. However, it is possible to control sludge extraction to minimize the SS overflow by using the signal from the device of the present invention. Furthermore, it is possible to investigate the relationship between the SS distribution at water depths of about 0 to 3 m and the treatment method, and there is a possibility that a more qualitatively improved treatment method can be elucidated. FIG. 5 shows a conceptual diagram when the water quality monitoring device of the present invention is applied to a final sedimentation tank. The mixed solution of activated sludge and purified water obtained in the aeration tank flows into the settling tank and is separated into supernatant water 11 and settled sludge 12, forming a sludge interface 12A. However, depending on the state of the sludge and the state of the flow within the sedimentation basin, sludge 13 that has not been completely settled may float and mix in the overflow water 15 that passes over the overflow plate 14. In such a sedimentation tank, in order to detect turbidity from suspended matter floating in supernatant water, a turbidity detection end 19 is connected by a wire 18 from a drive mechanism of a measurement unit 17 provided on the ground 16 side. The detection end 19 is suspended in water, and the detection end 19 is controlled to move up and down under suspension control by a drive mechanism. Further, the detection signal at the turbidity detection end 19 is taken into the measurement section 17 via the cable 20, and calculations for turbidity detection are performed.

なお、検出端19の昇降スピードは検水中の懸
濁物の状態、界面の状態を乱さないようにゆるや
かな速度(例えば500m/min)に制御される。
また、濁度検出端19の測定範囲は0〜10ppm、
0〜100ppmあるいは1000ppm程度のものにされ
る。
Note that the speed of elevation of the detection end 19 is controlled at a slow speed (for example, 500 m/min) so as not to disturb the state of suspended matter in the test water and the state of the interface.
In addition, the measurement range of the turbidity detection end 19 is 0 to 10 ppm,
It is made to be about 0 to 100 ppm or 1000 ppm.

第6図は測定部17のブロツク図を示す。一点
鎖線ブロツクで示す駆動制御部21は22〜25
で構成され、検出端昇降制御回路22によつて駆
動モータ23を運転制御し、このモータ23によ
つて巻上ドラム24を駆動する。ドラム24はワ
イヤ18を巻取りあるいは巻戻しすることで検出
端19を昇降させる。
FIG. 6 shows a block diagram of the measuring section 17. The drive control section 21 indicated by a dashed line block is 22 to 25.
The detection end elevation control circuit 22 controls the operation of a drive motor 23, and the motor 23 drives the hoisting drum 24. The drum 24 raises and lowers the detection end 19 by winding or unwinding the wire 18.

検出端19の位置は検出器25がモータ23又
はドラム24の回転角度から検出し、この検出信
号は制御回路22の速度制御信号に利用されると
共に検出端位置信号26として指示記録計27に
取込まれる。指示記録計27には検出端19の検
出信号を濁度出力28として得る演算器29の出
力が取込まれ、検出端位置信号とによつて上澄水
中の濁度分布が指示記録される。
The position of the detection end 19 is detected by the detector 25 from the rotation angle of the motor 23 or the drum 24, and this detection signal is used as a speed control signal of the control circuit 22 and is also sent to the indicator recorder 27 as the detection end position signal 26. be included. The indicator recorder 27 takes in the output of the calculator 29 which obtains the detection signal of the detection end 19 as the turbidity output 28, and records the turbidity distribution in the supernatant water as an indication based on the detection end position signal.

なお、上記のように検出端19を昇降制御して
濁度分布を指示記録する代りに、検出端19を多
数個一定間隔で水深の異なる位置に設け、各検出
端の信号を順次取込む構成にすることで駆動制御
部21を省略した構成にできる。
In addition, instead of controlling the detection terminals 19 to move up and down to indicate and record the turbidity distribution as described above, a plurality of detection terminals 19 are provided at regular intervals at positions at different water depths, and the signals from each detection terminal are sequentially captured. By doing so, it is possible to have a configuration in which the drive control section 21 is omitted.

第7図は濁度検出端19と演算器29のブロツ
ク図を示し、近赤外光を光源とし、この光源を交
流的に変調した散乱光測定方式の場合である。濁
度検出端19のケース底面は透光ガラス30にさ
れ、ケース内には一定周波数、デユーテイレシオ
のパルス駆動される発光ダイオード31が懸濁物
13を照射できるよう設けられ、また、懸濁物1
3からの反射光を光一電気変換する受光素子32
及び発光ダイオード31の直接光を電気信号に変
換する受光素子33が設けられる。受光素子32
の入力光は発光ダイオード31から出た光が懸濁
物13によつて散乱反射された光のほかに太陽光
(直流的)や蛍光灯光(交流的)などの外来光が
あり、その電気出力信号は図中に示すように発光
ダイオード31の出力波形に脈流が重畳した波形
として演算器29側に取込まれる。
FIG. 7 shows a block diagram of the turbidity detection terminal 19 and the arithmetic unit 29, in the case of a scattered light measurement method in which near-infrared light is used as a light source and this light source is modulated in an alternating current manner. The bottom surface of the case of the turbidity detection end 19 is made of transparent glass 30, and a light emitting diode 31 that is pulse-driven at a constant frequency and duty ratio is provided in the case so as to illuminate the suspended matter 13.
A light-receiving element 32 that converts the reflected light from light-to-electricity from light to electricity.
A light receiving element 33 that converts direct light from the light emitting diode 31 into an electrical signal is also provided. Light receiving element 32
The input light includes light emitted from the light emitting diode 31 that is scattered and reflected by the suspended object 13, as well as external light such as sunlight (DC type) and fluorescent lamp light (AC type), and its electrical output The signal is taken into the computing unit 29 as a waveform in which pulsating current is superimposed on the output waveform of the light emitting diode 31, as shown in the figure.

演算器29の演算系はフイルタ回路34、整流
回路35、増幅器36を具え、受光素子32から
の電気信号をフイルタ回路34を通すことで直流
成分と電源周波数をさらにはその高調波成分が取
除かれて発光ダイオード31のパルス光出力レベ
ルに比例したパルス信号(図中に示す)が取出さ
れる。この信号は整流回路35で整流されて直流
に変換され、増幅器36で増幅されて濁度出力2
8として指示計器側に送られる。
The arithmetic system of the arithmetic unit 29 includes a filter circuit 34, a rectifier circuit 35, and an amplifier 36, and by passing the electric signal from the light receiving element 32 through the filter circuit 34, the DC component and the power frequency are removed, as well as their harmonic components. As a result, a pulse signal (shown in the figure) proportional to the pulse light output level of the light emitting diode 31 is extracted. This signal is rectified by the rectifier circuit 35 and converted into direct current, and amplified by the amplifier 36 to output turbidity.
8 and is sent to the indicating instrument side.

演算器29の駆動系は、発光ダイオード31の
発光出力制御回路37を具え、この制御回路37
は発光ダイオード31を駆動するパルス出力レベ
ルを発光素子33の受光量をフイードバツク量と
して一定に制御する負帰還制御にされる。
The drive system of the arithmetic unit 29 includes a light emission output control circuit 37 for the light emitting diode 31, and this control circuit 37
Negative feedback control is performed in which the pulse output level for driving the light emitting diode 31 is controlled to be constant using the amount of light received by the light emitting element 33 as a feedback amount.

この濁度検出器の特徴は (1) 検出光として近赤外光を用いているので、一
般の濁度計では問題となる検水の着色による影
響を全く受けずに、SSに比例した出力を得る
ことができる。
The features of this turbidity detector are (1) Since it uses near-infrared light as the detection light, it is completely unaffected by the coloration of the sample water, which is a problem with general turbidity meters, and outputs proportional to SS. can be obtained.

(2) 光源からの発光を点滅状態にして測定し、受
光素子の出力中交流成分のみを取り出すことに
より迷光の影響を除去できる。
(2) The influence of stray light can be removed by measuring the light emitted from the light source in a blinking state and extracting only the alternating current component in the output of the light receiving element.

特に本装置では、昼夜あるいは検出端の深度
位置によつて太陽光の影響が変化するので、こ
の利点は重要である。
This advantage is especially important in this device because the influence of sunlight changes depending on day and night or the depth position of the detection end.

(3) 近赤外発光ダイオードを用いているので寿命
が長くさらに、比較用受光素子により発光源の
光出力制御を行なついているので長期間安定し
た測定が行なえる。
(3) Since a near-infrared light emitting diode is used, the life is long, and since the light output of the light emitting source is controlled by a comparison light receiving element, stable measurements can be performed over a long period of time.

以上は散乱光方式の濁度検出器を使つた場合に
ついて述べたが他の検出方式例えば第8図に示す
様な透過光測定方式の濁度計を用いても可能であ
る。
Although the case where a scattered light type turbidity detector is used has been described above, it is also possible to use other detection methods, for example, a transmitted light measurement type turbidity meter as shown in FIG.

第8図において、38は第7図における発光ダ
イオード31と33を持つ発光制御された発光部
であり、この発光部38の光出力は対向する受光
部39に取込まれ、その間に存在する検水の濁度
が検出される。受光部39内には第7図における
受光素子32が設けられる。
In FIG. 8, reference numeral 38 is a light emitting unit that has light emitting diodes 31 and 33 in FIG. Water turbidity is detected. The light receiving element 32 shown in FIG. 7 is provided in the light receiving section 39. As shown in FIG.

上記までの説明は下水処理場の最終沈澱池に適
用した場合を示したが、最初沈澱池や薬品添加に
よる凝集沈澱を行なう水質監視装置にも適用でき
ることは勿論である。
Although the above description has been made regarding the case where the present invention is applied to the final sedimentation tank of a sewage treatment plant, it is of course applicable to a water quality monitoring device that performs coagulation sedimentation using a primary sedimentation tank or the addition of chemicals.

以上のとおり、本考案による水質監視装置は、
沈澱池の上澄水など低濃度検水中に浮遊する汚泥
の分布を測定することにより汚泥の越流による放
流水質の悪化を予測して放流前にその適切な制御
が可能になるし、流入水量の制御あるいは池内の
処理水流れを制御することで処理水の効率的制御
が可能になる。また、濁度検出器として近赤外光
を交流的に変調して外来光を取除く濁度測定方法
を採用するため、検水が着色されている場合に測
定精度に影響を受けないし外来光の強さの影響を
受けない高精度の測定が可能であるし、発光ダイ
オードなど半導体素子を使用できることから寿命
の長い測定器を実現できる。
As described above, the water quality monitoring device according to the present invention is
By measuring the distribution of sludge floating in low-concentration sample water such as supernatant water from a sedimentation tank, it is possible to predict deterioration in the quality of effluent water due to sludge overflow and to appropriately control the quality of effluent water before discharge. By controlling the flow of treated water within the pond, efficient control of treated water becomes possible. In addition, since the turbidity detector uses a turbidity measurement method that modulates near-infrared light in an alternating current manner and removes extraneous light, measurement accuracy is not affected by colored sample water and extraneous light does not affect the measurement accuracy. High-precision measurement is possible without being affected by the strength of light, and since semiconductor elements such as light emitting diodes can be used, long-life measuring instruments can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は処理水のSSとBODの関係を示す図、
第2図は下水処理プロセスを例示する図、第3図
及び第4図はSSと濁度の関係を示す図、第5図
は本考案の水質監視装置における水質測定系の概
念図、第6図は第5図における測定部17のブロ
ツク図、第7図は第5図における濁度検出器のブ
ロツク図、第8図は濁度検出器の他の構成図であ
る。 11……上澄水、12……汚泥、13……汚
泥、17……測定部、19……濁度検出端、21
……駆動制御部、22……昇降制御回路、23…
…モータ、24……ドラム、25……位置検出
器、27……指示記録計、29……濁度演算器、
31……発光ダイオード、32,33……受光素
子、34……フイルタ回路、35……整流回路、
36……増幅器、37……発光出力制御回路、3
8……発光部、39……受光部。
Figure 1 shows the relationship between SS and BOD of treated water.
Figure 2 is a diagram illustrating the sewage treatment process, Figures 3 and 4 are diagrams showing the relationship between SS and turbidity, Figure 5 is a conceptual diagram of the water quality measurement system in the water quality monitoring device of the present invention, and Figure 6 is a diagram illustrating the sewage treatment process. 5 is a block diagram of the measuring section 17 in FIG. 5, FIG. 7 is a block diagram of the turbidity detector in FIG. 5, and FIG. 8 is another configuration diagram of the turbidity detector. 11...Supernatant water, 12...Sludge, 13...Sludge, 17...Measurement section, 19...Turbidity detection end, 21
... Drive control section, 22 ... Elevation control circuit, 23 ...
... Motor, 24 ... Drum, 25 ... Position detector, 27 ... Indication recorder, 29 ... Turbidity calculator,
31... Light emitting diode, 32, 33... Light receiving element, 34... Filter circuit, 35... Rectifier circuit,
36...Amplifier, 37...Light emission output control circuit, 3
8... Light emitting section, 39... Light receiving section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 点滅する近赤外光で処理水を照射し、該処理水
中での反射光又は透過光を検出する検出端と、こ
の検出端を沈澱池の上澄水中にかつ複数の水深位
置に配置する手段と、前記近赤外光の発光強さを
一定制御し光検出信号から交流成分を取り出す演
算器と、前記検出端の水深位置に対する前記演算
器の出力から各水深に対する上澄水濁度分布を求
め、この濁度分布と上澄水中の懸濁物質又は生物
学的酸素要求量の相関から処理水の水質監視と流
入・放流制御をする手段とを備えたことを特徴と
する水質監視装置。
a detection end for irradiating treated water with blinking near-infrared light and detecting reflected light or transmitted light in the treated water; and means for arranging this detection end in supernatant water of a sedimentation tank at a plurality of water depth positions; A computing unit that controls the emission intensity of the near-infrared light to a certain extent and extracts an alternating current component from the light detection signal, and a supernatant water turbidity distribution for each water depth is determined from the output of the computing unit for the water depth position of the detection end. A water quality monitoring device comprising means for monitoring the quality of treated water and controlling inflow and discharge based on the correlation between turbidity distribution and suspended solids in supernatant water or biological oxygen demand.
JP6572185U 1985-05-01 1985-05-01 Water quality monitoring device Granted JPS61812U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6572185U JPS61812U (en) 1985-05-01 1985-05-01 Water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572185U JPS61812U (en) 1985-05-01 1985-05-01 Water quality monitoring device

Publications (2)

Publication Number Publication Date
JPS61812U JPS61812U (en) 1986-01-07
JPS6321297Y2 true JPS6321297Y2 (en) 1988-06-13

Family

ID=30597973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572185U Granted JPS61812U (en) 1985-05-01 1985-05-01 Water quality monitoring device

Country Status (1)

Country Link
JP (1) JPS61812U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769188B2 (en) * 2011-01-31 2015-08-26 直幸 鈴木 Treatment method of liquid to be treated
JP2015020126A (en) * 2013-07-19 2015-02-02 株式会社ニッシン Treatment method of liquid to be treated

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135446U (en) * 1973-03-26 1974-11-21

Also Published As

Publication number Publication date
JPS61812U (en) 1986-01-07

Similar Documents

Publication Publication Date Title
DE69233675D1 (en) Method and apparatus for determination of luminescence
CN104730054A (en) Integrated probe type photoelectric water-quality multi-parameter online measuring system
WO1992016828A2 (en) Organic pollutant monitor
ATE499125T1 (en) METHOD AND DEVICE FOR DETECTING BUBBLES IN A LIQUID
ATE40008T1 (en) DEVICE FOR MEASUREMENT OF FLUORESCENCE, TUBACITY, LUMINESCENCE OR ABSORPTION.
CN207081660U (en) A kind of dissolved oxygen measuring device based on binary channels phase lock amplifying technology
DE60017930D1 (en) DEVICE FOR MEASURING THE COLOR AND TURNING OF WATER BY MEANS OF A SINGLE DETECTOR
US3441737A (en) Radiation sensitive sludge level testing device
US4006988A (en) Photo-electric depth or turbidity meter for fluid suspensions
JPS6321297Y2 (en)
JP2002253905A (en) Coagulation monitoring system
KR102231001B1 (en) Device for measuring organic materials using UV LED
CN108426836B (en) Water monitoring device
JP3031778U (en) Probe type turbidity detector
SU950682A1 (en) Device for automatically controlling toxicity of liquids
JP2010091309A (en) Method and apparatus for measuring water-quality in non-contact manner
CN217786901U (en) On-line automatic monitoring instrument for silt content
KR20190102632A (en) Measuring device for ultraviolet transmittance of colloidal material
CN217304884U (en) Immersion type multispectral COD on-line monitor
CN220207449U (en) Device for detecting pH value by optical method based on flow injection
JPS5720648A (en) Method for presuming bod and ss concentration applied with absorbance of visible light and constant turbidity cod concentration
JPH0453571Y2 (en)
Johnson Remote turbidity measurement with a laser reflectometer
Sadar Technologies for Measuring Turbidity in Drinking Water Production
JPH0613482Y2 (en) Oil concentration measuring device