KR20190102632A - Measuring device for ultraviolet transmittance of colloidal material - Google Patents

Measuring device for ultraviolet transmittance of colloidal material Download PDF

Info

Publication number
KR20190102632A
KR20190102632A KR1020180023228A KR20180023228A KR20190102632A KR 20190102632 A KR20190102632 A KR 20190102632A KR 1020180023228 A KR1020180023228 A KR 1020180023228A KR 20180023228 A KR20180023228 A KR 20180023228A KR 20190102632 A KR20190102632 A KR 20190102632A
Authority
KR
South Korea
Prior art keywords
river
measuring device
colloidal material
depth
ultraviolet
Prior art date
Application number
KR1020180023228A
Other languages
Korean (ko)
Inventor
강병근
Original Assignee
강병근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강병근 filed Critical 강병근
Priority to KR1020180023228A priority Critical patent/KR20190102632A/en
Publication of KR20190102632A publication Critical patent/KR20190102632A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Abstract

The present invention relates to a research device to measure an underwater transmission depth of ultraviolet rays, and research a growth and development plan of an aquatic plant in accordance with turbidity of river water.

Description

콜로이드 물질의 자외선 투과율에 대한 측정 장치{Measuring device for ultraviolet transmittance of colloidal material}Measuring device for ultraviolet transmittance of colloidal material

본 발명은 용매 속에 미세한 입자를 가지고 있는 콜로이드 물질의 빛 투과성에 대한 측정 장치이다. 강이나 하천과 같은 콜로이드 물질에서 표면으로부터 특정 수심에 해당되는 자외선 투과율을 측정 및 연구하기 위한 장치로 강이나 하천 상태에 따라 수생 식물의 광합성을 위한 최소한의 깊이를 알기 위함을 연구하는 장치.The present invention is a measuring device for the light transmittance of a colloidal material having fine particles in a solvent. A device for measuring and studying the UV transmittance corresponding to a certain depth from a surface in a colloidal material such as a river or a river. A device for studying the minimum depth for photosynthesis of aquatic plants according to river or river conditions.

일정 세기의 자외선을 강이나 하천의 표면에서 수심을 향해 투과하며, 밑에서는 자외선이 감지 될 때까지 자외선 감지 bar가 상승하며 자외선 투과율을 계산할 수 있도록 한다.Ultraviolet rays of a certain intensity are transmitted from the surface of the river or river toward the depth, and the UV detection bar rises until the ultraviolet rays are detected from the bottom, and the UV transmittance can be calculated.

수중식물과 침전물에 의한 용존산소 변화량 결정에 대한 연구를 바탕으로 수질자료에 따르면 탄천은 상류의 부영양화 지역과 하류의 강부수성 지역으로 구분되며 상류는 수초의 광합성과 호흡이, 하류는 침전물 산소요구량이 수중 용존산소 농도 결정에 주 역할을 하고 있다. Based on the study on the determination of dissolved oxygen change by aquatic plants and sediments, water quality data shows that the Tancheon is divided into the upper eutrophication zone and the downstream submerged zone. It plays a major role in determining dissolved oxygen concentration in water.

부유물질량이란 수중에 부유하면서 물을 흐리게 하고 있는 직경 2mm이하의 물질의 양을 의미한다. 부유물질량은 2mm눈금의 여과기로 여과한 후 건조시켜 무게를 측정해서 시료 1L에 포함되어지는 고형물의 양을 측량한 것으로, 플랑크톤 등의 생물의 시체나 대변이나 이것들에 부착하는 미생물 등의 유기물, 점토 미립자등의 무기물들이 포함되어 있다. 부유물질량이 커지면 물의 투명도 등의 외관이 악회되는 것 외에 수중생물들의 호흡이나 수중 식물의 광합성에 영향을 주기도 하며, 무기질소와 무기인 등의 무기성 성분은 부영양화현상을 일으키는 요인이 된다.The amount of suspended solids refers to the amount of suspended solids in the water and less than 2mm in diameter. The amount of suspended solids is filtered through a 2mm scale filter, dried and weighed to measure the amount of solids contained in 1L of sample.The organic matter such as plankton and other organisms such as feces and microorganisms attached to these materials, clay Inorganic materials such as fine particles are included. Increasing the amount of suspended solids not only deteriorates the appearance of water, but also affects the breathing of aquatic organisms and photosynthesis of aquatic plants. Inorganic components such as inorganic nitrogen and inorganic phosphorus cause eutrophication.

본 발명 및 연구 과제는 강이나 하천의 조도(자외선)의 투과율에 대해 조사하여, 강물 혼탁도를 디지털 수치화로 나타내며, 이에 살기에 적합한 수생 식물에 대해 안내를 해준다.The present invention and research aims to investigate the transmittance of roughness (ultraviolet ray) in rivers or rivers, and represents the turbidity of river water by digital digitization, which guides aquatic plants suitable for living.

본 발명은 강물의 샘플을 수거하여 담을 수 있는 장치를 구비하며, 해당 장치에서 수면에서 수중으로 나아가는 자외선의 깊이를 측정하여 수거된 강물의 자외선 투과 깊이를 찾는다.The present invention includes a device capable of collecting and holding a sample of the river, and finds the UV transmission depth of the collected river by measuring the depth of ultraviolet light from the surface to the water in the device.

본 발명은 자외선의 투과 깊이를 디스플레이를 통해 나타내며, 이와 함께 데이터에 저장된 수생식물의 평균 키 및 광합성에 필요한 최소 자외선 요구량을 바탕으로 해당 강물에서 수생식물의 생육을 위한 강물의 깊이를 알아보도록 한다.The present invention shows the transmission depth of the ultraviolet through the display, and together with the average height of the aquatic plants stored in the data and the minimum UV requirements required for photosynthesis to determine the depth of the river for the growth of aquatic plants in the river.

본 발명은 강물에서 자외선이 통과 될 수 있는 깊이를 알아 볼 수 있으며, 이를 통해 강물의 종류 및 위치에 따라 어떠한 수생식물이 살 수 있는지 알아 볼 수 있으며, 이를 통해 향후 COD 및 BOD의 변화 추이를 예상할 수 있다.The present invention can find out the depth through which the ultraviolet light can pass through the river, and through this, it is possible to find out which aquatic plants can live according to the type and location of the river, and through this, it is expected to change the future COD and BOD changes. can do.

본 발명은 하천의 정비에 있어서 무조건 하천을 깊게만 하려는 공사를 진행하는데 오히려 이러한 공사는 수중식물에 햇빛이 도달하지 못하게 하여 광합성이 힘들어짐으로 죽은 하천을 만들게 됨을 증명할 수 있다. 때문에 하천 정비에 있어서도 혼탁도가 낮은 하천은 수심을 깊게 하되 혼탁도가 심한 하천은 수심이 깊으면 수중식물이 살 수 없음을 확장 연구할 수 있다.The present invention proceeds to the construction of the river only to deepen unconditionally in the maintenance of the river, but rather, such construction can prove that the photosynthesis is difficult to make a river that is difficult to reach the aquatic plants. Therefore, even in the maintenance of rivers, streams with low turbidity can deepen the depth, but rivers with severe turbidity can be extended to study that underwater plants cannot live if the depth is deep.

도 1은 발명에 대한 자외선 측정 거리를 알아볼 수 있는 장치이다.
도 2는 도 1 장치에서 측정된 값을 데이터화 하여 디스플레이로 출력이 가능한 프로그램이다.
1 is a device capable of recognizing a UV measurement distance for the invention.
FIG. 2 is a program capable of outputting the data measured by the apparatus of FIG. 1 to a display.

상기한 바와 같이 본 발명의 구성을 첨부한 도면에 의해 상세히 설명하면 다음 과 같다. 도 1은 자외선 노출 및 측정에 대한 제어부이다.When described in detail by the accompanying drawings, the configuration of the present invention as described above are as follows. 1 is a control unit for ultraviolet exposure and measurement.

도 1는 발명 제작에 대한 설계도로 자외선을 노출 시키는 장치(110)이다. 자외선 전구를 통해 자외선을 노출하고, 노출 값과 세기는 일상 생활에서 노출되는 자외선B값을 기준으로 한다. 자외선 측정 센서가 달린 장치(140)로 식물이 광합성하기 위한 최소한의 자외선이 측정 될 때까지 BAR가 상승한다. 140은 아두이노(130)을 통해 조절이 가능하도록 하며, 아두이노로 조정 된 값은 라즈베리파이(120)을 통해 도 2의 디스플레이로 출력이 가능하도록 프로그래밍 한다.1 is a device 110 for exposing ultraviolet light as a schematic diagram for manufacturing the invention. The ultraviolet light is exposed through the ultraviolet light bulb, and the exposure value and intensity are based on the ultraviolet B value exposed in daily life. With the device 140 equipped with a UV measurement sensor, the BAR rises until the minimum UV light for the plant photosynthesis is measured. 140 is adjustable through the Arduino 130, the value adjusted to the Arduino is programmed to be output to the display of Figure 2 through the Raspberry Pi 120.

110 : 자외선 센서
120 : 라즈베리파이
130 : 아두이노
140 : 자외선 측정 BAR
110: UV sensor
120: Raspberry Pi
130: Arduino
140: UV measurement BAR

Claims (1)

강물을 수거하여 담으며, 자외선 노출을 수면에서 시키고, 수생식물이 광합성을 하기 위한 최소한의 자외선을 받기까지 자외선 센서 BAR가 수면 가까이까지 상승하여, 수생식물이 광합성으로 생존을 하기 위해 강의 수면에서 자외선 센서 BAR까지의 거리를 재는 장치.Collect and hold river water, expose UV light to the surface of the water, and the UV sensor BAR rises to the surface until the aquatic plants receive the minimum amount of UV light for photosynthesis. Device for measuring the distance to the sensor BAR.
KR1020180023228A 2018-02-26 2018-02-26 Measuring device for ultraviolet transmittance of colloidal material KR20190102632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180023228A KR20190102632A (en) 2018-02-26 2018-02-26 Measuring device for ultraviolet transmittance of colloidal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180023228A KR20190102632A (en) 2018-02-26 2018-02-26 Measuring device for ultraviolet transmittance of colloidal material

Publications (1)

Publication Number Publication Date
KR20190102632A true KR20190102632A (en) 2019-09-04

Family

ID=67950402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180023228A KR20190102632A (en) 2018-02-26 2018-02-26 Measuring device for ultraviolet transmittance of colloidal material

Country Status (1)

Country Link
KR (1) KR20190102632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380796A (en) * 2020-02-28 2020-07-07 南京航空航天大学 Raspberry pie-based dynamic abrasive particle image acquisition device and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380796A (en) * 2020-02-28 2020-07-07 南京航空航天大学 Raspberry pie-based dynamic abrasive particle image acquisition device and operation method thereof

Similar Documents

Publication Publication Date Title
AU2007320194B2 (en) Apparatus for sensing precipitation density of sludge in waste water treatment tank and method therefor
SAHIDIN et al. Macrozoobenthos as bioindicator of ecological status in Tanjung Pasir Coastal, Tangerang District, Banten Province, Indonesia
Wang et al. Vertically stratified water source characteristics and associated driving mechanisms of particulate organic carbon in a large floodplain lake system
Tassinari et al. Application of turbidity meters for the quantitative analysis of flocculation in a jar test apparatus
Mylvaganaru et al. Turbidity sensor for underwater applications
US10768117B2 (en) Device for detecting algae concentration using first derivative of visible light absorbance
KR20190102632A (en) Measuring device for ultraviolet transmittance of colloidal material
Shangguan et al. Autonomous in situ measurements of freshwater alkalinity
US4006988A (en) Photo-electric depth or turbidity meter for fluid suspensions
Li et al. Effects of organic matter and salinity on the flocculation of kaolinites in a settling column
Ding et al. A novel handheld high-throughput device for rapid detection of phytoplankton in ship’s ballast water
KR20190102630A (en) Measuring device for ultraviolet transmittance of colloidal material
Eskin et al. Real-time water quality monitoring of an artificial lake using a portable, affordable, simple, arduino-based open source sensor
Cleasby Selection of optimum filtration rates for sand filters
Marcovecchio et al. Hydraulic stopper effect as a regulator of inorganic nutrients distribution in Mar Chiquita coastal lagoon (Argentina)
Heaven et al. Light attenuation parameters for waste stabilisation ponds
CN112834450B (en) Sensor, sewage measurement system and method
JP2010091309A (en) Method and apparatus for measuring water-quality in non-contact manner
Putri et al. Analysis of The Influence Between Turbidity Value on Total Suspended Solid (TSS) Value At The River Water Surface In Kutai Kartanegara
KR20110057036A (en) Apparatus and method for measuring depth of sludge
Branigan Development of a field test for total suspended solids analysis
Zhang et al. Development of a field test method for Total Suspended Solids analysis
JP3588328B2 (en) Underwater suspended solids camera and water discharge control system
JP3031778U (en) Probe type turbidity detector
Razman et al. A Review on Water Quality Monitoring Methods Based on Electronics and Optical Sensing