JPH06327907A - Flocculation controller - Google Patents

Flocculation controller

Info

Publication number
JPH06327907A
JPH06327907A JP11857093A JP11857093A JPH06327907A JP H06327907 A JPH06327907 A JP H06327907A JP 11857093 A JP11857093 A JP 11857093A JP 11857093 A JP11857093 A JP 11857093A JP H06327907 A JPH06327907 A JP H06327907A
Authority
JP
Japan
Prior art keywords
floc
raw water
flock
turbidity
injection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11857093A
Other languages
Japanese (ja)
Inventor
Hisao Tanaka
久雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11857093A priority Critical patent/JPH06327907A/en
Publication of JPH06327907A publication Critical patent/JPH06327907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To efficiently flocculate and to appropriately keep the turbidity of the effluent from a settling basin by using this flocculation controller. CONSTITUTION:A controller 10B for controlling the injection of a flocculant based on the change in the floc characteristic in a flocculating basin 4, the measured quality of raw water by a water quality meter 1 and the turbidity of the effluent from a settling basin 6 and a controller 18 for controlling the speed of revolution of agitator paddles 4A, 4B and 4C are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は浄化場、下水処理場、
産業廃水処理場等における、濁質物質の凝集プロセスの
凝集剤注入率や撹拌強度を制御するフロック形成制御装
置に関するものである。
This invention relates to a purification plant, a sewage treatment plant,
The present invention relates to a floc formation control device that controls a coagulant injection rate and a stirring strength in a coagulation process of suspended solids in an industrial wastewater treatment plant or the like.

【0002】[0002]

【従来の技術】図5は例えば特開平1−266813号
公報に示された従来のフロック形成制御装置の構成図で
ある。図において、1は原水の水質を計測する水質計、
2はこの原水と凝集剤注入率制御手段10の指令に基づ
いて注入される凝集剤とを撹拌機3によって撹拌混和す
る急速混和池、4はこの混和池2の混和水より3つの撹
拌モータ5A、5B、5Cを作動させて撹拌パドル4
A、4B、4Cを回転させフロックを形成するフロック
形成池、6はフロック形成池4で形成されたフロックを
沈殿させる沈殿池である。7はフロック形成池4内のフ
ロックを撮影する撮像機、8は撮像機7のフロックの画
像より、フロック特性量を算出する画像処理装置であ
り、前記凝集剤注入率制御手段10の指令は水質計1の
原水の水質計測値とフロック特性量と沈殿池6内に設け
られた水質計9の沈殿池流出濁度によって決められる。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional floc formation control device disclosed in, for example, Japanese Patent Laid-Open No. 1-266813. In the figure, 1 is a water quality meter for measuring the quality of raw water,
2 is a rapid mixing tank for stirring and mixing the raw water and the coagulant injected based on the command of the coagulant injection rate control means 10 by a stirrer 4, and 4 is three stirring motors 5A from the mixing water of the mixing pond 2. 5B and 5C are activated to stir paddle 4
A floc formation pond for rotating A, 4B, 4C to form flocs, and 6 is a sedimentation pond for precipitating the flocs formed in the floc formation pond 4. Reference numeral 7 is an image pickup device for photographing the flock in the floc formation pond 4, 8 is an image processing device for calculating a floc characteristic amount from the image of the flock of the image pickup device 7, and the command of the coagulant injection rate control means 10 is water quality. It is determined by the water quality measurement value of the raw water of 1 in total, the floc characteristic amount, and the outflow turbidity of the sedimentation tank of the water quality meter 9 provided in the sedimentation tank 6.

【0003】次に、動作について説明する。急速混和池
2において水質計1によって水質を計測された原水と凝
集剤注入率制御手段10からの指令に基づいて注入され
た凝集剤が撹拌機3によって撹拌され混和水が作られ、
この混和水の中で濁質物質のマイクロフロックが形成さ
れる。急速混和池2で撹拌混和された混和水はマイクロ
フロックとともにフロック形成池4に流入するが、フロ
ック形成池4には3つの撹拌モータ5A、5B、5Cに
よって回転する3つの撹拌パドル4A、4B、4Cがあ
り、フロック形成池4に流入したマイクロフロック群が
これらを通過していくうちに、互いに衝突または接触し
て凝集し、大きなフロックに成長する。この成長したフ
ロックは沈殿池6で沈殿降下され、上澄液は濾過池へ流
入する。また、フロック形成池4の出口付近に設けられ
た撮影機7によりフロックを撮像し、その画像を画像処
理装置8において認識してフロック特性量を求め、この
特性量を水質計1において計測した原水の水質値と比較
して凝集剤注入率制御手段10で凝集剤注入率Cを算出
する。この凝集剤注入率Cは線形回帰式を用いて次式の
ように表される。
Next, the operation will be described. In the rapid mixing basin 2, the raw water whose water quality is measured by the water quality meter 1 and the coagulant injected based on the command from the coagulant injection rate control means 10 are stirred by the stirrer 3 to make mixed water.
Microflocs of suspended matter are formed in this mixed water. The mixed water stirred and mixed in the rapid mixing basin 2 flows into the floc formation basin 4 together with the micro flocs, and the three flocculation basins 4 are rotated by three stirring motors 5A, 5B and 5C. 4C, and while the microflock groups flowing into the flock formation pond 4 pass through them, they collide with each other or come into contact with each other to aggregate and grow into large flocs. The grown flocs are settled down in the settling tank 6, and the supernatant liquid flows into the filter tank. In addition, the floc is imaged by the camera 7 provided near the exit of the floc formation pond 4, the image processing device 8 recognizes the image, the floc characteristic amount is obtained, and the characteristic amount is measured by the water quality meter 1. The coagulant injection rate C is calculated by the coagulant injection rate control means 10 in comparison with the water quality value. This coagulant injection rate C is expressed by the following equation using a linear regression equation.

【0004】C=ΣAiXi (1)C = ΣAiXi (1)

【0005】ここで、X1は原水の水温、X2は原水の
アルカリ度、X3は原水濁度、X4は原水pH、X5は
処理流量、X6はフロック個数濃度、X7はフロック粒
径、X8はフロック輝度、X9はフロック形成量、X1
0はフロック密度であり、A1〜A10は長期間にわた
るデータを統計的に解析して求めた係数である。また、
(1)式の凝集剤注入率Cは水質計9で測定した沈殿池
流出濁度がある設定値を超えた時、ΔCだけ増加するよ
うに補正され、フロック粒径X7がある設定値より低い
場合も凝集剤注入率CをΔCだけ増加させるように補正
される。
Here, X1 is the raw water temperature, X2 is the raw water alkalinity, X3 is the raw water turbidity, X4 is the raw water pH, X5 is the treatment flow rate, X6 is the floc number concentration, X7 is the floc particle size, and X8 is the floc. Brightness, X9 is the amount of flock formation, X1
0 is a floc density, and A1 to A10 are coefficients obtained by statistically analyzing long-term data. Also,
The coagulant injection rate C of the equation (1) is corrected to increase by ΔC when the turbidity of the sedimentation basin measured by the water quality meter 9 exceeds a certain set value, and the floc particle size X7 is lower than a certain set value. Also in this case, the coagulant injection rate C is corrected to increase by ΔC.

【0006】前述した特開平1−266813号公報に
示されているフロック形成制御装置は凝集剤注入率の制
御に関するものであるが、フロック形成制御の操作因子
としては、フロック形成池の撹拌パドル4A、4B、4
Cの回転数の制御も問題となる。これに関する従来技術
としては、例えば特開平4−35702号公報に示され
ているように、画像処理装置8から得られるフロック特
性量を基にフロック形成池の撹拌パドル4A、4B、4
Cの回転数で達成可能な最大フロック粒径を演算式より
算出し、この最大フロック粒径と実測されたフロック粒
径との大きさを比較すると共に、画像処理で得られた微
フロック量から沈殿池の予測流出濁度を演算式より算出
して、この予測流出濁度と沈殿池出口での流出濁度設定
値とを比較し、さらに設定した原水の流入量(処理水
量)とその時の実測流量とを比較して、これらの結果か
ら、パドルの回転数を上げるか、下げるか、現状維持か
を判断して、パドル回転数を制御するというものであ
る。
The floc formation control device disclosed in the above-mentioned Japanese Patent Laid-Open No. 1-266813 relates to the control of the coagulant injection rate, and the operation factor for the floc formation control is the stirring paddle 4A of the floc formation pond. 4B, 4
Controlling the rotational speed of C is also a problem. As a conventional technique relating to this, as disclosed in, for example, Japanese Patent Laid-Open No. 4-35702, the stirring paddles 4A, 4B, 4 of the floc formation pond based on the floc characteristic amount obtained from the image processing device 8.
The maximum flock particle size achievable at the number of revolutions of C was calculated using an arithmetic expression, and the maximum flock particle size was compared with the actually measured flock particle size, and from the fine flock amount obtained by image processing, Calculate the predicted runoff turbidity of the settling basin from the calculation formula and compare this predicted runoff turbidity with the set value of runoff turbidity at the outlet of the settling basin, and further set the set inflow rate of raw water (processed water quantity) and its The paddle rotation speed is controlled by comparing with the measured flow rate and judging from these results whether to increase or decrease the rotation speed of the paddle or maintain the current state.

【0007】[0007]

【発明が解決しようとする課題】上記のように従来のフ
ロック形成制御装置では、凝集剤注入率の算出式やフロ
ック形成池の撹拌パドルの回転数の制御式の中に、実際
の運転データをもとに統計的に求められた係数が多く含
まれているため、何らかの原因でこれらの係数が実際の
現象と合わなくなくなった場合には補正が困難であり、
また降雨時の原水水質が急変する場合と晴天時の原水水
質が安定している場合とでは、各々の条件に適応した前
記の各係数値が異なるためフロックを確実に形成させて
沈殿池の流出濁度を常に適正に維持できないという問題
点があった。
As described above, in the conventional floc formation control device, the actual operation data is included in the formula for calculating the coagulant injection rate and the formula for controlling the rotation speed of the stirring paddle in the floc formation pond. Since many coefficients that were statistically obtained are included in the original, it is difficult to correct if these coefficients do not match the actual phenomenon for some reason,
In addition, when the raw water quality changes suddenly during rainfall and when the raw water quality during stable weather is stable, the above-mentioned coefficient values for each condition are different, so flocs should be formed reliably and runoff of the sedimentation basin There was a problem that the turbidity could not always be maintained properly.

【0008】この発明はこのような問題点を解決するた
めになされたものであり、沈殿池での流出濁度を適正に
維持できるように、良好なフロック形成を行うための凝
集剤注入率やフロック形成池の撹拌パドルの回転数を制
御できるフロック形成制御装置を得ることを目的してい
る。
The present invention has been made in order to solve such problems, and the coagulant injection rate and the coagulant injection rate for good floc formation so that the outflow turbidity in the sedimentation tank can be appropriately maintained. An object of the present invention is to obtain a floc formation control device capable of controlling the rotation speed of the stirring paddle in the floc formation pond.

【0009】[0009]

【課題を解決するための手段】この発明に係るフロック
形成制御装置においては、フロック特性量計測手段にフ
ロック特性量変化傾向演算手段を設けて、フロック特性
量の変化に基づいて凝集剤注入率を補正するものであ
る。
In the flock formation control device according to the present invention, the floc characteristic amount measuring means is provided with a flock characteristic amount change tendency calculating means, and the coagulant injection rate is calculated based on the change in the flock characteristic amount. To correct.

【0010】また、前記のフロック特性量としては、フ
ロック平均粒径やフロック平均個数の少なくとも一方を
用いるものである。
At least one of the average particle size of flocs and the average number of flocs is used as the above-mentioned floc characteristic amount.

【0011】また、原水水質計測手段にフィードフォワ
ード注入率演算手段を設けて前記フロック特性量の変化
に基づいて補正した凝集剤注入率を原水の水質計測値の
変化量に基づいて決めるものである。
Further, a feedforward injection rate calculation means is provided in the raw water quality measuring means, and the coagulant injection rate corrected based on the change in the floc characteristic amount is determined based on the change amount of the raw water quality measured value. .

【0012】また、前記原水の水質計測値の変化量とし
ては、原水濁度の変化量を用いるものである。
The amount of change in the raw water turbidity is used as the amount of change in the water quality measurement value of the raw water.

【0013】更に、フロック形成池の撹拌パドルにそれ
ぞれのパドルを制御する撹拌パドル制御手段を設け、必
要滞留演算手段より原水の水質計測値に基づいて算出し
たフロック形成池における混和水の必要滞留時間と原水
の流入量より算出した滞留時間と前記フロック特性量の
変化よりフロック形成池の撹拌強度を制御するものであ
る。
Further, the stirring paddles of the floc formation pond are provided with a stirring paddle control means for controlling the respective paddles, and the required retention time of the mixed water in the floc formation pond calculated by the required retention calculation means based on the raw water quality measurement value. The agitation strength of the floc formation pond is controlled based on the residence time calculated from the inflow amount of raw water and the change in the floc characteristic amount.

【0014】そして前記原水の水質計測値を原水濁度と
するものである。
The measured water quality of the raw water is used as the raw water turbidity.

【0015】[0015]

【作用】以上のように、この発明におけるフロック形成
制御装置では、フロック特性量の変化によって沈殿池の
流出濁度の変化を予測できるので、フロック特性量の変
化より現在のフロック形成状況を判断して凝集剤注入率
を決めることができる。
As described above, in the floc formation control device according to the present invention, the change in the outflow turbidity of the sedimentation basin can be predicted by the change in the floc characteristic amount. Therefore, the present floc formation state is judged from the change in the floc characteristic amount. The coagulant injection rate can be determined by

【0016】また、フロック特性量の変化よりフロック
形成池の撹拌パドルの回転数を制御できるので、原水の
水質計測値とフロック形成状態に基づいて凝集剤を注入
することができ、沈殿池の沈降効率を高く維持できる。
Further, since the rotation speed of the stirring paddle of the floc formation pond can be controlled by changing the floc characteristic amount, the coagulant can be injected based on the measured water quality of the raw water and the floc formation state, and the sedimentation of the sedimentation pond High efficiency can be maintained.

【0017】[0017]

【実施例】【Example】

実施例1.図1はこの発明の一実施例を示す構成図であ
る。図において1〜9、4A、4B、4C、5A、5
B、5Cは前記従来装置と同一のものであり、凝集剤注
入率制御手段10Aは水質計1の原水の水質に基づいて
凝集剤の注入率を算出するフィードフォワード(以下F
Fと略す)注入率演算手段11と、画像処理装置8より
フロック特性量の変化を算出するフロック特性量変化傾
向演算手段12と、前記FF注入率演算手段11とフロ
ック特性量変化傾向演算手段12より凝集剤注入率の補
正量を算出するFF注入率補正演算手段13と、この補
正演算手段13より凝集剤注入率を目標値に制御する凝
集剤注入率目標値設定手段14とにより構成されてい
る。
Example 1. FIG. 1 is a block diagram showing an embodiment of the present invention. 1-9, 4A, 4B, 4C, 5A, 5
B and 5C are the same as those of the conventional device, and the coagulant injection rate control means 10A calculates the injection rate of the coagulant based on the water quality of the raw water of the water quality meter 1 (hereinafter referred to as F).
(Abbreviated as F) injection rate calculation means 11, flock characteristic amount change tendency calculation means 12 for calculating a change in the flock characteristic amount from the image processing device 8, the FF injection rate calculation means 11 and flock characteristic amount change tendency calculation means 12 It is composed of an FF injection rate correction calculation means 13 for calculating a correction amount of the coagulant injection rate and a coagulant injection rate target value setting means 14 for controlling the coagulant injection rate to a target value by the correction calculation means 13. There is.

【0018】凝集剤注入率制御手段10A以外の各部の
動作は従来装置の動作と同様であり、ここではフロック
特性量をフロック平均粒径とした場合について、本実施
例の動作を説明する。フロック形成池4の出口付近に設
けられた撮像機7によって得られたフロック画像を画像
処理装置8により、画像認識してフロック平均粒径を算
出し、得られたフロック平均粒径をフロック特性量変化
傾向演算手段12に入力する。フロック特性量変化傾向
演算手段12では、過去に入力されたフロック平均粒径
の時系列データから現在のフロック平均粒径の変化ΔD
を次式により算出する。
The operation of each part other than the coagulant injection rate control means 10A is the same as the operation of the conventional apparatus. Here, the operation of this embodiment will be described in the case where the floc characteristic amount is the floc average particle size. The flock image obtained by the imaging device 7 provided near the exit of the flock formation pond 4 is image-recognized by the image processing device 8 to calculate the flock average particle size, and the obtained flock average particle size is used as the flock characteristic amount. It is input to the change tendency calculation means 12. In the floc characteristic amount change tendency calculating means 12, the change ΔD of the present floc average particle diameter is calculated from the time series data of the floc average particle diameter inputted in the past.
Is calculated by the following formula.

【0019】 ΔD=(ΣaDi−ΣbDi)/I (2)The ΔD = (Σ a Di-Σ b Di) / I (2)

【0020】ここで、添字iは時刻を意味し、Diは時
刻iでのフロック平均粒径を示す。そして、Σaはi=
n−Iからn−1までの加算を行い、Σbはi=n−1
−Iからn−1までの加算を行う。また、nは現在時
刻、Iはフロック平均粒径の移動平均をとる回数を示
す。ΔD>0ならば、フロック平均粒径は大きくなって
おり、ΔD<0ならば小さくなっている。フロック平均
粒径の計測周期は通常15分〜60分程度で、Iは2〜
5程度である。FF注入率演算手段11では、水質計1
で計測した原水水質の4因子、水温θ、アルカリ度A
L、原水濁度TUin,PHから次式によりFF注入率
Cを計算する。
Here, the subscript i means time, and Di indicates the average particle size of floc at time i. And Σ a is i =
The addition from n−I to n−1 is performed, and Σ b is i = n−1.
Add from -I to n-1. Further, n represents the current time, and I represents the number of times the moving average of the floc average particle size is obtained. If ΔD> 0, the average particle size of floc is large, and if ΔD <0, it is small. The measurement cycle of the average particle size of flock is usually about 15 to 60 minutes, and I is 2 to
It is about 5. In the FF injection rate calculation means 11, the water quality meter 1
4 factors of raw water quality, water temperature θ, alkalinity A
FF injection rate C is calculated by the following formula from L and raw water turbidity TUin, PH.

【0021】 C=b1TUin+b2θ+b3AL+b4PH (3)C = b1TUin + b2θ + b3AL + b4PH (3)

【0022】ここで、b1〜b4は長期間にわたるデー
タから重回帰して求めた係数である。さらに、FF注入
率補正演算手段13では、(3)式より計算されたCを
水質計9で得られる沈殿池流出濁度TUoutと(2)
式で計算されるΔDに基づいて、次式により補正する。
Here, b1 to b4 are coefficients obtained by multiple regression from long-term data. Further, in the FF injection rate correction calculation means 13, the C calculated by the equation (3) and the sedimentation tank outflow turbidity TUout obtained by the water quality meter 9 and (2)
Based on ΔD calculated by the formula, correction is made by the following formula.

【0023】 ΔD≧0かつTUout≦TUout*の時 Cp=C−ΔC ΔD≧0かつTUout≧TUout*の時 Cp=C (4) ΔD≦0かつTUout≦TUout*の時 Cp=C ΔD≦0かつTUout≧TUout*の時 Cp=C+ΔCWhen ΔD ≧ 0 and TUout ≦ TUout * Cp = C−ΔC When ΔD ≧ 0 and TUout ≧ TUout * Cp = C (4) When ΔD ≦ 0 and TUout ≦ TUout * Cp = C ΔD ≦ 0 And when TUout ≧ TUout *, Cp = C + ΔC

【0024】ここで、TUout*は沈殿池流出濁度の
目標値、ΔCは注入率の補正量である。図2に示すよう
に、フロック平均粒径が大きくなっていく時には、沈殿
池流出濁度TUoutは時間遅れを伴って低化し、逆に
フロック平均粒径が小さくなっていく時には、沈殿池流
出濁度TUoutは時間遅れを伴って上昇することが経
験的に見い出されている。すなわち、沈殿池流出濁度の
変化がフロック平均粒径の変化より予測できることにな
る。しかしながら、フロック平均粒径と沈殿池流出濁度
との関係は原水の水質、原水の流入量、凝集剤注入率、
パドルの撹拌強度等の影響を受けやすく、これらの影響
を受けると安定せずばらつきが大きくなる。そこで、
(4)式より沈殿池流出濁度が目標値より低く、かつフ
ロック平均粒径が大きくなっているときには注入率を減
少させるように注入率の補正を行い、逆に沈殿池流出濁
度が目標値より大きく、かつフロック平均粒径が小さく
なっているときには、注入率を増大させるように注入率
の補正を行う。FF注入率補正演算手段13において、
(4)式より補正された凝集剤注入率Cpは凝集剤注入
率目標値設定手段14に入力され、ここでCpの注入率
となるように凝集剤を急速混和池2に注入する。
Here, TUout * is a target value of turbidity of the outflow of the sedimentation tank, and ΔC is a correction amount of the injection rate. As shown in FIG. 2, when the floc average particle size increases, the sedimentation basin outflow turbidity TUout decreases with time delay, and conversely, when the floc average particle size decreases, the sedimentation pond turbidity turbidity decreases. It has been empirically found that the degree TUout rises with a time delay. In other words, the change in sediment turbidity turbidity can be predicted from the change in floc average particle size. However, the relationship between the average particle size of flocs and the turbidity of the sedimentation basin is as follows: raw water quality, raw water inflow, coagulant injection rate,
It is easily affected by the paddle agitation strength, etc., and if it is affected by these, it is not stable and the dispersion becomes large. Therefore,
From equation (4), when the outflow turbidity of the sedimentation tank is lower than the target value and the floc average particle size is large, the injection rate is corrected so as to decrease the injection rate, and conversely the outflow turbidity of the sedimentation tank is targeted. When it is larger than the value and the floc average particle size is smaller, the injection rate is corrected so as to increase the injection rate. In the FF injection rate correction calculation means 13,
The coagulant injection rate Cp corrected by the equation (4) is input to the coagulant injection rate target value setting means 14, and the coagulant is injected into the rapid mixing pond 2 so that the injection rate of Cp is obtained.

【0025】また、(3)式では原水水質として、4つ
の因子を考慮したが、これらの全てを常時測定できない
場合にはやや精度は落ちるが、(3)式の右辺第1項の
原水濁度の項のみを考慮し、右辺第2項以下は省略して
もよい。また、凝集剤注入率Cはフロック特性量の変化
だけの見るのではなく、沈殿池流出濁度が目標値より高
くなっているときには注入率を増加させるように、沈殿
池流出濁度によるフィードバック補正を加味してもよ
い。
In addition, although four factors were taken into consideration as raw water quality in equation (3), if all of these factors cannot be measured at all times, the accuracy may drop slightly, but the raw water turbidity of the first term on the right side of equation (3) Only the second term on the right side may be omitted considering only the term of degree. In addition, the coagulant injection rate C is not only viewed as a change in the floc characteristic amount, but feedback correction by the sedimentation tank outflow turbidity is performed so as to increase the injection rate when the sedimentation tank outflow turbidity is higher than the target value. May be added.

【0026】さらに、ここではフロック特性量としてフ
ロック平均粒径を例に上げて説明したがフロック平均粒
径の変わりに、フロック平均個数あるいはフロック平均
粒径とフロック平均個数の両者を用いて、注入率の補正
を行ってもよい。フロック平均個数を用いる場合には、
FF注入率補正演算手段13における注入率は次式で補
正される。
Further, here, the description has been made by taking the floc average particle size as the floc characteristic amount by way of example, but instead of the flock average particle size, the average number of flock particles or both of the flock average particle size and the flock average particle number are used for injection. The rate may be corrected. When using the average number of flocs,
The injection rate in the FF injection rate correction calculation means 13 is corrected by the following equation.

【0027】 ΔN≧0かつTUout≦TUout*の時 Cp=C ΔN≧0かつTUout≧TUout*の時 Cp=C+ΔC (5) ΔN≦0かつTUout≦TUout*の時 Cp=C−ΔC ΔN≦0かつTUout≧TUout*の時 Cp=CWhen ΔN ≧ 0 and TUout ≦ TUout * Cp = C ΔN ≧ 0 and TUout ≧ TUout * Cp = C + ΔC (5) When ΔN ≦ 0 and TUout ≦ TUout * Cp = C−ΔC ΔN ≦ 0 And when TUout ≧ TUout *, Cp = C

【0028】ここで、ΔNはフロック平均個数の変化を
示ており、上式は(2)式のDiをNiでおきかえて計
算したものである。
Here, ΔN represents the change in the average number of flocs, and the above equation is calculated by replacing Di in the equation (2) with Ni.

【0029】ここまでは注入率補正量ΔCを固定値とし
て説明したが、フロック特性量の変化ΔD、ΔNに対す
る沈殿池流出濁度の変化ΔTUOUTの割合、ΔTUO
UT/ΔD、ΔTUOUT/ΔNは、原水水質変化によ
る影響を受け易いため、注入率補正量ΔCを原水水質の
変化量に基づいて、設定できるようにすれば、フロック
形成をより安定に行え、沈殿池流出濁度も目標値近くに
維持することができる。原水水質の変化、特に原水濁度
の変化は他の因子に比べてΔD/ΔTUOUTΔN/Δ
TUOUTに与える影響が大きいため、原水濁度の変化
量に対してのみ注入率補正量ΔCを設定してもほぼ上記
と同等の効果が得られる。
Up to this point, the injection rate correction amount ΔC has been described as a fixed value, but the ratio of the change ΔTUOUT of the sedimentation basin turbidity to the changes ΔD and ΔN of the floc characteristic amount, ΔTUO.
Since UT / ΔD and ΔTUOUT / ΔN are easily affected by changes in raw water quality, if the injection rate correction amount ΔC can be set based on the amount of change in raw water quality, flocs can be formed more stably and sedimentation can be improved. The pond runoff turbidity can also be maintained near the target value. Changes in raw water quality, especially changes in turbidity of the raw water, compared to other factors are ΔD / ΔTUOUTΔN / Δ
Since the effect on TUOUT is large, even if the injection rate correction amount ΔC is set only for the change amount of the raw water turbidity, the same effect as above can be obtained.

【0030】また、撮影機7はフロック形成池4の出口
側にもうけたが、これはフロック形成池出口に近接した
沈殿池側に設けてもよい。尚、以上の構成において、水
質計1は請求項の原水水質計測手段を構成し、撮像機7
はフロック撮像手段を構成し、画像処理装置8はフロッ
ク特性量計測手段を構成している。
Although the camera 7 is provided on the exit side of the floc formation pond 4, it may be provided on the side of the sedimentation pond close to the exit of the floc formation pond. In the above configuration, the water quality meter 1 constitutes the raw water quality measuring means in the claims, and the image pickup device 7
Represents a flock image pickup means, and the image processing device 8 constitutes a flock characteristic amount measuring means.

【0031】実施例2.前記実施例1では、フロック特
性量の変化に基づいて凝集剤注入率を補正する場合につ
いて述べたが、本実施例では図4に示すように、フロッ
ク形成池4における混和水の必要滞留時間を水質計1の
原水の水質計測値に基づいて設定する必要滞留時間演算
手段15と、この必要滞留時間とフロック特性量の変化
及び原水の流入量より算出した滞留時間により撹拌パド
ル4A、4B、4Cの回転数を制御する撹拌パドル制御
手段16を設けてフロック形成の操作因子である凝集剤
注入率とフロック形成池4の撹拌強度の両者を制御する
ことができるようにしたので、実施例1に比べてより高
性能なフロック形成制御装置を提供できる。
Example 2. In the first embodiment, the case where the coagulant injection rate is corrected based on the change in the floc characteristic amount has been described, but in the present embodiment, as shown in FIG. 4, the required residence time of the mixed water in the floc formation pond 4 is changed. Necessary residence time calculation means 15 which is set based on the raw water quality measurement value of the water quality meter 1, and the stirring paddles 4A, 4B, 4C based on the required residence time and the change in the floc characteristic amount and the residence time calculated from the inflow of raw water. Since the stirring paddle control means 16 for controlling the number of rotations of Flock formation was provided so as to control both the coagulant injection rate and the stirring strength of the floc formation pond 4 which are the operating factors for floc formation, the first embodiment is described. A higher-performance flock formation control device can be provided.

【0032】また、フロック形成を良好に効率よく行う
ためには、適切な凝集剤注入を行うとともに、現在の凝
集剤注入条件のもとでフロック形成池4の出口におい
て、適切なフロック平均粒径が得られるように撹拌パド
ル4A、4B、4Cの回転数を制御する必要がある。フ
ロック形成池4におけるフロック成長速度は、与えられ
た凝集剤注入条件のもとでは、(撹拌強度Gxフロック
形成池4への流入濁質濃度Tux撹拌時間T)の値によ
って決定され、また作られる最大フロック径は、撹拌強
度Gによって決定される。撹拌強度Gは撹拌パドル4
A、4B、4Cの回転数によって制御できるし、撹拌時
間Tは混和水のフロック形成池4の平均滞留時間と考え
られ、濁質濃度Tuは原水中の濁質濃度と凝集剤注入量
によって定まるものであり、簡略して原水濁度TUin
としても大差はない。撹拌パドル制御手段16では、
(6)式よりフロック平均粒径の変化ΔDと沈殿池流出
濁度TUout及び必要滞留時間TLと原水の流入量計測
値Qから撹拌パドル4A、4B、4C回転数Rを算出
し、これらの値に基づいて、撹拌モータ5A、5B、5
Cを操作して撹拌パドル4A、4B、4Cの回転数を制
御する。
In order to perform floc formation satisfactorily and efficiently, appropriate flocculant injection is performed, and at the outlet of the floc formation pond 4 under the present flocculant injection conditions, an appropriate floc average particle size is obtained. It is necessary to control the rotation speed of the stirring paddles 4A, 4B, and 4C so that The floc growth rate in the floc formation pond 4 is determined by the value of (stirring strength Gx inflowing turbidity concentration Tux stirring time T into the floc formation pond 4) under the given coagulant injection conditions, and is also produced. The maximum floc diameter is determined by the stirring strength G. Stirring strength G is stirring paddle 4
It can be controlled by the number of revolutions of A, 4B, and 4C, the stirring time T is considered to be the average residence time in the floc formation pond 4 of the mixed water, and the turbidity concentration Tu is determined by the turbidity concentration in the raw water and the coagulant injection amount. The raw water turbidity TUin
However, there is not much difference. In the stirring paddle control means 16,
From the formula (6), the change ΔD of the average particle size of the flocs, the turbidity TUout of the settling basin, the required residence time TL, and the measured inflow amount Q of raw water were used to calculate the stirring paddles 4A, 4B, and 4C rotation speed R, and these values were calculated. Based on the stirring motors 5A, 5B, 5
Operate C to control the rotation speed of the stirring paddles 4A, 4B, 4C.

【0033】 ΔD<0かつTUout>TUout*かつT<TLのとき R=R*+ΔR ΔD<0かつTUout>TUout*かつT>TLのとき R=R*−ΔR ΔD>0かつTUout≦TUout*のとき R=R*+ΔR その他のとき R=R* (6)When ΔD <0 and TUout> TUout * and T <TL R = R * + ΔR ΔD <0 and TUout> TUout * and T> TL R = R * −ΔR ΔD> 0 and TUout ≦ TUout * In case of R = R * + ΔR In other cases R = R * (6)

【0034】ここで、R*は現在の撹拌パドルの回転
数、ΔRは撹拌パドルの回転数の補正量である。Tは混
和水の平均滞留時間で、フロック形成池4の有効容積U
を流量計17において計測した原水の流入量で除したも
のである。また、必要滞留時間TLは必要滞留時間演算
手段15において、原水水質の4因子水温、原水濁度、
アルカリ度、PHと凝集剤注入率から計算されるもので
ある。
Here, R * is the current rotation speed of the stirring paddle, and ΔR is the correction amount of the rotation speed of the stirring paddle. T is the average residence time of the mixed water, which is the effective volume U of the floc formation pond 4.
Is divided by the inflow amount of raw water measured by the flow meter 17. Further, the required residence time TL is calculated by the required residence time calculation means 15 by the four-factor water temperature of raw water quality, raw water turbidity,
It is calculated from alkalinity, PH and coagulant injection rate.

【0035】(6)式による撹拌パドル4A、4B、4
Cの回転数の補正はフロック平均粒径の変化ΔDより沈
殿池流出濁度TUOUTが目標値TOUT*から高くなること
が予想される場合、この原因がフロック成長速度が遅い
混和水がフロック形成池4に流入して流出するまでに、
十分に大きなフロック平均粒径が得られないことにある
のか、または、撹拌強度(回転数)が高すぎて、フロッ
ク粒径の破壊が進んだことにあるのかの判断をTとTL
との比較で行い、フロック成長速度に起因している場合
には回転数を上昇させ、逆にフロック破壊に起因してい
る場合には回転数を下降させる。また、逆にフロック平
均粒径の変化ΔDから沈殿池流出濁度TOUTが目標値
TOUT*から低くなることが予想されるときは、フロ
ック平均粒径が大きくなりすぎていることが考えられる
ので、粒径を少し小さくするように撹拌パドルの回転数
を減少させる。そして、以上の条件以外の時は、撹拌パ
ドル回転数は現状のままとする。
Stirring paddles 4A, 4B, 4 according to formula (6)
If the turbidity TUOUT of the sedimentation basin is expected to be higher than the target value TOUT * due to the change ΔD of the average particle size of the floc, the rotation speed of C is corrected. By 4 in and out
Judgment is made as to whether a sufficiently large average floc particle size cannot be obtained or whether the stirring strength (rotation speed) is too high and the flock particle size has been destroyed.
The rotation speed is increased when it is caused by the floc growth rate, and conversely, the rotation speed is decreased when it is caused by the floc destruction. On the contrary, when it is expected that the outflow turbidity TOUT of the sedimentation basin becomes lower than the target value TOUT * from the change ΔD of the floc average particle diameter, it is considered that the floc average particle diameter is too large. The rotation speed of the stirring paddle is reduced so that the particle size is slightly reduced. Then, under the conditions other than the above, the rotation speed of the stirring paddle is kept as it is.

【0036】撹拌パドル4A、4B、4Cの回転数は凝
集プロセスの運用経験に基づいて、それぞれ上下限が設
定されているので、この範囲内において(6)式による
撹拌パドルの回転数の制御を行う。また、撹拌パドル4
A、4B、4Cの回転数はテーパードフロキュレーショ
ンが一般的で、フロック形成池4の入り口側から、出口
側に行くに従って、回転数を低くしてあり、その回転数
の比は凝集プロセスの運用経験に基づいて定められてい
る。なお、運用経験により、前段及び後段の撹拌パドル
4A、4Cの回転数は一定にしておき、中段の撹拌パド
ル4Bの回転数のみを制御する場合もある。以上の構成
において、撹拌パドル制御手段16は請求項5における
フロック形成池の撹拌強度を制御する手段を構成してい
る。
The rotation speeds of the stirring paddles 4A, 4B, and 4C are set to the upper and lower limits based on the operational experience of the agglomeration process. Therefore, within this range, the rotation speed of the stirring paddles should be controlled by the equation (6). To do. Also, stirring paddle 4
The rotational speeds of A, 4B, and 4C are generally tapered flocculation, and the rotational speeds are lowered from the inlet side to the outlet side of the floc formation pond 4, and the ratio of the rotational speeds is the same as that of the flocculation process. It is set based on operational experience. Depending on operational experience, the rotation speeds of the stirring paddles 4A and 4C in the front and rear stages may be kept constant and only the rotation speed of the stirring paddles 4B in the middle stage may be controlled. In the above configuration, the stirring paddle control means 16 constitutes means for controlling the stirring strength of the floc formation pond in claim 5.

【0037】[0037]

【発明の効果】以上説明したように、この発明の請求項
1に係るフロック形成制御装置によれば、原水の水質を
計測する原水水質計測手段と、前記原水と凝集剤とを撹
拌混和させて混和水を得、この混和水から濁質物質のフ
ロックを形成するフロック形成池と、前記フロックを沈
殿させる沈殿池と前記フロックの画像を撮像するフロッ
ク撮像手段と、前記フロック撮像手段の画像信号から前
記フロック特性量を計測するフロック特性量計測手段
と、前記沈殿池の流出濁度を測定する沈殿池流出濁度計
測手段と、前記フロック特性量と前記沈殿池流出濁度と
前記原水水質計測手段の計測値とから前記凝集剤の注入
率を制御する凝集剤注入率制御手段と、前記フロック特
性量の変化に基づいて前記凝集剤注入率を補正する制御
装置とを備えたため、また、この発明の請求項2に係る
フロック形成制御装置によれば、前記フロック特性量
は、フロック平均粒径又はフロック平均個数の少なくと
も一方を用いるようにしたので、さらに、この発明の請
求項3に係るフロック形成制御装置によれば、前記フロ
ック特性量の変化に基づく凝集剤注入率の補正は、前記
原水水質計測手段による水質計測値の変化量に基づいて
決定されるようにしたため、またこの発明の請求項4に
係るフロック形成制御装置によれば、前記原水水質の変
化量は、原水濁度の変化量としたため、適正なフロック
形成を行うことができ、沈澱池流出濁度を適正に管理す
ることができる。
As described above, according to the flock formation control device of the first aspect of the present invention, the raw water quality measuring means for measuring the water quality of the raw water and the raw water and the coagulant are mixed by stirring. From the image signal of the mixed water, a floc formation pond that forms flocs of suspended substances from the mixed water, a sedimentation pond that precipitates the flocs, a floc imaging unit that captures an image of the floc, and an image signal of the floc imaging unit Flock characteristic amount measuring means for measuring the floc characteristic amount, sedimentation tank outflow turbidity measuring means for measuring the outflow turbidity of the sedimentation tank, the floc characteristic amount, the sedimentation tank outflow turbidity and the raw water quality measuring means And a controller for correcting the coagulant injection rate based on the change in the floc characteristic amount. Further, according to the flock formation control device of the second aspect of the present invention, the flock characteristic amount uses at least one of the average particle size of the flock and the average number of the flock. According to the floc formation control device according to the above, the correction of the coagulant injection rate based on the change in the floc characteristic amount is determined based on the amount of change in the water quality measurement value by the raw water quality measuring means. According to the flock formation control device of the fourth aspect of the invention, since the amount of change in the quality of the raw water is the amount of change in the turbidity of the raw water, proper flock formation can be performed, and the turbidity of the sedimentation basin can be properly adjusted. Can be managed.

【0038】また、この発明の請求項5に係るフロック
形成制御装置によれば、請求項1のフロック形成制御装
置において、さらに、前記フロック形成池の撹拌を制御
する手段と、前記フロック形成池における混和水の必要
滞留時間を原水の水質計測値に基づいて設定する手段
と、前記混和水の必要滞留時間と前記原水の流入量より
算出した滞留時間と前記フロック特性量の変化から、フ
ロック形成池の撹拌強度を制御する手段とを備えたた
め、さらに、この発明の請求項6に係るフロック形成制
御装置によれば、前記原水の水質計測値が原水濁度に基
づいて得られるようにしたため、前記効果をより効率良
く奏することができる。
According to a fifth aspect of the flock formation control device of the present invention, in the flock formation control device of the first aspect, further, means for controlling agitation of the flock formation pond and the flock formation pond are provided. A means for setting the required retention time of the mixed water based on the water quality measurement value of the raw water, the required retention time of the mixed water, the retention time calculated from the inflow amount of the raw water, and the change of the floc characteristic amount, from the flock formation pond. And a means for controlling the agitation intensity of the raw water. Further, according to the floc formation control device of the sixth aspect of the present invention, the water quality measurement value of the raw water is obtained based on the raw water turbidity. The effect can be produced more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】この発明におけるフロック平均粒径の変化と沈
殿池流出濁度の変化との関係を示す図である。
FIG. 2 is a diagram showing a relationship between changes in the average particle size of flocs and changes in the turbidity of the sedimentation basin according to the present invention.

【図3】この発明におけるフロック平均個数の変化と沈
殿池流出濁度の変化との関係を示す図である。
FIG. 3 is a diagram showing the relationship between changes in the average number of flocs and changes in the turbidity of sedimentation basin according to the present invention.

【図4】この発明の実施例2を示すブロック図である。FIG. 4 is a block diagram showing a second embodiment of the present invention.

【図5】従来のフロック形成制御装置のブロック図であ
る。
FIG. 5 is a block diagram of a conventional flock formation control device.

【符号の説明】[Explanation of symbols]

1 水質計 2 急速混和池 3 撹拌機 4 フロック形成池 4A、4B、4C 撹拌パドル 5A、5B、5C 撹拌モータ 6 沈殿池 7 撮像機 8 画像処理装置 9 水質計 10、10A、10B 凝集剤注入率制御手段 18 撹拌パドル回転数制御手段 1 Water quality meter 2 Rapid mixing pond 3 Stirrer 4 Flock formation pond 4A, 4B, 4C Stirring paddle 5A, 5B, 5C Stirring motor 6 Sedimentation tank 7 Imager 8 Image processing device 9 Water quality meter 10, 10A, 10B Coagulant injection rate Control means 18 Stirring paddle rotation speed control means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原水の水質を計測する原水水質計測手段
と、 前記原水と凝集剤とを撹拌混和させて混和水を得、この
混和水から濁質物質のフロックを形成するフロック形成
池と、 前記フロックを沈殿させる沈殿池と前記フロックの画像
を撮像するフロック撮像手段と、 前記フロック撮像手段の画像信号から前記フロック特性
量を計測するフロック特性量計測手段と、 前記沈殿池の流出濁度を測定する沈殿池流出濁度計測手
段と、 前記フロック特性量と前記沈殿池流出濁度と前記原水水
質計測手段の計測値とから前記凝集剤の注入率を制御す
る凝集剤注入率制御手段と、 前記フロック特性量の変化に基づいて前記凝集剤注入率
を補正する制御装置と、 を備えたことを特徴とするフロック形成制御装置。
1. A raw water quality measuring means for measuring the quality of raw water, a floc pond for mixing the raw water and a flocculant by stirring to obtain mixed water, and forming flocs of suspended substances from the mixed water. A sedimentation basin for sedimenting the flocs, a floc imaging means for capturing an image of the flocs, a floc characteristic amount measuring means for measuring the floc characteristic amount from an image signal of the floc imaging means, and an outflow turbidity of the sedimentation reservoir. Sedimentation tank outflow turbidity measuring means to measure, coagulant injection rate control means for controlling the injection rate of the coagulant from the floc characteristic amount, the sedimentation tank outflow turbidity and the measured value of the raw water quality measuring means, A control device that corrects the coagulant injection rate based on a change in the floc characteristic amount, and a flock formation control device.
【請求項2】前記フロック特性量は、フロック平均粒径
又はフロック平均個数の少なくとも一方を用いることを
特徴とする請求項1のフロック形成制御装置。
2. The flock formation control device according to claim 1, wherein at least one of a flock average particle size and a flock average number is used as the flock characteristic amount.
【請求項3】前記フロック特性量の変化に基づく凝集剤
注入率の補正は、前記原水水質計測手段による水質計測
値の変化量に基づいて決定されることを特徴とする請求
項1のフロック形成制御装置。
3. The flock formation according to claim 1, wherein the correction of the coagulant injection rate based on the change of the floc characteristic amount is determined based on the change amount of the water quality measured value by the raw water quality measuring means. Control device.
【請求項4】前記原水水質の変化量は、原水濁度の変化
量であることを特徴する請求項3のフロック形成制御装
置。
4. The flock formation control device according to claim 3, wherein the change amount of the raw water quality is a change amount of the raw water turbidity.
【請求項5】前記フロック形成池の撹拌を制御する手段
と、 前記フロック形成池における混和水の必要滞留時間を原
水の水質計測値に基づいて設定する手段と、 前記混和水の必要滞留時間と前記原水の流入量より算出
した滞留時間と前記フロック特性量の変化から、フロッ
ク形成池の撹拌強度を制御する手段と、 を備えたことを特徴とする請求項1のフロック形成制御
装置。
5. A means for controlling the agitation of the floc formation pond, a means for setting a required retention time of the mixed water in the flock formation pond based on a water quality measurement value of raw water, and a required retention time of the mixed water. The flock formation control device according to claim 1, further comprising: a unit that controls a stirring intensity of a floc formation pond based on a change in the residence time calculated from the inflow amount of the raw water and the flock characteristic amount.
【請求項6】前記原水の水質計測値が原水濁度に基づい
て得られることを特徴とする請求項5のフロック形成制
御装置。
6. The floc formation control device according to claim 5, wherein the water quality measurement value of the raw water is obtained based on the turbidity of the raw water.
JP11857093A 1993-05-20 1993-05-20 Flocculation controller Pending JPH06327907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11857093A JPH06327907A (en) 1993-05-20 1993-05-20 Flocculation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11857093A JPH06327907A (en) 1993-05-20 1993-05-20 Flocculation controller

Publications (1)

Publication Number Publication Date
JPH06327907A true JPH06327907A (en) 1994-11-29

Family

ID=14739873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11857093A Pending JPH06327907A (en) 1993-05-20 1993-05-20 Flocculation controller

Country Status (1)

Country Link
JP (1) JPH06327907A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332630B1 (en) * 1999-04-28 2002-04-17 최병성 Stir equipment of water purification plant and wastewater disposal plant
JP2002159805A (en) * 2000-11-24 2002-06-04 Yokogawa Electric Corp Flocculant injection control method of water purification plant
JP2003093806A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Flocculant injection apparatus
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2012101171A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Coagulant injection control system
JP2018038984A (en) * 2016-09-09 2018-03-15 株式会社日立プラントサービス Water treatment system and water treatment method
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulating sedimentation control device, coagulating sedimentation control method and computer program
JP2020195949A (en) * 2019-05-31 2020-12-10 オルガノ株式会社 Water treatment device, water treatment method, and abnormality diagnosis device and diagnosis method for floating separation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332630B1 (en) * 1999-04-28 2002-04-17 최병성 Stir equipment of water purification plant and wastewater disposal plant
JP2002159805A (en) * 2000-11-24 2002-06-04 Yokogawa Electric Corp Flocculant injection control method of water purification plant
JP2003093806A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Flocculant injection apparatus
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2012101171A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Coagulant injection control system
JP2018038984A (en) * 2016-09-09 2018-03-15 株式会社日立プラントサービス Water treatment system and water treatment method
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulating sedimentation control device, coagulating sedimentation control method and computer program
JP2020195949A (en) * 2019-05-31 2020-12-10 オルガノ株式会社 Water treatment device, water treatment method, and abnormality diagnosis device and diagnosis method for floating separation device

Similar Documents

Publication Publication Date Title
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
JP3231164B2 (en) Control device for water purification plant coagulation process
JP7179486B2 (en) Coagulant injection control device, coagulant injection control method and computer program
JP2008161809A (en) Coagulant injection control system
JP4505772B2 (en) Coagulant injection control method for water purification plant
JPH0483504A (en) Flocculant injection controlling apparatus
JP2008055299A (en) Flocculating sedimentation treating equipment
JPH06327907A (en) Flocculation controller
JPH10202013A (en) Method for controlling water purifying and flocculating treatment
JP2016191679A (en) Flocculation state detection method, chemical injection control method and chemical injection control device
KR20040067702A (en) Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc
JP2007098287A (en) Method for controlling operation of water purifying process
JP2003200175A (en) Flocculant injection control method and flocculant injection control system
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
JPH05240767A (en) Floc measuring/controlling device
JP7249818B2 (en) Coagulant injection control device, coagulant injection control method and computer program
JPH06226011A (en) Flocculant injection control method in water treating flocculation process and flocculant injection control device
JP3522650B2 (en) Automatic coagulant injection device for water purification
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP2007029922A (en) Method and apparatus for adjusting supply amount of sludge in sludge dehydrator
JPH0425041B2 (en)
JPH01288307A (en) Flocculant injection control system at water purification plant
JP2002066568A (en) Water treating method and apparatus
JPH05285308A (en) Controller for injecting flocculant
JPH02284605A (en) Paddle control device in flocculation basin