JP2020195949A - Water treatment device, water treatment method, and abnormality diagnosis device and diagnosis method for floating separation device - Google Patents

Water treatment device, water treatment method, and abnormality diagnosis device and diagnosis method for floating separation device Download PDF

Info

Publication number
JP2020195949A
JP2020195949A JP2019102840A JP2019102840A JP2020195949A JP 2020195949 A JP2020195949 A JP 2020195949A JP 2019102840 A JP2019102840 A JP 2019102840A JP 2019102840 A JP2019102840 A JP 2019102840A JP 2020195949 A JP2020195949 A JP 2020195949A
Authority
JP
Japan
Prior art keywords
water
treated
water quality
photographing
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102840A
Other languages
Japanese (ja)
Other versions
JP7285138B2 (en
Inventor
佳介 瀧口
Keisuke Takiguchi
佳介 瀧口
圭一郎 福水
Keiichiro Fukumizu
圭一郎 福水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019102840A priority Critical patent/JP7285138B2/en
Publication of JP2020195949A publication Critical patent/JP2020195949A/en
Application granted granted Critical
Publication of JP7285138B2 publication Critical patent/JP7285138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide a water treatment device, a water treatment method, and an abnormality diagnosis device and a diagnosis method for a floating separation device, which can quickly respond to abnormalities in a treated water quality in a coagulation treatment that separates solid and liquid by a pressurized flotation method.SOLUTION: There is provided a water treatment device 1 including: a coagulation reaction device 12 for injecting a coagulant into water to be treated to coagulate suspended substances to form floc; a floating separation device 14 for making bubbles adhere to the floc and separating them by floating; a treatment water quality measuring device 40 for measuring a water quality of the treatment water in the floating separation device 14; at least one of a first imaging device 36 for photographing the treatment water in the coagulation reaction device 12 and a second imaging device 38 for photographing an upper part of a floating tank 18 of the floating separation device 14; and determination means for determining a cause of deterioration of the treatment water quality based on an image photographed by at least one of the first imaging device 36 and the second imaging device 38 when the treatment water quality measured by the treatment water quality measuring device 40 deteriorates.SELECTED DRAWING: Figure 1

Description

本発明は、浮上分離を行う水処理装置、水処理方法、浮上分離装置の異常診断装置および診断方法に関する。 The present invention relates to a water treatment device for performing levitation separation, a water treatment method, an abnormality diagnostic device for the levitation separation device, and a diagnostic method.

用水処理や排水処理等の水処理において、例えば、処理対象とする被処理水に無機系または有機系の凝集剤を注入して、被処理水に含まれる懸濁物質や溶解物等を凝集させてフロックを形成し、固液分離する凝集処理が行われる。 In water treatment such as water treatment and wastewater treatment, for example, an inorganic or organic coagulant is injected into the water to be treated to coagulate suspended substances and dissolved substances contained in the water to be treated. Flocks are formed and solid-liquid separation is performed.

このような凝集処理において、処理水の濁度を測定して凝集剤の注入量を制御することがある(例えば、特許文献1参照)。 In such a coagulation treatment, the turbidity of the treated water may be measured to control the injection amount of the coagulant (see, for example, Patent Document 1).

凝集処理における固液分離の方法として、気体を加圧溶解させた水(加圧水)を浮上槽の下部から注入して気泡を発生させ、フロックに気泡を付着させて浮上分離を行う加圧浮上法がある。加圧浮上法における処理水質の悪化には、主に以下の2つの原因がある。
1.被処理水の水質変動が発生し、凝集剤の最適注入条件から外れる。
2.加圧浮上装置の加圧水を生成する気体溶解装置に何らかのトラブルが発生し、加圧水が生成されなくなった。
As a method of solid-liquid separation in agglomeration treatment, a pressurized flotation method in which water in which gas is pressurized and dissolved (pressurized water) is injected from the lower part of a floating tank to generate bubbles, and bubbles are attached to flocs to perform floating separation. There is. There are two main causes for the deterioration of treated water quality in the pressurized flotation method.
1. 1. The water quality of the water to be treated fluctuates, which deviates from the optimum injection conditions for the flocculant.
2. 2. Some trouble occurred in the gas dissolving device that generates the pressurized water of the pressurized flotation device, and the pressurized water was not generated.

しかし、特許文献1に記載の方法のような、処理水の濁度を測定して凝集剤の注入量を制御する方法では、処理水質の悪化の原因が上記1と2のどちらによるものかを判別することができず、加圧浮上装置の処理水質の異常に早期に対応できないことがあるという課題があった。 However, in the method of measuring the turbidity of the treated water and controlling the injection amount of the flocculant, such as the method described in Patent Document 1, it is determined whether the cause of the deterioration of the treated water quality is due to either 1 or 2 above. There is a problem that it cannot be discriminated and it may not be possible to respond to an abnormality in the treated water quality of the pressurized flotation device at an early stage.

特開平7−204412号公報Japanese Unexamined Patent Publication No. 7-204412

本発明の目的は、加圧浮上法による固液分離を行う凝集処理の処理水質の異常に早期に対応することができる水処理装置、水処理方法、浮上分離装置の異常診断装置および診断方法を提供することにある。 An object of the present invention is to provide a water treatment device, a water treatment method, an abnormality diagnosis device for a levitation separation device, and a diagnostic method capable of promptly responding to an abnormality in the treated water quality of a coagulation treatment for solid-liquid separation by a pressurized flotation method. To provide.

本発明は、被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成するための凝集反応装置と;前記フロックに気泡を付着させて浮上分離するための浮上分離装置と;前記浮上分離装置の処理水の水質を測定する処理水質測定手段と;前記凝集反応装置の被処理水を撮影するための第1撮影手段、および前記浮上分離装置の浮上分離槽の上部を撮影するための第2撮影手段のうち少なくとも1つと;前記処理水質測定手段により測定された前記処理水の水質が悪化したときに、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断手段と;前記判断手段により判断された結果を出力する出力手段と;を備える、水処理装置である。 The present invention is a coagulation reaction device for injecting a coagulant into water to be treated to coagulate suspended substances to form flocs; and a levitation separation device for adhering bubbles to the flocs to levitate and separate them; A treated water quality measuring means for measuring the quality of the treated water of the floating separation device; a first photographing means for photographing the treated water of the agglomeration reaction device, and an upper portion of the floating separation tank of the floating separation device. With at least one of the second photographing means for the purpose; when the water quality of the treated water measured by the treated water quality measuring means deteriorates, an image is taken by at least one of the first photographing means and the second photographing means. It is a water treatment apparatus including a determination means for determining the cause of deterioration of the water quality of the treated water based on the obtained image; and an output means for outputting the result determined by the determination means.

前記水処理装置において、前記判断手段は、前記第1撮影手段によって撮影された画像に基づく粒子数、粒子径分布、エッジ数、RGB比率、および移動量のうちの少なくとも1つに基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the water treatment apparatus, the determination means is based on at least one of the number of particles, the particle size distribution, the number of edges, the RGB ratio, and the amount of movement based on the image taken by the first photographing means. It is preferable to determine the cause of deterioration of the quality of treated water.

前記水処理装置において、前記判断手段は、前記第2撮影手段によって撮影された画像に基づく気泡形成状況に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the water treatment apparatus, it is preferable that the determination means determines the cause of deterioration of the water quality of the treated water based on the bubble formation state based on the image taken by the second photographing means.

前記水処理装置において、さらに、被処理水の水質を測定する被処理水質測定手段を備え、前記判断手段は、前記処理水の水質が悪化したときに、前記被処理水質測定手段により測定された前記被処理水の水質と、前記処理水質測定手段により測定された前記処理水の水質と、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 The water treatment apparatus further includes a water quality measuring means for measuring the water quality of the water to be treated, and the determination means is measured by the water quality measuring means to be treated when the water quality of the treated water deteriorates. Based on the water quality of the water to be treated, the water quality of the treated water measured by the treated water quality measuring means, and the image taken by at least one of the first photographing means and the second photographing means. , It is preferable to determine the cause of deterioration of the water quality of the treated water.

前記水処理装置において、前記判断手段は、前記被処理水質測定手段により測定された前記被処理水のSS濃度と前記処理水質測定手段により測定された前記処理水のSS濃度とから[(被処理水SS濃度−処理水SS濃度)/被処理水SS濃度]として計算されるSS除去率と、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the water treatment apparatus, the determination means is based on the SS concentration of the water to be treated measured by the water quality measuring means to be treated and the SS concentration of the treated water measured by the water quality measuring means [(treated). Based on the SS removal rate calculated as [water SS concentration-treated water SS concentration) / treated water SS concentration] and the image taken by at least one of the first photographing means and the second photographing means. Therefore, it is preferable to determine the cause of deterioration of the water quality of the treated water.

本発明は、被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成する凝集反応工程と;前記フロックに気泡を付着させて浮上分離する浮上分離工程と、前記浮上分離工程の処理水の水質を測定する処理水質測定工程と;前記凝集反応工程の被処理水を撮影する第1撮影工程、および前記浮上分離工程の浮上分離槽の上部を撮影する第2撮影工程のうち少なくとも1つと;前記処理水質測定工程により測定された前記処理水の水質が悪化したときに、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断工程と;前記判断工程において判断された結果を出力する出力工程と;を含む、水処理方法である。 The present invention includes a coagulation reaction step of injecting a coagulant into water to be treated to agglomerate suspended substances to form flocs; a levitation separation step of adhering bubbles to the flocs and levitation separation, and the levitation separation step. Of the treated water quality measuring step of measuring the water quality of the treated water, the first photographing step of photographing the water to be treated in the aggregation reaction step, and the second photographing step of photographing the upper part of the floating separation tank in the floating separation step. With at least one; when the water quality of the treated water measured by the treated water quality measuring step deteriorates, the said, based on the image taken by at least one of the first photographing step and the second photographing step. It is a water treatment method including a determination step of determining the cause of deterioration of the quality of treated water; and an output step of outputting the result determined in the determination step.

前記水処理方法における前記判断工程において、前記第1撮影工程によって撮影された画像に基づく粒子数、粒子径分布、エッジ数、RGB比率、および移動量のうちの少なくとも1つに基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the determination step in the water treatment method, the treatment is based on at least one of the number of particles, the particle size distribution, the number of edges, the RGB ratio, and the amount of movement based on the image taken by the first photographing step. It is preferable to determine the cause of deterioration of water quality.

前記水処理方法における前記判断工程において、前記第2撮影工程によって撮影された画像に基づく気泡形成状況に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the determination step in the water treatment method, it is preferable to determine the cause of deterioration of the water quality of the treated water based on the bubble formation state based on the image captured by the second photographing step.

前記水処理方法において、さらに、被処理水の水質を測定する被処理水質測定工程を含み、前記判断工程において、前記処理水の水質が悪化したときに、前記被処理水質測定工程により測定された前記被処理水の水質と、前記処理水質測定工程により測定された前記処理水の水質と、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 The water treatment method further includes a water quality measurement step for measuring the water quality of the water to be treated, and when the water quality of the treated water deteriorates in the determination step, the water quality is measured by the water quality measurement step. Based on the water quality of the water to be treated, the water quality of the treated water measured by the treated water quality measuring step, and the image taken by at least one of the first photographing step and the second photographing step. , It is preferable to determine the cause of deterioration of the water quality of the treated water.

前記水処理方法における前記判断工程において、前記被処理水質測定工程により測定された前記被処理水のSS濃度と前記処理水質測定工程により測定された前記処理水のSS濃度とから[(被処理水SS濃度−処理水SS濃度)/被処理水SS濃度]として計算されるSS除去率と、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することが好ましい。 In the determination step in the water treatment method, from the SS concentration of the water to be treated measured by the water quality measurement step and the SS concentration of the treated water measured by the water quality measurement step [(water to be treated). Based on the SS removal rate calculated as SS concentration-treated water SS concentration) / treated water SS concentration] and the image taken by at least one of the first photographing step and the second photographing step. , It is preferable to determine the cause of deterioration of the water quality of the treated water.

本発明は、被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成するための凝集反応装置の被処理水を撮影するための第1撮影手段、および、前記フロックに気泡を付着させて浮上分離するための浮上分離装置の浮上分離槽の上部を撮影するための第2撮影手段のうち少なくとも1つと;前記浮上分離装置の処理水の水質を測定する処理水質測定手段と;前記処理水質測定手段により測定された前記処理水の水質が悪化したときに、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断手段と;前記判断手段により判断された結果を出力する出力手段と;を備える、浮上分離装置の異常診断装置である。 The present invention provides a first photographing means for photographing the water to be treated of a coagulation reaction device for injecting a flocculant into the water to be treated to aggregate suspended substances to form flocs, and bubbles in the flocs. At least one of the second photographing means for photographing the upper part of the levitation separation tank of the levitation separation device for adhering and separating the levitation; and the treated water quality measuring means for measuring the water quality of the treated water of the levitation separation device. When the water quality of the treated water deteriorated as measured by the treated water quality measuring means, the treated water is based on an image taken by at least one of the first photographing means and the second photographing means. It is an abnormality diagnosis device of a levitation separation device including a determination means for determining the cause of deterioration of water quality; and an output means for outputting the result determined by the determination means.

本発明は、被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成する凝集反応工程の被処理水を撮影する第1撮影工程、および、前記フロックに気泡を付着させて浮上分離する浮上分離工程の浮上分離槽の上部を撮影する第2撮影工程のうち少なくとも1つと;前記浮上分離工程の処理水の水質を測定する処理水質測定工程と;前記処理水質測定工程により測定された前記処理水の水質が悪化したときに、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断工程と;前記判断工程において判断された結果を出力する出力工程と;を含む、浮上分離装置の異常診断方法である。 The present invention includes a first imaging step of photographing the water to be treated in a coagulation reaction step of injecting a flocculant into the water to be treated to aggregate suspended substances to form flocs, and adhering bubbles to the flocs. At least one of the second imaging steps of photographing the upper part of the levitation separation tank in the levitation separation step for levitation separation; a treated water quality measuring step for measuring the water quality of the treated water in the levitation separation step; and a measurement by the treated water quality measuring step. When the quality of the treated water deteriorates, the cause of the deterioration of the quality of the treated water is determined based on the images taken by at least one of the first photographing step and the second photographing step. It is an abnormality diagnosis method of a levitation separation apparatus including a determination step; an output step of outputting the result determined in the determination step;

本発明により、加圧浮上法による固液分離を行う凝集処理の処理水質の異常に早期に対応することができる水処理装置、水処理方法、浮上分離装置の異常診断装置および診断方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention provides a water treatment apparatus, a water treatment method, an abnormality diagnostic apparatus for a levitation separation apparatus, and a diagnostic method capable of promptly responding to an abnormality in the treated water quality of a coagulation treatment for solid-liquid separation by a pressurized flotation method. be able to.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment apparatus which concerns on embodiment of this invention. 実施形態1における制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control in Embodiment 1. 実施形態2における制御の一例を示すフローチャートである。It is a flowchart which shows an example of control in Embodiment 2. 実施形態3における制御の一例を示すフローチャートである。It is a flowchart which shows an example of control in Embodiment 3. 実施形態4における制御の一例を示すフローチャートである。It is a flowchart which shows an example of control in Embodiment 4.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 An outline of an example of a water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described.

図1に示す水処理装置1は、被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成するための凝集反応装置12と、フロックに気泡を付着させて浮上分離するための浮上分離装置14とを備える。凝集反応装置12は、例えば、反応槽16を備え、浮上分離装置14は、例えば、浮上槽18と取水部20とを備える。水処理装置1は、浮上分離装置14の処理水の水質を測定する処理水質測定手段として処理水質測定装置40と、凝集反応装置12の被処理水を撮影するための第1撮影手段として第1撮影装置36、および浮上分離装置14の浮上槽18の上部を撮影するための第2撮影手段として第2撮影装置38のうち少なくとも1つとを備える。水処理装置1は、被処理水を貯留するための被処理水槽10と、処理水を貯留するための処理水槽22とを備えてもよい。 The water treatment device 1 shown in FIG. 1 is an agglutination reaction device 12 for injecting a coagulant into water to be treated to coagulate suspended substances to form flocs, and a flocculation reaction device 12 for adhering bubbles to the flocs to float and separate them. The floating separation device 14 is provided. The agglutination reaction device 12 includes, for example, a reaction tank 16, and the levitation separation device 14 includes, for example, a levitation tank 18 and a water intake unit 20. The water treatment device 1 is a treated water quality measuring device 40 as a treated water quality measuring means for measuring the water quality of the treated water of the levitation separation device 14, and a first photographing means for photographing the treated water of the coagulation reaction device 12. The photographing device 36 and at least one of the second photographing devices 38 are provided as the second photographing means for photographing the upper part of the levitation tank 18 of the levitation separation device 14. The water treatment device 1 may include a water tank 10 to be treated for storing the water to be treated and a water tank 22 for storing the treated water.

図1の水処理装置1において、被処理水槽10の被処理水入口には、被処理水配管24が接続されている。被処理水槽10の被処理水出口と凝集反応装置12の反応槽16の被処理水入口とは、被処理水配管26により接続されている。凝集反応装置12の反応槽16と浮上分離装置14の浮上槽18とは反応槽16から浮上槽18へ凝集反応液が連続的に流入できるように接続されている。浮上分離装置14の取水部20の処理水出口と処理水槽22の処理水入口とは、処理水配管28により接続されている。反応槽16には、凝集剤を注入するための凝集剤注入手段として凝集剤注入配管30が接続されている。反応槽16には、モータ等の回転駆動手段および撹拌羽根等を有する撹拌手段である撹拌装置32が設置されている。 In the water treatment device 1 of FIG. 1, a water treatment pipe 24 is connected to the water treatment inlet of the water tank 10 to be treated. The water outlet to be treated of the water tank 10 to be treated and the water inlet of the reaction tank 16 of the agglutination reaction device 12 are connected by a water pipe 26 to be treated. The reaction tank 16 of the agglutination reaction device 12 and the levitation tank 18 of the levitation separation device 14 are connected so that the agglutination reaction liquid can continuously flow from the reaction tank 16 to the levitation tank 18. The treated water outlet of the water intake unit 20 of the levitation separation device 14 and the treated water inlet of the treated water tank 22 are connected by a treated water pipe 28. A coagulant injection pipe 30 is connected to the reaction tank 16 as a coagulant injection means for injecting the coagulant. In the reaction tank 16, a stirring device 32 which is a stirring means having a rotation driving means such as a motor and a stirring blade and the like is installed.

凝集反応装置12の反応槽16の例えば上方には、反応槽16内の被処理水を撮影するための第1撮影装置36が設置され、浮上分離装置14の浮上槽18の例えば上方には、浮上槽18の上部を撮影するための第2撮影装置38が設置されている。浮上分離装置14の取水部20には、浮上分離装置14の処理水の水質を測定する処理水質測定装置40が設置されている。被処理水槽10には、被処理水の水質を測定する被処理水質測定手段として被処理水質測定装置34が設置されていてもよい。水処理装置1は、処理水質測定装置40により測定された処理水の水質が悪化したときに、第1撮影装置36および第2撮影装置38のうち少なくとも1つによって撮影された画像に基づいて、処理水の水質の悪化の原因を判断する判断手段および判断された結果を出力する出力手段として制御部42を備える。制御部42は、被処理水質測定装置34、第1撮影装置36、第2撮影装置38、処理水質測定装置40とそれぞれ電気的接続等によって通信可能に接続されている。 A first photographing device 36 for photographing the water to be treated in the reaction tank 16 is installed above, for example, the reaction tank 16 of the agglutination reaction device 12, and above, for example, the floating tank 18 of the floating separation device 14 A second photographing device 38 for photographing the upper part of the levitation tank 18 is installed. A treated water quality measuring device 40 for measuring the water quality of the treated water of the floating separation device 14 is installed in the water intake unit 20 of the floating separation device 14. In the water tank 10 to be treated, a water quality measuring device 34 to be treated may be installed as a water quality measuring means for measuring the water quality of the water to be treated. The water treatment device 1 is based on an image taken by at least one of the first photographing device 36 and the second photographing device 38 when the water quality of the treated water measured by the treated water quality measuring device 40 deteriorates. A control unit 42 is provided as a determination means for determining the cause of deterioration of the water quality of the treated water and an output means for outputting the determined result. The control unit 42 is communicably connected to the water quality measuring device 34 to be treated, the first photographing device 36, the second photographing device 38, and the treated water quality measuring device 40, respectively, by electrical connection or the like.

図1の水処理装置1において、被処理水は、被処理水配管24を通して必要に応じて被処理水槽10に貯留され、被処理水配管26を通して凝集反応装置12の反応槽16へ送液される。反応槽16において被処理水に凝集剤が凝集剤注入配管30を通して注入され、撹拌装置32により撹拌されて、被処理水に含まれる懸濁物質等が凝集されてフロックが形成される(凝集反応工程)。 In the water treatment device 1 of FIG. 1, the water to be treated is stored in the water tank 10 to be treated as needed through the water pipe 24 to be treated, and is sent to the reaction tank 16 of the agglutination reaction device 12 through the water pipe 26 to be treated. To. In the reaction tank 16, the coagulant is injected into the water to be treated through the coagulant injection pipe 30, and the mixture is stirred by the stirrer 32 to aggregate the suspended substances and the like contained in the water to be treated to form flocs (aggregation reaction). Process).

フロックを含む凝集反応液は、反応槽16から浮上分離装置14の浮上槽18へと送液される。浮上槽18において、フロックに気泡が付着されて浮上分離が行われる(浮上分離工程)。例えば、気体が加圧溶解された水(加圧水)が浮上槽18の下部から注入されて気泡が発生され、フロックに気泡が付着されて浮上分離が行われる。浮上槽18内で気泡とともに浮上した汚泥と処理水とが公知の方法により分離されて、処理水は取水部20へ流入され、処理水配管28を通して処理水槽22へ送液される。 The agglutinating reaction solution containing the flocs is sent from the reaction tank 16 to the levitation tank 18 of the levitation separation device 14. In the levitation tank 18, air bubbles are attached to the flocs to perform levitation separation (floating separation step). For example, water in which gas is pressurized and dissolved (pressurized water) is injected from the lower part of the levitation tank 18 to generate bubbles, and the bubbles are attached to the flocs to perform levitation separation. The sludge that floats together with the air bubbles in the floating tank 18 and the treated water are separated by a known method, and the treated water flows into the water intake section 20 and is sent to the treated water tank 22 through the treated water pipe 28.

水処理装置1では、第1撮影装置36によって凝集反応工程による凝集状態等が観測され(第1撮影工程)、第2撮影装置38によって浮上分離工程における気泡の状態等が観測され(第2撮影工程)、処理水質測定装置40によって浮上分離工程の処理水の濁度、懸濁物質濃度(SS濃度)等の処理水の水質が測定される(処理水質測定工程)。制御部42は、処理水質測定装置40により測定された処理水の水質が悪化したときに、第1撮影装置36および第2撮影装置38のうち少なくとも1つによって撮影された画像に基づいて、処理水の水質の悪化の原因を判断し(判断工程)、判断した結果を出力する(出力工程)。 In the water treatment device 1, the first imaging device 36 observes the aggregation state and the like in the aggregation reaction step (first imaging step), and the second imaging device 38 observes the state of bubbles and the like in the floating separation step (second imaging). Step), the treated water quality measuring device 40 measures the water quality of the treated water such as the turbidity of the treated water and the suspension substance concentration (SS concentration) in the floating separation step (treated water quality measuring step). When the water quality of the treated water measured by the treated water quality measuring device 40 deteriorates, the control unit 42 processes the image based on the image taken by at least one of the first photographing device 36 and the second photographing device 38. The cause of deterioration of water quality is determined (judgment process), and the determined result is output (output process).

水処理装置1は、例えば、警報システムを備え、制御部42は、処理水質測定装置40により測定された処理水の水質が悪化したときに、第1撮影装置36および第2撮影装置38のうち少なくとも1つによって撮影された画像およびその画像解析結果から特徴量を計測し、計測した特徴量に基づいて処理水の水質の悪化の原因を判断し、判断した結果を凝集反応異常と浮上分離異常とを区別して出力して警報システムを作動させ、凝集反応異常警報や浮上分離異常警報等の警報を発令することができる。これによって、加圧浮上法による固液分離を行う凝集処理の処理水質の異常に早期に対応することができる。以下に、浮上分離装置の異常診断方法の詳細を説明する。 The water treatment device 1 is provided with, for example, an alarm system, and the control unit 42 is among the first photographing device 36 and the second photographing device 38 when the water quality of the treated water measured by the treated water quality measuring device 40 deteriorates. The feature amount is measured from the image taken by at least one and the image analysis result, the cause of the deterioration of the water quality of the treated water is judged based on the measured feature amount, and the judgment result is the aggregation reaction abnormality and the floating separation abnormality. It is possible to issue an alarm such as a coagulation reaction abnormality alarm or a floating separation abnormality alarm by operating the alarm system by outputting the water separately. As a result, it is possible to quickly respond to abnormalities in the treated water quality of the coagulation treatment that performs solid-liquid separation by the pressurized flotation method. The details of the abnormality diagnosis method of the levitation separator will be described below.

<実施形態1>
実施形態1は、処理水質測定装置40および第1撮影手段(第1撮影装置36)を用いる場合の実施形態である。図2に、実施形態1における制御の一例のフローチャートを示す。例えば、制御部42は、処理水質測定装置40により測定された(S10)処理水質に基づき浮上分離工程の処理水の水質が悪化したと判断したときに、処理水異常警報を出力し(S12)、第1撮影装置36によって撮影された画像およびその画像解析結果から得られる特徴量等を計測し参照する(S14)。第1撮影装置36によって撮影された画像に基づく特徴量等が異常値であった場合には、処理水の水質の悪化の原因を凝集反応異常と判断して凝集反応異常警報を出力し(S16)、例えば、水処理装置の運転員に凝集反応異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。
<Embodiment 1>
The first embodiment is an embodiment in which the treated water quality measuring device 40 and the first photographing means (first photographing device 36) are used. FIG. 2 shows a flowchart of an example of control in the first embodiment. For example, the control unit 42 outputs a treated water abnormality alarm when it is determined that the water quality of the treated water in the levitation separation step has deteriorated based on the treated water quality measured by the treated water quality measuring device 40 (S10) (S12). , The image taken by the first photographing apparatus 36 and the feature amount obtained from the image analysis result thereof are measured and referred to (S14). When the feature amount or the like based on the image taken by the first imaging device 36 is an abnormal value, the cause of the deterioration of the water quality of the treated water is determined to be an agglutination reaction abnormality, and an agglutination reaction abnormality alarm is output (S16). ), For example, the confirmation items when the agglutination reaction is abnormal are output to the operator of the water treatment device, for example, on a display or the like. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

制御部42は、第1撮影装置36によって撮影された画像およびその画像解析結果から得られる特徴量等が正常値であった場合には、処理水の水質の悪化の原因を浮上分離異常と判断して浮上分離異常警報を出力し(S18)、例えば、水処理装置の運転員に浮上分離異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。 When the image taken by the first photographing device 36 and the feature amount obtained from the image analysis result are normal values, the control unit 42 determines that the cause of the deterioration of the water quality of the treated water is a floating separation abnormality. Then, a floating separation abnormality alarm is output (S18), and for example, a confirmation item at the time of a floating separation abnormality is output to the operator of the water treatment device, for example, on a display or the like. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

凝集反応異常時の確認項目としては、例えば、「凝集剤注入ポンプの故障」、「凝集剤注入配管の閉塞有無」、「被処理水の水質変動による最適凝集条件の変動」等が挙げられる。 Examples of the items to be confirmed when the agglutination reaction is abnormal include "failure of the agglutinating agent injection pump", "presence or absence of blockage of the agglutinating agent injection pipe", "variation of the optimum agglutination condition due to fluctuation of the water quality of the water to be treated" and the like.

浮上分離異常時の確認項目としては、例えば、「気液比」、「気体溶解圧力」、「余剰空気ブロー配管の閉塞」等が挙げられる。 Examples of the items to be confirmed when the floating separation is abnormal include "gas-liquid ratio", "gas dissolution pressure", and "blockage of excess air blow pipe".

これらの確認項目は、制御部42によって過去の発生頻度と重篤度とから算出される優先度等に基づいて確認の優先順位付けがされて出力されることが望ましい。 It is desirable that these confirmation items are prioritized and output for confirmation based on the priority calculated from the past occurrence frequency and severity by the control unit 42.

処理水の水質によって凝集反応工程における凝集剤の注入量を制御している場合には、浮上分離異常時には凝集剤の注入量の制御を禁止することが望ましい。これは、凝集剤注入のオーバーシュート等を抑制するためである。 When the injection amount of the agglutinant in the agglutination reaction step is controlled by the water quality of the treated water, it is desirable to prohibit the control of the injection amount of the agglutinant in the case of abnormal floating separation. This is to suppress overshoot and the like of coagulant injection.

第1撮影装置36によって撮影された画像に基づく特徴量としては、フロックの粒子数、フロックの粒子径分布、エッジ数、RGB比率、移動量等が挙げられる。 Examples of the feature amount based on the image taken by the first photographing apparatus 36 include the number of flocs particles, the particle size distribution of flocs, the number of edges, the RGB ratio, the amount of movement, and the like.

エッジ数とは、撮影した画像のコントラストの違いを検出してフロックの外周をエッジとして検出し、そのピクセル数をカウントしたものである。エッジ数は、例えば、画像センサー(キーエンス製、CV−5000)等を用いて算出することができる。 The number of edges is obtained by detecting the difference in contrast of the captured image, detecting the outer circumference of the flock as an edge, and counting the number of pixels. The number of edges can be calculated using, for example, an image sensor (manufactured by KEYENCE, CV-5000) or the like.

RGB比率は、例えば、ホワイトスポット光電センサー(キーエンス製、LR−W)等を用いて計測することができる。 The RGB ratio can be measured using, for example, a white spot photoelectric sensor (manufactured by KEYENCE, LR-W) or the like.

移動量は、フレーム間に粒子が移動した量をフレームの時間で割ることで算出することができる。粒子のトラッキングは、動画解析ソフト等を用いればよく、例えば、カトウ光研製 DIPP−Images等が挙げられる。 The amount of movement can be calculated by dividing the amount of movement of particles between frames by the time of the frame. For particle tracking, moving image analysis software or the like may be used, and examples thereof include DIPP-Images manufactured by Kato Koken.

<実施形態2>
実施形態2は、処理水質測定装置40および第2撮影手段(第2撮影装置38)を用いる場合の実施形態である。図3に、実施形態2における制御の一例のフローチャートを示す。例えば、制御部42は、処理水質測定装置40により測定された(S20)処理水質に基づき浮上分離工程の処理水の水質が悪化したと判断したときに、処理水異常警報を出力し(S22)、第2撮影装置38によって撮影された画像およびその画像解析結果から得られる特徴量等を計測し参照する(S24)。第2撮影装置38によって撮影された画像に基づく特徴量等が異常値であった場合には、処理水の水質の悪化の原因を浮上分離異常と判断して浮上分離異常警報を出力し(S26)、例えば、水処理装置の運転員に浮上分離異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。
<Embodiment 2>
The second embodiment is a case where the treated water quality measuring device 40 and the second photographing means (second photographing device 38) are used. FIG. 3 shows a flowchart of an example of control in the second embodiment. For example, the control unit 42 outputs a treated water abnormality alarm (S22) when it is determined that the water quality of the treated water in the floating separation step has deteriorated based on the treated water quality measured by the treated water quality measuring device 40 (S20). , The image taken by the second photographing apparatus 38 and the feature amount obtained from the image analysis result are measured and referred to (S24). When the feature amount or the like based on the image taken by the second photographing device 38 is an abnormal value, the cause of the deterioration of the water quality of the treated water is determined to be a floating separation abnormality, and a floating separation abnormality alarm is output (S26). ), For example, the operator of the water treatment device is output a confirmation item at the time of an abnormality in floating separation to, for example, a display. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

制御部42は、第2撮影装置38によって撮影された画像およびその画像解析結果から得られる特徴量等が正常値であった場合には、処理水の水質の悪化の原因を凝集反応異常と判断して凝集反応異常警報を出力し(S28)、例えば、水処理装置の運転員に凝集反応異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。 When the image captured by the second imaging device 38 and the feature amount obtained from the image analysis result are normal values, the control unit 42 determines that the cause of the deterioration of the water quality of the treated water is an agglutination reaction abnormality. Then, an agglutination reaction abnormality alarm is output (S28), and for example, a confirmation item at the time of an agglutination reaction abnormality is output to the operator of the water treatment device, for example, on a display or the like. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

第2撮影装置38によって撮影された画像に基づく特徴量としては、浮上槽18の上部液面における気泡を観察し、撮影した画像から測定した気泡の有無、気泡の数、気泡径等の気泡形成状況等が挙げられる。浮上分離工程において気泡の形成が異常となっている場合には、標準状態に比べて「気泡の数が少ない」、「気泡径が大きい」等の条件から判断することができる。 As a feature amount based on the image taken by the second photographing apparatus 38, the presence or absence of bubbles measured from the photographed image by observing the bubbles on the upper liquid surface of the levitation tank 18, the number of bubbles, the bubble formation such as the bubble diameter, etc. The situation etc. can be mentioned. When the formation of bubbles is abnormal in the levitation separation step, it can be judged from the conditions such as "the number of bubbles is small" and "the diameter of the bubbles is large" as compared with the standard state.

<実施形態3>
実施形態3は、処理水質測定装置40、第1撮影手段(第1撮影装置36)および第2撮影手段(第2撮影装置38)を用いる場合の実施形態である。図4に、実施形態3における制御の一例のフローチャートを示す。例えば、制御部42は、処理水質測定装置40により測定された(S30)処理水質に基づき浮上分離工程の処理水の水質が悪化したと判断したときに、処理水異常警報を出力し(S32)、第1撮影装置36によって撮影された画像およびその画像解析結果から得られる特徴量等を計測し参照し(S34)、ならびに第2撮影装置38によって撮影された画像およびその画像解析結果から得られる特徴量等を計測し参照する(S35)。第1撮影装置36によって撮影された画像に基づく特徴量等が異常値であった場合には、処理水の水質の悪化の原因を凝集反応異常と判断して凝集反応異常警報を出力し(S37)、例えば、水処理装置の運転員に凝集反応異常時の確認項目を例えばディスプレイ等へ出力する。第2撮影装置38によって撮影された画像に基づく特徴量等が異常値であった場合には、処理水の水質の悪化の原因を浮上分離異常と判断して浮上分離異常警報を出力し(S38)、例えば、水処理装置の運転員に浮上分離異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。
<Embodiment 3>
The third embodiment is an embodiment when the treated water quality measuring device 40, the first photographing means (first photographing device 36), and the second photographing means (second photographing device 38) are used. FIG. 4 shows a flowchart of an example of control in the third embodiment. For example, the control unit 42 outputs a treated water abnormality alarm (S32) when it is determined that the water quality of the treated water in the floating separation step has deteriorated based on the treated water quality measured by the treated water quality measuring device 40 (S30). , The feature amount obtained from the image taken by the first photographing device 36 and the image analysis result thereof is measured and referred to (S34), and is obtained from the image taken by the second photographing device 38 and the image analysis result thereof. The feature amount and the like are measured and referred to (S35). When the feature amount or the like based on the image taken by the first imaging device 36 is an abnormal value, the cause of the deterioration of the water quality of the treated water is determined to be an agglutination reaction abnormality, and an agglutination reaction abnormality alarm is output (S37). ), For example, the confirmation items when the agglutination reaction is abnormal are output to the operator of the water treatment device, for example, on a display or the like. If the feature amount or the like based on the image taken by the second photographing device 38 is an abnormal value, the cause of the deterioration of the water quality of the treated water is determined to be a floating separation abnormality, and a floating separation abnormality alarm is output (S38). ), For example, the operator of the water treatment device is output a confirmation item at the time of an abnormality in floating separation to, for example, a display. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

これによって、凝集の悪化と加圧浮上装置のトラブルが同時に発生していた場合を正確に検知できるようになる。 As a result, it becomes possible to accurately detect the case where the deterioration of aggregation and the trouble of the pressurized flotation device occur at the same time.

<実施形態4>
実施形態4は、実施形態1〜3のそれぞれの構成に加えて、被処理水質測定手段(被処理水質測定装置34)を用いる場合の実施形態である。図5に、実施形態4における制御の一例のフローチャートを示す。
<Embodiment 4>
The fourth embodiment is an embodiment in which a water quality measuring means to be treated (water quality measuring device 34 to be treated) is used in addition to the respective configurations of the first to third embodiments. FIG. 5 shows a flowchart of an example of control in the fourth embodiment.

例えば、制御部42は、被処理水質測定装置34および処理水質測定装置40により測定された(S40)被処理水質および処理水質に基づき浮上分離工程の処理水の水質が悪化したと判断したときに、処理水異常警報を出力し(S42)、第1撮影装置36によって撮影された画像およびその画像解析結果から得られる特徴量等、ならびに第2撮影装置38によって撮影された画像およびその画像解析結果から得られる特徴量等の少なくとも1つを計測し参照する(S44,S45)。第1撮影装置36によって撮影された画像、特徴量等が異常値であった場合には、処理水の水質の悪化の原因を凝集反応異常と判断して凝集反応異常警報を出力し(S47)、例えば、水処理装置の運転員に凝集反応異常時の確認項目を例えばディスプレイ等へ出力する。第2撮影装置38によって撮影された画像、特徴量等が異常値であった場合には、処理水の水質の悪化の原因を浮上分離異常と判断して浮上分離異常警報を出力し(S48)、例えば、水処理装置の運転員に浮上分離異常時の確認項目を例えばディスプレイ等へ出力する。その後、処理水の水質の悪化に対する対応が行われればよい。 For example, when the control unit 42 determines that the water quality of the treated water in the levitation separation step has deteriorated based on the water quality to be treated and the treated water quality measured by the water quality measuring device 34 and the treated water quality measuring device 40 (S40). , The treated water abnormality alarm is output (S42), the feature amount obtained from the image taken by the first photographing device 36 and the image analysis result, and the image taken by the second photographing device 38 and the image analysis result thereof. At least one of the feature quantities and the like obtained from the above is measured and referred to (S44, S45). When the image, feature amount, etc. taken by the first photographing apparatus 36 are abnormal values, the cause of the deterioration of the water quality of the treated water is determined to be an agglutination reaction abnormality, and an agglutination reaction abnormality alarm is output (S47). For example, the confirmation items when the agglutination reaction is abnormal are output to the operator of the water treatment device, for example, on a display or the like. If the image, feature amount, etc. taken by the second photographing device 38 are abnormal values, the cause of the deterioration of the water quality of the treated water is determined to be a floating separation abnormality, and a floating separation abnormality alarm is output (S48). For example, the operator of the water treatment device is output a confirmation item at the time of an abnormality in floating separation to, for example, a display. After that, measures should be taken to deal with the deterioration of the quality of the treated water.

これによって、被処理水由来のトラブルを正確に検知できるようになる。 This makes it possible to accurately detect troubles caused by the water to be treated.

例えば、制御部42は、被処理水質測定装置34により測定された被処理水のSS濃度と処理水質測定装置40により測定された処理水のSS濃度とから[(被処理水SS濃度−処理水SS濃度)/被処理水SS濃度]として計算されるSS除去率と、に基づいて、浮上分離工程の処理水の水質が悪化したと判断したときに、処理水異常警報を出力してもよい。 For example, the control unit 42 uses the SS concentration of the water to be treated measured by the water quality measuring device 34 to be treated and the SS concentration of the treated water measured by the water quality measuring device 40 [(SS concentration of water to be treated-treated water). A treated water abnormality alarm may be output when it is determined that the water quality of the treated water in the floating separation step has deteriorated based on the SS removal rate calculated as [SS concentration) / SS concentration of water to be treated]. ..

実施形態1〜4の方法は、装置の経済性、トラブル発生時の重篤度等から選択すればよい。処理のより上流側で異常を検知できることから、実施形態2に比べて実施形態1が好ましい。 The methods of the first to fourth embodiments may be selected from the economical efficiency of the device, the severity at the time of trouble occurrence, and the like. The first embodiment is preferable to the second embodiment because the abnormality can be detected on the upstream side of the treatment.

上記水処理装置における、第1撮影手段(第1撮影装置36)および第2撮影手段(第2撮影装置38)のうち少なくとも1つと、処理水質測定手段(処理水質測定装置40)と、判断手段および出力手段(制御部42)とは浮上分離装置の異常診断装置として機能する。 In the water treatment apparatus, at least one of the first photographing means (first photographing device 36) and the second photographing means (second photographing device 38), the treated water quality measuring means (treated water quality measuring device 40), and the determining means. And the output means (control unit 42) functions as an abnormality diagnosis device of the levitation separation device.

また、上記水処理方法における第1撮影工程第2撮影工程のうち少なくとも1つと、処理水質測定工程と、判断工程と、出力工程とは、浮上分離装置の異常診断方法として実施される。 Further, at least one of the first photographing step and the second photographing step in the water treatment method, the treated water quality measuring step, the determination step, and the output step are carried out as an abnormality diagnosis method of the levitation separation device.

被処理水質測定手段および処理水質測定手段としては、被処理水または処理水の水質を測定することができるものであればよく、特に制限はないが、例えば、SS濃度測定装置、色度測定装置、TOC測定装置、pH測定装置、導電率測定装置等が挙げられ、被処理水の変動傾向に応じて適宜選択することが望ましい。経済性の観点からすれば、TOC測定装置よりも、SS濃度測定装置やpH測定装置が安価であるため、これらの測定装置で被処理水質を測定することが望ましい。 The water quality measuring means and the treated water quality measuring means may be any one capable of measuring the water quality of the treated water or the treated water, and are not particularly limited. For example, an SS concentration measuring device and a chromaticity measuring device. , TOC measuring device, pH measuring device, conductivity measuring device and the like, and it is desirable to appropriately select according to the fluctuation tendency of the water to be treated. From the viewpoint of economy, the SS concentration measuring device and the pH measuring device are cheaper than the TOC measuring device, and therefore it is desirable to measure the water quality to be treated with these measuring devices.

第1撮影手段(第1撮影装置36)および第2撮影手段(第2撮影装置38)としては、凝集反応装置の被処理水を撮影することができる、または、浮上分離装置の浮上分離槽の上部を撮影することができるものであればよく、特に制限はないが、例えば、カメラ、ビデオカメラ等が挙げられる。カメラの写りが鮮明でない場合には、光源を併設することが望ましい。光源に制限はないが、白色光、赤外光等のうちから、適宜選択すればよい。 As the first photographing means (first photographing device 36) and the second photographing means (second photographing device 38), the water to be treated of the agglutination reaction device can be photographed, or in the floating separation tank of the floating separation device. Anything that can shoot the upper part is not particularly limited, and examples thereof include a camera and a video camera. If the image of the camera is not clear, it is desirable to add a light source. The light source is not limited, but may be appropriately selected from white light, infrared light, and the like.

判断された結果の出力は、警報システムによる警報の発令、ディスプレイ等への表示、紙等への印刷等として行われればよい。 The output of the determined result may be performed as an alarm issuance by the alarm system, display on a display or the like, printing on paper or the like, or the like.

凝集反応装置12は、凝集反応を行うものであればよく、例えば、反応槽を備えるものでも、反応槽と凝集反応槽とを備えるものでよく、特に限定されず、公知の構成のものを用いればよい。 The agglutination reaction apparatus 12 may be any as long as it performs an agglutination reaction. Just do it.

浮上分離装置14は、加圧浮上分離を行うものであればよく、特に限定されず、公知の構成のものを用いればよい。 The levitation separation device 14 may be any device that performs pressure levitation separation, and is not particularly limited, and a known configuration may be used.

凝集反応工程および凝集反応装置において用いられる凝集剤としては、凝集処理に用いることができる凝集剤であればよく、特に制限はない。凝集剤としては、無機凝集剤および高分子凝集剤のうちの少なくとも1つが用いられる。 The agglutinant used in the agglutination reaction step and the agglutination reaction apparatus may be any agglutinant that can be used in the agglutination treatment, and is not particularly limited. As the flocculant, at least one of an inorganic flocculant and a polymer flocculant is used.

無機凝集剤としては、例えば、塩化第二鉄、ポリ硫酸第二鉄等の鉄系無機凝集剤、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられる。 Examples of the inorganic flocculant include iron-based inorganic flocculants such as ferric chloride and polyferric sulfate, and aluminum-based inorganic flocculants such as aluminum sulfate and polyaluminum chloride (PAC).

無機凝集剤の添加量は、例えば、1〜500mg/Lの範囲である。 The amount of the inorganic flocculant added is, for example, in the range of 1 to 500 mg / L.

高分子凝集剤としては、ノニオン性高分子凝集剤、アニオン性高分子凝集剤またはカチオン性高分子凝集剤等、特に制限されるものではないが、例えば、ポリアクリルアミド、ポリアクリル酸ナトリウム、アクリルアミド・アクリル酸塩共重合体、アクリルアミドプロパンスルフォン酸ナトリウム、キトサン、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレートおよびポリアミジン等が挙げられる。高分子凝集剤は、1種単独でも、2種以上を組み合わせて用いてもよい。 The polymer flocculant is not particularly limited, such as a nonionic polymer flocculant, an anionic polymer flocculant, or a cationic polymer flocculant, but for example, polyacrylamide, sodium polyacrylate, acrylamide, and the like. Examples thereof include acrylate copolymers, sodium acrylamide propane sulfonate, chitosan, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate and polyamidine. The polymer flocculant may be used alone or in combination of two or more.

高分子凝集剤の添加量は、例えば、0.1〜5mg/Lの範囲である。 The amount of the polymer flocculant added is, for example, in the range of 0.1 to 5 mg / L.

凝集反応工程および凝集反応装置においてpH調整剤を用いてpH調整が行われてもよい。pH調整剤としては、塩酸、硫酸等の酸や、水酸化ナトリウム等のアルカリ等が挙げられる。pHは、例えば、4〜11の範囲に調整すればよい。pHは、例えば、反応槽16に設置されたpH測定手段であるpH計によって測定される。 The pH may be adjusted using a pH adjuster in the agglutination reaction step and the agglutination reaction apparatus. Examples of the pH adjuster include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide. The pH may be adjusted, for example, in the range of 4 to 11. The pH is measured, for example, by a pH meter, which is a pH measuring means installed in the reaction vessel 16.

凝集反応における液温度は、特に制限はなく、例えば、15〜35℃の範囲である。粘性等によって分離性が変わるため、液温度はできるだけ一定になるように調整することが望ましい。 The liquid temperature in the agglutination reaction is not particularly limited, and is, for example, in the range of 15 to 35 ° C. Since the separability changes depending on the viscosity and the like, it is desirable to adjust the liquid temperature so that it is as constant as possible.

処理対象である被処理水は、例えば、懸濁物質等を含む水であり、例えば、河川水、工業用水、排水等が挙げられる。 The water to be treated is, for example, water containing a suspended substance or the like, and examples thereof include river water, industrial water, wastewater and the like.

1 水処理装置、10 被処理水槽、12 凝集反応装置、14 浮上分離装置、16 反応槽、18 浮上槽、20 取水部、22 処理水槽、24,26 被処理水配管、28 処理水配管、30 凝集剤注入配管、32 撹拌装置、34 被処理水質測定装置、36 第1撮影装置、38 第2撮影装置、40 処理水質測定装置、42 制御部。 1 Water treatment equipment, 10 treatment water tank, 12 coagulation reaction equipment, 14 levitation separation equipment, 16 reaction tank, 18 levitation tank, 20 intake section, 22 treatment water tank, 24, 26 treatment water pipe, 28 treatment water pipe, 30 Coagulant injection piping, 32 stirrer, 34 treated water quality measuring device, 36 first photographing device, 38 second photographing device, 40 treated water quality measuring device, 42 control unit.

Claims (12)

被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成するための凝集反応装置と、
前記フロックに気泡を付着させて浮上分離するための浮上分離装置と、
前記浮上分離装置の処理水の水質を測定する処理水質測定手段と、
前記凝集反応装置の被処理水を撮影するための第1撮影手段、および前記浮上分離装置の浮上分離槽の上部を撮影するための第2撮影手段のうち少なくとも1つと、
前記処理水質測定手段により測定された前記処理水の水質が悪化したときに、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断手段と、
前記判断手段により判断された結果を出力する出力手段と、
を備えることを特徴とする水処理装置。
An agglutinating reaction device for injecting a coagulant into water to be treated to coagulate suspended substances to form flocs,
A levitation separation device for levitation separation by adhering air bubbles to the flocs,
A treated water quality measuring means for measuring the water quality of the treated water of the floating separation device,
At least one of a first photographing means for photographing the water to be treated of the agglutination reaction apparatus and a second photographing means for photographing the upper part of the floating separation tank of the floating separation apparatus.
When the water quality of the treated water deteriorates as measured by the treated water quality measuring means, the water quality of the treated water is based on an image taken by at least one of the first photographing means and the second photographing means. As a means of determining the cause of the deterioration of
An output means that outputs the result determined by the determination means, and
A water treatment device characterized by comprising.
請求項1に記載の水処理装置であって、
前記判断手段は、前記第1撮影手段によって撮影された画像に基づく粒子数、粒子径分布、エッジ数、RGB比率、および移動量のうちの少なくとも1つに基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理装置。
The water treatment apparatus according to claim 1.
The determination means deteriorates the water quality of the treated water based on at least one of the number of particles, the particle size distribution, the number of edges, the RGB ratio, and the amount of movement based on the image taken by the first photographing means. A water treatment device characterized by determining the cause of.
請求項1または2に記載の水処理装置であって、
前記判断手段は、前記第2撮影手段によって撮影された画像に基づく気泡形成状況に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理装置。
The water treatment apparatus according to claim 1 or 2.
The water treatment apparatus is characterized in that the determination means determines the cause of deterioration of the water quality of the treated water based on the bubble formation state based on the image taken by the second photographing means.
請求項1〜3のいずれか1項に記載の水処理装置であって、
さらに、被処理水の水質を測定する被処理水質測定手段を備え、
前記判断手段は、前記処理水の水質が悪化したときに、前記被処理水質測定手段により測定された前記被処理水の水質と、前記処理水質測定手段により測定された前記処理水の水質と、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 1 to 3.
Further, it is provided with a water quality measuring means for measuring the water quality of the water to be treated.
The determination means includes, when the water quality of the treated water deteriorates, the water quality of the treated water measured by the treated water quality measuring means, the water quality of the treated water measured by the treated water quality measuring means, and the water quality of the treated water. A water treatment apparatus characterized in that the cause of deterioration of the water quality of the treated water is determined based on an image taken by at least one of the first photographing means and the second photographing means.
請求項4に記載の水処理装置であって、
前記判断手段は、前記被処理水質測定手段により測定された前記被処理水のSS濃度と前記処理水質測定手段により測定された前記処理水のSS濃度とから[(被処理水SS濃度−処理水SS濃度)/被処理水SS濃度]として計算されるSS除去率と、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理装置。
The water treatment apparatus according to claim 4.
The determination means is based on the SS concentration of the water to be treated measured by the water quality measuring means to be treated and the SS concentration of the treated water measured by the water quality measuring means of the treated water [(SS concentration of water to be treated-treated water). SS concentration) / SS concentration of water to be treated], and the treated water based on the SS removal rate and the image taken by at least one of the first photographing means and the second photographing means. A water treatment device characterized by determining the cause of deterioration of water quality.
被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成する凝集反応工程と、
前記フロックに気泡を付着させて浮上分離する浮上分離工程と、
前記浮上分離工程の処理水の水質を測定する処理水質測定工程と、
前記凝集反応工程の被処理水を撮影する第1撮影工程、および前記浮上分離工程の浮上分離槽の上部を撮影する第2撮影工程のうち少なくとも1つと、
前記処理水質測定工程により測定された前記処理水の水質が悪化したときに、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断工程と、
前記判断工程において判断された結果を出力する出力工程と、
を含むことを特徴とする水処理方法。
An agglutination reaction step of injecting a coagulant into water to be treated to coagulate suspended substances to form flocs,
A levitation separation step in which bubbles are attached to the flocs and levitation separation is performed.
The treated water quality measuring step of measuring the water quality of the treated water in the floating separation step and
At least one of a first photographing step of photographing the water to be treated in the agglutination reaction step and a second photographing step of photographing the upper part of the floating separation tank in the floating separation step.
When the water quality of the treated water deteriorates measured by the treated water quality measuring step, the water quality of the treated water is based on the images taken by at least one of the first photographing step and the second photographing step. Judgment process to determine the cause of deterioration of
An output process that outputs the result determined in the determination process and
A water treatment method comprising.
請求項6に記載の水処理方法であって、
前記判断工程において、前記第1撮影工程によって撮影された画像に基づく粒子数、粒子径分布、エッジ数、RGB比率、および移動量のうちの少なくとも1つに基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理方法。
The water treatment method according to claim 6.
In the determination step, the deterioration of the water quality of the treated water is based on at least one of the number of particles, the particle size distribution, the number of edges, the RGB ratio, and the amount of movement based on the image taken by the first photographing step. A water treatment method characterized by determining the cause of.
請求項6または7に記載の水処理方法であって、
前記判断工程において、前記第2撮影工程によって撮影された画像に基づく気泡形成状況に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理方法。
The water treatment method according to claim 6 or 7.
A water treatment method, characterized in that, in the determination step, the cause of deterioration of the water quality of the treated water is determined based on the bubble formation state based on the image captured by the second photographing step.
請求項6〜8のいずれか1項に記載の水処理方法であって、
さらに、被処理水の水質を測定する被処理水質測定工程を含み、
前記判断工程において、前記処理水の水質が悪化したときに、前記被処理水質測定工程により測定された前記被処理水の水質と、前記処理水質測定工程により測定された前記処理水の水質と、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理方法。
The water treatment method according to any one of claims 6 to 8.
In addition, it includes a water quality measurement step for measuring the water quality of the water to be treated.
In the determination step, when the water quality of the treated water deteriorates, the water quality of the treated water measured by the treated water quality measuring step, the water quality of the treated water measured by the treated water quality measuring step, and the water quality of the treated water. A water treatment method comprising determining a cause of deterioration in water quality of the treated water based on an image taken by at least one of the first photographing step and the second photographing step.
請求項9に記載の水処理方法であって、
前記判断工程において、前記被処理水質測定工程により測定された前記被処理水のSS濃度と前記処理水質測定工程により測定された前記処理水のSS濃度とから[(被処理水SS濃度−処理水SS濃度)/被処理水SS濃度]として計算されるSS除去率と、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像と、に基づいて、前記処理水の水質の悪化の原因を判断することを特徴とする水処理方法。
The water treatment method according to claim 9.
In the determination step, from the SS concentration of the water to be treated measured by the water quality measurement step of the treated water and the SS concentration of the treated water measured by the water quality measurement step of the treated water, [(SS concentration of water to be treated-treated water SS concentration) / SS concentration of water to be treated], and the image taken by at least one of the first photographing step and the second photographing step, and the treated water. A water treatment method characterized by determining the cause of deterioration of water quality.
被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成するための凝集反応装置の被処理水を撮影するための第1撮影手段、および、前記フロックに気泡を付着させて浮上分離するための浮上分離装置の浮上分離槽の上部を撮影するための第2撮影手段のうち少なくとも1つと、
前記浮上分離装置の処理水の水質を測定する処理水質測定手段と、
前記処理水質測定手段により測定された前記処理水の水質が悪化したときに、前記第1撮影手段および前記第2撮影手段のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断手段と、
前記判断手段により判断された結果を出力する出力手段と、
を備えることを特徴とする浮上分離装置の異常診断装置。
The first photographing means for photographing the water to be treated of the agglutinating reaction device for injecting a coagulant into the water to be treated and agglutinating the suspended substance to form flocs, and attaching bubbles to the flocs. At least one of the second imaging means for photographing the upper part of the levitation separation tank of the levitation separation device for levitation separation, and
A treated water quality measuring means for measuring the water quality of the treated water of the floating separation device,
When the water quality of the treated water deteriorates as measured by the treated water quality measuring means, the water quality of the treated water is based on an image taken by at least one of the first photographing means and the second photographing means. As a means of determining the cause of the deterioration of
An output means that outputs the result determined by the determination means, and
An abnormality diagnostic device for a levitation separation device, which comprises.
被処理水に凝集剤を注入して懸濁物質を凝集してフロックを形成する凝集反応工程の被処理水を撮影する第1撮影工程、および、前記フロックに気泡を付着させて浮上分離する浮上分離工程の浮上分離槽の上部を撮影する第2撮影工程のうち少なくとも1つと、
前記浮上分離工程の処理水の水質を測定する処理水質測定工程と、
前記処理水質測定工程により測定された前記処理水の水質が悪化したときに、前記第1撮影工程および前記第2撮影工程のうち少なくとも1つによって撮影された画像に基づいて、前記処理水の水質の悪化の原因を判断する判断工程と、
前記判断工程において判断された結果を出力する出力工程と、
を含むことを特徴とする浮上分離装置の異常診断方法。
The first imaging step of photographing the water to be treated in the agglutination reaction step of injecting a flocculant into the water to be treated to aggregate the suspended substances to form flocs, and levitation to attach bubbles to the flocs to float and separate. Floating in the separation step At least one of the second imaging steps of photographing the upper part of the separation tank and
The treated water quality measuring step of measuring the water quality of the treated water in the floating separation step and
When the water quality of the treated water deteriorates measured by the treated water quality measuring step, the water quality of the treated water is based on the images taken by at least one of the first photographing step and the second photographing step. Judgment process to determine the cause of deterioration of
An output process that outputs the result determined in the determination process and
A method for diagnosing an abnormality of a floating separation device, which comprises.
JP2019102840A 2019-05-31 2019-05-31 Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment Active JP7285138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102840A JP7285138B2 (en) 2019-05-31 2019-05-31 Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102840A JP7285138B2 (en) 2019-05-31 2019-05-31 Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment

Publications (2)

Publication Number Publication Date
JP2020195949A true JP2020195949A (en) 2020-12-10
JP7285138B2 JP7285138B2 (en) 2023-06-01

Family

ID=73648084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102840A Active JP7285138B2 (en) 2019-05-31 2019-05-31 Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment

Country Status (1)

Country Link
JP (1) JP7285138B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241512A (en) * 1986-04-10 1987-10-22 Hitachi Ltd Device for controlling injection of flocculant
JPS6345000A (en) * 1986-04-02 1988-02-25 Masataka Sugawara Device for flocculating sludge of water treatment
JPS63200806A (en) * 1987-02-16 1988-08-19 Hitachi Ltd Device for controlling injection quantity of flocculant
JPH06327907A (en) * 1993-05-20 1994-11-29 Mitsubishi Electric Corp Flocculation controller
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2017026527A (en) * 2015-07-24 2017-02-02 株式会社東芝 Coagulation settling control device, coagulation settling control method, computer program and coagulation settling system
WO2017168054A1 (en) * 2016-04-01 2017-10-05 Kemira Oyj A method and system for optimization of coagulation and/or flocculation in a water treatment process
JP2018143937A (en) * 2017-03-02 2018-09-20 株式会社東芝 Aggregation control device, aggregation control method and aggregation control system
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345000A (en) * 1986-04-02 1988-02-25 Masataka Sugawara Device for flocculating sludge of water treatment
JPS62241512A (en) * 1986-04-10 1987-10-22 Hitachi Ltd Device for controlling injection of flocculant
JPS63200806A (en) * 1987-02-16 1988-08-19 Hitachi Ltd Device for controlling injection quantity of flocculant
JPH06327907A (en) * 1993-05-20 1994-11-29 Mitsubishi Electric Corp Flocculation controller
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2017026527A (en) * 2015-07-24 2017-02-02 株式会社東芝 Coagulation settling control device, coagulation settling control method, computer program and coagulation settling system
WO2017168054A1 (en) * 2016-04-01 2017-10-05 Kemira Oyj A method and system for optimization of coagulation and/or flocculation in a water treatment process
JP2018143937A (en) * 2017-03-02 2018-09-20 株式会社東芝 Aggregation control device, aggregation control method and aggregation control system
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system

Also Published As

Publication number Publication date
JP7285138B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
CN110494395B (en) Wastewater treatment method for membrane separation activated sludge, wastewater treatment apparatus, and wastewater treatment system management program
JP7146548B2 (en) Water treatment method and water treatment equipment
WO2021053984A1 (en) Water treatment system, control device, water treatment method, and program
JP4238983B2 (en) Flocculant injection control method and control apparatus therefor
JP2020195949A (en) Water treatment device, water treatment method, and abnormality diagnosis device and diagnosis method for floating separation device
JP7339105B2 (en) Water treatment system, controller, water treatment method and program
JP2024026106A (en) Information processor, water treatment system, water treatment method and program
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
KR20040067702A (en) Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc
JP4785454B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP7336790B2 (en) Water treatment system and water treatment method
JPWO2016006419A1 (en) Aggregation method and apparatus
JP2019181342A (en) Aggregation separation device, aggregation separation method, water quality measurement device, water quality measurement method, aggregation separation treatment system and aggregation separation treatment method
US20230106343A1 (en) Water treatment system, control device, water treatment method, and program
JP2022119488A (en) Pressure floating separation apparatus and method of operating pressure floating separation apparatus
JP7056825B2 (en) Solid-liquid separator
JP5977514B2 (en) Water purifier
JP2005193204A (en) Water treatment system
JPS63269043A (en) Apparatus for confirming image of flocculated substance
JP2020203263A (en) Water treatment method and water treatment device
JP7089919B2 (en) Component concentration measuring method and measuring device, as well as water treatment method and water treatment device
JP2023183764A (en) Flocculation evaluation method, flocculation evaluation device, flocculation treatment method, and flocculation treatment system
JP2019000788A (en) Water quality management system and water quality management method in water treatment equipment
JP7056824B2 (en) Solid-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150