JP4785454B2 - Method and apparatus for adjusting sludge solids supply in sludge dewatering machine - Google Patents

Method and apparatus for adjusting sludge solids supply in sludge dewatering machine Download PDF

Info

Publication number
JP4785454B2
JP4785454B2 JP2005220596A JP2005220596A JP4785454B2 JP 4785454 B2 JP4785454 B2 JP 4785454B2 JP 2005220596 A JP2005220596 A JP 2005220596A JP 2005220596 A JP2005220596 A JP 2005220596A JP 4785454 B2 JP4785454 B2 JP 4785454B2
Authority
JP
Japan
Prior art keywords
sludge
amount
tank
dewatering machine
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005220596A
Other languages
Japanese (ja)
Other versions
JP2007029922A (en
Inventor
哲 曽我部
達也 千賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Manufacturing Co Ltd
Original Assignee
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Manufacturing Co Ltd filed Critical Tsurumi Manufacturing Co Ltd
Priority to JP2005220596A priority Critical patent/JP4785454B2/en
Publication of JP2007029922A publication Critical patent/JP2007029922A/en
Application granted granted Critical
Publication of JP4785454B2 publication Critical patent/JP4785454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、汚泥脱水機における汚泥固形物供給量の調整方法および装置に関するものである。   The present invention relates to a method and apparatus for adjusting the amount of sludge solids supplied in a sludge dewatering machine.

汚泥の含水率を調整する手段として、例えば特開2002−361299号公報の第1図および第2図に見られるように原料汚泥の固形分濃度を混合槽に設けられた汚泥濃度センサにより測定し、測定された固形分濃度を基準にして一定時間内に供給される原料汚泥に対し、予め決められている汚泥固形分量と凝集剤溶液の固形分量比率になるように凝集剤溶液の供給量及び凝集剤溶液の供給を行う凝集剤溶液用薬液ポンプの稼動時間を計算し、該稼動時間に基づいて原料汚泥に対し凝集剤溶液を供給して混合及び脱水処理を行わせる場合、混合槽内に付設された第1液面センサの検知により原料汚泥を所定量供給して汚泥濃度が均一になるよう所定時間撹拌した状態で前記汚泥濃度センサにより測定を行い、その測定値により予め決められた前記設定に基づいて凝集剤溶液の供給量を計算して混合槽に供給し既に供給されている所定量の原料汚泥と一定時間混合攪拌された混合汚泥を脱水機に供給できる状態になると、脱水機を稼動させ該混合汚泥が脱水機に供給されて脱水が開始され、脱水工程の進行に従って混合槽内に所定量貯溜されている混合汚泥の液位が降下し、やがて混合槽内に付設された第2液面センサの検知により混合汚泥が無くなったことが確認されると、混合汚泥の供給からそれが無くなり脱水工程を一旦停止するまでの工程を1バッチ処理とし、予め決められた目標汚泥処理量に達するまで前記バッチ処理を繰り返して脱水処理を行わせるという、汚泥の含水率調整方法および装置は公知である(特許文献1参照)。   As a means for adjusting the moisture content of the sludge, for example, as shown in FIGS. 1 and 2 of JP-A-2002-361299, the solid content concentration of the raw sludge is measured by a sludge concentration sensor provided in the mixing tank. The supply amount of the flocculant solution so that the ratio of the solid content of the sludge solid content and the solid content of the flocculant solution is determined with respect to the raw material sludge supplied within a predetermined time with reference to the measured solid content concentration, and When the operation time of the chemical liquid pump for the flocculant solution that supplies the flocculant solution is calculated, and when the flocculant solution is supplied to the raw material sludge and mixed and dehydrated based on the operation time, A predetermined amount of raw material sludge is supplied by the detection of the attached first liquid level sensor and measured with the sludge concentration sensor while stirring for a predetermined time so that the sludge concentration becomes uniform. When the supply amount of the flocculant solution is calculated based on the above settings and supplied to the mixing tank, and the mixed sludge mixed and stirred for a predetermined time with the predetermined amount of raw material sludge that has already been supplied can be supplied to the dehydrator The mixed sludge is supplied to the dehydrator and dehydration is started, and the liquid level of the mixed sludge stored in the mixing tank drops as the dehydration process proceeds, and is eventually attached to the mixing tank. When it is confirmed by the detection of the second liquid level sensor that the mixed sludge has disappeared, the process from the supply of the mixed sludge to the disappearance of the dewatering process is considered as one batch process, and the predetermined target sludge is determined. A method and apparatus for adjusting the moisture content of sludge, in which the batch treatment is repeated until the treatment amount is reached, is performed (see Patent Document 1).

特開2002−361299号公報 (第3−4頁、第1−2図)JP 2002-361299 A (page 3-4, FIG. 1-2)

しかし、特許文献1の脱水機を断続運転させるバッチ処理方式では、汚泥の脱水処理に多くの時間を費やすか或いは脱水処理能力の大きな大容量の脱水機を使用しなければならず、また、特許文献1の段落0008には脱水対象の汚泥「・・外部の下水処理場又は農業集落排水処理施設等より発生する各種の汚泥からなる原料汚泥1aを混合槽2内に供給・・」を処理する方法および装置ではある旨が記載されており、汚泥濃度センサを測定原理別に一般分類すると超音波式や近赤外光式、マイクロ波式等に別けられ、どの測定方式においても、汚泥の性状(含水物質や色および汚泥の形状等)の違いによって測定精度がバラつくという制約を受けるので、本来その汚泥の性状に適応した汚泥濃度センサを使用することが原則である。そのため、仮に上記の各種汚泥濃度センサを用いたとしても、実際どの汚泥濃度センサの値が真正値であるかを自動的に判定するには、膨大なデータの処理が必要とされ装置自体も複雑化するので製造コストも嵩むことになる。また、一種類の汚泥濃度センサで対応させようとする場合、常に脱水対象汚泥の性状変化を監視し長年の経緯を基に該性状に合せて頻繁に試行錯誤的な手動補正の煩わしい作業を行わなければならず、そのために多くの労力と維持管理費を掛けなければ脱水機本来の性能が発揮できないという欠点がある。   However, in the batch processing method in which the dehydrator of Patent Document 1 is operated intermittently, it is necessary to spend a lot of time for the dewatering of sludge or use a large capacity dehydrator with a large dewatering capacity. In paragraph 0008 of Document 1, the sludge to be dewatered is treated as "... feeding raw material sludge 1a made of various sludges generated from an external sewage treatment plant or agricultural settlement wastewater treatment facility into the mixing tank 2". It is described that it is a method and apparatus, and sludge concentration sensors are classified into ultrasonic type, near-infrared light type, microwave type, etc. when classified according to the measurement principle. Since the measurement accuracy varies depending on the difference in water content, color, and sludge shape, etc., it is a principle to use a sludge concentration sensor that is originally adapted to the properties of the sludge. Therefore, even if the above various sludge concentration sensors are used, in order to automatically determine which sludge concentration sensor is actually a true value, a huge amount of data processing is required and the apparatus itself is complicated. Therefore, the manufacturing cost increases. Also, when trying to cope with one type of sludge concentration sensor, always monitor the change in the properties of the sludge to be dehydrated, and frequently carry out the troublesome manual correction by trial and error based on the properties over the years. Therefore, there is a drawback that the original performance of the dehydrator cannot be exhibited unless much labor and maintenance costs are applied.

更に、前記何れの汚泥濃度センサにおいても当該濃度センサが使用される濃度範囲に設定調整されるため、当該濃度範囲から外れれば外れる程その検出値の誤差が大きくなり、前述の如く種々の汚泥を対象とする場合には汚泥の流入の度にその汚泥濃度が広範囲に変動するので、広範囲の濃度を精度よく検出するには長年の経緯を基に、例えば検知範囲の異なる複数の汚泥濃度センサを用いて適正な検知範囲の汚泥濃度センサに切換使用するか、或いは一つの汚泥濃度センサで対応しようとする場合は頻繁に検知範囲の変更調整しなければならず、上記何れの場合も前記課題と相俟って実用化をより一層複雑で困難なものにしている。   Further, in any of the sludge concentration sensors, since the concentration sensor is set and adjusted to a concentration range in which the concentration sensor is used, the error of the detected value increases as the concentration sensor deviates from the concentration range. In the case of the target, the sludge concentration fluctuates over a wide range every time the sludge flows in. Therefore, in order to detect a wide range of concentrations accurately, for example, a plurality of sludge concentration sensors with different detection ranges can be used. When switching to a sludge concentration sensor with an appropriate detection range or using one sludge concentration sensor, the detection range must be frequently changed and adjusted. Together, it makes it more complex and difficult to put into practical use.

そこで、本発明方法では連続的に汚泥脱水処理を行わせるため、脱水対象となる汚泥の収容された汚泥貯留槽内から汚泥移送ポンプにより汚泥を移送して汚泥中継槽内へ一時貯留させ、該汚泥中継槽内で汚泥攪拌ポンプにより均一化された汚泥の濃度を濃度センサで計測してその計測値を制御盤の演算部へ送り制御用濃度値として認識させ、汚泥供給ポンプによって汚泥中継槽内から凝集混和槽内へ供給される汚泥の供給量を流量計で計測してその計測値を制御盤の演算部へ送り認識させ、凝集混和槽内に高分子凝集剤を注入して攪拌機により汚泥と混和攪拌させ、制御盤の演算部において認識された上記制御用濃度値および供給量に基づき算出された時間当りの汚泥固形物供給量を予め演算部の設定値として入力し、上記制御用濃度値から逆算して演算部で得られた汚泥の供給量および処理量の周波数を汚泥供給ポンプおよび汚泥脱水機の回転数を司るインバータに向けて出力し、該周波数に基づき汚泥供給ポンプおよび汚泥脱水機の回転数を制御することにより時間当りの汚泥固形物供給量が所定通り一定となるよう凝集混和槽経由で汚泥脱水機に供給され、汚泥を供給する凝集混和槽内の液位変動を該槽内に付設されている水位センサにより計測された信号を演算部に送り、該検出信号に基づいて演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて上記汚泥脱水機の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整されるよう汚泥供給ポンプおよび汚泥脱水機を運転制御させることを最も主要な特徴とする。   Therefore, in the method of the present invention, in order to continuously perform the sludge dewatering process, the sludge is transferred from the sludge storage tank containing the sludge to be dehydrated by the sludge transfer pump and temporarily stored in the sludge relay tank. The concentration of the sludge that has been made uniform by the sludge agitation pump in the sludge relay tank is measured by the concentration sensor, and the measured value is sent to the control unit of the control panel to be recognized as the concentration value for control. The amount of sludge supplied to the coagulation mixing tank is measured with a flow meter and the measured value is sent to the control unit of the control panel for recognition. The control sludge solids supply amount per hour calculated based on the control concentration value and the supply amount recognized in the control unit of the control panel is input in advance as a setting value of the calculation unit, and the control concentration From the value The frequency of the sludge supply amount and processing amount obtained by the calculation unit is output to the inverter that controls the rotation speed of the sludge supply pump and sludge dewatering machine, and the sludge supply pump and sludge dewatering machine are output based on the frequency. By controlling the rotation speed, the sludge solids supply amount per hour is supplied to the sludge dewatering machine via the coagulation mixing tank so that the amount of sludge solids supplied is constant as specified. The signal measured by the water level sensor attached to the control unit is sent to the calculation unit, and the control concentration value recognized by the calculation unit is corrected based on the detection signal. Based on the corrected control concentration value The main feature is that the sludge supply pump and the sludge dehydrator are operated and controlled so that the amount of sludge solids supplied to the dewatering capacity of the sludge dehydrator is automatically and optimally adjusted.

また、本発明装置では上記方法を使用して、脱水対象となる汚泥の収容された汚泥貯留槽と、汚泥脱水機へ供給する汚泥を一時貯留させるための汚泥中継槽と、汚泥貯留槽の汚泥を汚泥中継槽内へ移送させるための汚泥移送ポンプと、汚泥脱水機の下底部に堆積するリーク汚泥を汚泥中継槽内へドレン排出するためのドレン管と、該ドレン管を開閉するためのドレン弁と、汚泥中継槽内の汚泥濃度を均一化させるための汚泥攪拌ポンプと、汚泥中継槽内で均一化された汚泥の濃度を計測するための濃度センサと、汚泥中継槽内から後記凝集混和槽内ヘ汚泥を供給するための汚泥供給ポンプと、該汚泥供給ポンプによって供給される汚泥の供給量を計測するための流量計と、汚泥中継槽から汚泥脱水機へ供給される汚泥を収容して高分子凝集剤を混和させるための凝集混和槽と、該凝集混和槽内へ高分子凝集剤を注入するための高分子凝集剤注入ポンプと、凝集混和槽内において高分子凝集剤を汚泥に混和攪拌させるための攪拌機と、槽内の液位変動を検知する水位センサと、濃度センサおよび流量計による計測値に基づき汚泥脱水機への時間当りの汚泥固形物供給量を算出するための演算部を有する制御盤と、演算部からの出力信号をうけて汚泥供給ポンプおよび汚泥脱水機の回転数を司るインバータを備えたことを最も主要な特徴とする。   Further, in the apparatus of the present invention, the above method is used to store a sludge storage tank containing sludge to be dewatered, a sludge relay tank for temporarily storing sludge supplied to the sludge dewatering machine, and a sludge in the sludge storage tank. A sludge transfer pump for transferring the sludge into the sludge relay tank, a drain pipe for draining the leaked sludge accumulated at the bottom of the sludge dehydrator into the sludge relay tank, and a drain for opening and closing the drain pipe A valve, a sludge agitation pump for making the sludge concentration in the sludge relay tank uniform, a concentration sensor for measuring the concentration of the sludge homogenized in the sludge relay tank, and agglomeration and mixing described later from within the sludge relay tank Accommodates sludge supply pump for supplying sludge to the tank, a flow meter for measuring the amount of sludge supplied by the sludge supply pump, and sludge supplied from the sludge relay tank to the sludge dehydrator Polymer flocculant A coagulation mixing tank for mixing, a polymer coagulant injection pump for injecting the polymer coagulant into the coagulation mixing tank, and a stirrer for mixing and stirring the polymer coagulant with sludge in the coagulation mixing tank And a control panel having a calculation unit for calculating the amount of sludge solids supplied to the sludge dehydrator based on the measured value by the concentration sensor and the flow meter, and a water level sensor for detecting the liquid level fluctuation in the tank The main feature is that an inverter for controlling the number of revolutions of the sludge supply pump and sludge dehydrator is provided in response to the output signal from the arithmetic unit.

本発明によれば、性状の異なる各種の汚泥を脱水対象とし連続的に汚泥脱水処理を行わせる場合においても、各種汚泥濃度センサを用いることなく一種類で且一つの汚泥濃度センサだけで広範囲の汚泥濃度変動に対して該汚泥濃度センサで計測された計測値が適正に適宜補正されるので、流入汚泥濃度による急激な広範囲の濃度変動に対しても汚泥脱水機の脱水処理能力が自動的に最適に調整され、それに対して凝集混和槽から供給される汚泥固形物供給量も自動的に最適に調整させるので、装置自体を大型化することなく、しかも複雑な制御を必要とせずに装置置自体も複雑化することがないので製造コストも嵩むことなく、汚泥脱水機本来の性能を十分に発揮させることができるという利点がある。   According to the present invention, even when various types of sludge having different properties are to be dewatered and continuously subjected to sludge dewatering treatment, it is possible to use a single type of sludge concentration sensor and a wide range without using various sludge concentration sensors. The measurement value measured by the sludge concentration sensor is appropriately corrected as needed for sludge concentration fluctuations, so that the dewatering capacity of the sludge dewatering machine is automatically adjusted even for sudden wide-range concentration fluctuations due to inflow sludge concentration. The amount of sludge solids that is optimally adjusted and automatically supplied from the coagulation mixing tank is automatically adjusted optimally, so that the device can be installed without increasing the size of the device itself and without requiring complicated control. There is an advantage in that the original performance of the sludge dewatering machine can be sufficiently exhibited without increasing the manufacturing cost because it is not complicated.

脱水対象となる汚泥の収容された汚泥貯留槽内から汚泥移送ポンプにより汚泥を移送して汚泥中継槽内へ一時貯留させ、該汚泥中継槽内で汚泥攪拌ポンプにより均一化された汚泥の濃度を濃度センサで計測してその計測値を制御盤の演算部へ送り制御用濃度値として認識させ、汚泥供給ポンプによって汚泥中継槽内から凝集混和槽内へ供給される汚泥の供給量を流量計で計測してその計測値を制御盤の演算部へ送り認識させ、凝集混和槽内に高分子凝集剤を注入して攪拌機により汚泥と混和攪拌させ、制御盤の演算部において認識された上制御用濃度値および供給量に基づき算出された時間当りの汚泥固形物供給量を予め演算部の設定値として入力し、上記制御用濃度値から逆算して演算部で得られた汚泥の供給量および処理量の周波数を汚泥供給ポンプおよび汚泥脱水機の回転数を司るインバータに向けて出力し、該周波数に基づき汚泥供給ポンプおよび汚泥脱水機の回転数を制御することにより時間当りの汚泥固形物供給量が所定通り一定となるよう凝集混和槽経由で汚泥脱水機に供給させ、汚泥を供給する凝集混和槽内の液位変動を該槽内に付設されている水位センサにより計測された信号を演算部に送り、該検出信号に基づいて演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて上記汚泥脱水機の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整されるよう汚泥供給ポンプおよび汚泥脱水機を運転制御させる。   The sludge is transferred from the sludge storage tank containing the sludge to be dewatered by the sludge transfer pump, temporarily stored in the sludge relay tank, and the concentration of sludge homogenized by the sludge agitation pump in the sludge relay tank is set. The measured value is measured by the concentration sensor, and the measured value is sent to the control unit of the control panel to be recognized as the control concentration value.The amount of sludge supplied from the sludge relay tank to the coagulation mixing tank by the sludge supply pump is measured with a flow meter. The measured value is sent to the control unit of the control panel and recognized, and the polymer flocculant is injected into the coagulation mixing tank and mixed with the sludge by the stirrer. Sludge solids supply amount per hour calculated based on the concentration value and supply amount is input in advance as a set value of the calculation unit, and the sludge supply amount and processing obtained by the calculation unit by back-calculating from the above control concentration value Dirty quantity frequency Output to the inverter that controls the rotation speed of the supply pump and sludge dewatering machine, and control the rotation speed of the sludge supply pump and sludge dewatering machine based on the frequency, so that the amount of sludge solids supply per hour is constant as specified. The sludge dehydrator is supplied via a coagulation mixing tank so that the fluctuation of the liquid level in the coagulation mixing tank supplying the sludge is sent to the arithmetic unit by the signal measured by the water level sensor attached to the tank. The amount of sludge solids supplied to the dewatering capacity of the sludge dehydrator is corrected based on the control concentration value recognized by the arithmetic unit based on the signal, and based on the corrected control concentration value The sludge supply pump and sludge dehydrator are operated and controlled so as to be automatically adjusted optimally.

図1は本発明装置の構成を示すブロック図であり、1は汚泥を濾水と脱水ケーキに分離させるための汚泥脱水機、2は脱水対象となる汚泥の収容された汚泥貯留槽、3は汚泥脱水機1へ供給する汚泥を一時貯留させる小型の汚泥中継槽、4は汚泥貯留槽2内の汚泥を汚泥中継槽3内へ移送させるための汚泥移送ポンプ、5は夾雑物除去用のスクリーン、6は無機凝集剤注入ポンプであって、予め汚泥中継槽3内へ無機凝集剤を注入して汚泥をコロイド状の凝集状態としておく場合に使用する。18Pは汚泥脱水機の下底部に堆積するリーク汚泥を汚泥中継槽3内へドレン排出するためのドレン管、18Vはドレン管18Pを開閉するためのドレン弁である、7は汚泥中継槽3内の汚泥濃度を均一化させるための汚泥攪拌ポンプ、8は汚泥中継槽3内で均一化された汚泥の濃度を計測するための濃度センサ、20aは汚泥中継槽3内の液位変動を計測するための水位センサ、9は汚泥中継槽3内から後記凝集混和槽10内へ供給するための汚泥供給ポンプ、11は汚泥供給ポンプ9によって供給される汚泥の供給量を計測するための流量計であって、前記汚泥供給ポンプ9の吐出管路中に設けられる。10は汚泥中継槽3から汚泥脱水機1へ供給される汚泥を収容して高分子凝集剤を混和させるための凝集混和槽、12は凝集混和槽10内へ高分子凝集剤を注入するための高分子凝集剤注入ポンプ、13は溶解ユニット盤、14は凝集混和槽10内において高分子凝集剤を汚泥に混和攪拌させるための攪拌機であり、該凝集混和槽10内の液位変動を計測するための水位センサ20bを設けている。15は制御盤であって、濃度センサ8と流量計11および水位センサ20bによる計測値に基づき汚泥脱水機1への時間当りの汚泥固形物供給量を算出するための演算部16を有している。17aは演算部16からの出力信号を受けて汚泥供給ポンプ9の回転数を司るインバータであり、17bは演算部16からの出力信号を受けて汚泥脱水機1の回転数を司るインバータである。   FIG. 1 is a block diagram showing the configuration of the apparatus of the present invention, wherein 1 is a sludge dewatering machine for separating sludge into filtrate and dewatered cake, 2 is a sludge storage tank containing sludge to be dewatered, 3 A sludge relay tank for temporarily storing sludge supplied to the sludge dewatering machine 1, 4 is a sludge transfer pump for transferring sludge in the sludge storage tank 2 into the sludge relay tank 3, and 5 is a screen for removing contaminants. , 6 is an inorganic flocculant injection pump, which is used when the inorganic flocculant is injected into the sludge relay tank 3 in advance to make the sludge colloidal. 18P is a drain pipe for draining the leaked sludge accumulated at the bottom of the sludge dehydrator into the sludge relay tank 3, 18V is a drain valve for opening and closing the drain pipe 18P, and 7 is in the sludge relay tank 3. The sludge agitation pump for equalizing the sludge concentration in the sludge, 8 is a concentration sensor for measuring the concentration of the sludge homogenized in the sludge relay tank 3, and 20a measures the liquid level fluctuation in the sludge relay tank 3. A water level sensor 9 for supplying the sludge from the sludge relay tank 3 to the agglomeration mixing tank 10 described later, and 11 a flow meter for measuring the amount of sludge supplied by the sludge supply pump 9. And provided in the discharge pipe of the sludge supply pump 9. 10 is a coagulation mixing tank for containing the sludge supplied from the sludge relay tank 3 to the sludge dewatering machine 1 and mixing the polymer coagulant, and 12 is for injecting the polymer coagulant into the coagulation mixing tank 10. A polymer flocculant injection pump, 13 is a dissolution unit panel, and 14 is a stirrer for mixing and stirring the polymer flocculant into sludge in the flocculent mixing tank 10, and measures the liquid level fluctuation in the flocculent mixing tank 10. A water level sensor 20b is provided. Reference numeral 15 denotes a control panel having an arithmetic unit 16 for calculating the amount of sludge solids supplied per hour to the sludge dehydrator 1 based on the measured values by the concentration sensor 8, the flow meter 11 and the water level sensor 20b. Yes. 17a is an inverter that receives the output signal from the calculation unit 16 and controls the rotation speed of the sludge supply pump 9, and 17b is an inverter that receives the output signal from the calculation unit 16 and controls the rotation speed of the sludge dehydrator 1.

脱水対象となる汚泥の収容された汚泥貯留槽2内から汚泥移送ポンプ4により汚泥を移送して小型の汚泥中継槽3内へ一時貯留させ(必要があれば予め無機凝集剤を注入してコロイド状の凝集状態となし)、汚泥中継槽3内で汚泥攪拌ポンプ7により均一化された汚泥の濃度を濃度センサ8で計測してその計測値を制御盤15の演算部16へ送り制御用濃度値として認識させ、汚泥供給ポンプ9によって汚泥中継槽3内から凝集混和槽10内へ供給される汚泥の供給量を流量計11で計測してその計測値を制御盤15の演算部16へ送り認識させ、高分子凝集剤注入ポンプ12によって凝集混和槽10内に高分子凝集剤を注入して攪拌機14により汚泥と混和攪拌させ、制御盤15の演算部16において前記制御用濃度値および供給量に基づき算出された時間当りの汚泥固形物供給量を予め演算部16の設定値として入力するが、汚泥固形物供給量は下記の数式1により算出される。   The sludge is transferred from the sludge storage tank 2 containing the sludge to be dehydrated by the sludge transfer pump 4 and temporarily stored in the small sludge relay tank 3 (if necessary, an inorganic flocculant is injected in advance to colloid In the sludge relay tank 3, the concentration of sludge homogenized by the sludge agitation pump 7 is measured by the concentration sensor 8, and the measured value is sent to the calculation unit 16 of the control panel 15 for control concentration. The amount of sludge supplied to the coagulation mixing tank 10 from the sludge relay tank 3 by the sludge supply pump 9 is measured by the flow meter 11 and the measured value is sent to the calculation unit 16 of the control panel 15. The polymer coagulant is injected into the coagulation / mixing tank 10 by the polymer coagulant injection pump 12 and mixed with the sludge by the stirrer 14, and the control concentration value and supply amount are calculated in the calculation unit 16 of the control panel 15. Based on While entering the calculated sludge solids supply amount per time in advance as a set value of the arithmetic unit 16, the sludge solids supply amount is calculated by Equation 1 below.

Figure 0004785454
Figure 0004785454

そして前記制御用濃度値から逆算して演算部16で得られた汚泥供給量の周波数を汚泥供給ポンプ9の回転数を司るインバータ17aおよび汚泥脱水機1の回転数を司るインバータ17bに向けて出力し、該周波数に基づき汚泥供給ポンプ9および汚泥脱水機1の回転数を制御することにより時間当りの汚泥固形物供給量が所定通り一定となるよう凝集混和槽10経由で汚泥脱水機1に供給され、汚泥を供給する凝集混和槽10内の液位変動を該槽内に付設されている水位センサ20bにより計測された信号を演算部に送り、該検出信号に基づいて演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて上記汚泥脱水機1の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整されるよう汚泥供給ポンプ9および汚泥脱水機1を運転制御させる。つまり、認識された制御用濃度値が低いときは汚泥供給量が多くなり該汚泥供給量に対応した脱水処理能力に調整し、逆に高いときは汚泥供給量が少なくなり該汚泥供給量に対応した脱水処理能力に調整させるように、認識される制御用濃度値の変動に対応し汚泥供給量および処理量を可変として汚泥脱水機1への汚泥固形物供給量を一定に保持させようとするので、後述の従来のように汚泥脱水機の回転数を制御しない場合のような問題を生じることがない。   Then, the frequency of the sludge supply amount obtained by calculating backward from the control concentration value is output to the inverter 17a that controls the rotation speed of the sludge supply pump 9 and the inverter 17b that controls the rotation speed of the sludge dehydrator 1. The sludge supply pump 9 and the sludge dehydrator 1 are controlled based on the frequency to supply the sludge solids supply amount to the sludge dewaterer 1 via the coagulation / mixing tank 10 so that the amount of sludge solids per hour is constant as predetermined. The signal measured by the water level sensor 20b attached in the agglomeration and mixing tank 10 for supplying the sludge is sent to the arithmetic unit, and is recognized by the arithmetic unit based on the detection signal. The control sludge dewatering capacity of the sludge dewatering machine 1 is automatically and optimally adjusted based on the corrected control concentration value. Like Operation control of the sludge supply pump 9 and the sludge dehydrator 1 is performed. In other words, when the recognized control concentration value is low, the sludge supply amount increases and the dewatering capacity corresponding to the sludge supply amount is adjusted. Conversely, when the control concentration value is high, the sludge supply amount decreases and corresponds to the sludge supply amount. In order to adjust the dewatering capacity, the sludge supply amount and the processing amount are made variable in response to the recognized variation in the control concentration value so as to keep the sludge solid matter supply amount to the sludge dewatering machine 1 constant. Therefore, there is no problem as in the case where the rotational speed of the sludge dehydrator is not controlled as in the conventional case described later.

従来の汚泥脱水機では、本発明の図2および図3に示すスクリュー回転数の可変制御がされないので、使用されている濃度検知センサ8の検知範囲を下回る極端に濃度の低い汚泥が汚泥中継槽3内に供給された場合、該濃度センサ8により検知精度の悪い低濃度の検出信号が制御盤15の演算部16へ送られ、予め記憶させている前記式1により算出された汚泥供給量に該当する回転数の増速指令が該演算部16から汚泥供給ポンプ9の回転数を司るインバータ17aに送られることで該汚泥供給ポンプ9から多量の汚泥が急激に凝集混和槽10に供給されるのに対して高分子凝集剤注入ポンプ12から注入される高分子凝集剤量は増量されることなく当初の時間当りの汚泥固形物供給量時の設定値のままであるため、増量された供給汚泥に対して凝集剤の添加量が不足するので汚泥は凝集不良状態のまま凝集混和槽10から汚泥脱水機1のろ過処理能力を遥かに上回る多量の凝集不良汚泥が急激に供給されので、ろ過処理しきれない汚泥によって凝集混和槽10から汚泥脱水機1への供給管路が満干状態となり、凝集混和槽10内の水位センサ20bは頻繁に上限の満水検出信号を演算部16に送るので、該検出信号に基づいて演算部16では既認識された制御用濃度値の補正処理を行うと同時に汚泥供給ポンプ9に対して頻繁に停止指令が発せられるので、該汚泥供給ポンプ9は頻繁に発停を繰返しながら演算部16では制御用濃度値の加算補正処理が進行されるので汚泥供給ポンプ9からの汚泥供給量は前記式1に基づき次第に減少されながらやがて判定時間内における汚泥供給ポンプ9の発停回数が所定の判定発停回数と等しくなり、汚泥供給ポンプ9から供給される汚泥量は安定するが、その時点で認識されている制御用濃度値は汚泥中継槽3内の実際の汚泥濃度値よりも高く認識されているので、この場合は上記とは逆に凝集混和槽10に供給される汚泥量が少ないのに対して高分子凝集剤注入ポンプ12から注入される高分子凝集剤量は減量されることなく当初の時間当りの汚泥固形物供給量時の設定値のままであるため、減量された供給汚泥に対して凝集剤の添加量が過剰となるので汚泥は凝集不良状態のまま凝集混和槽10から汚泥脱水機1に供給される。上記凝集剤の添加量の不足および過剰の何れの場合ににおいても凝集不良状態の汚泥供給により汚泥脱水機1で脱水処理排出される汚泥は多量の水分を含む脱水効率の低い脱水ケーキとなるため、前記式1において当初の目標としている汚泥固形物供給量を得る事ができないという問題が生じる。   In the conventional sludge dewatering machine, the screw rotation speed shown in FIGS. 2 and 3 of the present invention is not variably controlled. Therefore, sludge with extremely low concentration below the detection range of the concentration detection sensor 8 used is a sludge relay tank. 3, a low-concentration detection signal with low detection accuracy is sent to the calculation unit 16 of the control panel 15 by the concentration sensor 8, and the sludge supply amount calculated by the above-described equation 1 is stored in advance. A speed increase command of the corresponding rotation speed is sent from the calculation unit 16 to the inverter 17a that controls the rotation speed of the sludge supply pump 9, whereby a large amount of sludge is rapidly supplied from the sludge supply pump 9 to the coagulation mixing tank 10. On the other hand, the amount of the polymer flocculant injected from the polymer flocculant injection pump 12 is not increased, but remains at the set value at the time of the sludge solids supply amount per hour, so that the increased supply To sludge Since the amount of flocculant added is insufficient, the sludge is agglomerated in a poorly coagulated state, and a large amount of poorly coagulated sludge far exceeding the filtration capacity of the sludge dehydrator 1 is rapidly supplied from the agglomeration mixing tank 10 and filtered. The supply line from the flocculation / mixing tank 10 to the sludge dehydrator 1 becomes completely dry due to sludge that cannot be removed, and the water level sensor 20b in the flocculation / mixing tank 10 frequently sends an upper limit full-water detection signal to the arithmetic unit 16, so that the detection Based on the signal, the computing unit 16 performs correction processing for the recognized control concentration value and simultaneously issues a stop command to the sludge supply pump 9, so that the sludge supply pump 9 frequently starts and stops. While the calculation unit 16 repeats the process of adding and correcting the concentration value for control, the sludge supply amount from the sludge supply pump 9 is gradually reduced based on the above-described equation 1 and eventually the sludge within the determination time. The number of start / stop times of the feed pump 9 becomes equal to the predetermined number of start / stop times, and the amount of sludge supplied from the sludge supply pump 9 is stabilized, but the control concentration value recognized at that time is the sludge relay tank 3 In this case, in contrast to the above, the amount of sludge supplied to the flocculation mixing tank 10 is small, whereas the amount is fed from the polymer flocculant injection pump 12. Since the amount of the polymer flocculant is not reduced and remains at the initial setting value of the sludge solids supply amount per hour, the amount of flocculant added becomes excessive with respect to the reduced amount of supplied sludge. Is supplied from the flocculation mixing tank 10 to the sludge dehydrator 1 in a state of poor flocculation. In any case where the addition amount of the flocculant is insufficient or excessive, the sludge discharged from the sludge dehydrator 1 by supplying sludge in a poorly coagulated state becomes a dehydrated cake containing a large amount of water and having a low dewatering efficiency. Thus, there arises a problem that it is not possible to obtain the sludge solids supply amount which is the initial target in the above formula 1.

また、前記とは逆に図2および図3に示すスクリュー回転数の可変制御をせずに濃度検知センサ8の検知範囲を上回る極端に濃度の高い汚泥が汚泥中継槽3内に供給された場合、該濃度センサ8により検知精度の悪い高濃度の検出信号が制御盤15の演算部16へ送られ、予め記憶させている前記式1により算出された汚泥供給量に該当する回転数の減速指令が該演算部16から汚泥供給ポンプ9の回転数を司るインバータ17aに送られることで、汚泥供給ポンプ9から凝集混和槽10に供給される汚泥量が激少されるのに対して高分子凝集剤注入ポンプ12から注入される高分子凝集剤量は減量されることなく当初の時間当りの汚泥固形物供給量時の設定値のままであるため、減量された供給汚泥に対して凝集剤の添加量が過剰となるので汚泥は凝集不良状態のまま凝集混和槽10から汚泥脱水機1のろ過処理能力を遥かに下回る少量の凝集不良汚泥が供給され即座にろ過処理されるので凝集混和槽10内の液位が急速に低下し、水位センサ20bは頻繁に下限の検出信号を演算部16に送るので、該検出信号に基づいて演算部16では既認識された制御用濃度値の補正処理を行うと同時に汚泥供給ポンプ9に対して頻繁に増速指令が発せられるので、該汚泥供給ポンプ9は頻繁に増速を繰返しながら演算部16では制御用濃度値の減算補正処理が進行されるので、汚泥供給ポンプ9からの汚泥供給量は前記式1に基づき次第に増量されながらやがて判定時間内における汚泥供給ポンプ9の発停回数が所定の判定発停回数と等しくなり、汚泥供給ポンプ9から供給される汚泥量は安定するが、その時点で認識されている制御用濃度値は汚泥中継槽3内の実際の汚泥濃度値よりも低く認識されているので、この場合は上記とは逆に凝集混和槽10に供給される汚泥量が多いのに対して高分子凝集剤注入ポンプ12から注入される高分子凝集剤量は増量されることなく当初の時間当りの汚泥固形物供給量時の設定値のままであるため、増量された供給汚泥に対して凝集剤の添加量が不足となるので汚泥は凝集不良状態のまま凝集混和槽10から汚泥脱水機1に供給される。上記凝集剤の添加量の過剰および不足の何れの場合ににおいても凝集不良状態の汚泥供給により汚泥脱水機1で脱水処理排出される汚泥は多量の水分を含む脱水効率の低い脱水ケーキとなるため、前記式1において当初の目標としている汚泥固形物供給量を得る事ができないという問題が生じる。   In contrast to the above, when sludge having an extremely high concentration exceeding the detection range of the concentration detection sensor 8 is supplied into the sludge relay tank 3 without performing variable control of the screw rotation speed shown in FIGS. The concentration sensor 8 sends a high-concentration detection signal with poor detection accuracy to the calculation unit 16 of the control panel 15, and a rotation speed reduction command corresponding to the sludge supply amount calculated by the equation 1 stored in advance. Is sent from the calculation unit 16 to the inverter 17a that controls the rotation speed of the sludge supply pump 9, so that the amount of sludge supplied from the sludge supply pump 9 to the agglomeration mixing tank 10 is reduced to a polymer agglomeration. The amount of the polymer flocculant injected from the agent injection pump 12 remains the set value at the time of the initial amount of sludge solids supplied per hour without being reduced. The amount of addition becomes excessive The sludge is supplied with a small amount of coagulation sludge that is far below the filtration capacity of the sludge dehydrator 1 from the coagulation / mixing tank 10 in the state of poor coagulation and immediately filtered, so the liquid level in the coagulation / mixing tank 10 is rapidly increased. Since the water level sensor 20b frequently sends a lower limit detection signal to the calculation unit 16, the calculation unit 16 corrects the control concentration value already recognized based on the detection signal, and at the same time, the sludge supply pump 9 Therefore, since the sludge supply pump 9 repeats speed increase frequently, the calculation unit 16 performs the subtraction correction processing of the control concentration value, so that the sludge supply pump 9 The amount of sludge supplied from the sludge supply pump 9 is increased while the sludge supply amount is gradually increased based on the above formula 1 and the number of times of start / stop of the sludge supply pump 9 within the determination time becomes equal to the predetermined number of start / stop times. Although stabilized, the control concentration value recognized at that time is recognized to be lower than the actual sludge concentration value in the sludge relay tank 3, and in this case, contrary to the above, supply to the coagulation mixing tank 10 The amount of the polymer flocculant injected from the polymer flocculant injection pump 12 is not increased, but the set value at the time of the initial amount of sludge solids supplied per hour is maintained without being increased. Therefore, since the amount of the flocculant added becomes insufficient with respect to the increased supply sludge, the sludge is supplied from the agglomeration mixing tank 10 to the sludge dehydrator 1 in a state of poor aggregation. In both cases where the addition amount of the flocculant is excessive or insufficient, the sludge discharged from the sludge dehydrator 1 by supplying sludge in a poorly aggregated state becomes a dehydrated cake containing a large amount of water and having a low dewatering efficiency. Thus, there arises a problem that it is not possible to obtain the sludge solids supply amount which is the initial target in the above formula 1.

図2は実施例1の汚泥脱水機における汚泥固形物供給量の調整方法を前提とした別実施例による発明方法の制御を示すフローチャートであり、予め制御盤15に演算部16の判定のための判定時間および判定時間における汚泥供給ポンプの判定発停回数を設定値として入力し、該設定値に基づいて凝集混和槽10内に設けられた水位センサ20bにより計測される液位変動に応じて汚泥供給ポンプを発停制御させると共に判定時間における汚泥供給ポンプの判定発停回数に応じて、演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて汚泥供給ポンプ9および汚泥脱水機1の回転数を制御させることにより汚泥脱水機1の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整させる。   FIG. 2 is a flowchart showing the control of the inventive method according to another embodiment based on the adjustment method of the sludge solids supply amount in the sludge dewatering machine according to the first embodiment. The judgment time and the judgment start / stop count of the sludge supply pump at the judgment time are input as a set value, and the sludge according to the liquid level fluctuation measured by the water level sensor 20b provided in the coagulation mixing tank 10 based on the set value. The supply pump is controlled to start and stop, and the control concentration value recognized by the calculation unit is corrected according to the number of times the sludge supply pump is determined to start and stop at the determination time. Based on the corrected control concentration value By controlling the rotation speeds of the sludge supply pump 9 and the sludge dewatering machine 1, the amount of sludge solids supplied to the dewatering capacity of the sludge dewatering machine 1 is automatically and optimally adjusted.

つまり、汚泥の性状の相違により実際に汚水に含有される汚泥固形物供給量と汚泥濃度センサ8で計測し認識された制御用濃度値に対する汚泥固形物供給量とが異なり、例えば実際に汚水に含有される汚泥固形物供給量が多い場合、本発明に使用される回転数に相当した定量性を有する脱水排出の汚泥脱水機1では所定の脱水機能力を上回る過剰供給のため、該汚泥脱水機1から溢れた未処理の過剰供給汚泥により凝集混和槽10内の液位が頻繁に上限の満水異常液位に達し、そのため凝集混和槽10内に付設の水位センサ20bの計測信号により汚泥供給ポンプ9は頻繁に発停が繰返されて、上記設定の判定時間における汚泥供給ポンプ9の判定発停回数を上回ることで現状認識の制御用濃度値が実際の汚泥濃度より低く認識されるので、予め加算補正濃度値として設定されたその値を現状認識の制御用濃度値に加算補正させて、補正後の新に認識された制御用濃度値を基に前記式1より補正後の汚泥供給量を算出させ、演算部16で得られた該汚泥供給量の周波数を汚泥供給ポンプ9の回転数を司るインバータ17aに向けて出力し回転数が下げられると同時にその時点おける汚泥脱水機1の処理量が適正か否かが判定され、適正処理量が適正と判定された場合は汚泥脱水機1は現状回転数を維持し、適正処理量が少ない(減)と判定された場合は汚泥脱水機1の回転数を司るインバータ17bに向けて増速指令を出力し回転数を増速し、逆に適正処理量が多い(増)と判定された場合は減速指令を出力し回転数を減速させて、上記何れの判定の場合においても該汚泥脱水機1への汚泥供給量が低減され、前記判定時間における汚泥供給ポンプの判定発停回数の判定が繰返され適宜認識されている制御用濃度値を補正させる。   That is, the sludge solids supply amount actually contained in the sewage differs from the sludge solids supply amount with respect to the control concentration value measured and recognized by the sludge concentration sensor 8 due to the difference in sludge properties. When the amount of sludge solids contained is large, the sludge dewatering machine 1 having a quantitative property corresponding to the rotational speed used in the present invention has an excess supply exceeding a predetermined dewatering function. The untreated excess supply sludge overflowing from the machine 1 frequently causes the liquid level in the flocculation mixing tank 10 to reach the upper limit abnormal liquid level, so that the sludge is supplied by the measurement signal of the water level sensor 20b provided in the flocculation mixing tank 10. Since the pump 9 is repeatedly started and stopped, and the control concentration value of the current recognition is recognized to be lower than the actual sludge concentration by exceeding the number of times of determination start and stop of the sludge supply pump 9 in the determination time set above, Therefore, the value set as the added correction concentration value is added and corrected to the control concentration value recognized in the current state, and the sludge supply amount after correction from the equation 1 based on the newly recognized control concentration value after correction. And the frequency of the sludge supply amount obtained by the calculation unit 16 is output to the inverter 17a that controls the rotation speed of the sludge supply pump 9, and the rotation speed is lowered. At the same time, the sludge dewatering machine 1 is processed. It is determined whether or not the amount is appropriate, and when it is determined that the proper processing amount is appropriate, the sludge dewatering machine 1 maintains the current rotation speed, and when it is determined that the appropriate processing amount is small (decrease), the sludge dewatering device The speed increase command is output to the inverter 17b that controls the rotation speed of 1 to increase the rotation speed. Conversely, when it is determined that the appropriate processing amount is large (increase), the deceleration command is output to reduce the rotation speed. In any of the above determinations, the sludge dewatering machine 1 Feed rate is reduced, the determination of the determination start-stop times of the sludge supply pump in the determined time to correct the control concentration values are appropriately recognized repeated.

また、逆に実際に汚水に含有される汚泥固形物供給量が少ない場合、汚泥脱水機1の脱水機能力を下回る過少供給のため、該汚泥脱水機1へ供給された汚泥は直ぐに脱水排出されるので、凝集混和槽10内の液位は上限の満水異常液位に達することがないので、汚泥供給ポンプ9は発停することなく連続運転され、上記設定の判定時間における汚泥供給ポンプ9の判定発停回数を下回ることで現状認識の制御用濃度値が実際の汚泥濃度より高く認識されたるので、予め加算補正濃度値として設定されたその値を現状認識の制御用濃度値に減算補正させて、補正後の新に認識された制御用濃度値を基に前記式1より補正後の汚泥供給量を算出させ、演算部16で得られた該汚泥供給量の周波数を汚泥供給ポンプ9の回転数を司るインバータ17aに向けて出力し回転数が上げられると同時にその時点おける汚泥脱水機1の処理量が適正か否かが判定され、適正処理量が適正と判定された場合は泥脱水機1は現状回転数を維持し、適正処理量が少ない(減)と判定された場合は汚泥脱水機1の回転数を司るインバータ17bに向けて増速指令を出力し回転数を増速し、逆に適正処理量が多い(増)と判定された場合は減速指令を出力し回転数を減速させて、上記何れの判定の場合においても該汚泥脱水機1への汚泥供給量が増加され、前記判定時間における汚泥供給ポンプの判定発停回数の判定が繰返され適宜認識されている制御用濃度値を補正させる。   Conversely, when the amount of sludge solids actually contained in the sewage is small, the sludge supplied to the sludge dehydrator 1 is immediately dehydrated and discharged because of an excessive supply below the dewatering function of the sludge dewaterer 1. Therefore, since the liquid level in the flocculation mixing tank 10 does not reach the upper limit full water abnormal liquid level, the sludge supply pump 9 is continuously operated without being started and stopped. Since the control concentration value for the current state recognition is recognized to be higher than the actual sludge concentration by falling below the determination start / stop count, the value set as the addition correction concentration value in advance is subtracted and corrected to the control concentration value for the current state recognition. Then, the corrected sludge supply amount is calculated from Equation 1 based on the newly recognized control concentration value after correction, and the frequency of the sludge supply amount obtained by the calculation unit 16 is calculated by the sludge supply pump 9. Inverter 17 for controlling the rotation speed At the same time as the rotation speed is increased, it is determined whether or not the amount of treatment of the sludge dewatering machine 1 at that time is appropriate. Is maintained, and when it is determined that the appropriate processing amount is small (decreased), a speed increase command is output to the inverter 17b that controls the rotation speed of the sludge dewatering machine 1, and the rotation speed is increased. When it is determined that there is a lot (increased), a deceleration command is output and the rotational speed is decelerated. In any of the above determinations, the sludge supply amount to the sludge dehydrator 1 is increased, and the sludge at the determination time is increased. The determination of the supply pump determination start / stop count is repeated, and the control concentration value recognized as appropriate is corrected.

なお、実際に汚水に含有される汚泥固形物供給量と認識された制御用濃度値に対する汚泥固形物供給量が同等の場合、上記設定の判定時間における汚泥供給ポンプ9の判定発停回数とが同一となるので、現状認識の制御用濃度値は補正されることなく汚泥供給ポンプ9および汚泥脱水機1を現状回転数で運転させる。したがって、認識される制御用濃度値の変動に対応し汚泥供給量および処理量を自動的に最適に可変調整して汚泥脱水機1への汚泥固形物供給量を一定に保持させようとするのである。   In addition, when the sludge solids supply amount with respect to the control concentration value recognized as the sludge solids supply amount actually contained in the sewage is equivalent, the determination start / stop count of the sludge supply pump 9 in the determination time of the above setting is Therefore, the sludge supply pump 9 and the sludge dewatering machine 1 are operated at the current rotation speed without correcting the control concentration value that is currently recognized. Accordingly, the sludge supply amount and the processing amount are automatically and optimally adjusted in response to the recognized variation in the control concentration value so as to keep the sludge solid matter supply amount to the sludge dewatering machine 1 constant. is there.

図3は実施例1の汚泥脱水機における汚泥固形物供給量の調整方法を前提とした別実施例による発明方法の制御を示すフローチャートであり、凝集混和槽10内に判定用の許容液位範囲を設定し、該槽10内に付設されている水位センサ20bにより計測された信号を演算部に送り、演算部では該検出信号に基づいて凝集混和槽10内の液位が該許容液位範囲内または上限以上或いは下限以下であるかを判定させて、その判定結果に応じて演算部16で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて汚泥供給ポンプ9および汚泥脱水機1の回転数を制御させることにより汚泥脱水機1の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整させる。   FIG. 3 is a flowchart showing the control of the inventive method according to another embodiment on the premise of the method for adjusting the sludge solids supply amount in the sludge dewatering machine of Embodiment 1, and the allowable liquid level range for determination in the coagulation mixing tank 10 And the signal measured by the water level sensor 20b provided in the tank 10 is sent to the calculation unit, and the calculation unit determines that the liquid level in the flocculation mixing tank 10 is within the allowable liquid level range based on the detection signal. The control concentration value recognized by the calculation unit 16 is corrected according to the determination result, and the sludge is based on the corrected control concentration value. By controlling the rotation speeds of the supply pump 9 and the sludge dewatering machine 1, the amount of sludge solids supplied to the dewatering capacity of the sludge dewatering machine 1 is automatically and optimally adjusted.

つまり、汚泥の性状の相違により実際に汚水に含有される汚泥固形物供給量と汚泥濃度センサ8で計測し認識された制御用濃度値に対する汚泥固形物供給量とが異なり、例えば実際に汚水に含有される汚泥固形物供給量が多い場合、本発明に使用される回転数に相当した定量性を有する脱水排出の汚泥脱水機1では所定の脱水機能力を上回る過剰供給のため、該汚泥脱水機1から溢れた未処理の過剰供給汚泥により凝集混和槽10内の液位が上限の満水異常液位に達し、そのため凝集混和槽10内に付設の水位センサ20bの計測信号により現状認識の制御用濃度値が実際の汚泥濃度より低く認識されるので、予め加算補正濃度値として設定されたその値を現状認識の制御用濃度値に加算補正させて、補正後の新に認識された制御用濃度値を基に前記式1より補正後の汚泥供給量を算出させ、演算部16で得られた該汚泥供給量の周波数を汚泥供給ポンプ9の回転数を司るインバータ17aに向けて出力し回転数が下げられると同時にその時点おける汚泥脱水機1の処理量が適正か否かが判定され、適正処理量が適正と判定された場合は泥脱水機1は現状回転数を維持し、適正処理量が少ない(減)と判定された場合は汚泥脱水機1の回転数を司るインバータ17bに向けて増速指令を出力し回転数を増速し、逆に適正処理量が多い(増)と判定された場合は減速指令を出力し回転数を減速させて、上記何れの判定の場合においても該汚泥脱水機1への汚泥供給量が低減され、前記凝集混和槽10内に判定用の許容液位範囲の判定が繰返され適宜認識されている制御用濃度値を補正させる。   That is, the sludge solids supply amount actually contained in the sewage differs from the sludge solids supply amount with respect to the control concentration value measured and recognized by the sludge concentration sensor 8 due to the difference in sludge properties. When the amount of sludge solids contained is large, the sludge dewatering machine 1 having a quantitative property corresponding to the rotational speed used in the present invention has an excess supply exceeding a predetermined dewatering function. The untreated excess supply sludge overflowing from the machine 1 causes the liquid level in the flocculation / mixing tank 10 to reach the upper limit abnormal liquid level, and therefore the recognition of the current state is controlled by the measurement signal of the water level sensor 20b provided in the flocculation / mixing tank 10. Since the concentration value for use is recognized to be lower than the actual sludge concentration, the value set in advance as the added correction concentration value is added and corrected to the control concentration value for current recognition. Concentration value Then, the corrected sludge supply amount is calculated from the above equation 1, and the frequency of the sludge supply amount obtained by the calculation unit 16 is output to the inverter 17a that controls the rotation speed of the sludge supply pump 9, thereby reducing the rotation speed. At the same time, it is determined whether or not the processing amount of the sludge dewatering machine 1 at that time is appropriate, and if it is determined that the appropriate processing amount is appropriate, the mud dewatering machine 1 maintains the current rotational speed and the appropriate processing amount is small ( (Decrease), if it is judged that the speed increase command is output to the inverter 17b that controls the rotation speed of the sludge dewatering machine 1 and the rotation speed is increased. Outputs a deceleration command and decelerates the rotational speed, so that the sludge supply amount to the sludge dewatering machine 1 is reduced in any of the above determinations, and the allowable liquid level range for determination is set in the coagulation mixing tank 10. Correct the density value for control that is repeatedly recognized and recognized as appropriate.

また、逆に実際に汚水に含有される汚泥固形物供給量が少ない場合、汚泥脱水機1の脱水機能力を下回る過少供給のため、該汚泥脱水機1へ供給された汚泥は直ちに脱水排出されるので、凝集混和槽10内の液位は下限異常液位に達し、そのため凝集混和槽10内に付設の水位センサ20bの計測信号により現状認識の制御用濃度値が実際の汚泥濃度より高く認識されるので、予め減算補正濃度値として設定されたその値を現状認識の制御用濃度値に減算補正させて、補正後の新に認識された制御用濃度値を基に前記式1より補正後の汚泥供給量を算出させ、演算部16で得られた該汚泥供給量の周波数を汚泥供給ポンプ9の回転数を司るインバータ17aに向けて出力し回転数が上げられると同時にその時点おける汚泥脱水機1の処理量が適正か否かが判定され、適正処理量が適正と判定された場合は泥脱水機1は現状回転数を維持し、適正処理量が少ない(減)と判定された場合は汚泥脱水機1の回転数を司るインバータ17bに向けて増速指令を出力し回転数を増速し、逆に適正処理量が多い(増)と判定された場合は減速指令を出力し回転数を減速させて、上記何れの判定の場合においても該汚泥脱水機1への汚泥供給量が増加され、前記凝集混和槽10内に判定用の許容液位範囲の判定が繰返され適宜認識されている制御用濃度値を補正させる。   Conversely, when the amount of sludge solids actually contained in the sewage is small, the sludge supplied to the sludge dehydrator 1 is immediately dehydrated and discharged due to an excessive supply below the dewatering function of the sludge dewaterer 1. Therefore, the liquid level in the flocculation / mixing tank 10 reaches the lower limit abnormal liquid level, and therefore the control concentration value for the current recognition is recognized to be higher than the actual sludge concentration by the measurement signal of the water level sensor 20b attached in the flocculation / mixing tank 10. Therefore, the value set in advance as the subtraction correction density value is subtracted and corrected to the current density control density value, and after the correction based on the newly recognized control density value after correction, the above-mentioned formula 1 Sludge supply amount is calculated, the frequency of the sludge supply amount obtained by the calculation unit 16 is output to the inverter 17a that controls the rotation speed of the sludge supply pump 9, and the rotation speed is increased. The processing amount of machine 1 is It is determined whether or not it is correct, and when it is determined that the proper processing amount is appropriate, the mud dewatering machine 1 maintains the current rotation speed, and when it is determined that the appropriate processing amount is small (decrease), the sludge dewatering machine 1 A speed increase command is output to the inverter 17b that controls the rotation speed to increase the rotation speed. Conversely, when it is determined that the appropriate processing amount is large (increase), a deceleration command is output to reduce the rotation speed, In any of the above determinations, the amount of sludge supplied to the sludge dehydrator 1 is increased, and the determination of the allowable liquid level range for determination is repeated in the agglomeration mixing tank 10, and the control concentration value is recognized as appropriate. To correct.

なお、実際に汚水に含有される汚泥固形物供給量と認識された制御用濃度値に対する汚泥固形物供給量が同等の場合、凝集混和槽10内の液位は許容液位範内であり、現状認識の制御用濃度値は補正されることなく汚泥供給ポンプ9および汚泥脱水機1を現状回転数で運転させる。したがって、認識される制御用濃度値汚泥濃度の変動に対応し汚泥供給量および処理量を自動的に最適に可変調整して汚泥脱水機1への汚泥固形物供給量を一定に保持させようとするのである。   In addition, when the sludge solid supply amount with respect to the control concentration value recognized as the sludge solid supply amount actually contained in the sewage is equivalent, the liquid level in the coagulation mixing tank 10 is within the allowable liquid level range, The sludge supply pump 9 and the sludge dewatering machine 1 are operated at the current rotation speed without correcting the control-concentration value that is currently recognized. Therefore, the sludge supply amount and the processing amount are automatically variably adjusted in response to the recognized fluctuation of the control concentration sludge concentration, and the sludge solid matter supply amount to the sludge dehydrator 1 is kept constant. To do.

本発明装置の構成図である。It is a block diagram of this invention apparatus. 本発明方法の一実施例による制御のフローチャートである。It is a flowchart of the control by one Example of this invention method. 本発明方法の別実施例による制御のフローチャートである。It is a flowchart of control by another Example of this invention method.

符号の説明Explanation of symbols

1 汚泥脱水機
2 汚泥貯留槽
3 汚泥中継槽
4 汚泥移送ポンプ
6 無機凝集剤注入ポンプ
7 汚泥攪拌ポンプ
8 濃度センサ
9 汚泥供給ポンプ
10 凝集混和槽
11 流量計
12 高分子凝集剤注入ポンプ
14 攪拌機
15 制御盤
16 演算部
17a 汚泥供給ポンプの回転数を司るインバータ
17b 汚泥脱水機の回転数を司るインバータ
18P ドレン管
18V ドレン弁
20b 水位センサ
DESCRIPTION OF SYMBOLS 1 Sludge dewatering machine 2 Sludge storage tank 3 Sludge relay tank 4 Sludge transfer pump 6 Inorganic flocculant injection pump 7 Sludge agitation pump 8 Concentration sensor 9 Sludge supply pump 10 Agglomeration mixing tank 11 Flowmeter 12 Polymer flocculant injection pump 14 Stirrer 15 Control panel 16 Arithmetic unit 17a Inverter 17b that controls the rotation speed of sludge supply pump Inverter 17b that controls the rotation speed of sludge dehydrator 18P Drain pipe 18V Drain valve 20b Water level sensor

Claims (4)

脱水対象となる汚泥の収容された汚泥貯留槽内から汚泥移送ポンプにより汚泥を移送して汚泥中継槽内へ一時貯留させ、該汚泥中継槽内で汚泥攪拌ポンプにより均一化された汚泥の濃度を濃度センサで計測してその計測値を制御盤の演算部へ送り制御用濃度値として認識させ、汚泥供給ポンプによって汚泥中継槽内から凝集混和槽内へ供給される汚泥の供給量を流量計で計測してその計測値を制御盤の演算部へ送り認識させ、凝集混和槽内に高分子凝集剤を注入して攪拌機により汚泥と混和攪拌させ、制御盤の演算部において認識された上記制御用濃度値および供給量に基づき算出された時間当りの汚泥固形物供給量を予め演算部の設定値として入力し、上記制御用濃度値から逆算して演算部で得られた汚泥の供給量および処理量の周波数を汚泥供給ポンプおよび汚泥脱水機の回転数を司るインバータに向けて出力し、該周波数に基づき汚泥供給ポンプおよび汚泥脱水機の回転数を制御することにより時間当りの汚泥固形物供給量が所定通り一定となるよう凝集混和槽経由で汚泥脱水機に供給させ、汚泥を供給する凝集混和槽内の液位変動を該槽内に付設されている水位センサにより計測された信号を演算部に送り、該検出信号に基づいて演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて上記汚泥脱水機の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整されるよう汚泥供給ポンプおよび汚泥脱水機を運転制御させることを特徴とした、汚泥脱水機における汚泥固形物供給量の調整方法。   The sludge is transferred from the sludge storage tank containing the sludge to be dewatered by the sludge transfer pump, temporarily stored in the sludge relay tank, and the concentration of sludge homogenized by the sludge agitation pump in the sludge relay tank is set. The measured value is measured by the concentration sensor, and the measured value is sent to the control unit of the control panel to be recognized as the control concentration value.The amount of sludge supplied from the sludge relay tank to the coagulation mixing tank by the sludge supply pump is measured with a flow meter. Measure and send the measured value to the control unit of the control panel, inject the polymer flocculant into the coagulation mixing tank, and mix and agitate with sludge using a stirrer. Sludge solids supply amount per hour calculated based on the concentration value and supply amount is input in advance as a set value of the calculation unit, and the sludge supply amount and processing obtained by the calculation unit by back-calculating from the above control concentration value The amount of frequency Output to the inverter that controls the rotation speed of the mud supply pump and sludge dewatering machine, and control the rotation speed of the sludge supply pump and sludge dewatering machine based on the frequency to keep the sludge solids supply amount per hour constant The sludge dehydrator is supplied via a coagulation and mixing tank so that the liquid level fluctuation in the coagulation and mixing tank supplying the sludge is sent to the arithmetic unit by a signal measured by a water level sensor attached to the tank, Supply sludge solids supplied to the dewatering capacity of the sludge dehydrator based on the corrected control density value based on the corrected control density value based on the detection signal. A method for adjusting a sludge solids supply amount in a sludge dewatering machine, wherein the sludge feed pump and the sludge dewatering machine are operated and controlled so that the amount is automatically and optimally adjusted. 予め制御盤に演算部の判定のための判定時間および判定時間における汚泥供給ポンプの判定発停回数を設定値として入力し、該設定値に基づいて凝集混和槽内に設けられた水位センサにより計測される液位変動の信号に応じて汚泥供給ポンプを発停制御させると共に判定時間における汚泥供給ポンプの判定発停回数に応じて、演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて汚泥供給ポンプおよび汚泥脱水機の回転数を制御させることにより汚泥脱水機の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整させることを特徴とする、請求項1記載の汚泥脱水機における汚泥固形物供給量の調整方法。   The judgment time for judgment of the calculation part and the number of times of judgment start / stop of the sludge supply pump at the judgment time are inputted as a set value in the control panel in advance, and measured by a water level sensor provided in the coagulation mixing tank based on the set value The sludge supply pump is controlled to start and stop according to the liquid level fluctuation signal, and the control concentration value recognized by the calculation unit is corrected according to the number of times the sludge supply pump is determined and stopped at the determination time. By automatically controlling the rotation speed of the sludge supply pump and sludge dehydrator based on the corrected control concentration value, the amount of sludge solids supplied automatically is optimized for the dewatering capacity of the sludge dewaterer. The method for adjusting a sludge solids supply amount in a sludge dewatering machine according to claim 1, wherein adjustment is performed. 凝集混和槽内に判定用の許容液位範囲を設定し、該槽内に付設されている水位センサにより計測された信号を演算部に送り、演算部では該検出信号に基づいて凝集混和槽内の液位が該許容液位範囲内または上限以上或いは下限以下であるかを判定させて、その判定結果に応じて演算部で認識されている制御用濃度値の補正処理を行い、補正後の制御用濃度値に基づいて汚泥供給ポンプおよび汚泥脱水機の回転数を制御させることにより汚泥脱水機の脱水処理能力に対して供給される汚泥固形物供給量を自動的に最適に調整させることを特徴とする、請求項1記載の汚泥脱水機における汚泥固形物供給量の調整方法。   An allowable liquid level range for determination is set in the coagulation mixing tank, and a signal measured by a water level sensor attached in the tank is sent to the calculation unit. The liquid level is determined to be within the allowable liquid level range, above the upper limit, or below the lower limit, and the control concentration value recognized by the calculation unit is corrected according to the determination result, By controlling the rotation speed of the sludge supply pump and sludge dewatering machine based on the control concentration value, the amount of sludge solids supplied to the dewatering capacity of the sludge dewatering machine can be adjusted automatically and optimally. The method for adjusting the amount of sludge solids supplied in the sludge dewatering machine according to claim 1, wherein 汚泥を濾水と脱水ケーキに分離させるための汚泥脱水機において、脱水対象となる汚泥の収容された汚泥貯留槽と、汚泥脱水機へ供給する汚泥を一時貯留させるための汚泥中継槽と、汚泥貯留槽の汚泥を汚泥中継槽内へ移送させるための汚泥移送ポンプと、汚泥脱水機の下底部に堆積するリーク汚泥を汚泥中継槽内へドレン排出するためのドレン管と、該ドレン管を開閉するためのドレン弁と、汚泥中継槽内の汚泥濃度を均一化させるための汚泥攪拌ポンプと、汚泥中継槽内で均一化された汚泥の濃度を計測するための濃度センサと、汚泥中継槽内から後記凝集混和槽内ヘ汚泥を供給するための汚泥供給ポンプと、該汚泥供給ポンプによって供給される汚泥の供給量を計測するための流量計と、汚泥中継槽から汚泥脱水機へ供給される汚泥を収容して高分子凝集剤を混和させるための凝集混和槽と、該凝集混和槽内へ高分子凝集剤を注入するための高分子凝集剤注入ポンプと、凝集混和槽内において高分子凝集剤を汚泥に混和攪拌させるための攪拌機と、凝集混和槽内の液位変動を検知する水位センサと、濃度センサおよび流量計による計測値に基づき汚泥脱水機への時間当りの汚泥固形物供給量を算出するための演算部を有する制御盤と、演算部からの出力信号をうけて汚泥供給ポンプおよび汚泥脱水機の回転数を司るインバータを備えたことを特徴とする、汚泥脱水機における汚泥固形物供給量の調整装置。   In a sludge dewatering machine for separating sludge into filtered water and dewatered cake, a sludge storage tank containing sludge to be dewatered, a sludge relay tank for temporarily storing sludge supplied to the sludge dewatering machine, and sludge Sludge transfer pump for transferring sludge from the storage tank into the sludge relay tank, drain pipe for draining the sludge accumulated at the bottom of the sludge dewatering machine into the sludge relay tank, and opening and closing the drain pipe A drain valve, a sludge agitation pump for homogenizing the sludge concentration in the sludge relay tank, a concentration sensor for measuring the concentration of the sludge homogenized in the sludge relay tank, and the sludge relay tank To the sludge supply pump for supplying sludge to the coagulation mixing tank, a flow meter for measuring the amount of sludge supplied by the sludge supply pump, and a sludge relay tank for supply to the sludge dehydrator Sludge A coagulation / mixing tank for mixing the polymer coagulant, a polymer coagulant injection pump for injecting the polymer coagulant into the coagulation / mixing tank, and a polymer coagulant in the coagulation / mixing tank. Calculate the amount of sludge solids supplied per hour to the sludge dehydrator based on the agitator for mixing and stirring the sludge, the water level sensor for detecting fluctuations in the liquid level in the coagulation mixing tank, and the concentration sensor and flow meter. Sludge solids supply in a sludge dewatering machine, comprising a control panel having a computing unit for performing the operation and an inverter that controls the rotation speed of the sludge supply pump and sludge dewatering machine in response to an output signal from the computing part Quantity adjustment device.
JP2005220596A 2005-07-29 2005-07-29 Method and apparatus for adjusting sludge solids supply in sludge dewatering machine Active JP4785454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220596A JP4785454B2 (en) 2005-07-29 2005-07-29 Method and apparatus for adjusting sludge solids supply in sludge dewatering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220596A JP4785454B2 (en) 2005-07-29 2005-07-29 Method and apparatus for adjusting sludge solids supply in sludge dewatering machine

Publications (2)

Publication Number Publication Date
JP2007029922A JP2007029922A (en) 2007-02-08
JP4785454B2 true JP4785454B2 (en) 2011-10-05

Family

ID=37789818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220596A Active JP4785454B2 (en) 2005-07-29 2005-07-29 Method and apparatus for adjusting sludge solids supply in sludge dewatering machine

Country Status (1)

Country Link
JP (1) JP4785454B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776101B2 (en) * 2016-11-18 2020-10-28 株式会社鶴見製作所 Solid-liquid separator
JP6988282B2 (en) * 2017-09-04 2022-01-05 株式会社鶴見製作所 Solid-liquid separator
JP6395199B1 (en) * 2018-03-16 2018-09-26 株式会社ピーシーエス Methane fermentation digestion treatment method and methane fermentation digestion treatment system
KR102459341B1 (en) * 2020-12-18 2022-10-28 한국수자원공사 Belt press type dehydrator including FLOC cohesion control apparatus and FLOC cohesion control method thereof
CN118529909A (en) * 2024-07-01 2024-08-23 嘉兴新嘉爱斯热电有限公司 Sludge drying control method and device and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164100U (en) * 1980-05-09 1981-12-05
JP3168608B2 (en) * 1991-06-19 2001-05-21 東京都 Sludge treatment equipment
JP4166623B2 (en) * 2003-05-26 2008-10-15 株式会社鶴見製作所 Method and apparatus for adjusting sludge solids supply in sludge dewatering machine

Also Published As

Publication number Publication date
JP2007029922A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4427798B2 (en) Operation control method and operation control device for differential speed rotary concentrator
JP4496489B2 (en) Method for controlling raw sludge supply amount of dehydrator and its control device
US9682872B2 (en) Wastewater treatment system
JP4785454B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
MX2010002482A (en) Wastewater treatment system.
KR101645540B1 (en) Method for feeding coagulant for water-purification and apparatus for water-purification using the same
JP2009220085A (en) Method for controlling water content to constant in screw press and device for controlling water content to constant
JP4485392B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP6139349B2 (en) Water treatment system
JP4238983B2 (en) Flocculant injection control method and control apparatus therefor
JP2007222814A (en) Flocculant injection volume control method and control controller
JP4651458B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP5240232B2 (en) Control system and control device
JPWO2016006419A1 (en) Aggregation method and apparatus
JP4166623B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP4166624B2 (en) Method and apparatus for supplying flocculant in sludge dewatering machine
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPH06327907A (en) Flocculation controller
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP3967462B2 (en) Flocculant injection amount determination device
JP2012030158A (en) Concentrated sludge dehydration system and control method therefor
JP2960309B2 (en) Sludge treatment equipment
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
JP2003047805A (en) Water treatment apparatus and apparatus for adjusting quantity of flocculant to be added
JP3057983B2 (en) Control device for belt press dehydrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160722

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250