JPH10202013A - Method for controlling water purifying and flocculating treatment - Google Patents

Method for controlling water purifying and flocculating treatment

Info

Publication number
JPH10202013A
JPH10202013A JP906397A JP906397A JPH10202013A JP H10202013 A JPH10202013 A JP H10202013A JP 906397 A JP906397 A JP 906397A JP 906397 A JP906397 A JP 906397A JP H10202013 A JPH10202013 A JP H10202013A
Authority
JP
Japan
Prior art keywords
floc
particle size
flocs
pond
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP906397A
Other languages
Japanese (ja)
Inventor
Tokio Oodo
時喜雄 大戸
Kohei Inoue
公平 井上
Kenichi Kurotani
憲一 黒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP906397A priority Critical patent/JPH10202013A/en
Publication of JPH10202013A publication Critical patent/JPH10202013A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the stable flocculation treatment with high accuracy in spite of addition of disturbance, such as turbidity increase, by adjusting the rate of the flocculating agent to be injected to raw water and correcting the average grain size of flocs, thereby controlling the concn. of the number of the flocs in the settled and treated water overflowing in a sedimentation basin to a specified concn. SOLUTION: Light transmission type sensors 60 for measuring a floc grain size distribution are disposed in the outlet of a rapid mix basin and the outlet 59 of a flocculating basin. The signals of one or both of the light transmission type sensor 60 are processed in a conversion section 61. The outputs of the light transmission type sensor 60 are converted to absorbance (the logarithm of the inverse number of light transmittance), by which the concn. of the number of the flocs is calculated. A flocculation control arithmetic section 63 includes a flocculating agent injecting machine 52 among the flocculating agent injecting machine 52, a flush mixer 53 and a flocculator 55 and sends a control signal by selecting their operation sections. The section executes feedback control so as to attain the corrected set value of the floc grain size from the relation between the concn. of the number of the flocs and the average floc grain size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は浄水場において原
水中の不純物を凝集、沈澱、濾過によって固液分離する
凝集処理の制御方法に係り、特に沈澱処理水中のフロッ
ク個数濃度を定値制御する制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling coagulation treatment in which impurities in raw water are separated into solid and liquid by coagulation, sedimentation and filtration in a water purification plant, and more particularly to a control method for controlling the concentration of flocs in a sedimentation treatment water at a constant value. About.

【0002】[0002]

【従来の技術】原水中には浮遊懸濁物質,細菌,有機物
質等が存在し、これらは凝集剤を注入して凝集、沈澱、
濾過の方法により取り除かれる。図4は従来の凝集沈殿
プロセスの一例を示す模式図である。河川,湖沼などの
原水50は図示されない着水井を経て急速混和池51に
流入する。急速混和池51では、凝集剤注入機52によ
り凝集剤が原水中に添加され、フラッシュミキサー53
により均一に急速混和されて原水中の懸濁質や溶存成分
と凝集剤が結合し微小フロックが形成される。この微小
フロックは次のフロック形成池54においてフロッキュ
レータ55によって緩速攪拌されることによって、フロ
ック間の衝突,合体を繰返し成長する。フロック形成池
54で大きく成長したフロックは、フロック形成池出口
59を介して次の沈殿池56で沈殿し、沈殿池出口57
では沈澱処理水58が得られる。
2. Description of the Related Art Raw water contains suspended suspended solids, bacteria, organic substances, and the like.
It is removed by a method of filtration. FIG. 4 is a schematic view showing an example of a conventional coagulation precipitation process. Raw water 50 such as a river or a lake flows into a rapid mixing pond 51 via a landing well (not shown). In the rapid mixing pond 51, the flocculant is added to the raw water by the flocculant injector 52, and the flash mixer 53 is used.
And the flocculant is combined with the suspended solids and dissolved components in the raw water to form fine flocs. The minute flocs are slowly stirred by the flocculator 55 in the next floc forming pond 54, so that collisions and coalescence between the flocs grow repeatedly. The floc that has grown greatly in the floc formation pond 54 precipitates in the next sedimentation pond 56 via the floc formation pond outlet 59, and the sedimentation pond outlet 57.
Thus, precipitation treated water 58 is obtained.

【0003】この過程で重要なことはフロック形成池5
4を経て成長したフロックが、沈殿池56内で沈降可能
な大きさと密度を有し、沈殿池出口57の処理水濁度が
適切な値となっていることである。沈殿池における固液
分離の原理はフロックの沈降による。フロックの沈降速
度は次のストークスの式(1)で表される。
The important thing in this process is that the floc formation pond 5
The floc that has grown through 4 has a size and density that can be settled in the sedimentation basin 56, and the treated water turbidity at the sedimentation basin outlet 57 has an appropriate value. The principle of solid-liquid separation in the sedimentation basin is by floc sedimentation. The floc sedimentation velocity is expressed by the following Stokes equation (1).

【0004】[0004]

【数1】 ここでvはフロック沈降速度(m/s )、gは重力加速度
(m/s2)、ρe はフロックの水中有効密度(kg/m3 )、
μは粘性係数(kg/m/s)、Dはフロック粒径(m)であ
る。この式で示されるように沈降速度はフロック粒径の
二乗に比例する。
(Equation 1) Where v is the floc sedimentation velocity (m / s), g is the gravitational acceleration (m / s 2 ), ρ e is the effective density of floc in water (kg / m 3 ),
μ is the viscosity coefficient (kg / m / s), and D is the floc particle size (m). As shown by this equation, the sedimentation velocity is proportional to the square of the floc particle size.

【0005】図5は従来の横流式沈澱池の液体流れを示
す模式図である。横流式沈殿池は横方向に流れている。
その除去性能は流入量Qと沈殿池の面積Aで決まり、式
(2)で表される表面負荷率V0 とフロックの沈降速度
vによって決められる。
FIG. 5 is a schematic view showing a liquid flow in a conventional cross-flow settling basin. The horizontal flow sedimentation basin flows in the horizontal direction.
The removal performance is determined by the inflow amount Q and the area A of the sedimentation basin, and is determined by the surface load factor V 0 and the floc sedimentation velocity v expressed by the equation (2).

【0006】[0006]

【数2】 ここでフロック沈降速度v<V0 であれば除去率はv/
0 となる。v≧V0の場合は除去率は100%である。こ
のような理想流を仮定した横流式沈殿池は稀であり実際
は傾斜板や中間取水トラフなど、除去率を向上させるた
めの様々な工夫が施されている。しかし基本的にはフロ
ック形成池出口でのフロック粒径分布が処理水の濁度を
決定していることは明らかである。
(Equation 2) Here, if the floc sedimentation velocity v <V 0 , the removal rate is v /
V 0 . When v ≧ V 0 , the removal rate is 100%. Such a crossflow type sedimentation basin assuming an ideal flow is rare, and in fact, various measures have been taken to improve the removal rate, such as an inclined plate and an intermediate intake trough. However, it is apparent that basically the floc particle size distribution at the outlet of the floc formation pond determines the turbidity of the treated water.

【0007】原水の水質変動に対応して処理水濁度を良
好に維持するための操作量には、凝集剤注入率(原水流
入量に対する比率),急速混和池の攪拌強度,フロック
形成池の攪拌強度が考えられる。このうち攪拌強度はそ
れぞれの池で適当な回転数を固定して運転されているの
が普通で、処理水水質を決める主たる操作量は凝集剤の
注入率である。
The manipulated variables for maintaining the treated water turbidity satisfactorily in response to fluctuations in the quality of the raw water include the coagulant injection rate (ratio to the raw water inflow rate), the stirring intensity of the rapid mixing pond, and the floc formation pond. Stirring strength is considered. Of these, the stirring intensity is usually operated at a fixed rotation speed in each pond, and the main operation amount that determines the quality of the treated water is the injection rate of the flocculant.

【0008】凝集剤の注入率を決める従来の方法は以下
の通りである。 方法(1):処理すべき原水を試料としてビーカーなど
の容器に一定量ずつ複数採取し、それぞれの試料液に注
入率を変えて凝集剤を注入する。所定の攪拌後に静置し
上澄み液の濁度を測定して最適な凝集剤の注入率を決定
する(ジャーテスト)。
A conventional method for determining the coagulant injection rate is as follows. Method (1): A plurality of raw water to be treated are sampled as a sample into a container such as a beaker, and a coagulant is injected into each sample solution at a different injection rate. After a predetermined stirring, the mixture is allowed to stand, and the turbidity of the supernatant is measured to determine the optimal coagulant injection rate (jar test).

【0009】方法(2) :沈澱処理後の濁度を計測し、
濁度が設定値に一致するように凝集剤の注入率を制御す
る。 方法(3):濁度などの原水水質を説明変数として、上
記ジャーテストによる経験的な注入率式を作成し、注入
率式に基づいて凝集剤を注入する。 方法(4):方法(3)に加えフロック形成状態に対す
るオペレータの認識および注入率式の切替や補正をオペ
レータの手動制御に近づけるようにファジー制御,ニュ
ーロ,エキスパート制御などを用いて適正な注入率を決
定する。 方法(5):方法(4)におけるオペレータの認識の代
わりにフロック形成池54のオンライン画像情報に基づ
き算出された平均フロック粒径を用いる。
Method (2): The turbidity after the precipitation treatment is measured,
The coagulant injection rate is controlled so that the turbidity matches the set value. Method (3): Using the raw water quality such as turbidity as an explanatory variable, an empirical injection rate equation is created by the above jar test, and a coagulant is injected based on the injection rate equation. Method (4): In addition to method (3), an appropriate injection rate using fuzzy control, neuro, expert control, etc., so that the operator recognizes the state of floc formation and switches and corrects the injection rate formula close to manual control by the operator. To determine. Method (5): The average floc particle size calculated based on the online image information of the floc forming reservoir 54 is used instead of the operator's recognition in the method (4).

【0010】方法(6):急速混和池の微小フロックの
平均粒径を光透過式のセンサによりオンライン計測し、
このフロック平均粒径を一定に保つように内部モデルに
よる予測制御を行って操作量としての凝集剤の注入率を
設定する(特開平7―112103号公報)。図6は従
来の制御装置を示す模式図である。急速混和池出口付近
に光透過式センサ60とセンサからの出力に基づいてフ
ロック平均粒径を計算する変換部61を設け、この両者
からなる凝集センサ62と、凝集センサ62からの出力
に基いて凝集剤の注入率を計算し制御する凝集制御演算
部63を備える。このような凝集センサ62は、例えば
特開平4―001558号公報「液体中に含まれる複数
成分の凝集過程を検出する方法とその装置」に開示され
ている。
Method (6): The average particle size of the fine flocs in the rapid mixing pond is measured online by a light transmission type sensor,
Predictive control is performed by an internal model so as to keep the average particle size of the floc constant, and the injection rate of the flocculant as an operation amount is set (Japanese Patent Laid-Open No. 7-112103). FIG. 6 is a schematic diagram showing a conventional control device. A light transmission sensor 60 and a conversion unit 61 for calculating the average floc size based on the output from the sensor are provided near the rapid mixing pond outlet, and an agglutination sensor 62 composed of both components is provided. A coagulation control calculator 63 for calculating and controlling the coagulant injection rate is provided. Such an agglutination sensor 62 is disclosed, for example, in Japanese Patent Application Laid-Open No. 4-001558, entitled "Method and Apparatus for Detecting Aggregation Processes of Multiple Components Contained in Liquid".

【0011】[0011]

【発明が解決しようとする課題】しかしながら、方法
(1)はテストに長時間を要し、降雨開始時のように原
水濁度が急激に変化する場合には間に合わない場合が多
く、原水水質の変化を天候情報などから予測して、凝集
剤の注入率を予め高く設定する恣意的な要素が避けられ
ない。また実際のプロセスとは異なる形状の容器や攪拌
強度でテストするために実際のプロセスに適用するため
の補正に経験と勘が必要である。これは方法(3)にお
いても同様な問題がある。
However, the method (1) requires a long time for the test, and in many cases, when the turbidity of the raw water suddenly changes, such as at the start of rainfall, it cannot be completed in time. The arbitrary factor of estimating the change from weather information or the like and setting the injection rate of the coagulant high in advance is inevitable. In addition, experience and intuition are necessary for correction to be applied to an actual process in order to test with a container having a different shape or stirring intensity from the actual process. This has a similar problem in the method (3).

【0012】方法(2)は操作入力である凝集剤注入か
ら制御出力である沈殿池処理水の濁度検出までの無駄時
間が通常1 時間以上あり、安定で良好な制御は不可能で
ある。方法(3)は前述の通りフロック形成状態を人間
が目視で監視する必要があり、また方法(4)は本質的
にオペレータの介在が必要であるために、いづれも全自
動化はできない。
In the method (2), a waste time from the injection of the coagulant, which is an operation input, to the detection of the turbidity of the treated water of the sedimentation basin, which is the control output, is usually 1 hour or more, and stable and good control is impossible. As described above, the method (3) requires the human to visually monitor the state of floc formation, and the method (4) cannot be fully automated, because the method essentially requires the intervention of an operator.

【0013】方法(5)は人間の目視部分を画像処理装
置に置き換えるので全自動化が可能となる。しかし操作
量である凝集剤注入からフロック形成池までの時間遅れ
(水が到達するのに要する時間および滞留時間)が数1
0分あり、単にある時点でのフロック粒径の大小を凝集
剤注入率に反映させるだけでは、何らかの急激な変動が
生じた場合に安定で精度の高い制御は不可能である。
In the method (5), a human visual portion is replaced with an image processing device, so that it can be fully automated. However, the time delay from the injection of the coagulant, which is the operation amount, to the floc formation pond (the time required for the water to reach and the residence time) is as follows:
There is 0 minute, and simply reflecting the size of the floc particle size at a certain point in the coagulant injection rate does not allow stable and accurate control in the case of any sudden fluctuation.

【0014】方法(6)は微小フロックの平均粒径を一
定値に制御する。図7は急速混和池での濁度上昇前の微
小フロック粒径分布曲線1とフロック形成池での濁度上
昇前の成長フロック粒径分布曲線2を示す線図である。
Dは粒径である。急速混和池の微小フロック平均径は数
10μm程度であり、フロック形成池における成長フロ
ックの平均フロック径は数100μm〜数mmに達し、
その最大成長倍率はフロック形成池の攪拌強度によって
決まる。従って攪拌強度が一定の場合には、フロック形
成池出口の成長フロックの粒径は、初期フロック即ち急
速混和池出口の微小フロック粒径に比例する。このため
にフロック形成池内で成長するフロックの粒径分布は、
ほぼ一定に保たれ沈殿池での濁度除去率も一定となる。
In the method (6), the average particle size of the fine flocks is controlled to a constant value. FIG. 7 is a diagram showing a fine floc particle size distribution curve 1 before turbidity rise in a rapid mixing pond and a growth floc particle size distribution curve 2 before turbidity rise in a floc formation pond.
D is the particle size. The average diameter of the micro flocs of the rapid mixing pond is about several tens of μm, and the average floc diameter of the growing flocs in the floc forming ponds reaches several hundred μm to several mm,
The maximum growth rate is determined by the stirring intensity of the floc formation pond. Therefore, when the stirring intensity is constant, the particle size of the grown floc at the outlet of the floc forming pond is proportional to the initial floc, that is, the fine floc particle size at the outlet of the rapid mixing pond. For this reason, the particle size distribution of floc growing in the floc formation pond is
It is kept almost constant and the turbidity removal rate in the sedimentation basin is also constant.

【0015】図8は濁度上昇前の微小フロック粒径分布
曲線1,濁度上昇前の成長フロック粒径分布曲線2,濁
度上昇後の微小フロック粒径分布曲線3,濁度上昇後の
成長フロック粒径分布曲線4を示す線図である。急速混
和池においてはフロックの平均粒径は一定となるように
制御されており且つ凝集剤注入率の変化はフロック粒径
分布の標準偏差に影響を与えないから、原水の濁度上昇
に伴う分布の変化は相似的であり各粒径の存在比率は変
化しない。また前述した通りフロックの最大成長倍率は
フロック形成池の緩速攪拌強度によって決定されるため
に、急速混和池のフロック平均粒径に変化がなければフ
ロック形成池においてもフロック平均粒径に変化はな
く、標準偏差も変化しない。従って原水濁度上昇に伴う
フロック形成池のフロック粒径分布の変化は急速混和池
と同様に相似的である。
FIG. 8 shows a fine floc particle size distribution curve before turbidity rise 1, a growth floc particle size distribution curve before turbidity rise 2, a fine floc particle size distribution curve after turbidity rise 3, and FIG. 4 is a diagram showing a growth floc particle size distribution curve 4; In the rapid mixing pond, the average particle size of the floc is controlled to be constant, and the change in the flocculant injection rate does not affect the standard deviation of the floc particle size distribution. Is similar, and the ratio of each particle size does not change. Also, as described above, the maximum growth rate of the floc is determined by the slow stirring intensity of the floc formation pond, so if there is no change in the floc average particle size of the rapid mixing pond, the change in the floc average particle size also occurs in the floc formation pond. And the standard deviation does not change. Therefore, the change of the floc particle size distribution of the floc formation pond due to the increase of the raw water turbidity is similar to the rapid mixing pond.

【0016】このために原水の濁度が上昇する場合には
急速混和池の平均粒径とフロック形成池の平均粒径は一
定であるが微小フロックの個数濃度と成長フロックの個
数濃度はそれぞれ上昇する。このようにして沈澱池で沈
降の不十分な粒径の小さなフロックの個数濃度が上昇し
沈澱処理水の濁度が上昇する。図9はフロック形成池に
おける濁度上昇前の成長フロック粒径分布曲線2と濁度
上昇後の成長フロック粒径分布曲線4を沈澱池を溢流す
るフロックの領域とともに示す線図である。
For this reason, when the turbidity of the raw water increases, the average particle diameter of the rapid mixing pond and the average particle diameter of the floc forming pond are constant, but the number concentration of minute flocs and the number concentration of growing flocs increase respectively. I do. In this manner, the number concentration of small flocs having a particle size that is insufficiently settled in the sedimentation basin increases, and the turbidity of the settling water increases. FIG. 9 is a diagram showing the growth floc particle size distribution curve 2 before the turbidity rise and the growth floc particle size distribution curve 4 after the turbidity rise in the floc formation pond together with the area of the floc overflowing the sedimentation basin.

【0017】粒径範囲0ないしDX (表面負荷率V0
対応する)のフロックが沈澱池を溢流するものとする
と、濁度上昇後においては溢流するフロック個数濃度は
領域5と領域6の合計されたフロック個数濃度となる。
濁度上昇前は溢流するフロック個数濃度は領域5である
から溢流する個数濃度は増大する。この発明は上述の点
に鑑みてなされその目的は、従来方法(6)の改良を行
って、濁度上昇等の外乱が加わっても安定且つ高精度の
凝集処理が可能な浄水処理の凝集処理制御方法を提供す
ることにある。
Assuming that the flocs having a particle size range of 0 to D X (corresponding to the surface load factor V 0 ) overflow the sedimentation basin, the number concentration of the overflowing flocs after the turbidity rises is region 5 and region 5. 6 is the total floc number concentration.
Before the turbidity rises, the number concentration of the overflowing flocs is in the region 5, so that the number concentration of the overflowing flocs increases. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to improve the conventional method (6) to perform a coagulation treatment of a water purification treatment capable of performing a stable and highly accurate coagulation treatment even when disturbance such as an increase in turbidity is applied. It is to provide a control method.

【0018】[0018]

【課題を解決するための手段】上述の目的はこの発明に
よれば急速混和池内で原水に凝集剤を注入するとともに
急速攪拌して微小フロックを形成し、次段のフロック形
成池内で緩速攪拌して前記微小フロックを成長させ、最
終段の沈澱池内で固液分離する浄水凝集処理の制御方法
において、原水に対する凝集剤注入率の調節を含む調節
動作を行って、フロックの個数濃度によって所定の関係
で補正された平均フロック粒径を制御量としてフィード
バック制御し、沈澱池を溢流する沈澱処理水中のフロッ
ク個数濃度を一定に制御することにより達成される。
SUMMARY OF THE INVENTION According to the present invention, a flocculant is injected into raw water in a rapid mixing pond and rapidly stirred to form minute flocs, and then slowly stirred in a next stage floc forming pond. In the control method of the water purification coagulation treatment in which the fine flocs are grown and solid-liquid separated in the final stage sedimentation basin, an adjusting operation including an adjustment of a coagulant injection rate to raw water is performed, and a predetermined operation is performed according to the number concentration of the flocs. This is achieved by performing feedback control using the average floc particle diameter corrected in the relation as a control amount, and controlling the floc number concentration in the sedimentation treatment water overflowing the sedimentation basin to be constant.

【0019】上述の発明において平均粒径の補正は急速
混和池内の微小フロック平均粒径の補正であること、ま
たは急速混和池内の微小フロック平均粒径とフロック形
成池内の成長フロック平均粒径の補正であることが有効
である。急速混和池内の微小フロック平均粒径またはフ
ロック形成池内の成長フロック平均粒径はそれぞれ急速
混和池とフロック形成池の出口におけるフロック平均粒
径を指す。
In the above invention, the correction of the average particle diameter is correction of the average particle diameter of the fine floc in the rapid mixing pond, or the correction of the average particle diameter of the fine floc in the rapid mixing tank and the average particle diameter of the grown floc in the floc forming pond. Is effective. The average particle size of the fine floc in the rapid mixing pond or the average particle size of the grown floc in the floc forming pond refers to the average floc particle size at the outlet of the rapid mixing pond and the floc forming pond, respectively.

【0020】図1は濁度上昇後における沈澱池を溢流す
るフロックの個数濃度の成長フロック平均粒径依存性を
説明する線図である。実線2はフロック形成池での濁度
上昇前の成長フロック粒径分布曲線である。実線4は濁
度上昇後の成長フロック粒径分布曲線である。実線7は
粒径分布を補正した濁度上昇後の成長フロック粒径分布
曲線である。成長フロック平均粒径を補正する調節動作
を行うと、濁度上昇前と濁度上昇後の成長フロックの粒
径範囲0ないしDX におけるフロック個数濃度が殆ど一
致するようになる。
FIG. 1 is a diagram for explaining the dependence of the number concentration of flocs overflowing the sedimentation basin after the turbidity rise on the average particle size of the grown flocs. Solid line 2 is a growth floc particle size distribution curve before turbidity rise in the floc formation pond. The solid line 4 is a growth floc particle size distribution curve after turbidity rise. The solid line 7 is a growth floc particle size distribution curve after turbidity rise corrected for the particle size distribution. Doing adjustment operation for correcting the growing floc average particle size, to no particle size range 0 growth flocs after turbidity rose before turbidity increases so that flock number concentration in the D X coincides almost.

【0021】フロック形成池での成長フロック平均粒径
は急速混和池の微小フロック平均粒径に比例する。同様
にフロックの個数濃度についても両池の関係は比例関係
にある。従ってフロック形成池の成長フロック平均粒径
は、急速混和池内の微小フロック平均粒径と個数濃度を
用いても補正される。微小フロック平均粒径の補正は急
速混和池前段の薬注率とフラッシュミキサーを用いて応
答性の速い調節動作を行う。成長フロック平均粒径の補
正はフロック形成池内のフロッキュレータを用いて応答
性の速い調節動作を行う。
The average particle size of the grown floc in the floc forming pond is proportional to the average fine floc particle size of the rapid mixing pond. Similarly, the relationship between the two ponds is proportional to the number concentration of flocs. Therefore, the growth floc average particle size of the floc formation pond is also corrected by using the fine floc average particle size and the number concentration in the rapid mixing pond. For the correction of the average particle size of the fine floc, a quick response adjustment operation is performed using the chemical injection rate and the flash mixer in front of the rapid mixing pond. For the correction of the average particle size of the grown floc, a quick responsive adjustment operation is performed using a flocculator in the floc formation pond.

【0022】[0022]

【発明の実施の形態】フロック粒径範囲0ないしDX
フロック個数濃度をV f,粒径範囲0ないし無限大の全フ
ロック個数濃度をV ftとするとき、フロック個数濃度V
f は式(3)で表され、フロック粒径D(mm)は対数正規
分布に従う。
DETAILED DESCRIPTION OF THE INVENTION floc particle size range 0 to D X floc number concentration of V f, when the total floc number concentration in the size range 0 to infinity and V ft, flock number concentration V
f is represented by equation (3), and the floc particle size D (mm) follows a lognormal distribution.

【0023】[0023]

【数3】 ここでσはフロック粒径Dの幾何標準偏差、D m は幾何
平均粒径である。濁度上昇後のフロック粒径分布曲線4
の分布を対数正規分布N(logD1,log2σ)、フロック全個
数濃度をV f1とし、平均粒径を補正した濁度上昇後のフ
ロック粒径分布曲線7の分布をN(logD2,log2σ) 、フロ
ック全個数濃度をV f2とする。このとき、logD1 、logD
2 、V f1、V f2の関係は、二つの粒径分布でフロック粒
径範囲0ないしD X のフロック個数濃度V f を一定とし
て、対数正規分布の密度関数を用いて式(4)で表され
る。
(Equation 3) Here, σ is the geometric standard deviation of the floc particle size D, and Dm is the geometric average particle size. Floc particle size distribution curve 4 after turbidity rise
Is the log-normal distribution N (logD 1 , log 2 σ), the total number concentration of flocs is V f1, and the distribution of the floc particle size distribution curve 7 after the turbidity rise corrected for the average particle size is N (logD 2 , log 2 σ), and the total number concentration of flocs is V f2 . At this time, logD 1 , logD
Table formula (4) with 2, the relationship of V f1, V f2 is to no floc size range 0 in two particle size distributions as constant floc number concentration V f of D X, the density function of the lognormal distribution Is done.

【0024】[0024]

【数4】 D1=50μm、幾何標準偏差σを10μmとして、フロック
個数濃度倍率(V f2/V f1)を10、50、100 、500 に変
化させ、log (D2/D1 )とフロック個数濃度倍率(V f2
/V f1)の関係を数値解析的に求めた。図2は幾何平均
粒径の比の対数log (D2/D1 )とフロック個数濃度倍率
(V f2/V f1)の関係を示す線図である。
(Equation 4) Assuming that D 1 = 50 μm and the geometric standard deviation σ is 10 μm, the floc number concentration magnification (V f2 / V f1 ) is changed to 10, 50, 100 and 500, and the log (D 2 / D 1 ) and the floc number concentration magnification ( V f2
/ V f1 ) was obtained by numerical analysis. FIG. 2 is a graph showing the relationship between the logarithm log (D 2 / D 1 ) of the ratio of the geometric average particle diameter and the floc number concentration ratio (V f2 / V f1 ).

【0025】log (D2/D1 )はフロック個数濃度倍率
(V f2/V f1)の対数と直線関係になる。さらに処理水
の流入,流出のない閉じた系では個数濃度V f はフロッ
ク平均粒径D m の3乗に反比例することを考慮すると、
幾何平均粒径の比(D2/D1 )は、前記したフロック個数
濃度倍率(V f2/V f1)を用いて以下の式(5)で表さ
れる。
The log (D 2 / D 1 ) has a linear relationship with the logarithm of the floc number concentration ratio (V f2 / V f1 ). Furthermore, considering that the number concentration V f is inversely proportional to the cube of the average floc size D m in a closed system without inflow and outflow of treated water,
The ratio of the geometric average particle diameter (D 2 / D 1 ) is expressed by the following equation (5) using the above-mentioned floc number concentration magnification (V f2 / V f1 ).

【0026】[0026]

【数5】 ここでCは比例定数、αはべき数(1〜1/3)であ
り、凝集処理装置の動特性により決まる定数である。上
記した図5の関係においてはCは1.2であり、αは
0.72である。沈澱池を溢流するフロック個数濃度を
定値に制御するために、上記した式(5)に系の比例係
数とべき数αを適用し、フロック個数濃度倍率(V f2/V
f1)に対応して、フロックの平均粒径をD1からD2に補正
する。フロック平均粒径は急速混和池やフロック形成池
における平均粒径である。フロック平均粒径の補正は凝
集剤注入機の凝集剤注入率,フラッシュミキサーの急速
攪拌強度またはフロッキュレーターの緩速攪拌強度を調
節して行う。操作量の調節はフィードバック制御により
行われる。
(Equation 5) Here, C is a proportional constant, and α is a power number (1 to 1/3), which is a constant determined by the dynamic characteristics of the coagulation apparatus. In the relationship shown in FIG. 5, C is 1.2 and α is 0.72. In order to control the number concentration of flocs overflowing the sedimentation basin to a constant value, the proportional coefficient of the system and the exponent α are applied to the above equation (5), and the number concentration ratio of flocs (V f2 / V
corresponding to f1), to correct the average particle size of flocs from D 1 to D 2. The floc average particle size is the average particle size in a rapid mixing pond or a floc forming pond. The average floc size is corrected by adjusting the coagulant injection rate of the coagulant injection machine, the rapid stirring intensity of the flash mixer, or the slow stirring intensity of the flocculator. The operation amount is adjusted by feedback control.

【0027】急速混和池における微小フロック平均粒径
を補正するときは、凝集剤注入率を調節し,あるいは凝
集剤注入率およびフラッシュミキサー急速攪拌強度の両
方を調節する。フロック形成池における成長フロック平
均粒径を補正するときは、凝集剤注入率とフロッキュレ
ータ緩速攪拌強度の両方を調節する。また微小フロック
と成長フロック両者の平均粒径を補正するときは、凝集
剤注入率を調節し,あるいは凝集剤注入率およびフラッ
シュミキサー急速攪拌強度の両方を調節して微小フロッ
ク平均粒径を補正し、フロッキュレータ緩速攪拌強度を
調節して成長フロック平均粒径を補正する。
When correcting the average particle size of the fine floc in the rapid mixing pond, the coagulant injection rate is adjusted, or both the coagulant injection rate and the flash mixer rapid stirring intensity are adjusted. When correcting the average particle size of the grown floc in the floc formation pond, both the coagulant injection rate and the flocculator slow stirring intensity are adjusted. When correcting the average particle size of both the fine floc and the grown floc, adjust the coagulant injection rate, or adjust both the coagulant injection rate and the flash mixer rapid stirring intensity to correct the fine floc average particle size. The average particle size of the grown floc is corrected by adjusting the flocculator slow stirring intensity.

【0028】図3はこの発明の実施に係る凝集処理装置
を制御系と共に示す模式図である。フロック粒径分布を
測定するための光透過式センサ60が急速混和池の出口
およびフロック形成池の出口に設けられ、一方または両
方の光透過式センサ60の信号が変換部61で処理され
る。光透過式センサ60の出力は、吸光度(光透過率の
逆数の対数)に変換されフロック個数濃度が算出され
る。凝集制御演算部63は、凝集剤注入機52,フラッ
シュミキサー53,フロッキュレーター55のうち、凝
集剤注入機を含んでこれら操作部を選択して調節信号を
送り、前述のフロック個数濃度と平均フロック粒径の関
係からフロック粒径の補正された設定値に等しくなるよ
うにフィードバック制御を行う。
FIG. 3 is a schematic diagram showing the coagulation apparatus according to the embodiment of the present invention together with a control system. Light transmitting sensors 60 for measuring the floc particle size distribution are provided at the outlet of the rapid mixing pond and the outlet of the floc forming pond, and the signal of one or both light transmitting sensors 60 is processed by the conversion unit 61. The output of the light transmission sensor 60 is converted into absorbance (the logarithm of the reciprocal of the light transmittance), and the floc number concentration is calculated. The coagulation control calculation unit 63 selects the operation unit including the coagulant injection machine out of the coagulant injection machine 52, the flash mixer 53, and the flocculator 55, and sends an adjustment signal to the above-mentioned floc number concentration and average floc. Feedback control is performed so as to be equal to the corrected set value of the floc particle size from the relationship of the particle size.

【0029】前述したようにフロックの最大成長フロッ
ク粒径は攪拌強度で決まる。攪拌強度は平均速度勾配G
値で表され、以下の式(6)で与えられる。
As described above, the maximum growth floc particle size of the floc is determined by the stirring intensity. Stirring intensity is average speed gradient G
It is represented by a value and is given by the following equation (6).

【0030】[0030]

【数6】 ここでε0 は攪拌翼のエネルギー逸散率(W/m3 ・s)、μ
は水の粘性係数(Pa)である。丹保らは攪拌強度(G 値)
と最大フロック成長径の間に反比例の関係があることを
示している(丹保,渡辺「フロキュレータの合理的設計
指針(V)−設計法とフロキュレータの機能評価」水道
協会雑誌 457 号pp14-27 昭和47年10月)。従ってフロ
ック平均粒径は凝集剤注入率に加えて攪拌強度により補
正できる。例えば凝集剤注入点から遠いフロック形成池
の成長フロック平均粒径の補正に適用できる。即ちフロ
ック形成池での成長フロック平均粒径の補正は主として
緩速攪拌強度の調節により行い、急速混和池でのフロッ
ク平均粒径の補正は凝集剤注入率等の調節により行うこ
とができる。
(Equation 6) Here, ε 0 is the energy dissipation rate of the stirring blade (W / m 3 · s) , μ
Is the viscosity coefficient of water (Pa). Tanbo et al. Stirring intensity (G value)
(Nanbo, Watanabe, "Rational Design Guidelines for Flocculators (V)-Design Method and Functional Evaluation of Flocculators," Water Works Association Magazine No. 457 pp14-) 27 October 1972). Therefore, the average floc particle size can be corrected by the stirring intensity in addition to the coagulant injection rate. For example, the present invention can be applied to the correction of the average particle size of the grown floc in the floc forming pond far from the coagulant injection point. That is, the correction of the average particle size of the grown floc in the floc formation basin can be mainly performed by adjusting the slow stirring intensity, and the correction of the average particle size of the floc in the rapid mixing basin can be performed by adjusting the coagulant injection rate or the like.

【0031】[0031]

【発明の効果】この発明によれば、原水に対する凝集剤
注入率の調節を含む調節動作を行ってフロックの個数濃
度によって制御量である平均粒径の設定値を補正し、沈
澱池を溢流する沈澱処理水中のフロック個数濃度を一定
に制御するので、原水の濁度上昇等の外乱が加わった場
合においても安定した凝集処理の自動制御が可能となり
沈殿処理水水質を良好に維持できる。
According to the present invention, the set value of the average particle diameter, which is a control amount, is corrected by the number concentration of flocs by performing the adjusting operation including the adjustment of the coagulant injection rate to the raw water, and the sedimentation basin overflows. Since the floc number concentration in the sedimentation treated water is controlled to be constant, stable automatic control of the coagulation treatment is possible even when disturbance such as an increase in the turbidity of the raw water is attained, and the quality of the sedimentation treated water can be favorably maintained.

【0032】また急速混和池の操作部を調節して急速混
和池内の微小フロック平均粒径を補正したり、あるいは
急速混和池の操作部を調節して微小フロック平均粒径を
補正するとともにフロック形成池のフロッキュレーター
緩速攪拌強度を調節して成長フロック平均粒径を補正す
る場合には、制御の応答性が高まり、凝集処理における
高精度の自動制御が可能となる。
Also, the operating portion of the rapid mixing pond is adjusted to correct the average particle size of the fine floc in the rapid mixing pond, or the operating portion of the rapid mixing pond is adjusted to correct the average fine particle size of the floc and form floc. When the flocculator slow agitation intensity of the pond is adjusted to correct the average particle size of the grown floc, the responsiveness of the control is increased, and high-precision automatic control in the coagulation process becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】濁度上昇後における沈澱池を溢流するフロック
個数濃度の成長フロック平均粒径依存性を説明する線図
FIG. 1 is a diagram for explaining the dependence of the number concentration of flocs overflowing a sedimentation basin after a rise in turbidity on the average particle size of grown flocs.

【図2】幾何平均粒径の比の対数log (D2/D1 )とフロ
ック個数濃度倍率(V f2/V f1)の関係を示す線図
FIG. 2 is a diagram showing the relationship between the logarithmic log (D 2 / D 1 ) of the ratio of the geometric mean particle size and the floc number concentration magnification (V f2 / V f1 ).

【図3】この発明の実施に係る凝集処理装置を制御系と
共に示す模式図
FIG. 3 is a schematic diagram showing the coagulation processing apparatus according to the embodiment of the present invention together with a control system.

【図4】従来の凝集沈殿プロセスの一例を示す模式図FIG. 4 is a schematic view showing an example of a conventional coagulation-sedimentation process.

【図5】従来の横流式沈澱池の液体流れを示す模式図FIG. 5 is a schematic view showing a liquid flow in a conventional cross-flow settling pond.

【図6】従来の制御装置を示す模式図FIG. 6 is a schematic diagram showing a conventional control device.

【図7】急速混和池での濁度上昇前の微小フロック粒径
分布曲線1とフロック形成池での濁度上昇前の成長フロ
ック粒径分布曲線2を示す線図
FIG. 7 is a diagram showing a fine floc particle size distribution curve 1 before turbidity rise in a rapid mixing pond and a growth floc particle size distribution curve 2 before turbidity rise in a floc formation pond.

【図8】濁度上昇前の微小フロック粒径分布曲線1,濁
度上昇前の成長フロック粒径分布曲線2,濁度上昇後の
微小フロック粒径分布曲線3,濁度上昇後の成長フロッ
ク粒径分布曲線4を示す線図
FIG. 8: Fine floc particle size distribution curve before turbidity rise, growth floc particle size distribution curve before turbidity rise, fine floc particle size distribution curve after turbidity rise, growth floc after turbidity rise Diagram showing particle size distribution curve 4

【図9】フロック形成池における濁度上昇前の成長フロ
ック粒径分布曲線2と濁度上昇後の成長フロック粒径分
布曲線4を沈澱池を溢流するフロック領域とともに示す
線図
FIG. 9 is a diagram showing a growth floc particle size distribution curve 2 before turbidity increase and a growth floc particle size distribution curve 4 after turbidity increase in a floc formation pond together with a floc region overflowing the sedimentation basin.

【符号の説明】[Explanation of symbols]

1 濁度上昇前の微小フロック粒径分布曲線 2 濁度上昇前の成長フロック粒径分布曲線 3 濁度上昇後の微小フロック粒径分布曲線 4 濁度上昇後の成長フロック粒径分布曲線 7 平均粒径を補正した濁度上昇後の成長フロック粒
径分布曲線 50 原水 51 急速混和池 52 凝集剤注入機 53 フラッシュミキサー 54 フロック形成池 55 フロッキュレーター 56 沈殿池 57 沈殿池出口 58 沈澱処理水 59 フロック形成池出口
1 Fine floc particle size distribution curve before turbidity rise 2 Growth floc particle size distribution curve before turbidity rise 3 Fine floc particle size distribution curve after turbidity rise 4 Growth floc particle size distribution curve after turbidity rise 7 Average Growth floc particle size distribution curve after turbidity rise corrected for particle size 50 Raw water 51 Rapid mixing pond 52 Flocculant injection machine 53 Flash mixer 54 Floc forming pond 55 Flocculator 56 Settling pond 57 Precipitating pond outlet 58 Precipitated treated water 59 Floc Formation pond exit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】急速混和池内で原水に凝集剤を注入すると
ともに急速攪拌して微小フロックを形成し、次段のフロ
ック形成池内で緩速攪拌して前記微小フロックを成長さ
せ、最終段の沈澱池内で固液分離する浄水凝集処理の制
御方法において、原水に対する凝集剤注入率の調節を含
む調節動作を行ってフロックの個数濃度によって所定の
関係で補正された平均フロック粒径を制御量としてフィ
ードバック制御し、沈澱池を溢流する沈澱処理水中のフ
ロック個数濃度を一定に制御することを特徴とする浄水
凝集処理の制御方法。
1. A flocculant is injected into raw water in a rapid mixing pond and rapidly stirred to form minute flocs, and then slowly stirred in a floc forming pond of the next stage to grow the minute flocs and settle in the final stage. In the control method of water purification coagulation treatment of solid-liquid separation in the pond, the average floc particle diameter corrected in a predetermined relationship by the number concentration of flocs is performed as a control amount by performing the adjusting operation including the adjustment of the coagulant injection rate to the raw water. A method for controlling a water purification coagulation treatment, comprising: controlling the concentration of flocs in the sedimentation treatment water overflowing the sedimentation basin.
【請求項2】平均フロック粒径の補正は急速混和池内の
微小フロック平均粒径の補正である請求項1に記載の浄
水凝集処理の制御方法。
2. The method according to claim 1, wherein the correction of the average floc particle diameter is a correction of the fine floc average particle diameter in the rapid mixing pond.
【請求項3】平均フロック粒径の補正は急速混和池内の
微小フロック平均粒径とフロック形成池内の成長フロッ
ク平均粒径の補正である請求項1に記載の浄水凝集処理
の制御方法。
3. The method according to claim 1, wherein the correction of the average floc particle diameter is a correction of the fine floc average particle diameter in the rapid mixing pond and the growth floc average particle diameter in the floc formation pond.
JP906397A 1997-01-22 1997-01-22 Method for controlling water purifying and flocculating treatment Withdrawn JPH10202013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP906397A JPH10202013A (en) 1997-01-22 1997-01-22 Method for controlling water purifying and flocculating treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP906397A JPH10202013A (en) 1997-01-22 1997-01-22 Method for controlling water purifying and flocculating treatment

Publications (1)

Publication Number Publication Date
JPH10202013A true JPH10202013A (en) 1998-08-04

Family

ID=11710165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP906397A Withdrawn JPH10202013A (en) 1997-01-22 1997-01-22 Method for controlling water purifying and flocculating treatment

Country Status (1)

Country Link
JP (1) JPH10202013A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020116A3 (en) * 2000-09-06 2002-12-12 Stockhausen Chem Fab Gmbh Device and method for particle agglomeration
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2006000715A (en) * 2004-06-15 2006-01-05 Japan Organo Co Ltd Equipment and method for flocculation precipitation treatment
WO2007035981A1 (en) * 2005-09-28 2007-04-05 Jason Ian Nathaniel Beath Contaminated water treatment process
CN100427175C (en) * 2005-07-27 2008-10-22 株式会社日立制作所 Device and method for controlling infusion of flocculating agent
JP2011005463A (en) * 2009-06-29 2011-01-13 Hitachi Ltd Flocculant injection control system
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2012040536A (en) * 2010-08-23 2012-03-01 Hitachi Plant Technologies Ltd Flocculation-magnetic separation system
JP2014065030A (en) * 2012-09-05 2014-04-17 Metawater Co Ltd Water processing control method, and water processing control device
WO2015151140A1 (en) * 2014-03-31 2015-10-08 メタウォーター株式会社 Water treatment system
JP2020037072A (en) * 2018-09-03 2020-03-12 株式会社東芝 Water treatment apparatus and water treatment method
CN112777710A (en) * 2021-01-13 2021-05-11 廖婧 Automatic recovery unit of copper-containing waste water
CN115140918A (en) * 2022-08-30 2022-10-04 聊城集众环保科技有限公司 Efficient control method for sewage treatment
RU2781007C1 (en) * 2021-11-16 2022-10-05 Илья Анатольевич Мехнецов Method for coagulation of pollution of natural and wastewater and a device for implementing this method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020116A3 (en) * 2000-09-06 2002-12-12 Stockhausen Chem Fab Gmbh Device and method for particle agglomeration
JP2005193204A (en) * 2004-01-09 2005-07-21 Kurita Water Ind Ltd Water treatment system
JP2006000715A (en) * 2004-06-15 2006-01-05 Japan Organo Co Ltd Equipment and method for flocculation precipitation treatment
CN100427175C (en) * 2005-07-27 2008-10-22 株式会社日立制作所 Device and method for controlling infusion of flocculating agent
WO2007035981A1 (en) * 2005-09-28 2007-04-05 Jason Ian Nathaniel Beath Contaminated water treatment process
JP2011005463A (en) * 2009-06-29 2011-01-13 Hitachi Ltd Flocculant injection control system
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2012040536A (en) * 2010-08-23 2012-03-01 Hitachi Plant Technologies Ltd Flocculation-magnetic separation system
JP2014065030A (en) * 2012-09-05 2014-04-17 Metawater Co Ltd Water processing control method, and water processing control device
WO2015151140A1 (en) * 2014-03-31 2015-10-08 メタウォーター株式会社 Water treatment system
JP2015192960A (en) * 2014-03-31 2015-11-05 メタウォーター株式会社 water treatment system
US10351447B2 (en) 2014-03-31 2019-07-16 Metawater Co., Ltd. Water treatment system
JP2020037072A (en) * 2018-09-03 2020-03-12 株式会社東芝 Water treatment apparatus and water treatment method
CN112777710A (en) * 2021-01-13 2021-05-11 廖婧 Automatic recovery unit of copper-containing waste water
RU2781007C1 (en) * 2021-11-16 2022-10-05 Илья Анатольевич Мехнецов Method for coagulation of pollution of natural and wastewater and a device for implementing this method
CN115140918A (en) * 2022-08-30 2022-10-04 聊城集众环保科技有限公司 Efficient control method for sewage treatment

Similar Documents

Publication Publication Date Title
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
US8303893B2 (en) Apparatus for determining coagulant amount
JPH10202013A (en) Method for controlling water purifying and flocculating treatment
JP2009000672A (en) Method and device for deciding flocculating agent infusion rate in method for treating water which performs coagulation/sedimentation treatment
JP3231164B2 (en) Control device for water purification plant coagulation process
JP7179486B2 (en) Coagulant injection control device, coagulant injection control method and computer program
US20130153510A1 (en) Method and system for treating aqueous streams
CN206051645U (en) For the purified water treatment device of flocculating agent method for implanting
JP5401087B2 (en) Flocculant injection control method
JPH0483504A (en) Flocculant injection controlling apparatus
JP6437394B2 (en) Water treatment method, water treatment facility, injected flocculant amount evaluation system and residual flocculant amount estimation device
JP4784241B2 (en) Flocculant injection method and apparatus for water purification process
JP2007098287A (en) Method for controlling operation of water purifying process
JPH06327907A (en) Flocculation controller
JP2538466B2 (en) Method and apparatus for controlling coagulant injection
JPH05240767A (en) Floc measuring/controlling device
JP5571424B2 (en) Method and apparatus for controlling the injection rate of flocculant in real time
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
RU2415814C1 (en) Method of regulating water coagulation process
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
CN111138004A (en) Coagulant adding control system and method
JP2674225B2 (en) Flock formation control device
JPH01199608A (en) Controller for injection of flocculant in water purifying plant
JPH02218408A (en) Method for regulating injection rate of flocculant by means of floc measuring device
JPH02284605A (en) Paddle control device in flocculation basin

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060724