WO2021020125A1 - Flocculation processing device - Google Patents

Flocculation processing device Download PDF

Info

Publication number
WO2021020125A1
WO2021020125A1 PCT/JP2020/027473 JP2020027473W WO2021020125A1 WO 2021020125 A1 WO2021020125 A1 WO 2021020125A1 JP 2020027473 W JP2020027473 W JP 2020027473W WO 2021020125 A1 WO2021020125 A1 WO 2021020125A1
Authority
WO
WIPO (PCT)
Prior art keywords
coagulation
particles
proportion
amount
controller
Prior art date
Application number
PCT/JP2020/027473
Other languages
French (fr)
Japanese (ja)
Inventor
井上 健
長尾 信明
瑞季 鈴木
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2021020125A1 publication Critical patent/WO2021020125A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • an inorganic flocculant such as iron chloride or polyaluminum chloride may be used in combination with a polymer flocculant.
  • an inorganic coagulant such as iron chloride or polyaluminum chloride and an organic polymer coagulant may be used in combination to coagulate the sludge prior to the dehydration treatment. ..
  • an inorganic flocculant and the polymer flocculant together in this way, the sludge is efficiently charge-neutralized and the floc strength is improved, so that the water content of the sludge (dehydrated cake) after the dehydration treatment can be increased. It can be greatly reduced.
  • Patent Document 1 it is possible to control the addition of a coagulant by using a coagulation state monitoring sensor that irradiates laser light into water and receives scattered light scattered by flocs in the water to measure the coagulation state.
  • a coagulation state monitoring sensor that irradiates laser light into water and receives scattered light scattered by flocs in the water to measure the coagulation state.
  • the agglutinating agent injection amount is controlled by using the agglutinating state monitoring sensor, the agglutinating state is monitored by the monitoring sensor after the organic agglutinating agent is injected, and the injection amount of the inorganic agglutinating agent is controlled based on the result. It has been.
  • An object of the present invention is to provide a coagulation treatment apparatus capable of accurately controlling the amount of an inorganic coagulant and an organic coagulant added.
  • the coagulation treatment device of the present invention includes a first pipe or a first coagulation tank, an inorganic coagulant addition device for adding an inorganic coagulant to the first pipe or the first coagulation tank, and a liquid to which the inorganic coagulant is added.
  • a second pipe or a second coagulation tank introduced from the first pipe or the first coagulation tank, an organic coagulant adding device for adding an organic coagulant to the second pipe or the second coagulation tank, and the second. Control to control the inorganic coagulant addition device and the organic coagulant addition device based on the coagulation state monitoring sensor provided so as to be in contact with the coagulation liquid in the pipe or the second coagulation tank and the detection value of the coagulation state monitoring sensor.
  • the controller reduces the amount of the organic flocculant added when the proportion of the small diameter particles is less than the first predetermined value and the proportion of the large diameter particles is greater than the second predetermined value. Let me.
  • the proportion of the small-diameter particles is larger than the first predetermined value, and the proportion of the large-diameter particles is a third predetermined value (however, the third predetermined value is the second predetermined value). When it is less than the value, the amount of the organic flocculant added is increased.
  • a pH meter is provided in the second pipe or the second coagulation tank, and the controller has a proportion of the small-diameter particles larger than the first predetermined value and the large-diameter particles.
  • the ratio of is larger than the third predetermined value, the amount of the inorganic flocculant added is controlled based on the pH of the pH meter.
  • the raw sludge to be treated is introduced into the first coagulation tank 3 via the inflow pipe 1 having the flow meter 2, and is inorganic by the first chemical injection device 4.
  • a flocculant is added.
  • a stirrer 3a is installed in the first coagulation tank 3.
  • inorganic flocculant examples include ferric chloride, ferric sulfate, polyferric chloride, polyferric sulfate and other iron-based inorganic flocculants, aluminum chloride, polyaluminum chloride, sulfate band, aluminum hydroxide and aluminum oxide. Examples thereof include aluminum-based inorganic flocculants.
  • organic polymer flocculant polymer flocculant
  • a cationic or amphoteric polymer flocculant particularly a cationic polymer flocculant is preferable.
  • the cationic polymer flocculant include homopolymers of cationic monomers such as dimethylaminoethyl acrylate or a quaternized product thereof, dimethylaminoethyl methacrylate or a quaternized product thereof, a copolymer with acrylamide, and polyvinylamidine.
  • Examples thereof include poly (diallyldimethylammonium chloride), polyethyleneimine, polyallylamine, polyvinylamine, poly (2-vinyl-1-methylpyrinidium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyldextran and the like. ..
  • amphoteric polymer flocculant examples include cationic monomers such as dimethylaminoethyl acrylate or its quaternized product, dimethylaminoethyl methacrylate or its quaternized product, nonionic monomer such as acrylamide, and acrylic acid or its quaternized product.
  • cationic monomers such as dimethylaminoethyl acrylate or its quaternized product, dimethylaminoethyl methacrylate or its quaternized product, nonionic monomer such as acrylamide, and acrylic acid or its quaternized product.
  • a copolymer with a salt or the like can be used.
  • the organic polymer flocculant one having an intrinsic viscosity of about 0.1 to 20 dL / g in a 1N NaCO 3 aqueous solution at 30 ° C. can be preferably used.
  • organic polymer flocculant is preferably crosslinked when it is used for dehydration treatment of sludge.
  • the laser light emitted from the light emitting unit 12 to the measurement area A near the top 11c is scattered by the particles in the measurement area A, and the scattered light is received by the light receiving unit 13, and the light receiving intensity thereof is received.
  • the state of aggregation is measured based on the change over time.
  • the block 11 is made of an opaque material.
  • the light emitting circuit sends an electric signal having a constant modulation frequency to the light emitting part according to the signal from the timing circuit to cause laser light emission.
  • the light emitting unit emits laser light by a signal from the light emitting circuit.
  • the light receiving unit receives the scattered light generated by the laser light hitting the suspension in water and converts it into an electric signal.
  • the detection circuit removes the modulation component from the electric signal from the light receiving unit and outputs the light receiving voltage according to the scattered light intensity.
  • the measurement circuit transmits a signal for light emission (specific frequency modulated wave) to the light emitting circuit, converts the signal from the detection circuit into a digital signal, performs a logical operation, and outputs information on aggregation.
  • a signal for light emission specifically frequency modulated wave
  • the agglutination monitoring device of Japanese Patent No. 6281534 is available.
  • a coagulation monitoring device that monitors the treatment status of the water to be coagulated.
  • a measurement light irradiation unit that irradiates the measurement area of the water to be treated with measurement light
  • a scattered light receiving unit that receives scattered light by the particles of the water to be treated in the measurement area
  • the subject includes an amplitude measuring means for measuring the amplitude of a received signal obtained by the scattered light receiving unit, monitors and aggregates the appearance of the measured amplitude, calculates the occurrence rate or occurrence frequency of a specific amplitude, and obtains the subject.
  • a measurement value calculation unit that calculates an index related to the aggregation of the water to be treated, which represents the particle size of the flocs in the treated water.
  • the amplitude measuring means detects a first inflection point in which the received light signal changes from rising to falling and a second inflection point in which the received signal changes from falling to rising, and the first inflection point and the second inflection point.
  • An aggregation monitoring device characterized in that the amplitude is measured from the level difference of an inflection point. " Is.
  • FIG. 3 is a schematic view showing a cross section perpendicular to the optical axis of the laser beam L in the measurement region A of FIG.
  • five particles are present in the measurement region A.
  • the laser light irradiated to the measurement region A is scattered by each particle, and the scattered light S is incident on the light receiving unit 13.
  • a predetermined time ⁇ t preferably a time selected from the range of 0.1 to 10 mSec, for example, about 1 mSec
  • the number of particles existing in the measurement region A fluctuates (theoretically, the particles). Although the number may not change, the number of particles usually fluctuates because the particles move in Brownian motion and the sludge liquid in the coagulation tank 5 is agitated.
  • the scattered light intensity fluctuates in conjunction with it, and the light receiving intensity of the light receiving unit 13 fluctuates.
  • Figure 4a is a graph plotting the measured signal strength at each time of the time t 1, t 2 ... t z , interval between the time Delta] t (i.e. t k -t k-1) is as defined above, preferably Is 0.1 to 10 mSec, for example 1 mSec.
  • any difference h k of the signal intensity at time t k-1 of the signal strength and the time t k is the time t k-1 ⁇ t k value proportional to the surface area of the measurement region A out particles between Is.
  • the usage time of the light emitting element can be extended by repeating light emission and non-light emission at predetermined time intervals. For example, when the light emission time is 0.2 seconds / time and the light emission interval is 2 seconds, the usage time (life) of the light emitting element can be extended 10 times as compared with the case where continuous light emission is performed. In this way, when repeating light emission and non-light emission, the proportion of particles is not determined within a continuous light emission time (0.2 seconds in the above example), but for example, light emission and non-light emission are repeated 10 The ratio of small particles and large particles to the number of detected particles can be obtained within the measurement time of one minute.
  • the amount of the inorganic coagulant and the organic coagulant to be injected is controlled according to the detection signal of the agglutination state monitoring sensor 10 installed in the second coagulation tank 5.
  • An example of this control flowchart is shown in FIG.
  • the reference values ha and hb of the output signal intensity difference are 350 mV and 2000 mV, respectively, and the particles belonging to the range of the signal intensity difference of 350 mV or less are small diameter particles (hereinafter, small particles), and are 2000 mV or more. Particles belonging to the range of are defined as large-diameter particles (hereinafter referred to as large particles).
  • the signal strength difference of 10 mV or less was excluded from the measurement target because the difference from the disturbance is unknown.
  • the amount of the above-mentioned iron salt-based or aluminum salt-based inorganic flocculant added increases, the pH in the liquid decreases (when the amount of the inorganic flocculant added is an appropriate amount, the pH of the coagulation treatment liquid becomes Generally, it is 4.0 to 4.5 or less.) Therefore, in the flow of FIG. 5, the amount of the inorganic flocculant injected is controlled with reference to the detected pH of the pH meter 7.
  • step 1 it is determined whether the proportion of small particles is small (for example, 35% or less). If the proportion of small particles is small, the process proceeds to step 2 to determine whether the proportion of large particles is very large (for example, 20% or more). If the proportion of large particles is less than 20%, it is determined that the addition amount of both the inorganic flocculant and the organic flocculant is appropriate, and the process returns to step 1.
  • step 2 when the proportion of large particles is 20% or more, it is considered that the amount of the organic flocculant added is excessive. Therefore, the process proceeds to step 3 and the amount of the organic flocculant (polymer flocculant) added is reduced by a predetermined amount. Then, it is left as it is for a predetermined time, and after the predetermined time elapses, it is determined whether the proportion of large particles is within an appropriate range of less than 20% (and 10% or more) (step 4). Then, the amount of the organic flocculant added is reduced until the proportion of the large particles is within the appropriate range, and after the proportion of the large particles is within the appropriate range, the process returns to step 1.
  • step 1 determines whether the proportion of large particles is large (10% or more).
  • step 5 determines whether the proportion of large particles is large (10% or more).
  • the proportion of large particles is large (for example, 10% or more)
  • the amount of the organic flocculant added is appropriate, but it is considered that poor aggregation occurs due to the excessive or insufficient amount of the inorganic flocculant added. Therefore, the process proceeds from step 5 to step 6 to determine whether the detected pH of the pH meter 7 is higher than 4.5.
  • step 6 When pH> 4.5 in step 6, it is considered that the amount of the inorganic flocculant added is insufficient. Therefore, the process proceeds to step 7, the amount of the inorganic flocculant added is increased by a predetermined amount, and the mixture is waited for a predetermined time to be predetermined. The pH is detected again after a lapse of time (step 8). The amount of the inorganic flocculant added is increased until pH ⁇ 4.0, and after pH ⁇ 4.0, the process returns to step 1.
  • step 6 when the pH is ⁇ 4.5, it is considered that the amount of the inorganic flocculant added is excessive. Therefore, the process proceeds to step 11, the amount of the inorganic flocculant added is reduced by a predetermined amount, and then the patient waits for a predetermined time. .. After the lapse of a predetermined time, the pH is detected again (step 12), and if the pH is still 4.5 or less, the amount of the inorganic flocculant added is further reduced, and after the pH becomes 4.5 or more, the step Return to 1.
  • the aggregation state monitoring sensor 10 and the pH meter 7 can be used to control the addition amounts of the inorganic flocculant and the organic flocculant so as to be appropriate.
  • the reference values ha and hb of the intensity difference of the output signal for distinguishing the size of the particles are set to 350 mV and 2000 mV, respectively, but the present invention is not limited to this. That is, the reference values ha and hb are the specifications of the agglutination state monitoring sensor 10 (laser light intensity from the light emitting unit 12, processing method of the light receiving signal from the light receiving unit 13, etc.), measurement target (water, wastewater, sludge), inorganic. It depends on the type of coagulant and organic coagulant, and the coagulation treatment device and solid-liquid separation device (dehydration treatment device). Therefore, the reference values ha and hb are appropriately set by performing a test in which the amount of the treatment agent added varies in advance using the treatment target, the treatment apparatus, and the treatment agent to be actually applied.
  • the agglutinated state monitoring sensor output signal and the agglutinated particle particle size can be directly measured. It may be associated with.
  • the difference between the maximum point and the minimum point immediately before it is obtained but the difference between the maximum point and the minimum point immediately after that may be obtained.
  • the minimum points immediately before and after one maximum point may be connected by a straight line, and the distance from the maximum point to the straight line below the maximum point may be obtained and used as the above difference.
  • an inorganic coagulant may be added in the pipe 1 and the coagulation tank 3 may be omitted.
  • the organic coagulant is added to the second coagulation tank 5, but a second pipe is installed instead of the second coagulation tank 5, and the organic coagulant is added to the second pipe. May be good.
  • the agglutination state monitoring sensor 10 may be installed in the agglutination liquid outflow pipe from the second agglutination tank 5. Further, a measuring tank into which the liquid in the second coagulation tank 5 is introduced may be provided, and the coagulation state monitoring sensor 10 may be installed in the measuring tank.

Abstract

According to the present invention, an inorganic flocculant is added to a first flocculation tank 3 by a first chemical injection device 4, and an organic flocculant is added to a second flocculation tank 5 by a second chemical injection device 6. A detection signal from a flocculation state monitoring sensor 10 is input to a controller 8, and the chemical injection devices 4, 6 are controlled. The flocculation state monitoring sensor 10 includes: a light emitting unit which irradiates a flocculation treated liquid with laser light; and a light receiving unit which has a light receiving optical axis orthogonal to a light emission optical axis of the light emitting unit, wherein the particle diameter distribution of particles in the second flocculation tank 5 is obtained from a temporal change of a scattered light intensity signal.

Description

凝集処理装置Coagulation processing equipment
 本発明は、各種産業排水や工業用水あるいは汚泥等を凝集処理する際に用いられる凝集処理装置に係り、特に、原水又は汚泥に無機凝集剤を添加した後、高分子凝集剤を添加する凝集処理に好適な凝集処理装置に関する。 The present invention relates to a coagulation treatment apparatus used for coagulation treatment of various industrial wastewaters, industrial water, sludge, etc., and in particular, a coagulation treatment in which an inorganic coagulant is added to raw water or sludge and then a polymer coagulant is added. The present invention relates to a suitable coagulation treatment apparatus.
 各種排水・用水から、濁質および有機物等を除去するために凝集処理を行う場合、塩化鉄やポリ塩化アルミニウムなどの無機凝集剤と高分子凝集剤とを併用することがある。こうした2種類の薬品を用いることで、凝集フロックの粗大化が生じ後段の固液分離操作が容易になるほか、無機凝集剤の添加量を抑えることによる汚泥発生量の削減が可能となる。 When performing agglomeration treatment to remove turbid substances and organic substances from various wastewaters and irrigation water, an inorganic flocculant such as iron chloride or polyaluminum chloride may be used in combination with a polymer flocculant. By using these two types of chemicals, the coagulation flocs become coarse and the solid-liquid separation operation in the subsequent stage becomes easy, and the amount of sludge generated can be reduced by suppressing the addition amount of the inorganic coagulant.
 また、排水の生物処理によって発生した汚泥を脱水処理する場合、脱水処理に先立ち、塩化鉄やポリ塩化アルミニウムなどの無機凝集剤と、有機高分子凝集剤とを併用して凝集処理する場合がある。このように無機凝集剤と高分子凝集剤とを併用することで、効率的に汚泥を荷電中和するとともにフロック強度の向上をはかることで、脱水処理後の汚泥(脱水ケーキ)の含水率を大きく低下させることが可能となる。 In addition, when dewatering sludge generated by biological treatment of wastewater, an inorganic coagulant such as iron chloride or polyaluminum chloride and an organic polymer coagulant may be used in combination to coagulate the sludge prior to the dehydration treatment. .. By using the inorganic flocculant and the polymer flocculant together in this way, the sludge is efficiently charge-neutralized and the floc strength is improved, so that the water content of the sludge (dehydrated cake) after the dehydration treatment can be increased. It can be greatly reduced.
 凝集剤は、被処理水の水質や被処理汚泥の性状に応じて適切な量を添加する必要がある。排水、用水の凝集処理においては、薬品添加量(注入量)が不足すれば、被処理水中に含まれる濁質や有機物の除去が不十分となり、処理水質が悪化する。一方、薬品添加量が過剰であると、薬品が後段へリークし、後段処理での負荷増大や汚染を引き起こす可能性がある。 It is necessary to add an appropriate amount of coagulant according to the quality of the water to be treated and the properties of the sludge to be treated. In the coagulation treatment of wastewater and irrigation water, if the amount of chemicals added (injection amount) is insufficient, the removal of turbid substances and organic substances contained in the water to be treated becomes insufficient, and the quality of the treated water deteriorates. On the other hand, if the amount of chemicals added is excessive, the chemicals may leak to the subsequent stage, causing an increase in load and contamination in the subsequent stage treatment.
 また、汚泥処理においては、薬品添加量が不足すれば汚泥の荷電中和が不十分となり、更にはフロック強度が低下して脱水ケーキの含水率が上昇したり、脱水分離液に汚泥がリークしたりすることがあった。一方、薬品添加量が過剰となった場合にもフロック強度は低下するため脱水ケーキの含水率が上昇したり、脱水分離液に汚泥がリークしたりすることがあった。 Further, in sludge treatment, if the amount of chemicals added is insufficient, the charge neutralization of the sludge becomes insufficient, the floc strength decreases, the water content of the dehydrated cake increases, and the sludge leaks into the dehydrated separation liquid. There were times when it happened. On the other hand, even when the amount of the chemical added is excessive, the floc strength is lowered, so that the water content of the dehydrated cake may be increased or sludge may leak into the dehydrated separation liquid.
 最適な薬品添加量を決定するためには、ジャーテストや凝集、濾過、圧搾テスト(ヌッチェテスト)等の机上テストを行うことが基本的である。しかし、手間を要し、被処理水の水質変動や被処理汚泥の性状変動のたびに机上テストを行うことは、実際の水処理、汚泥処理において、変動に即時対応することができず、現実的ではない。 In order to determine the optimum amount of chemicals added, it is basic to perform desktop tests such as jar test, aggregation, filtration, and squeezing test (Nuche test). However, it takes time and effort, and it is not possible to immediately respond to fluctuations in actual water treatment and sludge treatment by conducting a desktop test every time the water quality of the water to be treated or the properties of the sludge to be treated changes. Not the target.
 特許文献1には、レーザー光を水中に向けて照射し、水中のフロック等によって散乱される散乱光を受光して凝集状態を測定する凝集状態モニタリングセンサーを用いて凝集剤添加を制御することが記載されている。 In Patent Document 1, it is possible to control the addition of a coagulant by using a coagulation state monitoring sensor that irradiates laser light into water and receives scattered light scattered by flocs in the water to measure the coagulation state. Has been described.
特開2017-26438号公報JP-A-2017-26438
 凝集状態モニタリングセンサーを用いて凝集剤注入量を制御する場合、有機凝集剤を注入した後に該モニタリングセンサーによって凝集状態をモニタリングし、その結果に基づいて無機凝集剤の注入量を制御することが行われている。 When the agglutinating agent injection amount is controlled by using the agglutinating state monitoring sensor, the agglutinating state is monitored by the monitoring sensor after the organic agglutinating agent is injected, and the injection amount of the inorganic agglutinating agent is controlled based on the result. It has been.
 このような凝集状態モニタリングセンサーに基づく薬注制御においては、凝集状態モニタリングセンサーの出力信号の変化が、無機凝集剤及び有機凝集剤のいずれの注入量の影響を大きく受けているかを判断することが重要である。 In chemical injection control based on such an agglutination state monitoring sensor, it is possible to determine whether the change in the output signal of the agglutination state monitoring sensor is greatly affected by the injection amount of the inorganic coagulant or the organic coagulant. is important.
 本発明は、無機凝集剤及び有機凝集剤の添加量を的確に制御することができる凝集処理装置を提供することを目的とする。 An object of the present invention is to provide a coagulation treatment apparatus capable of accurately controlling the amount of an inorganic coagulant and an organic coagulant added.
 本発明の凝集処理装置は、第1配管又は第1凝集槽と、該第1配管又は第1凝集槽に無機凝集剤を添加する無機凝集剤添加装置と、無機凝集剤が添加された液が、該第1配管又は第1凝集槽から導入される第2配管又は第2凝集槽と、該第2配管又は第2凝集槽に有機凝集剤を添加する有機凝集剤添加装置と、該第2配管又は第2凝集槽の凝集液と接するように設けられた凝集状態モニタリングセンサーと、該凝集状態モニタリングセンサーの検出値に基づいて、前記無機凝集剤添加装置及び有機凝集剤添加装置を制御する制御器とを有し、該凝集状態モニタリングセンサーは、水中にレーザ光を照射する照射部及び散乱光を受光する受光部を有し、該制御器は、散乱光強度信号の時間的な変化から、第2配管又は第2凝集槽内のフロック形成状態を判断する凝集処理装置であって、該制御器は、前記凝集状態モニタリングセンサーの検出信号から該凝集状態モニタリングセンサーの測定領域における粒子数に占める第1設定粒径よりも小さい小径粒子の割合と、第2設定粒径よりも大きい大径粒子の割合とに基づいて制御を行う。 The coagulation treatment device of the present invention includes a first pipe or a first coagulation tank, an inorganic coagulant addition device for adding an inorganic coagulant to the first pipe or the first coagulation tank, and a liquid to which the inorganic coagulant is added. , A second pipe or a second coagulation tank introduced from the first pipe or the first coagulation tank, an organic coagulant adding device for adding an organic coagulant to the second pipe or the second coagulation tank, and the second. Control to control the inorganic coagulant addition device and the organic coagulant addition device based on the coagulation state monitoring sensor provided so as to be in contact with the coagulation liquid in the pipe or the second coagulation tank and the detection value of the coagulation state monitoring sensor. The agglomeration state monitoring sensor has an irradiation unit that irradiates laser light into water and a light receiving unit that receives scattered light, and the controller has a device that receives temporal changes in the scattered light intensity signal. It is a coagulation processing device that determines the floc formation state in the second pipe or the second coagulation tank, and the controller occupies the number of particles in the measurement region of the coagulation state monitoring sensor from the detection signal of the coagulation state monitoring sensor. Control is performed based on the proportion of small-diameter particles smaller than the first set particle size and the proportion of large-diameter particles larger than the second set particle size.
 本発明の一態様では前記制御器は、前記小径粒子の割合が第1所定値よりも少なく、且つ前記大径粒子の割合が第2所定値よりも多いときに有機凝集剤の添加量を減少させる。 In one aspect of the present invention, the controller reduces the amount of the organic flocculant added when the proportion of the small diameter particles is less than the first predetermined value and the proportion of the large diameter particles is greater than the second predetermined value. Let me.
 本発明の一態様では、前記制御器は、前記小径粒子の割合が前記第1所定値よりも多く、且つ前記大径粒子の割合が第3所定値(ただし、第3所定値は第2所定値よりも小さい。)よりも少ないときには、有機凝集剤の添加量を増加させる。 In one aspect of the present invention, in the controller, the proportion of the small-diameter particles is larger than the first predetermined value, and the proportion of the large-diameter particles is a third predetermined value (however, the third predetermined value is the second predetermined value). When it is less than the value, the amount of the organic flocculant added is increased.
 本発明の一態様では、前記第2配管又は第2凝集槽にpH計が設けられており、前記制御器は、前記小径粒子の割合が前記第1所定値よりも多く、且つ前記大径粒子の割合が第3所定値よりも多いときには、前記pH計のpHに基づいて、無機凝集剤の添加量を制御する。 In one aspect of the present invention, a pH meter is provided in the second pipe or the second coagulation tank, and the controller has a proportion of the small-diameter particles larger than the first predetermined value and the large-diameter particles. When the ratio of is larger than the third predetermined value, the amount of the inorganic flocculant added is controlled based on the pH of the pH meter.
 本発明の一態様では、前記制御器は、前記pH計のpHが第1設定pHよりも高い場合、pHが第2設定pH(ただし、第2設定pHは第1設定pHよりも低い。)となるまで無機凝集剤の添加量を増大させる。 In one aspect of the present invention, when the pH of the pH meter is higher than the first set pH, the controller has a second set pH (however, the second set pH is lower than the first set pH). The amount of the inorganic flocculant added is increased until
 本発明の一態様では、前記制御器は、前記第2凝集槽のpHが第1設定pHよりも低い場合、pHが該第1設定pHよりも高くなるまで無機凝集剤の添加量を減少させる。 In one aspect of the present invention, when the pH of the second coagulant tank is lower than the first set pH, the controller reduces the amount of the inorganic flocculant added until the pH becomes higher than the first set pH. ..
 本発明の凝集処理装置では、有機凝集剤が添加された液中の凝集状態を凝集状態モニタリングセンサーによってモニタリングし、小径粒子及び大径粒子の割合に応じて、無機凝集剤及び無機凝集剤の注入量を的確に制御することができる。 In the coagulation treatment apparatus of the present invention, the coagulation state in the liquid to which the organic coagulant is added is monitored by the coagulation state monitoring sensor, and the inorganic coagulant and the inorganic coagulant are injected according to the ratio of the small-diameter particles and the large-diameter particles. The amount can be controlled accurately.
実施の形態に係る凝集処理装置の構成図である。It is a block diagram of the coagulation processing apparatus which concerns on embodiment. 凝集状態モニタリングセンサーの構成図である。It is a block diagram of the agglutination state monitoring sensor. 凝集状態モニタリングセンサーの計測領域の模式図である。It is a schematic diagram of the measurement area of the agglutination state monitoring sensor. 図4a,4bは凝集状態モニタリングセンサーの検出波形図である。4a and 4b are detection waveform diagrams of the agglutination state monitoring sensor. 制御方法を示すフローチャートである。It is a flowchart which shows the control method.
 以下、図面を参照して実施の形態に係る凝集剤注入制御装置について説明する。 Hereinafter, the coagulant injection control device according to the embodiment will be described with reference to the drawings.
 図1の通り、この凝集剤注入制御装置では、被処理汚泥である原汚泥は、流量計2を有する流入管1を介して第1凝集槽3に導入され、第1薬注装置4によって無機凝集剤が添加される。第1凝集槽3には撹拌機3aが設置されている。 As shown in FIG. 1, in this coagulant injection control device, the raw sludge to be treated is introduced into the first coagulation tank 3 via the inflow pipe 1 having the flow meter 2, and is inorganic by the first chemical injection device 4. A flocculant is added. A stirrer 3a is installed in the first coagulation tank 3.
 第1凝集槽3内で凝集処理された液(第1凝集処理液)は、移流口(又は移流管)を介して第2凝集槽5に導入され、第2薬注装置6によって有機高分子凝集剤が添加される。第2凝集槽5には撹拌機5aのほか、pH計7と凝集状態モニタリングセンサー10が設置されており、その検出信号が制御器8に入力される。制御器8はこの検出信号に基づいて第1及び第2薬注装置4,6を制御する。 The liquid (first coagulation treatment liquid) coagulated in the first coagulation tank 3 is introduced into the second coagulation tank 5 via the advection port (or advection pipe), and is an organic polymer by the second chemical injection device 6. A flocculant is added. In addition to the stirrer 5a, the second agglutination tank 5 is equipped with a pH meter 7 and an agglutination state monitoring sensor 10, and the detection signal thereof is input to the controller 8. The controller 8 controls the first and second drug injection devices 4 and 6 based on this detection signal.
 第2凝集槽8内で凝集処理された汚泥は、固液分離工程に送られる。 The sludge that has been agglomerated in the second coagulation tank 8 is sent to the solid-liquid separation step.
 無機凝集剤としては塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などの鉄系無機凝集剤や塩化アルミニウム、ポリ塩化アルミニウム、硫酸バンド、水酸化アルミニウム、酸化アルミニウムなどのアルミ系無機凝集剤が挙げられる。 Examples of the inorganic flocculant include ferric chloride, ferric sulfate, polyferric chloride, polyferric sulfate and other iron-based inorganic flocculants, aluminum chloride, polyaluminum chloride, sulfate band, aluminum hydroxide and aluminum oxide. Examples thereof include aluminum-based inorganic flocculants.
 有機高分子凝集剤(ポリマー凝集剤)としてはカチオン性又は両性の高分子凝集剤、とりわけカチオン性高分子凝集剤が好適である。カチオン性高分子凝集剤としては、ジメチルアミノエチルアクリレート或いはその四級化物、ジメチルアミノエチルメタクリレート或いはその四級化物などのカチオン性単量体の単独重合物やアクリルアミドとの共重合物、ポリビニルアミジン、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(2-ビニル-1-メチルピリニジウム)、ジアルキルアミン‐エピクロルヒドリン重縮合物、ポリリジン、キトサン、ジエチルアミノエチルデキストランなどが挙げられる。 As the organic polymer flocculant (polymer flocculant), a cationic or amphoteric polymer flocculant, particularly a cationic polymer flocculant is preferable. Examples of the cationic polymer flocculant include homopolymers of cationic monomers such as dimethylaminoethyl acrylate or a quaternized product thereof, dimethylaminoethyl methacrylate or a quaternized product thereof, a copolymer with acrylamide, and polyvinylamidine. Examples thereof include poly (diallyldimethylammonium chloride), polyethyleneimine, polyallylamine, polyvinylamine, poly (2-vinyl-1-methylpyrinidium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyldextran and the like. ..
 両性高分子凝集剤としては、ジメチルアミノエチルアクリレート或いはその四級化物やジメチルアミノエチルメタクリレート或いはその四級化物などのカチオン性単量体と、アクリルアミドなどのノニオン性単量体と、アクリル酸或いはその塩などとの共重合物を用いることができる。 Examples of the amphoteric polymer flocculant include cationic monomers such as dimethylaminoethyl acrylate or its quaternized product, dimethylaminoethyl methacrylate or its quaternized product, nonionic monomer such as acrylamide, and acrylic acid or its quaternized product. A copolymer with a salt or the like can be used.
 本発明では、有機高分子凝集剤としては、30℃の1規定NaCO水溶液中における固有粘度が0.1~20dL/g程度のものを好適に用いることができる。 In the present invention, as the organic polymer flocculant, one having an intrinsic viscosity of about 0.1 to 20 dL / g in a 1N NaCO 3 aqueous solution at 30 ° C. can be preferably used.
 また、有機高分子凝集剤は、汚泥の脱水処理に供する場合には、架橋されたものが好適である。 Further, the organic polymer flocculant is preferably crosslinked when it is used for dehydration treatment of sludge.
 凝集状態モニタリングセンサー10は、好ましくは、特許文献1に記載のものが用いられる。図2はこの凝集状態モニタリングセンサーのプローブ部分の構成を示している。このプローブは、直交する面11a,11b及びそれらが交わる頂部11cを有したブロック11と、面11aに沿って設けられた、凝集処理液に向ってレーザ光を照射する発光部12と、面11bに沿って設けられた、受光光軸を該発光部12の発光光軸と直交方向とした受光部13とを有する。また、凝集状態モニタリングセンサー10は、発光部12の発光作動及び受光部13の受光信号の解析を行うために、発光回路、検波回路及び計測回路(図示略)を備えている。計測回路は、タイミング回路、A/D変換部、演算部等を有する。 As the agglutination state monitoring sensor 10, the one described in Patent Document 1 is preferably used. FIG. 2 shows the configuration of the probe portion of this agglutination state monitoring sensor. This probe includes a block 11 having orthogonal surfaces 11a and 11b and an apex 11c where they intersect, a light emitting unit 12 provided along the surface 11a that irradiates a laser beam toward the coagulation treatment liquid, and a surface 11b. It has a light receiving unit 13 having a light receiving optical axis oriented along the light emitting unit 12 in a direction orthogonal to the light emitting optical axis of the light emitting unit 12. Further, the agglutination state monitoring sensor 10 includes a light emitting circuit, a detection circuit, and a measurement circuit (not shown) in order to perform the light emitting operation of the light emitting unit 12 and the analysis of the light receiving signal of the light receiving unit 13. The measurement circuit includes a timing circuit, an A / D conversion unit, a calculation unit, and the like.
 特許文献1と同様に、発光部12から、頂部11c近傍の計測領域Aに照射されたレーザー光が計測領域A内の粒子によって散乱され、この散乱光が受光部13で受光され、この受光強度の経時変化に基づいて凝集状態が計測される。なお、ブロック11は不透明材料よりなる。 Similar to Patent Document 1, the laser light emitted from the light emitting unit 12 to the measurement area A near the top 11c is scattered by the particles in the measurement area A, and the scattered light is received by the light receiving unit 13, and the light receiving intensity thereof is received. The state of aggregation is measured based on the change over time. The block 11 is made of an opaque material.
 発光回路は、タイミング回路からの信号に応じて発光部に一定の変調周波数を持った電気信号を送り、レーザ発光を行わせる。発光部は、発光回路からの信号によって、レーザ光を発光する。受光部は、レーザ光が水中の懸濁物に当たって発生した散乱光を受けて、電気信号に変換する。検波回路は、受光部からの電気信号から変調成分を除去し、散乱光強度に応じた受光電圧を出力する。 The light emitting circuit sends an electric signal having a constant modulation frequency to the light emitting part according to the signal from the timing circuit to cause laser light emission. The light emitting unit emits laser light by a signal from the light emitting circuit. The light receiving unit receives the scattered light generated by the laser light hitting the suspension in water and converts it into an electric signal. The detection circuit removes the modulation component from the electric signal from the light receiving unit and outputs the light receiving voltage according to the scattered light intensity.
 計測回路 は、発光回路に発光のための信号(特定の周波数変調波)を送信すると共に、検波回路からの信号をデジタル信号に変換し、論理演算して凝集に関する情報を出力する。 The measurement circuit transmits a signal for light emission (specific frequency modulated wave) to the light emitting circuit, converts the signal from the detection circuit into a digital signal, performs a logical operation, and outputs information on aggregation.
 この凝集状態モニタリングセンサーとしては、特許文献1のモニタリング装置、特にそれが特許された特許第6281534号公報に記載のモニタリング装置を好適に用いることができるが、これに限定されるものではない。 As the agglutination state monitoring sensor, the monitoring device of Patent Document 1, in particular, the monitoring device described in Japanese Patent No. 6281534, which is patented thereto, can be preferably used, but is not limited thereto.
 なお、特許第6281534号の凝集モニタリング装置は、
「 凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
 計測光を前記被処理水の計測領域に照射する計測光照射部と、
 前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、
 前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記被処理水の凝集に関わる指標を算出する計測値演算部と、
 を備え、
 前記振幅計測手段は、前記受光信号が上昇から下降に変化する第1の変曲点および下降から上昇に変化する第2の変曲点を検出し、前記第1の変曲点および第2の変曲点のレベル差から前記振幅を計測することを特徴とする凝集モニタリング装置。」
である。
The agglutination monitoring device of Japanese Patent No. 6281534 is available.
"A coagulation monitoring device that monitors the treatment status of the water to be coagulated.
A measurement light irradiation unit that irradiates the measurement area of the water to be treated with measurement light,
A scattered light receiving unit that receives scattered light by the particles of the water to be treated in the measurement area,
The subject includes an amplitude measuring means for measuring the amplitude of a received signal obtained by the scattered light receiving unit, monitors and aggregates the appearance of the measured amplitude, calculates the occurrence rate or occurrence frequency of a specific amplitude, and obtains the subject. A measurement value calculation unit that calculates an index related to the aggregation of the water to be treated, which represents the particle size of the flocs in the treated water.
With
The amplitude measuring means detects a first inflection point in which the received light signal changes from rising to falling and a second inflection point in which the received signal changes from falling to rising, and the first inflection point and the second inflection point. An aggregation monitoring device characterized in that the amplitude is measured from the level difference of an inflection point. "
Is.
 図3は、図2の計測領域Aにおけるレーザー光Lの光軸と垂直な断面を示す模式図である。図3の通り、ある時点では、計測領域Aに5個の粒子が存在している。この時点で計測領域Aに照射されたレーザー光が、各粒子によって散乱され、散乱光Sが受光部13に入射する。この時点から所定時間Δt(好ましくは0.1~10mSecの間から選定された時間。例えば、約1mSec)が経過した時点では、計測領域Aに存在する粒子数が変動する(理論上は、粒子数が変化しないこともあるが、粒子がブラウン運動し、また凝集槽5内の汚泥液が撹拌されているので、通常は該粒子数は変動する。)。 FIG. 3 is a schematic view showing a cross section perpendicular to the optical axis of the laser beam L in the measurement region A of FIG. As shown in FIG. 3, at a certain point in time, five particles are present in the measurement region A. At this point, the laser light irradiated to the measurement region A is scattered by each particle, and the scattered light S is incident on the light receiving unit 13. When a predetermined time Δt (preferably a time selected from the range of 0.1 to 10 mSec, for example, about 1 mSec) elapses from this point, the number of particles existing in the measurement region A fluctuates (theoretically, the particles). Although the number may not change, the number of particles usually fluctuates because the particles move in Brownian motion and the sludge liquid in the coagulation tank 5 is agitated.)
 粒子数が変動すると、それに連動して散乱光強度が変動し、受光部13の受光強度が変動する。 When the number of particles fluctuates, the scattered light intensity fluctuates in conjunction with it, and the light receiving intensity of the light receiving unit 13 fluctuates.
 粒子の粒径が大きいほど、1個の粒子が計測領域Aに出入りしたときの該受光強度の変動幅が大きいものとなる。従って、この受光強度の変動幅から、計測領域Aに出入りした粒子の粒径の大小を検出することができる。すなわち、任意の時刻tの受光強度と、Δt経過後の時刻tk+1の受光強度との差は、該Δtの間に計測領域Aに出入りした粒子の表面積に比例した値となる。 The larger the particle size of the particles, the larger the fluctuation range of the light receiving intensity when one particle enters or exits the measurement region A. Therefore, it is possible to detect the size of the particle size of the particles entering and exiting the measurement region A from the fluctuation range of the light receiving intensity. That is, the difference between the light receiving intensity at an arbitrary time t k and the light receiving intensity at the time t k + 1 after the elapse of Δt is a value proportional to the surface area of the particles entering and exiting the measurement region A during the Δt.
 図4aは、凝集状態モニタリングセンサーの受光信号を信号処理して得られる凝集状態モニタリングセンサー出力信号の経時変化の一例を示している。図4aにおける出力信号は、受光部13の受光強度に比例した値であり、単位は、例えばmVである。 FIG. 4a shows an example of the time-dependent change of the agglutination state monitoring sensor output signal obtained by signal processing the received signal of the agglutination state monitoring sensor. The output signal in FIG. 4a is a value proportional to the light receiving intensity of the light receiving unit 13, and the unit is, for example, mV.
 図4aは、時刻t,t…tの各時刻において測定された信号強度をプロットしたグラフであり、各時刻の間隔Δt(すなわちt-tk-1)は前述の通り、好ましくは0.1~10mSec、例えば1mSecである。 Figure 4a is a graph plotting the measured signal strength at each time of the time t 1, t 2 ... t z , interval between the time Delta] t (i.e. t k -t k-1) is as defined above, preferably Is 0.1 to 10 mSec, for example 1 mSec.
 図4bは、図4aにおいて、極小点P,P…と、極大点Q,Q…とを記入し、極小点と極大点との差(以下、ピーク差ということがある。)h,h…を記入した説明図である。 In FIG. 4b, the minimum points P 1 , P 2 ... And the maximum points Q 1 , Q 2 ... Are entered in FIG. 4a, and the difference between the minimum points and the maximum points (hereinafter, may be referred to as a peak difference). It is explanatory drawing which filled in h 1 , h 2 ....
 上述の通り、任意の時刻tk-1の信号強度と時刻tの信号強度との差hは、時刻tk-1~t間に計測領域A出入りした粒子の表面積に比例した値である。 As mentioned above, any difference h k of the signal intensity at time t k-1 of the signal strength and the time t k is the time t k-1 ~ t k value proportional to the surface area of the measurement region A out particles between Is.
 時刻t~tのΔt・z秒間(zは例えば200とされ、Δt=1mSecである場合Δt・zは0.2秒となる。)におけるすべてのピーク差h,h…hより、この時刻t~tの間に計測領域A付近に存在する粒子の粒径分布が検出される。 All peak differences h 1 , h 2 ... h n at Δt · z seconds (z is, for example, 200, and Δt · z is 0.2 seconds when Δt = 1 mSec) from time t 1 to t z . Therefore, the particle size distribution of the particles existing in the vicinity of the measurement region A during this time t 1 to t z is detected.
 この検出原理を図4bに従って説明する。図4bにおいて、h<h<h<hである。ピーク差hは小径の粒子が検出されたことを表わし、ピーク差hは大径の粒子が検出されたことを表わし、ピーク差hはそれらの間の粒径の粒子が検出されたことを表わす。ピーク差hは、hの粒子よりも若干大きい程度の粒子が検出されたことを表わす。 This detection principle will be described with reference to FIG. 4b. In FIG. 4b, h 1 <h n <h 3 <h 2 . The peak difference h 1 indicates that particles having a small diameter were detected, the peak difference h 2 indicates that particles having a large diameter were detected, and the peak difference h 3 indicates that particles having a particle size between them were detected. Represents that. The peak difference h n indicates that particles slightly larger than the particles of h 1 were detected.
 従って、凝集状態モニタリングセンサー出力信号の強度差に基準値h,h(h<h)を定めておき、n個のピーク差h~hのうちh以下の範囲に属するピーク差の個数Nと、h超h未満の範囲に属するピーク差の個数Nと、h以上の範囲に属するピーク差の個数Nとをカウントし、総個数N(=N+N+N)に占めるN,N,Nの比率N/N,N/N,N/Nを算出することにより、全粒子数に占める小径粒子の割合、中径粒子の割合及び大径粒子の割合が求められる。 Therefore, aggregation state monitoring sensor output signal of intensity reference value difference h a, is determined in advance and h b (h a <h b ), within the scope of the following h a of the n peak difference h 1 ~ h n the number N a of peak difference, h a super h and the number N b of peak difference belonging to the range of less than b, and counts the number N c of peak difference falling within the scope of the above h b, the total number N (= N a + N b + N c) accounts N a, the ratio of N b, the ratio N a / N of N c, N b / N, by calculating the N c / N, small particles occupying the entire number of the particles, middle size The ratio of particles and the ratio of large-diameter particles are obtained.
 なお、所定の時間間隔で発光、非発光を繰り返すことで発光素子の使用時間を延長することができる。例えば、発光時間を0.2秒/回、発光間隔を2秒とした場合、連続で発光した場合に比較して発光素子の使用時間(寿命)を10倍に延長することが可能となる。このように、発光と非発光とを繰り返す場合には、連続した発光時間内(上記の例では0.2秒)で粒子の割合を求めるのではなく、例えば、発光と非発光とを繰り返す10分間の計測時間の中で、検出された粒子数に対する小粒子、大粒子の割合を求めることができる。 It should be noted that the usage time of the light emitting element can be extended by repeating light emission and non-light emission at predetermined time intervals. For example, when the light emission time is 0.2 seconds / time and the light emission interval is 2 seconds, the usage time (life) of the light emitting element can be extended 10 times as compared with the case where continuous light emission is performed. In this way, when repeating light emission and non-light emission, the proportion of particles is not determined within a continuous light emission time (0.2 seconds in the above example), but for example, light emission and non-light emission are repeated 10 The ratio of small particles and large particles to the number of detected particles can be obtained within the measurement time of one minute.
 一般に、凝集剤の薬注量が不足すると凝集不良となり、全粒子数に占める小径粒子の割合が多くなる。有機凝集剤の薬注量が過剰であると、大径粒子の割合が過度に多くなる。 In general, if the amount of the coagulant injected is insufficient, coagulation will be poor and the proportion of small-diameter particles in the total number of particles will increase. If the amount of the organic flocculant injected is excessive, the proportion of large-diameter particles becomes excessively high.
 このような凝集特性を考慮して、第2凝集槽5内に設置した凝集状態モニタリングセンサー10の検出信号に従って、無機凝集剤及び有機凝集剤の薬注量が適正となるように制御する。この制御フローチャートの一例を図5に示す。 In consideration of such agglutination characteristics, the amount of the inorganic coagulant and the organic coagulant to be injected is controlled according to the detection signal of the agglutination state monitoring sensor 10 installed in the second coagulation tank 5. An example of this control flowchart is shown in FIG.
 この例では、出力信号の強度差(信号強度差)の基準値ha、hbをそれぞれ350mV、2000mVとし、信号強度差350mV以下の範囲に属する粒子を小径粒子(以下、小粒子)とし、2000mV以上の範囲に属する粒子を大径粒子(以下、大粒子)とした。信号強度差10mV以下については、外乱との差異が不明であるため、計測対象外とした。 In this example, the reference values ha and hb of the output signal intensity difference (signal intensity difference) are 350 mV and 2000 mV, respectively, and the particles belonging to the range of the signal intensity difference of 350 mV or less are small diameter particles (hereinafter, small particles), and are 2000 mV or more. Particles belonging to the range of are defined as large-diameter particles (hereinafter referred to as large particles). The signal strength difference of 10 mV or less was excluded from the measurement target because the difference from the disturbance is unknown.
 なお、一般に、前述の鉄塩系又はアルミニウム塩系無機凝集剤の添加量が多くなるほど、液中のpHが低下する(無機凝集剤の添加量が適正量である場合、凝集処理液のpHは一般に4.0~4.5以下になる。)。そこで、図5のフローでは、pH計7の検出pHも参照して無機凝集剤の薬注量を制御するものとした。 In general, as the amount of the above-mentioned iron salt-based or aluminum salt-based inorganic flocculant added increases, the pH in the liquid decreases (when the amount of the inorganic flocculant added is an appropriate amount, the pH of the coagulation treatment liquid becomes Generally, it is 4.0 to 4.5 or less.) Therefore, in the flow of FIG. 5, the amount of the inorganic flocculant injected is controlled with reference to the detected pH of the pH meter 7.
 スタート後、ステップ1において、小粒子の割合が少ない(例えば35%以下)であるか判断する。小粒子の割合が少ない場合、ステップ2に進み、大粒子の割合が非常に多い(例えば20%以上)か判断する。大粒子の割合が20%未満であれば、無機凝集剤及び有機凝集剤のいずれも添加量は適正であると判断し、ステップ1に戻る。 After the start, in step 1, it is determined whether the proportion of small particles is small (for example, 35% or less). If the proportion of small particles is small, the process proceeds to step 2 to determine whether the proportion of large particles is very large (for example, 20% or more). If the proportion of large particles is less than 20%, it is determined that the addition amount of both the inorganic flocculant and the organic flocculant is appropriate, and the process returns to step 1.
 ステップ2において、大粒子の割合が20%以上のときには、有機凝集剤の添加量が過剰であると考えられるので、ステップ3に進み、有機凝集剤(ポリマー凝集剤)の添加量を所定量減少させ、所定時間そのままとし、所定時間経過後、大粒子の割合が20%未満(かつ10%以上)の適正範囲となっているか判断する(ステップ4)。そして、大粒子の割合が適正範囲となるまで有機凝集剤の添加量を減少させ、大粒子の割合が適正範囲となった後、ステップ1に戻る。 In step 2, when the proportion of large particles is 20% or more, it is considered that the amount of the organic flocculant added is excessive. Therefore, the process proceeds to step 3 and the amount of the organic flocculant (polymer flocculant) added is reduced by a predetermined amount. Then, it is left as it is for a predetermined time, and after the predetermined time elapses, it is determined whether the proportion of large particles is within an appropriate range of less than 20% (and 10% or more) (step 4). Then, the amount of the organic flocculant added is reduced until the proportion of the large particles is within the appropriate range, and after the proportion of the large particles is within the appropriate range, the process returns to step 1.
 ステップ1において、小粒子の割合が35%超であるときには、無機凝集剤及び有機凝集剤の一方又は双方の添加量不足により凝集不良が生じていると考えられる。そこで、ステップ1からステップ5に進み、大粒子の割合が多い(10%以上)か判断する。大粒子の割合が多い(例えば10%以上)のときには、有機凝集剤の添加量は適正であるが、無機凝集剤の添加量が過剰か又は不足であることにより凝集不良が生じていると考えられるので、ステップ5からステップ6に進み、pH計7の検出pHが4.5より高いか判断する。 When the proportion of small particles exceeds 35% in step 1, it is considered that poor aggregation has occurred due to insufficient addition of one or both of the inorganic flocculant and the organic flocculant. Therefore, the process proceeds from step 1 to step 5 to determine whether the proportion of large particles is large (10% or more). When the proportion of large particles is large (for example, 10% or more), the amount of the organic flocculant added is appropriate, but it is considered that poor aggregation occurs due to the excessive or insufficient amount of the inorganic flocculant added. Therefore, the process proceeds from step 5 to step 6 to determine whether the detected pH of the pH meter 7 is higher than 4.5.
 ステップ6においてpH>4.5のときには、無機凝集剤の添加量が不足していると考えられるので、ステップ7に進み、無機凝集剤の添加量を所定量増加させ、所定時間待機し、所定時間経過後に再度pHを検出する(ステップ8)。pH≦4.0となるまで無機凝集剤の添加量を増加させ、pH≦4.0となった後、ステップ1に戻る。 When pH> 4.5 in step 6, it is considered that the amount of the inorganic flocculant added is insufficient. Therefore, the process proceeds to step 7, the amount of the inorganic flocculant added is increased by a predetermined amount, and the mixture is waited for a predetermined time to be predetermined. The pH is detected again after a lapse of time (step 8). The amount of the inorganic flocculant added is increased until pH ≦ 4.0, and after pH ≦ 4.0, the process returns to step 1.
 ステップ5において、大粒子の割合が10%未満のときには、有機凝集剤の添加量が不足していると考えられるので、ステップ5からステップ9に進み、有機凝集剤の添加量を所定量増加させ、所定時間待機する。所定時間経過後、大粒子の割合が10%以上(かつ20%未満)の適正範囲となっているか判断する(ステップ10)。そして、大粒子の割合が該適正範囲となるまで有機凝集剤の添加量を増加させた後、ステップ1に戻る。 In step 5, when the proportion of large particles is less than 10%, it is considered that the amount of the organic coagulant added is insufficient. Therefore, the process proceeds from step 5 to step 9, and the amount of the organic coagulant added is increased by a predetermined amount. , Wait for a predetermined time. After a lapse of a predetermined time, it is determined whether the proportion of large particles is within an appropriate range of 10% or more (and less than 20%) (step 10). Then, after increasing the amount of the organic flocculant added until the proportion of the large particles reaches the appropriate range, the process returns to step 1.
 ステップ6において、pH≦4.5のときには、無機凝集剤の添加量が過剰であると考えられるので、ステップ11に進み、無機凝集剤の添加量を所定量減少させた後、所定時間待機する。所定時間経過後に再度pHを検出し(ステップ12)、pHが依然として4.5以下である場合には、さらに無機凝集剤の添加量を減少させ、pHが4.5以上になった後、ステップ1に戻る。 In step 6, when the pH is ≦ 4.5, it is considered that the amount of the inorganic flocculant added is excessive. Therefore, the process proceeds to step 11, the amount of the inorganic flocculant added is reduced by a predetermined amount, and then the patient waits for a predetermined time. .. After the lapse of a predetermined time, the pH is detected again (step 12), and if the pH is still 4.5 or less, the amount of the inorganic flocculant added is further reduced, and after the pH becomes 4.5 or more, the step Return to 1.
 このようにして、凝集状態モニタリングセンサー10及びpH計7を用いて無機凝集剤及び有機凝集剤の添加量が適正となるように制御することができる。 In this way, the aggregation state monitoring sensor 10 and the pH meter 7 can be used to control the addition amounts of the inorganic flocculant and the organic flocculant so as to be appropriate.
 図5の説明では、粒子の大小を区別するための出力信号の強度差の基準値ha及びhbはそれぞれ350mV、2000mVに設定したが、これに限定されるものではない。すなわち、基準値ha、hbは凝集状態モニタリングセンサー10の仕様(発光部12からのレーザー光強度、受光部13からの受光信号の処理方法、その他)、測定対象(用水、排水、汚泥)、無機凝集剤や有機凝集剤の種類、及び凝集処理装置、固液分離装置(脱水処理装置)によって異なる。このため、基準値ha及びhbは、実際に適用する処理対象、処理装置、処理薬剤を用い、処理薬剤の添加量を種々変動させた試験を事前に実施することで適宜設定される。 In the explanation of FIG. 5, the reference values ha and hb of the intensity difference of the output signal for distinguishing the size of the particles are set to 350 mV and 2000 mV, respectively, but the present invention is not limited to this. That is, the reference values ha and hb are the specifications of the agglutination state monitoring sensor 10 (laser light intensity from the light emitting unit 12, processing method of the light receiving signal from the light receiving unit 13, etc.), measurement target (water, wastewater, sludge), inorganic. It depends on the type of coagulant and organic coagulant, and the coagulation treatment device and solid-liquid separation device (dehydration treatment device). Therefore, the reference values ha and hb are appropriately set by performing a test in which the amount of the treatment agent added varies in advance using the treatment target, the treatment apparatus, and the treatment agent to be actually applied.
 さらに、図5の説明では、ステップ1,2,5などで小粒子や大粒子の割合を一例として35%、20%、10%と設定しているが、この値も基準値haやhbと同様に測定対象(用水、排水、汚泥)、無機凝集剤や有機凝集剤の種類、及び凝集処理装置、固液分離装置(脱水処理装置)によって異なる。したがって、これらの割合についても、処理薬剤の添加量を種々変動させた試験を事前に実施することで適宜設定される。 Further, in the explanation of FIG. 5, the ratios of small particles and large particles are set to 35%, 20%, and 10% as an example in steps 1, 2, and 5, but these values are also set to the reference values ha and hb. Similarly, it differs depending on the measurement target (water, wastewater, sludge), the type of inorganic coagulant or organic coagulant, and the coagulation treatment device and solid-liquid separation device (dehydration treatment device). Therefore, these ratios are also appropriately set by conducting a test in which the amount of the treatment agent added varies in advance.
 なお、凝集汚泥をサンプリングして目視等によって凝集フロック粒径を測定し、そのときの凝集状態モニタリングセンサー出力信号と対比することにより、凝集状態モニタリングセンサー出力信号と凝集粒子の粒径とを直接的に関連づけるようにしてもよい。 By sampling the agglutinated sludge, visually measuring the agglutinated floc particle size, and comparing it with the agglutinated state monitoring sensor output signal at that time, the agglutinated state monitoring sensor output signal and the agglutinated particle particle size can be directly measured. It may be associated with.
 前記図4bでは、極大点と、その直前の極小点との差を求めているが、極大点と、その直後の極小点との差を求めてもよい。また、1つの極大点の直前及び直後の極小点を直線で結び、極大点から極大点下方の該直線までの距離を求めて、上記の差としてもよい。 In FIG. 4b, the difference between the maximum point and the minimum point immediately before it is obtained, but the difference between the maximum point and the minimum point immediately after that may be obtained. Further, the minimum points immediately before and after one maximum point may be connected by a straight line, and the distance from the maximum point to the straight line below the maximum point may be obtained and used as the above difference.
 図1では、凝集槽3,5を設置しているが、無機凝集剤を配管1で添加し、凝集槽3を省略してもよい。 Although the coagulation tanks 3 and 5 are installed in FIG. 1, an inorganic coagulant may be added in the pipe 1 and the coagulation tank 3 may be omitted.
 また、図1では、第2凝集槽5に有機凝集剤を添加するものとしているが、第2凝集槽5の代わりに第2配管を設置し、該第2配管に有機凝集剤を添加してもよい。 Further, in FIG. 1, the organic coagulant is added to the second coagulation tank 5, but a second pipe is installed instead of the second coagulation tank 5, and the organic coagulant is added to the second pipe. May be good.
 凝集状態モニタリングセンサー10は、第2凝集槽5からの凝集液流出配管に設置されてもよい。また、第2凝集槽5内の液が導入される計測槽を設け、この計測槽に凝集状態モニタリングセンサー10を設置してもよい。 The agglutination state monitoring sensor 10 may be installed in the agglutination liquid outflow pipe from the second agglutination tank 5. Further, a measuring tank into which the liquid in the second coagulation tank 5 is introduced may be provided, and the coagulation state monitoring sensor 10 may be installed in the measuring tank.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年7月26日付で出願された日本特許出願2019-138042に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2019-138402 filed on July 26, 2019, which is incorporated by reference in its entirety.
 3,5 凝集槽
 4,6 薬注装置
 8 制御器
 10 凝集状態モニタリングセンサー
3,5 Coagulation tank 4,6 Chemical injection device 8 Controller 10 Coagulation status monitoring sensor

Claims (6)

  1.  第1配管又は第1凝集槽と、
     該第1配管又は第1凝集槽に無機凝集剤を添加する無機凝集剤添加装置と、
     無機凝集剤が添加された液が、該第1配管又は第1凝集槽から導入される第2配管又は第2凝集槽と、
     該第2配管又は第2凝集槽に有機凝集剤を添加する有機凝集剤添加装置と、
     該第2配管又は第2凝集槽の凝集液と接するように設けられた凝集状態モニタリングセンサーと、
     該凝集状態モニタリングセンサーの検出値に基づいて、前記無機凝集剤添加装置及び有機凝集剤添加装置を制御する制御器と
    を有し、
     該凝集状態モニタリングセンサーは、水中にレーザ光を照射する照射部及び散乱光を受光する受光部を有し、
     該制御器は、散乱光強度信号の時間的な変化から、第2配管又は第2凝集槽内のフロック形成状態を判断する
    凝集処理装置であって、
     該制御器は、前記凝集状態モニタリングセンサーの検出信号から該凝集状態モニタリングセンサーの測定領域における粒子数に占める第1設定粒径よりも小さい小径粒子の割合と、第2設定粒径よりも大きい大径粒子の割合とに基づいて制御を行う
    凝集処理装置。
    With the first pipe or the first coagulation tank,
    An inorganic coagulant addition device that adds an inorganic coagulant to the first pipe or the first coagulation tank,
    The liquid to which the inorganic coagulant is added is introduced from the first pipe or the first coagulation tank into the second pipe or the second coagulation tank.
    An organic coagulant addition device that adds an organic coagulant to the second pipe or the second coagulation tank,
    An agglutination state monitoring sensor provided so as to be in contact with the agglutinating liquid of the second pipe or the second agglutination tank,
    It has a controller for controlling the inorganic coagulant addition device and the organic coagulant addition device based on the detection value of the agglutination state monitoring sensor.
    The agglutination state monitoring sensor has an irradiation unit that irradiates laser light into water and a light receiving unit that receives scattered light.
    The controller is a coagulation processing device that determines the flock formation state in the second pipe or the second coagulation tank from the temporal change of the scattered light intensity signal.
    From the detection signal of the agglomeration state monitoring sensor, the controller has a ratio of small-diameter particles smaller than the first set particle size to the number of particles in the measurement region of the agglomeration state monitoring sensor, and a large particle size larger than the second set particle size. A coagulation processing device that controls based on the proportion of particle size particles.
  2.  前記制御器は、前記小径粒子の割合が第1所定値よりも少なく、且つ前記大径粒子の割合が第2所定値よりも多いときに有機凝集剤の添加量を減少させることを特徴とする請求項1の凝集処理装置。 The controller is characterized in that the amount of the organic flocculant added is reduced when the proportion of the small-diameter particles is less than the first predetermined value and the proportion of the large-diameter particles is more than the second predetermined value. The coagulation processing apparatus according to claim 1.
  3.  前記制御器は、前記小径粒子の割合が前記第1所定値よりも多く、且つ前記大径粒子の割合が第3所定値(ただし、第3所定値は第2所定値よりも小さい。)よりも少ないときには、有機凝集剤の添加量を増加させることを特徴とする請求項2の凝集処理装置。 In the controller, the proportion of the small-diameter particles is larger than the first predetermined value, and the proportion of the large-diameter particles is larger than the third predetermined value (however, the third predetermined value is smaller than the second predetermined value). The coagulation treatment apparatus according to claim 2, wherein the amount of the organic coagulant added is increased when the amount is too small.
  4.  前記第2配管又は第2凝集槽にpH計が設けられており、
     前記制御器は、前記小径粒子の割合が前記第1所定値よりも多く、且つ前記大径粒子の割合が第3所定値よりも多いときには、前記pH計のpHに基づいて、無機凝集剤の添加量を制御することを特徴とする請求項2又は3の凝集処理装置。
    A pH meter is provided in the second pipe or the second coagulation tank.
    When the proportion of the small-diameter particles is higher than the first predetermined value and the proportion of the large-diameter particles is higher than the third predetermined value, the controller of the inorganic flocculant is based on the pH of the pH meter. The coagulation treatment apparatus according to claim 2 or 3, wherein the addition amount is controlled.
  5.  前記制御器は、前記pH計のpHが第1設定pHよりも高い場合、pHが第2設定pH(ただし、第2設定pHは第1設定pHよりも低い。)となるまで無機凝集剤の添加量を増大させることを特徴とする請求項4の凝集処理装置。 In the controller, when the pH of the pH meter is higher than the first set pH, the inorganic flocculant is used until the pH reaches the second set pH (however, the second set pH is lower than the first set pH). The coagulation treatment apparatus according to claim 4, wherein the addition amount is increased.
  6.  前記制御器は、前記第2凝集槽のpHが第1設定pHよりも低い場合、pHが該第1設定pHよりも高くなるまで無機凝集剤の添加量を減少させることを特徴とする請求項4又は5の凝集処理装置。 The controller is characterized in that when the pH of the second coagulation tank is lower than the first set pH, the amount of the inorganic coagulant added is reduced until the pH becomes higher than the first set pH. 4 or 5 coagulation treatment device.
PCT/JP2020/027473 2019-07-26 2020-07-15 Flocculation processing device WO2021020125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138042 2019-07-26
JP2019138042A JP6881515B2 (en) 2019-07-26 2019-07-26 Coagulation processing equipment

Publications (1)

Publication Number Publication Date
WO2021020125A1 true WO2021020125A1 (en) 2021-02-04

Family

ID=74228480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027473 WO2021020125A1 (en) 2019-07-26 2020-07-15 Flocculation processing device

Country Status (3)

Country Link
JP (1) JP6881515B2 (en)
TW (1) TW202109011A (en)
WO (1) WO2021020125A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018882A1 (en) * 2022-07-22 2024-01-25 栗田工業株式会社 Aggregation state determination method and aggregation processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277507A (en) * 1988-12-29 1990-11-14 Fuji Electric Co Ltd Sewage flocculating device, tubular flocculator, treating equipment and method for injecting flocculant
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2008161809A (en) * 2006-12-28 2008-07-17 Toshiba Corp Coagulant injection control system
JP2008279412A (en) * 2007-05-14 2008-11-20 Kurita Water Ind Ltd Method of controlling feeding chemicals
JP2017026438A (en) * 2015-07-22 2017-02-02 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941595B2 (en) * 2002-06-05 2007-07-04 栗田工業株式会社 Drug injection control device
JP2005241338A (en) * 2004-02-25 2005-09-08 Kurita Water Ind Ltd Coagulation sensor and coagulation control device using the same
JP4403849B2 (en) * 2004-03-24 2010-01-27 栗田工業株式会社 Aggregation processing method and apparatus
JP5072382B2 (en) * 2007-02-08 2012-11-14 株式会社東芝 Flocculant injection control device
JP6287594B2 (en) * 2014-06-03 2018-03-07 栗田工業株式会社 Aggregation processing method and aggregation processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277507A (en) * 1988-12-29 1990-11-14 Fuji Electric Co Ltd Sewage flocculating device, tubular flocculator, treating equipment and method for injecting flocculant
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2008161809A (en) * 2006-12-28 2008-07-17 Toshiba Corp Coagulant injection control system
JP2008279412A (en) * 2007-05-14 2008-11-20 Kurita Water Ind Ltd Method of controlling feeding chemicals
JP2017026438A (en) * 2015-07-22 2017-02-02 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system

Also Published As

Publication number Publication date
JP2021020158A (en) 2021-02-18
JP6881515B2 (en) 2021-06-02
TW202109011A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
Kan et al. Time requirement for rapid-mixing in coagulation
WO2021020125A1 (en) Flocculation processing device
WO2020017560A1 (en) Flocculant injection control device
WO2023017637A1 (en) Flocculation processing device
JP6139314B2 (en) Aggregation control apparatus and aggregation control method
WO2019187698A1 (en) Method for controlling addition of flocculant, control device, and water treatment system
JP4605327B2 (en) Aggregation monitoring device
JP4400721B2 (en) Water treatment system
JP6897742B2 (en) Belt press dehydration system monitoring device, monitoring method and control device
WO2024018882A1 (en) Aggregation state determination method and aggregation processing method
KR20080057364A (en) Method and device for adding flocculant in water treatment system
JP4400720B2 (en) Water treatment system
JP7484974B2 (en) Method for determining flocculation state and method for flocculation treatment
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
Chou et al. Application of optical monitor to evaluate the coagulation of pulp wastewater
TW202415938A (en) Aggregation state determination method and aggregation processing method
WO2024018884A1 (en) Method for determining aggregation state and method for performing aggregation process
JP2022156300A (en) Monitoring device, monitoring method and control device for dehydration system
JP2006263506A (en) Dehydration method and device of sludge
JP2024044564A (en) Treatment method for wastewater from civil engineering works
JPH0688040B2 (en) Sludge dewatering method
JPH0567322B2 (en)
Kolarik et al. Fundamentals of Coagulation–flocculation processes in water treatment
JPH05293309A (en) Flocculation treating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847350

Country of ref document: EP

Kind code of ref document: A1