WO2019187698A1 - Method for controlling addition of flocculant, control device, and water treatment system - Google Patents

Method for controlling addition of flocculant, control device, and water treatment system Download PDF

Info

Publication number
WO2019187698A1
WO2019187698A1 PCT/JP2019/004651 JP2019004651W WO2019187698A1 WO 2019187698 A1 WO2019187698 A1 WO 2019187698A1 JP 2019004651 W JP2019004651 W JP 2019004651W WO 2019187698 A1 WO2019187698 A1 WO 2019187698A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flocculant
treated
turbidity
added
Prior art date
Application number
PCT/JP2019/004651
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 昭宏
英邦 亀田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019187698A1 publication Critical patent/WO2019187698A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

A method for controlling addition of flocculant in which a flocculant is added to water to be treated, turbidity in spaces between flocs in the flocculant-treated water is measured with a flocculant sensor, and the addition of flocculant is controlled on the basis of the measurement results, wherein a warning is issued or the amount of flocculant added is regulated when a flocculant sensor measurement value exceeds a prescribed reference value.

Description

凝集剤添加制御方法、制御装置および水処理システムFlocculant addition control method, control device, and water treatment system
 本発明は、各種産業排水や工業用水等を凝集処理する際における凝集剤の最適な凝集剤量を決定するための制御方法及び装置に関する。また、本発明は、この制御装置を有する水処理システムに関する。 The present invention relates to a control method and apparatus for determining an optimum amount of a flocculant when aggregating various industrial wastewater and industrial water. Moreover, this invention relates to the water treatment system which has this control apparatus.
 各種排水・用水の前処理において、濁質および有機物を除去するために凝集処理が用いられている。凝集処理に用いられる凝集剤としては、塩化鉄やポリ塩化アルミニウムなどの鉄系凝集剤やアルミ系無機凝集剤が用いられることが一般的であるが、カチオン性高分子凝集剤を無機凝集剤と併用する凝集処理も行われる。 In the pretreatment of various wastewater and water, a coagulation treatment is used to remove turbidity and organic matter. As the aggregating agent used in the aggregating treatment, iron-based aggregating agents such as iron chloride and polyaluminum chloride and aluminum-based inorganic aggregating agents are generally used. The coagulation treatment used together is also performed.
 凝集剤の添加量は被処理水の水質に応じて適切な量を添加する必要がある。薬品量が不足すれば、被処理水中に含まれる濁質や有機物の除去が不十分となり、処理水質の悪化が起こる。一方、薬品量が過剰であれば薬品が後段へリークし、後段処理での負荷増大や汚染を引き起こす可能性がある。 It is necessary to add an appropriate amount of the flocculant depending on the quality of the water to be treated. If the amount of chemical is insufficient, the removal of turbidity and organic substances contained in the water to be treated becomes insufficient, resulting in deterioration of the quality of the treated water. On the other hand, if the amount of the chemical is excessive, the chemical leaks to the subsequent stage, which may cause an increase in load and contamination in the subsequent process.
 最適な薬品量を決定するためには、ジャーテストを行うことが一般的であるが、多大な手間を要する。被処理水の水質変動のたびにジャーテストを行うことは、実際の水処理において、変動に即時対応することができず、現実的ではない。 In order to determine the optimal amount of chemicals, it is common to perform a jar test, but it takes a lot of work. It is not practical to perform a jar test every time the quality of treated water changes, because it is not possible to immediately respond to fluctuations in actual water treatment.
 特許文献1~5には、pH、凝集剤薬注量、攪拌条件などの最適な凝集条件を設定するために、凝集処理中の被処理水の処理状態をリアルタイムで監視し、SSの凝集状態をモニタリングする方法が記載されている。 In Patent Documents 1 to 5, in order to set optimal aggregation conditions such as pH, flocculant dosage, and stirring conditions, the treatment state of the water to be treated during the aggregation treatment is monitored in real time, and the SS aggregation state A method for monitoring is described.
 特許文献1,2には、被処理水にレーザ光を照射して被処理水中の粒子による散乱光を受光し、その受光信号にAM(Amplitudemodulation:振幅変調)検波を施した後、信号強度の最低値を求め、この最低値から凝集剤薬注量を求めることが記載されている。この凝集モニタリングでは、散乱光の信号強度の最低値を求めることで、被処理水中の凝集物による散乱光から未凝集の懸濁物による散乱光を区別して検出している。 In Patent Documents 1 and 2, laser light is irradiated on the water to be treated to receive scattered light from particles in the water to be treated, and after AM (Amplitude modulation) detection is performed on the received light signal, the signal intensity is measured. It is described that the minimum value is obtained, and the flocculant dosage is obtained from this minimum value. In this aggregation monitoring, the minimum value of the signal intensity of the scattered light is obtained, and the scattered light from the unaggregated suspension is detected from the scattered light from the aggregate in the water to be treated.
 特許文献3~5には、被処理水の凝集処理において、発生するフロックに取り込まれていないSSの濃度を計測し、この計測値に基づいて凝集剤の薬注量を制御する薬注システムが記載されている。SSの濃度計測には、被処理水の計測領域にレーザ光を照射し、計測領域からの散乱光を受光し、この散乱光を光電変換した信号レベルからSS濃度を表す計測値を得ている。 In Patent Documents 3 to 5, there is a chemical injection system that measures the concentration of SS that is not taken into flocs that are generated in the coagulation treatment of water to be treated, and controls the chemical injection amount of the coagulant based on this measured value. Are listed. In the SS concentration measurement, laser light is irradiated to the measurement area of the water to be treated, scattered light from the measurement area is received, and a measurement value representing the SS concentration is obtained from a signal level obtained by photoelectrically converting the scattered light. .
特開2002-195947号公報JP 2002-195947 A 特開2005-241338号公報JP 2005-241338 A 特開2003-154206号公報JP 2003-154206 A 特開2016-3974号公報Japanese Unexamined Patent Publication No. 2016-3974 特開2017-72404号公報JP 2017-72404 A
 本発明は、水質変動があっても凝集処理を良好に行うことができる凝集剤添加制御方法及び装置と、この凝集剤添加制御装置を備えた水処理システムを提供することを目的とする。 An object of the present invention is to provide a flocculant addition control method and apparatus that can satisfactorily perform flocculation treatment even when there is a change in water quality, and a water treatment system including the flocculant addition control apparatus.
 本発明の凝集剤添加制御方法は、被処理水に凝集剤を添加し、凝集処理水中の凝集フロック同士の間における濁度(以下、フロック間濁度という。)を凝集センサによって測定し、この測定結果に基づいて凝集剤添加制御を行う凝集剤添加制御方法において、該凝集センサのフロック間濁度測定値が所定の基準値を超えた場合、警報の発報および/または凝集剤の添加量調節を行うことを特徴とする。 In the flocculant addition control method of the present invention, a flocculant is added to the water to be treated, and the turbidity between flocculated flocs in the flocculated water (hereinafter referred to as inter-floc turbidity) is measured by a flocculence sensor. In the flocculant addition control method for controlling flocculant addition based on the measurement result, when the floc turbidity measurement value of the floc sensor exceeds a predetermined reference value, an alarm is issued and / or the amount of flocculant added It is characterized by adjusting.
 本発明の一態様では、更に、被処理水の濁度を測定し、被処理水の濁度に対する前記フロック間濁度測定値の比率が0.7~1を超えた場合、警報の発報および/または凝集剤の添加量調節を行う。 In one aspect of the present invention, the turbidity of the water to be treated is further measured, and if the ratio of the turbidity measurement value between flocs to the turbidity of the water to be treated exceeds 0.7 to 1, an alarm is issued. And / or adjusting the amount of flocculant added.
 本発明の一態様では、凝集剤を添加した凝集処理水の流動電位を流動電位計で測定し、該流動電位の測定値に基づき、凝集剤の添加量を制御する。 In one embodiment of the present invention, the flow potential of the flocculated water to which the flocculant is added is measured with a flow potential meter, and the amount of flocculant added is controlled based on the measured value of the flow potential.
 本発明の一態様では、被処理水のORP値が300mV以上となるように、被処理水に酸化剤を添加する。 In one embodiment of the present invention, an oxidizing agent is added to the water to be treated so that the ORP value of the water to be treated is 300 mV or more.
 本発明の凝集剤添加制御装置は、被処理水に凝集剤を添加する添加手段と、凝集処理水中のフロック間濁度を測定する凝集センサと、該凝集センサの測定結果に基づいて凝集剤添加制御を行う制御手段とを有する凝集剤添加制御装置において、該凝集センサの測定値が所定の基準値を超えた場合、警報の発報を行う警報発報手段を備えたことを特徴とするものである。 The flocculant addition control device of the present invention includes an adding means for adding a flocculant to the water to be treated, an agglomeration sensor for measuring turbidity between flocs in the agglomerated water, and addition of the flocculant based on the measurement result of the agglomeration sensor. A flocculant addition control device having a control means for performing control, characterized by comprising an alarm notification means for issuing an alarm when the measured value of the aggregation sensor exceeds a predetermined reference value It is.
 本発明の一態様では、被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、該流動電位計の計測値に基づき、凝集剤の添加量を求める算出手段を有する。 In one aspect of the present invention, a flow potential meter that measures the flow potential of water to be treated or flocculated water to which a flocculant has been added, and a calculation means for determining the amount of flocculant added based on the measured value of the flow potential meter Have
 本発明の水処理システムは、本発明の凝集剤添加制御装置と凝集処理水を固液分離する固液分離手段とを有する。 The water treatment system of the present invention includes the flocculant addition control device of the present invention and solid-liquid separation means for solid-liquid separation of the flocculated water.
 本発明の一態様では、被処理水のORP値の測定手段と、被処理水のORP値が300mV以上となるように、被処理水へ酸化剤を添加する添加手段とを有する。 In one embodiment of the present invention, there are provided a means for measuring the ORP value of the water to be treated and an adding means for adding an oxidizing agent to the water to be treated so that the ORP value of the water to be treated is 300 mV or more.
 本発明では、凝集処理水中のフロック間濁度を計測し、フロック間濁度が所定の基準値を超えた場合、凝集不良と判断し、警報を発報するか、あるいは凝集剤の添加量を制御する。これにより、凝集不良の継続を防止することができる。 In the present invention, the turbidity between flocs in the flocculated water is measured, and if the turbidity between flocs exceeds a predetermined reference value, it is determined that the flocculation is defective and an alarm is issued or the amount of flocculant added is determined. Control. Thereby, the continuation of the aggregation failure can be prevented.
図1は実施の形態に係る凝集剤注入制御装置の構成図である。FIG. 1 is a configuration diagram of a flocculant injection control device according to an embodiment. 図2は実験結果を示すグラフである。FIG. 2 is a graph showing experimental results. 図3は実験結果を示すグラフである。FIG. 3 is a graph showing experimental results. 図4は実験結果を示すグラフである。FIG. 4 is a graph showing experimental results.
 以下、図面を参照して実施の形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1は第1の実施の形態に係る制御装置を示す構成図である。 FIG. 1 is a block diagram showing a control device according to the first embodiment.
 原水は原水槽1に導入され、必要があれば、原水槽1に備えられたORP計2及び原水槽薬品注入制御装置4により、ORPが300mV以上になるよう酸化剤が添加される。酸化剤としては、次亜塩素酸塩や二酸化塩素化合物が使用できる。 Raw water is introduced into the raw water tank 1, and if necessary, an oxidizing agent is added by the ORP meter 2 and the raw water tank chemical injection control device 4 provided in the raw water tank 1 so that the ORP becomes 300 mV or more. As the oxidizing agent, hypochlorite or chlorine dioxide compounds can be used.
 凝集剤添加前にpHを一定に調整する必要がある場合は、原水槽1にpH計3を設置し、原水槽1の前段にpH調整槽1aを設ける形態を取っても良い。pH調整剤として、水酸化ナトリウム、消石灰、塩酸、硫酸などを用いることができる。 When it is necessary to adjust the pH to a certain level before adding the flocculant, a form in which the pH meter 3 is installed in the raw water tank 1 and the pH adjusting tank 1a is provided in the previous stage of the raw water tank 1 may be employed. As a pH adjuster, sodium hydroxide, slaked lime, hydrochloric acid, sulfuric acid and the like can be used.
 被処理水の濁度に対するフロック間濁度の比率を計測する場合は、原水槽に光学式濁度計を設置する。 When measuring the ratio of inter-floc turbidity to turbidity of treated water, install an optical turbidity meter in the raw water tank.
 原水槽1内の原水は次いで、凝集槽5に導入され、カチオン性高分子凝集剤が添加された後、凝集槽11に導入され、無機凝集剤が添加される。凝集槽11では、pH計12で検出される凝集処理水のpHを一定に調整するためにpH調整剤が添加される。凝集槽5,11への凝集剤の添加量は凝集剤注入制御装置10によって制御される。 The raw water in the raw water tank 1 is then introduced into the coagulation tank 5 and after the cationic polymer flocculant is added, it is introduced into the coagulation tank 11 and the inorganic flocculant is added. In the flocculation tank 11, a pH adjuster is added to adjust the pH of the flocculated water detected by the pH meter 12 to be constant. The addition amount of the coagulant to the coagulation tanks 5 and 11 is controlled by the coagulant injection control device 10.
 カチオン性高分子凝集剤としては、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリ(メタクリル酸2-ジメチルアミノエチル)、ポリジメチルアミノエチルメタクリレート塩化ベンジル四級塩、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(メタクリル酸2-ジメチルアミノエチル)、ポリ(2-ビニル-1-メチルピリニジウム)、ジアルキルアミン‐エピクロルヒドリン重縮合物、ポリリジン、キトサン、ジエチルアミノエチルデキストランなどが挙げられる。 Cationic polymer flocculants include poly (diallyldimethylammonium chloride), poly (2-dimethylaminoethyl methacrylate), polydimethylaminoethyl methacrylate benzyl quaternary salt, polyethyleneimine, polyallylamine, polyvinylamine, poly ( (Methacrylic acid 2-dimethylaminoethyl), poly (2-vinyl-1-methylpyridinium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyldextran and the like.
 無機凝集剤としては塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などの鉄系無機凝集剤や塩化アルミニウム、ポリ塩化アルミニウム、硫酸バンド、水酸化アルミニウム、酸化アルミニウムなどのアルミ系無機凝集剤が挙げられる。 Inorganic flocculants include ferrous chloride, ferric sulfate, polyferric chloride, polyferric sulfate, and other iron-based inorganic flocculants, and aluminum chloride, polyaluminum chloride, sulfate bands, aluminum hydroxide, and aluminum oxide. Aluminum-based inorganic flocculants such as
 2種類以上のカチオン性高分子凝集剤の混合物をカチオン性高分子凝集剤として用いても良い。2種類以上の無機凝集剤の混合物を無機凝集剤として用いても良い。 A mixture of two or more types of cationic polymer flocculants may be used as the cationic polymer flocculant. A mixture of two or more inorganic flocculants may be used as the inorganic flocculant.
 凝集剤としては、カチオン性高分子凝集剤および無機凝集剤の双方が添加されてもよく、無機凝集剤のみが添加されてもよい。カチオン性高分子凝集剤と無機凝集剤の双方を添加する場合、各凝集剤は図示の通り別々の凝集槽5,11に添加しても良いし、図示は省略するが同一の凝集槽に添加しても良い。添加順序については、どちらを先に添加しても良く、同時に添加しても良い。 As the flocculant, both the cationic polymer flocculant and the inorganic flocculant may be added, or only the inorganic flocculant may be added. When both the cationic polymer flocculant and the inorganic flocculant are added, each flocculant may be added to the separate flocculant tanks 5 and 11 as shown in the figure, or added to the same flocculant tank although not shown in the figure. You may do it. As for the order of addition, either may be added first or at the same time.
 凝集槽11内の凝集処理水は次いで凝集センサ槽13に導入される。凝集センサ槽13は、微粒子センサ14を備えている。微粒子センサ14としては、フロック間濁度を測定するための、レーザー光を放射するための発光器と、散乱したレーザー光を検出するためのプローブを備えた光散乱式微粒子センサ(例えば特許文献3に記載のものなど)などを用いることができる。 The agglomerated water in the agglomeration tank 11 is then introduced into the agglomeration sensor tank 13. The aggregation sensor tank 13 includes a fine particle sensor 14. As the fine particle sensor 14, a light scattering fine particle sensor (for example, Patent Document 3) provided with a light emitter for emitting laser light for measuring inter-floc turbidity and a probe for detecting scattered laser light. Etc.) can be used.
 微粒子センサ14で計測されたフロック間濁度が上昇した場合は、水質変動に対する凝集剤二剤の添加量の不足あるいは過剰、または、カチオン性高分子凝集剤と無機凝集剤の添加量の比率が不適切な場合のいずれかの理由で凝集の不良が生じていると考えられる。そこで、警報を発報するか、及び/又は凝集剤添加量を制御する。 When the inter-floc turbidity measured by the fine particle sensor 14 is increased, the addition amount of the two coagulants is insufficient or excessive with respect to the water quality fluctuation, or the ratio of the addition amount of the cationic polymer flocculant and the inorganic flocculant is It is considered that a poor aggregation occurs for any reason in the case of inappropriateness. Therefore, an alarm is issued and / or the amount of flocculant added is controlled.
 後述の実施例1で示すように、フロック間濁度の値と後段の除濁膜処理における差圧上昇速度には相関性があるため、除濁膜の薬品洗浄頻度といった使用条件に応じて、警報および/または凝集剤の添加量を調節する信号を発信するためのフロック間濁度の基準値を定めることができる。 As shown in Example 1 described later, since there is a correlation between the value of the turbidity between flocs and the differential pressure increase rate in the subsequent turbidity removal membrane treatment, depending on the use conditions such as the chemical cleaning frequency of the turbidity removal membrane, A reference value for inter-floc turbidity can be established to send an alarm and / or a signal to adjust the amount of flocculant added.
 フロック間濁度の代わりに、被処理水の濁度に対するフロック間濁度の比率を基準値として使用しても良い。この場合は、後述の実施例2で示すように、被処理水の濁度に対するフロック間濁度の比率が0.7~1の範囲を超えると、後段の除濁膜の差圧上昇速度が増加する。従って、この値を警報および/または凝集剤の添加量を調節する信号を発信するための基準値として設定することができる。被処理水の濁度に対するフロック間濁度の比率を算出する際は、光学式濁度計を設置した原水槽と微粒子センサを設置した凝集センサ槽の滞留時間の差を加味して算出することが望ましい。 * Instead of inter-floc turbidity, the ratio of inter-floc turbidity to the turbidity of water to be treated may be used as a reference value. In this case, as shown in Example 2 described later, when the ratio of the turbidity between flocs to the turbidity of the water to be treated exceeds the range of 0.7 to 1, the rate of increase in the differential pressure of the subsequent turbidity removal membrane is increased. To increase. Therefore, this value can be set as a reference value for transmitting an alarm and / or a signal for adjusting the amount of flocculant added. When calculating the ratio of turbidity between flocs to the turbidity of the water to be treated, take into account the difference in residence time between the raw water tank where the optical turbidimeter is installed and the aggregation sensor tank where the fine particle sensor is installed. Is desirable.
 凝集センサ槽13内の凝集処理水は処理水ポンプ15を介して、固液分離処理設備へ送水される。固液分離処理として、膜分離処理、砂ろ過処理、沈殿処理、加圧浮上処理が挙げられる。 The agglomerated treated water in the agglomeration sensor tank 13 is sent to the solid-liquid separation treatment facility via the treated water pump 15. Examples of the solid-liquid separation treatment include membrane separation treatment, sand filtration treatment, precipitation treatment, and pressurized flotation treatment.
 この実施の形態では、凝集センサ槽13からの凝集処理水の一部をバルブ9を介して受け入れ、流動電位計8で流動電位を測定し、この測定後の水を凝集センサ槽13に戻すようにサンプリングセル6が設置されている。サンプリングセル6では、一定体積の凝集処理水が封入され、流動電位計8により凝集処理水の流動電位値が測定される。凝集剤添加量の算出には、事前評価により求めた凝集処理水の流動電位値の最適値が必要となる。
 一定時間凝集処理水をサンプリングセル6に通水したのち、サンプリングセル6の凝集処理水側に取り付けたバルブ9で流れを一旦停止するストップトフロー方式を採用することが望ましい。また、流動電位計8の測定部およびサンプリングセル6内を定期的に洗浄できるよう、サンプリングセル6に洗浄液を導入できるようにしておくことが望ましい。洗浄液としては、被処理水の水質に応じ、酸、アルカリ、酸化剤の1種または2種以上を使用することが望ましい。
In this embodiment, a part of the flocculated water from the flocculation sensor tank 13 is received through the valve 9, the flow potential is measured by the flow potential meter 8, and the water after the measurement is returned to the flocculation sensor tank 13. A sampling cell 6 is installed in In the sampling cell 6, a certain volume of flocculated water is sealed, and the flow potential value of the flocculated water is measured by the flow potential meter 8. For the calculation of the addition amount of the flocculant, the optimum value of the flow potential value of the flocculated water obtained by the preliminary evaluation is required.
It is desirable to employ a stopped flow method in which the agglomerated water is passed through the sampling cell 6 for a certain period of time and then the flow is temporarily stopped by a valve 9 attached to the agglomerated water side of the sampling cell 6. In addition, it is desirable to be able to introduce a cleaning solution into the sampling cell 6 so that the measurement part of the flow potential meter 8 and the inside of the sampling cell 6 can be periodically cleaned. As the cleaning liquid, it is desirable to use one or more of acids, alkalis and oxidizing agents depending on the quality of the water to be treated.
 流動電位計8の計測値に基づく凝集剤添加量の自動調節は、定期的な間隔で実施するよう設定しても良いし、微粒子センサ14で計測したフロック間濁度の上昇時に実施するよう設定しても良い。 The automatic adjustment of the flocculant addition amount based on the measured value of the flow potential meter 8 may be set to be performed at regular intervals, or set to be performed when the inter-floc turbidity measured by the fine particle sensor 14 is increased. You may do it.
 サンプリングセル6は、凝集槽11から凝集処理水を導入してもよく、固液分離装置の後段に設置して固液分離処理水を導入しても良い。固液分離処理水を導入する場合は、固液分離処理水の流動電位値の最適値を事前評価により求めておく必要がある。 The sampling cell 6 may introduce the coagulated water from the coagulation tank 11 or may be installed after the solid-liquid separator to introduce the solid-liquid separated water. When solid-liquid separation treated water is introduced, it is necessary to obtain an optimum value of the flow potential value of the solid-liquid separation treated water by preliminary evaluation.
 凝集処理水の流動電位値の最適値は、例えば図2のような結果から求めることができる。 The optimum value of the flow potential value of the flocculated water can be obtained from the result shown in FIG.
 図2は事前の机上試験にて評価した、無機凝集剤添加量と流動電位値、凝集処理水水質の関係を示しており、凝集処理水水質はMFF値で表されている。 FIG. 2 shows the relationship between the amount of the inorganic flocculant added, the flow potential value, and the water quality of the agglomerated water evaluated by a prior desktop test, and the agglomerated water quality is represented by the MFF value.
 MFF値の測定方法は次の通りである。
 MF膜を吸引ろ過装置にセットし、-67kPaの減圧下で溶解性高分子物質および微粒子フリーの基準水150mLの透過時間T0を測定した後に、測定試料(150mL)の1回目通水時間T1、2回目通水時間T2を測定する。MFF値=T2/T1である。
The measuring method of the MFF value is as follows.
The MF membrane was set in a suction filtration device, and after measuring the permeation time T0 of 150 mL of the soluble polymer substance and fine particle-free reference water under a reduced pressure of −67 kPa, the first flow time T1 of the measurement sample (150 mL), Measure the second water passage time T2. MFF value = T2 / T1.
 MFFの値が良好となったとき、流動電位は特定の値を示しており、この値が凝集処理水の流動電位値の最適値である(ここでは約-300mV)。このような無機凝集剤添加量と流動電位値の相関図を凝集制御装置に記録しておき、実際の凝集処理水の流動電位値が示す無機凝集剤濃度と流動電位値が最適値となる無機凝集剤濃度(ここでは約200mg/L)の差から、無機凝集剤の不足濃度(A)を算出する。 When the MFF value becomes good, the streaming potential shows a specific value, and this value is the optimum streaming potential value of the flocculated water (about -300 mV here). A correlation diagram between the amount of the inorganic flocculant added and the flow potential value is recorded in the flocculence control device, and the inorganic flocculant concentration and the flow potential value indicated by the actual flow potential value of the flocculated water are optimum values. The insufficient concentration (A) of the inorganic flocculant is calculated from the difference in the flocculant concentration (here, about 200 mg / L).
 凝集剤として無機凝集剤のみを用いる場合は、追加添加量は、A×0.5~A×1の範囲内になるよう調整設定することが望ましい。カチオン性高分子と無機凝集剤の2種類の凝集剤を用いる場合は、被処理水の水質および使用する無機凝集剤の種類にもよるが、無機凝集剤の追加添加量は、A×0.1~A×0.9の範囲内になるよう調整設定することが望ましく、また、カチオン性高分子の追加添加量は、被処理水の水質および使用するカチオン性高分子の種類にもよるが、A×0.001~A×0.008の範囲内になるよう調整設定することが望ましい。 When only the inorganic flocculant is used as the flocculant, it is desirable to adjust and set the additional addition amount within the range of A × 0.5 to A × 1. When two types of flocculants, a cationic polymer and an inorganic flocculant, are used, depending on the quality of the water to be treated and the type of inorganic flocculant used, the additional amount of the inorganic flocculant is A × 0. It is desirable to adjust and set to be within the range of 1 to A × 0.9, and the additional amount of the cationic polymer depends on the quality of the water to be treated and the type of the cationic polymer to be used. It is desirable to adjust and set to be within the range of A × 0.001 to A × 0.008.
 実際の凝集処理水の流動電位値が凝集処理水の流動電位値の最適値よりも高くなった場合は、カチオン性高分子が過剰となっている可能性が高いため、凝集剤添加量の設定値の見直しを行う必要がある。 If the actual flow potential value of the coagulation treated water is higher than the optimum value of the flow potential value of the coagulation treated water, there is a high possibility that the cationic polymer is excessive. The value needs to be reviewed.
[実施例1]
 実施例1で用いた試験被処理水、試薬は以下の通りである。
[Example 1]
The test water and reagents used in Example 1 are as follows.
   試験被処理水:工場排水Aの生物処理水(ORP:100~200mV)
   カチオン性高分子:ポリ(ジアリルジメチルアンモニウムクロリド)
   無機凝集剤:塩化第二鉄(38%)
   酸化剤:次亜塩素酸ナトリウム
Test water: Biologically treated water from factory wastewater A (ORP: 100-200 mV)
Cationic polymer: poly (diallyldimethylammonium chloride)
Inorganic flocculant: ferric chloride (38%)
Oxidizing agent: Sodium hypochlorite
<試験方法>
 図1に示した凝集剤注入制御システムの構成にて、原水槽のORPが325±25 mVの範囲に収まるよう原水槽へ酸化剤を添加し、上記の各凝集剤を添加して凝集処理を行い、システム後段の固液分離処理として膜分離処理(PVDF、孔径0.02μm、運転条件:運転Flux2~4m/D、逆洗間隔10~28min)を行った。また、凝集センサ槽13に設けた光散乱式微粒子センサ14により、連続通水中のフロック間濁度を測定した。
<Test method>
In the configuration of the flocculant injection control system shown in FIG. 1, an oxidizing agent is added to the raw water tank so that the ORP of the raw water tank is within the range of 325 ± 25 mV, and the above flocculants are added to perform the flocculation process. Then, a membrane separation process (PVDF, pore diameter 0.02 μm, operation conditions: operation flux 2-4 m / D, backwash interval 10-28 min) was performed as a solid-liquid separation process at the latter stage of the system. Further, the floc turbidity during continuous water passage was measured by the light scattering fine particle sensor 14 provided in the aggregation sensor tank 13.
 このフロック間濁度と、該膜分離処理における膜間差圧の上昇速度の関係を測定した。結果を図3に示す。 The relationship between the floc turbidity and the increase rate of the transmembrane pressure difference in the membrane separation treatment was measured. The results are shown in FIG.
 図3の通り、フロック間濁度が上昇すると差圧上昇速度も高くなり、強い相関が見られることが分かった。フロック間濁度の上昇は、被処理水の水質が急激に変動し、凝集不良の発生が生じたか、あるいは、被処理水の水質が極めて大幅に変動し、流動電位計で測定した値に対する、凝集剤の自動添加量の調整設定が不適切となったことが原因と考えられる。 As shown in FIG. 3, it was found that when the turbidity between flocs increased, the differential pressure increase rate increased and a strong correlation was observed. The increase in turbidity between flocs is due to the fact that the quality of the water to be treated has fluctuated rapidly and the occurrence of coagulation failure has occurred, or the quality of the water to be treated has fluctuated extremely greatly, This is considered to be caused by inappropriate adjustment settings for the amount of flocculant added automatically.
 従って、フロック間濁度が一定値以上に上昇した際に、流動電位計の計測による凝集剤添加量の自動調節を行うように設定する方法や、凝集剤の自動添加量の調整設定を新たな値に設定し直す方法が考えられる。このように。凝集センサ槽に備えられた粒子センサにより、凝集不良が生じていないか確認する警報センサとして利用することが可能となる。 Therefore, when the turbidity between flocs rises above a certain value, a new method is set to adjust the flocculant addition amount automatically by measuring the flow potential meter, and the automatic flocculant addition amount adjustment setting A method of resetting to a value can be considered. in this way. The particle sensor provided in the aggregation sensor tank can be used as an alarm sensor for confirming whether or not an aggregation failure has occurred.
[実施例2]
 実施例2では、次の被処理水及び無機凝集剤を用いた。
[Example 2]
In Example 2, the following water to be treated and inorganic flocculant were used.
     試験被処理水:工場排水B
     無機凝集剤:塩化第二鉄(38%)
Test water: Factory wastewater B
Inorganic flocculant: ferric chloride (38%)
<実験方法>
 図1に示したシステム構成にて、無機凝集剤のみを添加して凝集処理を行った。また、システム後段の固液分離処理として膜分離処理(PVDF、孔径0.02μm、運転条件:運転Flux3.3m/D、逆洗間隔15min)を行った。
<Experiment method>
In the system configuration shown in FIG. 1, only the inorganic flocculant was added to perform the agglomeration treatment. In addition, a membrane separation process (PVDF, pore diameter 0.02 μm, operation conditions: operation flux 3.3 m / D, backwash interval 15 min) was performed as a solid-liquid separation process at the latter stage of the system.
 被処理水の濁度に対するフロック間濁度の比率と膜間差圧の上昇速度の関係を測定した結果を図4に示す。 FIG. 4 shows the results of measuring the relationship between the ratio of the turbidity between flocs to the turbidity of the water to be treated and the rate of increase in transmembrane pressure difference.
 図4の通り、被処理水の濁度に対するフロック間濁度の比率が0.7~1の範囲を超えると差圧上昇速度も増加する傾向が見られることが分かった。従って、被処理水の濁度に対するフロック間濁度の比率([フロック間濁度]/[原水濁度])が0.7~1の範囲から選択された値よりも小さければ凝集は良好であり、大きければ凝集は不良であると判別することができる。 As shown in FIG. 4, it was found that when the ratio of the turbidity between flocs to the turbidity of the water to be treated exceeds the range of 0.7 to 1, the rate of increase in the differential pressure tends to increase. Therefore, if the ratio of turbidity between flocs to turbidity of the water to be treated ([floc turbidity] / [raw water turbidity]) is smaller than the value selected from the range of 0.7 to 1, the aggregation is good. If it is present and larger, it can be determined that the aggregation is poor.
 以上の実施例より明らかなとおり、本発明によると、被処理水の変動が起きた場合でも、凝集の不良を検出し凝集条件を調節することで、凝集不良による後段処理の汚染を防ぐことができる。 As is clear from the above examples, according to the present invention, even when fluctuations in the water to be treated occur, it is possible to prevent contamination of subsequent processing due to poor aggregation by detecting poor aggregation and adjusting the aggregation conditions. it can.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年3月29日付で出願された日本特許出願2018-064449に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-064449 filed on Mar. 29, 2018, which is incorporated by reference in its entirety.
 1 原水槽
 5,11 凝集槽
 6 サンプリングセル
 13 凝集センサ槽
 14 微粒子センサ
DESCRIPTION OF SYMBOLS 1 Raw water tank 5,11 Aggregation tank 6 Sampling cell 13 Aggregation sensor tank 14 Fine particle sensor

Claims (8)

  1.  被処理水に凝集剤を添加し、凝集処理水中の凝集フロック同士の間における濁度(以下、フロック間濁度という。)を凝集センサによって測定し、この測定結果に基づいて凝集剤添加制御を行う凝集剤添加制御方法において、
     該凝集センサのフロック間濁度測定値が所定の基準値を超えた場合、警報の発報および/または凝集剤の添加量調節を行うことを特徴とする凝集剤添加制御方法。
    A flocculant is added to the water to be treated, and the turbidity between flocculated flocs in the flocculated water (hereinafter referred to as turbidity between flocs) is measured by a flocculence sensor. In the flocculant addition control method to be performed,
    A flocculant addition control method, wherein when the measured value of floc turbidity of the floc sensor exceeds a predetermined reference value, an alarm is issued and / or the amount of flocculant added is adjusted.
  2.  請求項1において、更に、被処理水の濁度を測定し、
     被処理水の濁度に対する前記フロック間濁度測定値の比率が0.7~1を超えた場合、前記警報の発報および/または凝集剤の添加量調節を行うことを特徴とする凝集剤添加制御方法。
    In claim 1, further, the turbidity of water to be treated is measured,
    When the ratio of the measured value of turbidity between flocs to the turbidity of water to be treated exceeds 0.7 to 1, the alarm is reported and / or the addition amount of the flocculant is adjusted. Addition control method.
  3.  請求項1又は2において、凝集剤を添加した凝集処理水の流動電位を流動電位計で測定し、該流動電位の測定値に基づき、凝集剤の添加量を制御することを特徴とする凝集剤添加制御方法。 The flocculant according to claim 1 or 2, wherein the flow potential of the flocculated water to which the flocculant is added is measured with a flow potential meter, and the amount of flocculant added is controlled based on the measured value of the flow potential. Addition control method.
  4.  請求項1~3のいずれか1項において、被処理水のORP値が300mV以上となるように、被処理水に酸化剤を添加することを特徴とする凝集剤添加制御方法。 4. The flocculant addition control method according to any one of claims 1 to 3, wherein an oxidizing agent is added to the water to be treated so that the ORP value of the water to be treated is 300 mV or more.
  5.  被処理水に凝集剤を添加する添加手段と、凝集処理水中のフロック間濁度を測定する凝集センサと、
     該凝集センサの測定結果に基づいて凝集剤添加制御を行う制御手段と
    を有する凝集剤添加制御装置において、
     該凝集センサの測定値が所定の基準値を超えた場合、警報の発報を行う警報発報手段を備えたことを特徴とする凝集剤添加制御装置。
    An adding means for adding a flocculant to the water to be treated; a flocculence sensor for measuring the floc turbidity in the agglomerated water;
    In a flocculant addition control device having control means for performing flocculant addition control based on the measurement result of the flocculence sensor,
    An aggregating agent addition control device comprising an alarm reporting unit for issuing an alarm when a measured value of the aggregation sensor exceeds a predetermined reference value.
  6.  請求項5において、被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、
     該流動電位計の計測値に基づき、凝集剤の添加量を求める算出手段を有することを特徴とする凝集剤添加制御装置。
    In claim 5, a flow potential meter for measuring the flow potential of the water to be treated or the agglomerated treated water to which a flocculant is added,
    A flocculant addition control device comprising a calculating means for determining the amount of flocculant added based on the measured value of the flow potential meter.
  7.  請求項5又は6に記載の凝集剤添加制御装置を有する水処理システムであって、
     凝集処理水を固液分離する固液分離手段を有することを特徴とする水処理システム。
    A water treatment system comprising the flocculant addition control device according to claim 5 or 6,
    A water treatment system comprising solid-liquid separation means for solid-liquid separation of flocculated treated water.
  8.  請求項7において、被処理水のORP値の測定手段と、被処理水のORP値が300mV以上となるように、被処理水へ酸化剤を添加する添加手段とを有することを特徴とする水処理システム。 8. The water according to claim 7, comprising means for measuring the ORP value of the water to be treated and means for adding an oxidant to the water to be treated so that the ORP value of the water to be treated is 300 mV or more. Processing system.
PCT/JP2019/004651 2018-03-29 2019-02-08 Method for controlling addition of flocculant, control device, and water treatment system WO2019187698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064449 2018-03-29
JP2018064449A JP6673390B2 (en) 2018-03-29 2018-03-29 Coagulant addition control method, control device and water treatment system

Publications (1)

Publication Number Publication Date
WO2019187698A1 true WO2019187698A1 (en) 2019-10-03

Family

ID=68058773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004651 WO2019187698A1 (en) 2018-03-29 2019-02-08 Method for controlling addition of flocculant, control device, and water treatment system

Country Status (2)

Country Link
JP (1) JP6673390B2 (en)
WO (1) WO2019187698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070545A1 (en) * 2019-10-11 2021-04-15 栗田工業株式会社 Monitoring device and monitoring method for belt press dehydration system, and control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022009481A1 (en) * 2020-07-07 2022-01-13

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51164A (en) * 1974-06-21 1976-01-05 Hitachi Plant Eng & Constr Co Jukibutsuhaisuino jokashorihoho
JP2005241338A (en) * 2004-02-25 2005-09-08 Kurita Water Ind Ltd Coagulation sensor and coagulation control device using the same
JP2007245078A (en) * 2006-03-17 2007-09-27 Kurita Water Ind Ltd Water treatment system and water treatment process
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2016003974A (en) * 2014-06-18 2016-01-12 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system
JP2016043327A (en) * 2014-08-25 2016-04-04 株式会社東芝 Water treatment system, control device, and water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51164A (en) * 1974-06-21 1976-01-05 Hitachi Plant Eng & Constr Co Jukibutsuhaisuino jokashorihoho
JP2005241338A (en) * 2004-02-25 2005-09-08 Kurita Water Ind Ltd Coagulation sensor and coagulation control device using the same
JP2007245078A (en) * 2006-03-17 2007-09-27 Kurita Water Ind Ltd Water treatment system and water treatment process
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2016003974A (en) * 2014-06-18 2016-01-12 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system
JP2016043327A (en) * 2014-08-25 2016-04-04 株式会社東芝 Water treatment system, control device, and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070545A1 (en) * 2019-10-11 2021-04-15 栗田工業株式会社 Monitoring device and monitoring method for belt press dehydration system, and control device
JP2021063699A (en) * 2019-10-11 2021-04-22 栗田工業株式会社 Device and method for monitoring belt press dewatering system, and device for controlling belt press dewatering system

Also Published As

Publication number Publication date
JP2019171322A (en) 2019-10-10
JP6673390B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
AU2009308383B2 (en) Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance
JP4277831B2 (en) Aggregation apparatus and aggregation method
JP5364298B2 (en) Dispersant-containing water treatment method
WO2019187698A1 (en) Method for controlling addition of flocculant, control device, and water treatment system
JP2001170458A (en) Method of detecting membrane breaking and fouling in membrane cleaning
KR101523471B1 (en) Apparatus for automatic control of coagulant dosing and method for automatic control of coagulant dosing using the same
US20220009807A1 (en) Measuring and controlling organic matter in waste water stream
Soffer et al. Membrane for water reuse: effect of pre-coagulation on fouling and selectivity
JP2008264723A (en) Method and apparatus for coagulating impurity
JP6406375B2 (en) Flocculant injection control method, control device, and water treatment system
Huang et al. Nano silica removal from IC wastewater by pre-coagulation and microfiltration
JP6687056B2 (en) Water treatment method and water treatment device
JP2015229121A (en) Flocculation treatment method, and flocculation treatment apparatus
WO2023017637A1 (en) Flocculation processing device
JPWO2016006419A1 (en) Aggregation method and apparatus
JP2012187467A (en) Membrane separation method and membrane separator
WO2021020125A1 (en) Flocculation processing device
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
Eisnor et al. Evaluation of particle removal at water treatment plants in Nova Scotia
JP2005193204A (en) Water treatment system
KR20140115604A (en) Apparatus and method to control the coagulant concentration by using the surface area of particles, and water-treatment equipment and method having the same
JP4400720B2 (en) Water treatment system
JPH0729101B2 (en) Inorganic wastewater coagulation treatment device
KR101135596B1 (en) Method and apparatus for automatic control of injection of coagulation agent
JP7285138B2 (en) Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776963

Country of ref document: EP

Kind code of ref document: A1