JP2024044564A - Treatment method for wastewater from civil engineering works - Google Patents

Treatment method for wastewater from civil engineering works Download PDF

Info

Publication number
JP2024044564A
JP2024044564A JP2022150158A JP2022150158A JP2024044564A JP 2024044564 A JP2024044564 A JP 2024044564A JP 2022150158 A JP2022150158 A JP 2022150158A JP 2022150158 A JP2022150158 A JP 2022150158A JP 2024044564 A JP2024044564 A JP 2024044564A
Authority
JP
Japan
Prior art keywords
tank
relay tank
wastewater
water
civil engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022150158A
Other languages
Japanese (ja)
Inventor
信明 長尾
信一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2022150158A priority Critical patent/JP2024044564A/en
Publication of JP2024044564A publication Critical patent/JP2024044564A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】凝集モニタリング装置を用いて土木工事排水の凝集処理を効率よく行うことができる土木工事排水の処理方法を提供する。【解決手段】沈砂槽1と、10中継槽と、シックナー20と、無機凝集剤添加装置17と、ポリマー凝集剤添加装置18と放流槽30とにより土木工事排水を処理する方法であって、沈砂槽1から中継槽10へ水を移送しているときに酸添加装置11によって酸を添加し、該中継槽10のpH又は粒子間濁度が所定値以上の場合、沈砂槽1から中継槽10に水を移送していないときでも酸を添加する。【選択図】図1[Problem] To provide a method for treating wastewater from civil engineering works, which can efficiently perform coagulation treatment of wastewater from civil engineering works using a coagulation monitoring device. [Solution] This method treats wastewater from civil engineering works using a grit settling tank 1, a relay tank 10, a thickener 20, an inorganic coagulant adding device 17, a polymer coagulant adding device 18, and a discharge tank 30, in which acid is added by an acid adding device 11 when water is being transferred from the grit settling tank 1 to the relay tank 10, and when the pH or interparticle turbidity of the relay tank 10 is equal to or higher than a predetermined value, acid is added even when water is not being transferred from the grit settling tank 1 to the relay tank 10. [Selected Figure] Figure 1

Description

本発明は、ダム工事やトンネル工事現場などから排出される土木工事排水を浄化する土木工事排水の処理方法に係り、特に凝集処理工程を有する土木工事排水の処理方法に関する。 The present invention relates to a method for treating wastewater from civil engineering works, which purifies wastewater discharged from dam construction sites, tunnel construction sites, etc., and in particular to a method for treating wastewater from civil engineering works that includes a coagulation treatment process.

ダム工事やトンネル工事などの土木工事現場からは、土砂成分を含んだ排水が排出される。この排水は、打設したコンクリート中のアルカリ成分を含むことにより、高pHのアルカリ性排水となっていることがある。また、工事を行わない休日に降雨があると、比較的清澄な排水が発生することもある。このように、土木工事排水はpHや濁度などの水質が工事状態や天候に応じて大きく変動する。 Civil engineering construction sites such as dam construction and tunnel construction produce wastewater containing soil and sand. This wastewater may be alkaline wastewater with a high pH due to the alkaline components in the poured concrete. Also, if it rains on holidays when construction is not taking place, relatively clear drainage may occur. As described above, the water quality of civil engineering wastewater, such as pH and turbidity, varies greatly depending on the construction status and weather.

特許文献1には、土木工事排水を凝集処理することが記載されている。土木工事排水を凝集剤を用いて処理する場合、土木工事排水をまず沈砂槽で沈砂処理した後、中継槽に貯留し、これを凝集処理槽に導入して凝集処理し、凝集フロックを固液分離し、清澄水を放流することが一般的である。 Patent Document 1 describes that civil engineering work wastewater is subjected to coagulation treatment. When treating civil engineering work wastewater using a flocculant, the civil engineering work wastewater is first treated with a sedimentation tank, then stored in a relay tank, and then introduced into a flocculation treatment tank where it is flocculated, and the flocs are converted into solid-liquid. It is common to separate the water and discharge the clear water.

図2は、土木工事排水の処理方法を行うための土木工事排水処理設備の一例を示すフロー図である。土木工事排水は、沈砂槽1に導入され、該沈砂槽1内に滞留する間に砂等の比較的粒径の大きい固形粒子が沈降する。沈降した砂等は、排出部2から適宜排出される。図示は省略するが、沈砂槽1には水位計が設けられている。水位計の検出水位が所定の上限水位に達すると、ポンプ(この例では、槽底面よりも所定距離上方に配置された水中ポンプ)3により沈砂槽1内の水が配管4を介して中継槽10に送水(移送)される。沈砂槽1内の水位が規定の下限水位にまで低下すると、ポンプ3が停止する。 FIG. 2 is a flowchart showing an example of a civil engineering work wastewater treatment facility for carrying out a civil engineering work wastewater treatment method. Civil engineering work wastewater is introduced into a sand settling tank 1, and while it remains in the sand settling tank 1, relatively large solid particles such as sand settle. The settled sand and the like are appropriately discharged from the discharge section 2. Although not shown, the sand settling tank 1 is provided with a water level gauge. When the water level detected by the water level gauge reaches a predetermined upper limit water level, the pump (in this example, a submersible pump placed a predetermined distance above the bottom of the tank) 3 pumps the water in the sand settling tank 1 through piping 4 to the relay tank. Water is sent (transferred) to 10. When the water level in the sand settling tank 1 drops to a specified lower limit water level, the pump 3 stops.

中継槽10は、沈砂槽1からの水を一時的に貯留しておくためのものである。中継槽10の容積V10と沈砂槽1の容積V1との比V10/V1は通常10~50程度である。 The relay tank 10 is for temporarily storing water from the sand settling tank 1. The ratio V10/V1 between the volume V10 of the relay tank 10 and the volume V1 of the sand settling tank 1 is usually about 10 to 50.

中継槽10には、硫酸の添加装置11、pH計13及び移送ポンプ15が設けられている。硫酸添加装置11は、pH計13で検出される中継槽10内のpHが所定の上限pH(例えば8.5)以上にまで上昇すると、規定量の硫酸を中継槽10に添加する。これにより、中継槽10内のpHが低下する。なお、硫酸以外の酸(例えば塩酸、炭酸ガス等)を用いてもよい。 The relay tank 10 is provided with a sulfuric acid addition device 11, a pH meter 13, and a transfer pump 15. When the pH in the relay tank 10 detected by the pH meter 13 rises to a predetermined upper limit pH (e.g., 8.5) or higher, the sulfuric acid addition device 11 adds a specified amount of sulfuric acid to the relay tank 10. This causes the pH in the relay tank 10 to decrease. Note that acids other than sulfuric acid (e.g., hydrochloric acid, carbon dioxide, etc.) may also be used.

中継槽10には、水位計(図示略)が設けられている。該水位計で検出される中継槽10内の水位が所定の上限水位に達すると、移送ポンプ15(この例では、槽底面よりも所定距離上方に配置された水中ポンプ)により中継槽10内の水が配管16を介してシックナー20に送水(移送)される。中継槽10内の水位が規定の下限水位にまで低下すると、移送ポンプ15が停止する。 The relay tank 10 is provided with a water level gauge (not shown). When the water level in the relay tank 10 detected by the water level gauge reaches a predetermined upper water level, the water in the relay tank 10 is pumped (transferred) to the thickener 20 via the pipe 16 by the transfer pump 15 (in this example, a submersible pump placed a predetermined distance above the tank bottom). When the water level in the relay tank 10 drops to a specified lower water level, the transfer pump 15 stops.

配管16には、無機凝集剤(ポリ塩化アルミ(PAC)、硫酸バンド等。この例ではPAC)の添加装置17と、ポリマー凝集剤(有機高分子凝集剤)の添加装置18とが設けられている。ポリマー凝集剤添加装置18は、無機凝集剤添加装置17よりも下流側に設けられている。 The pipe 16 is provided with an addition device 17 for an inorganic flocculant (polyaluminum chloride (PAC), sulfuric acid band, etc., in this example, PAC) and an addition device 18 for a polymer flocculant (organic polymer flocculant). There is. The polymer flocculant addition device 18 is provided downstream of the inorganic flocculant addition device 17.

各凝集剤添加装置17,18は、それぞれ、凝集剤の水溶液を貯留するタンクと、薬注ポンプ等を備えている。移送ポンプ15がONとなっているときに各薬注ポンプが作動し、各凝集剤がそれぞれ配管16に添加される。ポンプ15がOFFとされると、各薬注ポンプがOFFとなり、各凝集剤の添加が停止する。 Each of the flocculant addition devices 17, 18 is equipped with a tank for storing an aqueous solution of the flocculant, a chemical injection pump, etc. When the transfer pump 15 is ON, each chemical injection pump operates and each flocculant is added to the pipe 16. When the pump 15 is turned OFF, each chemical injection pump is turned OFF and the addition of each flocculant stops.

各凝集剤が添加された配管16からの水は、配管16内を流れる間に撹拌混合され、凝集反応が進行し、次いで配管16からシックナー20のセンターコア21内に導入される。センターコア21は、筒状であり、シックナー20の槽体の中央付近に筒軸心線方向を上下方向にして配置されている。 The water from the pipe 16 to which each coagulant has been added is stirred and mixed while flowing through the pipe 16, causing the coagulation reaction to proceed, and is then introduced from the pipe 16 into the center core 21 of the thickener 20. The center core 21 is cylindrical and is positioned near the center of the tank body of the thickener 20 with the cylinder axis line running up and down.

配管16からセンターコア21内に導入された水は、凝集反応がさらに進行し、フロックが成長する。このフロックを含む水は、センターコア21の下端からシックナー20内に拡がり、フロックがシックナー20内に沈降する。沈降したフロックは、汚泥取出部23によって間欠的に又は連続的に引き抜かれる。 The water introduced into the center core 21 from the pipe 16 further undergoes a coagulation reaction, and flocs grow. The water containing the flocs spreads into the thickener 20 from the lower end of the center core 21, and the flocs settle into the thickener 20. The settled flocs are intermittently or continuously pulled out by the sludge removal section 23.

シックナー20の上澄水は、清澄水であり、オーバーフロー配管24を介して放流槽30に流入する。放流槽30内の清澄水は、放流ポンプ31及び配管32によって河川等の放流先に送水される。 The supernatant water of the thickener 20 is clear water and flows into the discharge tank 30 via the overflow pipe 24. The clear water in the discharge tank 30 is sent to a destination such as a river by a discharge pump 31 and piping 32.

この土木工事排水の水処理設備においては、各移送ポンプ3,15は、30秒~数分程度の短時間で発停する(ON、OFFを繰り返す。)。 In this water treatment facility for civil engineering wastewater, each transfer pump 3, 15 starts and stops for short periods of time, from 30 seconds to a few minutes (repeatedly turning on and off).

そのため、仮に図2の設備において、pH計13の検出pHの上昇に応じて硫酸を添加し、移送ポンプ15のみに連動させて凝集剤の注入制御を実施した場合には、下記のような問題が発生していた。 Therefore, if, in the equipment shown in Figure 2, sulfuric acid was added in response to an increase in the pH detected by the pH meter 13, and the coagulant injection control was performed in conjunction with the transfer pump 15 alone, the following problems would occur.

(1) 中継槽10に流入する排水中のアルカリ量が、移送ポンプ3がONとなって沈砂槽1から送液が起こる流入機会毎に大きく変動する。これに対して中継槽10では、予め設定した閾値によって硫酸添加装置11の薬注ポンプをON/OFFする薬注制御を行っており、一定の薬注量で硫酸が投入される。そのため、pH負荷が小さい場合には中継槽10内のpHが急激に低下する。そのため、中継槽10内のpHの変動が大きく、結果として後段のpH変動も大きくなる。
(2) 凝集剤の薬注制御において、pHを安定化することは重要な制御要素である。上記のようにpHが大きく変動すると、凝集反応が不安定となり、凝集剤が添加されているにもかかわらず処理水の濁度が増加する場合があった。
(3) 中継槽10への流入水中の懸濁物質(SS)濃度や凝集負荷量がかなりの幅で変動するため、凝集剤を定量で注入すると、凝集負荷が低い場合には凝集剤添加量が過剰となり、処理水中に未反応の薬品が残る。逆に、凝集負荷量が高い場合には凝集剤添加量が不足となり、処理水中の濁度が増加する。
(1) The amount of alkali in the wastewater flowing into the relay tank 10 fluctuates greatly each time the transfer pump 3 is turned on and liquid is sent from the grit settling tank 1. In response to this, the relay tank 10 performs chemical dosing control by turning on/off the chemical dosing pump of the sulfuric acid adder 11 based on a preset threshold value, and sulfuric acid is added at a constant chemical dosing rate. Therefore, when the pH load is small, the pH in the relay tank 10 drops rapidly. Therefore, the pH in the relay tank 10 fluctuates greatly, and as a result, the pH fluctuation in the subsequent stages also becomes large.
(2) In controlling the dosing of coagulants, stabilizing the pH is an important control factor. When the pH fluctuates significantly as described above, the coagulation reaction becomes unstable, and the turbidity of the treated water increases even though coagulants are added.
(3) The concentration of suspended solids (SS) and the coagulation load in the inflow water to the relay tank 10 vary over a wide range, so if a fixed amount of coagulant is injected, when the coagulation load is low, the amount of coagulant added will be excessive, and unreacted chemicals will remain in the treated water. Conversely, when the coagulation load is high, the amount of coagulant added will be insufficient, and the turbidity of the treated water will increase.

そこで、中継槽10に濁度計を設置し、検出濁度に応じて添加薬品量を制御することが考えられる。しかし、一般に、流入水中の凝集負荷とSS濃度が比例しない。(すなわち、SSの粒子径が大小広く分布しており、沈下しづらい微細粒子をどの程度含むかが凝集剤の必要量に大きく関係しているため、濁度計で測定される濁度からは微細粒子濃度を精度よく検知することが困難である。)そのため、濁度計検出値に基づいて凝集剤添加量を制御する場合、凝集が十分に行われない場合がある。 One possible solution is to install a turbidity meter in the relay tank 10 and control the amount of chemical added according to the detected turbidity. However, in general, the coagulation load in the inflowing water is not proportional to the SS concentration. (That is, the particle sizes of SS vary widely, and the amount of coagulant required is closely related to the amount of fine particles that do not sink. Therefore, it is difficult to accurately detect the fine particle concentration from the turbidity measured by the turbidity meter.) Therefore, when the amount of coagulant added is controlled based on the value detected by the turbidity meter, coagulation may not be sufficient.

本願出願人は、凝集処理水中の凝集状態を精度よくモニタリングすることができる凝集状態モニタリング装置を特許文献2,3で提案している。 The applicant of this application has proposed an aggregation state monitoring device capable of accurately monitoring the aggregation state in the coagulation treatment water in Patent Documents 2 and 3.

図3は、特許文献3の凝集状態モニタリングセンサのプローブ部分の構成を示している。このプローブは、直交する面21a,21b及びそれらが交わる頂部21cを有したブロック21と、面21aに沿って設けられた、凝集処理液に向ってレーザ光を照射する発光部22と、面21bに沿って設けられた、受光光軸を該発光部22の発光光軸と直交方向とした受光部23とを有する。また、凝集状態モニタリングセンサ20は、発光部22の発光作動及び受光部23の受光信号の解析を行うために、発光回路、検波回路及び計測回路(図示略)を備えている。計測回路は、タイミング回路、A/D変換部、演算部等を有する。 FIG. 3 shows the configuration of the probe portion of the aggregation state monitoring sensor disclosed in Patent Document 3. This probe includes a block 21 having orthogonal surfaces 21a and 21b and an apex 21c where these intersect, a light emitting section 22 provided along the surface 21a that irradiates a laser beam toward the aggregation treatment liquid, and a surface 21b. The light receiving part 23 is provided along the light emitting part 22 and has a light receiving optical axis that is orthogonal to the light emitting optical axis of the light emitting part 22. Further, the aggregation state monitoring sensor 20 includes a light emitting circuit, a detection circuit, and a measuring circuit (not shown) in order to operate the light emitting section 22 to emit light and analyze the light reception signal of the light receiving section 23. The measurement circuit includes a timing circuit, an A/D conversion section, a calculation section, and the like.

発光部22から、頂部21c近傍の計測領域Aに照射されたレーザー光が計測領域A内の粒子によって散乱され、この散乱光が受光部23で受光され、この受光強度の経時変化に基づいて凝集状態が計測される。なお、ブロック21は不透明材料よりなる。 Laser light irradiated from the light emitting unit 22 to the measurement area A near the top 21c is scattered by particles in the measurement area A, this scattered light is received by the light receiving unit 23, and is aggregated based on the change in the received light intensity over time. Condition is measured. Note that the block 21 is made of an opaque material.

発光回路は、タイミング回路からの信号に応じて発光部に一定の変調周波数を持った電気信号を送り、レーザ発光を行わせる。発光部は、発光回路からの信号によって、レーザ光を発光する。受光部は、レーザ光が水中の懸濁物に当たって発生した散乱光を受けて、電気信号に変換する。検波回路は、受光部からの電気信号から変調成分を除去し、散乱光強度に応じた受光電圧を出力する。 The light-emitting circuit sends an electrical signal with a constant modulation frequency to the light-emitting unit in response to a signal from the timing circuit, causing it to emit a laser. The light-emitting unit emits laser light in response to the signal from the light-emitting circuit. The light-receiving unit receives scattered light generated when the laser light hits suspended matter in the water, and converts it into an electrical signal. The detection circuit removes the modulation component from the electrical signal from the light-receiving unit, and outputs a received light voltage that corresponds to the intensity of the scattered light.

計測回路は、発光回路に発光のための信号(特定の周波数変調波)を送信すると共に、検波回路からの信号をデジタル信号に変換し、論理演算して凝集に関する情報を出力する。 The measurement circuit transmits a signal for light emission (specific frequency modulated wave) to the light emitting circuit, converts the signal from the detection circuit into a digital signal, performs a logical operation, and outputs information regarding aggregation.

図4は、図3の計測領域Aにおけるレーザー光Lの光軸と垂直な断面を示す模式図である。図4の通り、ある時点では、計測領域Aに5個の粒子が存在している。この時点で計測領域Aに照射されたレーザー光が、各粒子によって散乱され、散乱光Sが受光部13に入射する。この時点から所定時間Δt(好ましくは0.1~10mSecの間から選定された時間。例えば、約1mSec)が経過した時点では、計測領域Aに存在する粒子数が変動する(理論上は、粒子数が変化しないこともあるが、粒子がブラウン運動し、また計測槽12内に液が連続的に注入するので、通常は該粒子数は変動する。)。 FIG. 4 is a schematic diagram showing a cross section perpendicular to the optical axis of the laser beam L in the measurement area A of FIG. As shown in FIG. 4, five particles exist in the measurement area A at a certain point in time. At this point, the laser beam irradiated onto the measurement area A is scattered by each particle, and scattered light S enters the light receiving section 13. When a predetermined time Δt (preferably selected from 0.1 to 10 mSec, for example, about 1 mSec) has elapsed from this point, the number of particles existing in the measurement area A changes (theoretically, the number of particles Although the number may not change, the number of particles usually fluctuates because the particles undergo Brownian motion and the liquid is continuously injected into the measuring tank 12.)

粒子数が変動すると、それに連動して散乱光強度が変動し、受光部23の受光強度が変動する。 When the number of particles changes, the intensity of scattered light changes in conjunction with it, and the intensity of light received by the light receiving section 23 changes.

粒子の粒径が大きいほど、1個の粒子が計測領域Aに出入りしたときの該受光強度の変動幅が大きいものとなる。従って、この受光強度の変動幅から、計測領域Aに出入りした粒子の粒径の大小を検出することができる。すなわち、任意の時刻tの受光強度と、Δt経過後の時刻tk+1の受光強度との差は、該Δtの間に計測領域Aに出入りした粒子の表面積に比例した値となる。 The larger the particle size of the particles, the larger the fluctuation range of the received light intensity when one particle enters and exits the measurement area A. Therefore, the size of the particle size of the particles entering and exiting the measurement area A can be detected from the fluctuation range of this received light intensity. That is, the difference between the received light intensity at a given time t k and the received light intensity at time t k+1 after Δt has elapsed is a value proportional to the surface area of the particles that entered and exited the measurement area A during the Δt period.

図5は、凝集状態モニタリングセンサの散乱光強度を信号処理して得られる凝集状態モニタリングセンサ出力信号(受光信号強度)の経時変化の一例を示している。図5における出力信号は、受光部23の受光強度(散乱光強度)に比例した値であり、単位は、例えばmVである。 FIG. 5 shows an example of a temporal change in the aggregation state monitoring sensor output signal (light reception signal intensity) obtained by signal processing the scattered light intensity of the aggregation state monitoring sensor. The output signal in FIG. 5 is a value proportional to the received light intensity (scattered light intensity) of the light receiving section 23, and the unit is, for example, mV.

このセンサでは、センサの発光素子の消耗を抑制するために、発光素子を間欠的に作動させる。一例としては、200mSec発光作動させた後、1800mSec停止するように、2秒に1回のペースで発光させる。なお、200mSec、1800mSec及び2秒は一例であり、これに限定されるものではない。 In this sensor, the light emitting element of the sensor is operated intermittently to reduce wear of the element. As an example, the light emitting element is operated for 200 mSec and then stopped for 1800 mSec, so that the light is emitted once every two seconds. Note that 200 mSec, 1800 mSec, and 2 seconds are examples and are not limited to these.

凝集状態モニタリングセンサの受光信号強度から排水中の固形物量を評価する方法の第1の態様は、図6のように、受光信号強度を時間で積分し、この積分値が大きいほど固形物量が多いと判定する方法である。図6では、時刻T(mSec)~T+200(mSec)間、T+2000(mSec)~T+2200(mSec)間、…のように200mSecの発光期間の受光信号強度を積分している。即ち、図6でドットを付した部分の面積(S,S…)を経時的に測定している。 The first aspect of the method for evaluating the amount of solids in wastewater from the intensity of the light reception signal of the agglomeration state monitoring sensor is to integrate the intensity of the light reception signal over time, as shown in Figure 6, and the larger the integrated value, the greater the amount of solids. This is a method of determining. In FIG. 6, the received light signal intensity is integrated during a light emission period of 200 mSec, such as between time T (mSec) and T+200 (mSec), between T+2000 (mSec) and T+2200 (mSec), and so on. That is, the areas (S 1 , S 2 . . . ) of the dotted portions in FIG. 6 are measured over time.

排水中の固形物量を評価する方法の第2態様は、図7のように各発光期間時刻T(mSec)~T+200(mSec)間、T+2000(mSec)~T+2200(mSec)間、…の最小受光信号強度Imin(1),Imin(2),…を求める方法である。この方法では、所定時間(例えば10分間。この10分間に発光期間は300個(10×60÷2=300)存在する。)における最小受光信号強度(以下、ボトム値ということがある。)Imin(1),Imin(2)…Imin(300)の和又は平均値を求め、この値を排水中の固形物量の指標値とする。 The second aspect of the method for evaluating the amount of solids in wastewater is as shown in FIG. This is a method of determining signal intensities Imin(1), Imin(2), . . . In this method, the minimum received light signal intensity (hereinafter sometimes referred to as the bottom value) Imin during a predetermined time (for example, 10 minutes. There are 300 light emission periods (10 x 60 ÷ 2 = 300) in this 10 minutes). The sum or average value of (1), Imin(2)...Imin(300) is determined, and this value is used as an index value for the amount of solids in the waste water.

上記第1の態様、第2の態様では、発光素子を間欠的に作動させるが、発光素子は連続で作動させてもよい。この場合、発光素子が連続して発光している所定時間(例えば200秒)を更に短い単位(例えば200mSec)に区切り、この単位時間での受光信号強度の積分値やボトム値を算出する。引き続き、この単位時間での受光信号強度の積分値やボトム値を、所定時間にわたって、更に積算あるいは平均(加算移動平均)する。そして、所定時間にわたって得られた積算値或いは平均値を排水中の固形物量の指標値とする。 In the first and second embodiments, the light emitting element is operated intermittently, but the light emitting element may be operated continuously. In this case, a predetermined period of time (for example, 200 seconds) during which the light emitting element continuously emits light is divided into shorter units (for example, 200 mSec), and the integral value and bottom value of the received light signal intensity in this unit time are calculated. Subsequently, the integrated value and bottom value of the received light signal intensity in this unit time are further integrated or averaged (additional moving average) over a predetermined time. Then, the integrated value or average value obtained over a predetermined period of time is used as an index value of the amount of solids in the waste water.

排水中の固形物量を評価する方法の第3態様は、所定時間における受光信号強度のピークの数を検出し、各ピークの信号強度を積算する方法である、この積算値に基づいて固形物量を評価する。 A third aspect of the method for evaluating the amount of solids in wastewater is a method of detecting the number of peaks of the received light signal intensity in a predetermined time and integrating the signal intensity of each peak, and calculating the amount of solids based on this integrated value. evaluate.

なお、上記所定時間は200mSec~20分、特に200mSec~10分の間から選ばれることが好ましく、上記の200秒及び10分は一例にすぎない。 Note that the predetermined time is preferably selected from 200 mSec to 20 minutes, particularly from 200 mSec to 10 minutes, and the above 200 seconds and 10 minutes are just examples.

排水中の固形物量を評価する方法の第4態様を図8a,8bを参照して次に説明する。 A fourth embodiment of the method for assessing the amount of solids in wastewater will now be described with reference to Figures 8a and 8b.

図8aは、時刻t,t…tの各時刻において測定された受光信号強度をプロットしたグラフであり、各時刻の間隔Δt(すなわちt-tk-1)は前述の通り、好ましくは0.1~10mSec、例えば1mSecである。 FIG. 8a is a graph plotting the received signal strength measured at each of times t 1 , t 2 . . . t z , and the interval between each time Δt (i.e., t k -t k-1 ) is, as described above, preferably 0.1 to 10 mSec, for example 1 mSec.

図8bは、図8aにおいて、極小点P,P…と、極大点Q,Q…とを記入し、極小点と極大点との差(以下、ピーク差ということがある。)h,h…を記入した説明図である。なお、ピーク差が所定値以下の微小な極小、極大は外乱との差異が不明であるため無視して処理する。例えば、hが所定値以下の場合、P≧PであればPとQは無視してデータ処理し、P<PであればQとPは無視して、PとQとの差をピーク差となるようデータ処理する。 Fig. 8b is an explanatory diagram in which the minimum points P1 , P2 ... and the maximum points Q1 , Q2 ... are plotted in Fig. 8a, and the differences between the minimum points and the maximum points (hereinafter sometimes referred to as peak differences) h1 , h2 ... are plotted. Note that extremely small minimums and maximums whose peak differences are equal to or less than a predetermined value are ignored in the processing because the difference from disturbance is unclear. For example, when h1 is equal to or less than a predetermined value, if P1P2 , P1 and Q1 are ignored in the data processing, and if P1 < P2 , Q1 and P2 are ignored, and the data processing is performed so that the difference between P1 and Q2 becomes the peak difference.

上述の通り、任意の時刻tk-1の受光信号強度と時刻tの受光信号強度との差hは、時刻tk-1~t間に計測領域Aに出入りした粒子の表面積に相関した値である。 As described above, the difference hk between the light receiving signal intensity at any time tk-1 and the light receiving signal intensity at time tk is a value correlated to the surface area of the particle that entered and exited the measurement area A between times tk -1 and tk .

そこで、時刻t~tのΔt・z秒間(zは例えば200とされ、Δt=1mSecである場合Δt×zは0.2秒となる。)におけるすべてのピーク差h,h…hの和に基づいて排水中の固形物量を評価する。 Therefore, the amount of solids in the wastewater is evaluated based on the sum of all peak differences h 1 , h 2 ... hn during Δt·z seconds from time t 1 to t z (z is set to 200, for example, and when Δt=1 mSec, Δt×z is 0.2 seconds).

凝集状態モニタリングセンサの受光信号強度から排水中の凝集粒子(フロック)同士の間の液の濁度(粒子間濁度)を検知ないし推定することもできる。すなわち、図4~7のように、凝集状態モニタリングセンサの出力信号は、計測領域への凝集フロックの出入りに伴い、ピーク(極大)とボトム(極小)の間で変動が繰り返されるピーク・ボトム型変動を示す。 The turbidity of the liquid between the flocculated particles (flocs) in the wastewater (interparticle turbidity) can also be detected or estimated from the intensity of the light received signal from the flocculation state monitoring sensor. That is, as shown in Figures 4 to 7, the output signal from the flocculation state monitoring sensor shows a peak-bottom type fluctuation in which fluctuations between a peak (maximum) and a bottom (minimum) are repeated as flocs enter and leave the measurement area.

このボトム値は、計測領域から多くの凝集フロックが出ていった状態におけるセンサ出力値である。従って、このボトム値は、凝集フロック同士の間の液中の微細懸濁物質濃度、すなわち粒子間濁度を表わす指標値であり、粒子間濁度が低いほど、ボトム値が小さくなる。そのため、土木工事排水を凝集処理した凝集処理水を凝集状態モニタリングセンサでモニタリングした場合、ボトム値が低いほど、凝集が良好に行われていると判断することができる。 This bottom value is the sensor output value when many flocs have left the measurement area. Therefore, this bottom value is an index value that represents the concentration of fine suspended matter in the liquid between the flocs, i.e., interparticle turbidity, and the lower the interparticle turbidity, the smaller the bottom value. Therefore, when coagulation-treated water obtained by coagulating wastewater from civil engineering works is monitored with a coagulation state monitoring sensor, it can be determined that the lower the bottom value, the better the coagulation is being performed.

特開2015-139767号公報JP 2015-139767 A 特開2016-3974号公報JP 2016-3974 Publication 特開2017-26438号公報JP 2017-26438 A

pH調整剤を注入する中継槽10のpH変動が大きくなる原因は、中継槽10への流入動作が頻度高く断続的に行われることと、流入水中のpH負荷量が流入機会毎に変動することである。 The reason for the large pH fluctuations in the relay tank 10 where the pH adjuster is injected is that the inflow operation into the relay tank 10 is frequent and intermittent, and the pH load in the inflow water fluctuates with each inflow.

流入水は、休日等で工事によって排出される汚水が減少した場合は、自然界からの放出水(雨水や湧水など)のみとなり、極端に清澄な水(凝集する必要のない清澄水)が流入している場合が多い。このような清澄水は、凝集処理せずに放流するほうが、環境への負荷は少ない可能性がある。従って、中継槽10への流入水の水質に応じて凝集処理の必要性を判断することが望ましい。 When the wastewater discharged due to construction is reduced due to holidays, etc., the inflow water will be only water released from the natural world (rainwater, spring water, etc.), and extremely clear water (clear water that does not need to coagulate) will flow in. in many cases. If such clear water is discharged without being subjected to aggregation treatment, it may have less of a burden on the environment. Therefore, it is desirable to judge the necessity of coagulation treatment depending on the quality of the water flowing into the relay tank 10.

また、凝集処理効果を適切に判断することが必要となる。 It is also necessary to properly assess the effectiveness of the coagulation treatment.

本発明は、凝集状態モニタリング装置を用いて土木工事排水の凝集処理を効率よく行うことができる土木工事排水の処理方法を提供することを課題とする。 The objective of the present invention is to provide a method for treating wastewater from civil engineering works that can efficiently perform coagulation treatment of wastewater from civil engineering works using a coagulation state monitoring device.

本発明の土木工事排水の処理方法は、以下を要旨とする。 The gist of the method for treating wastewater from civil engineering works of the present invention is as follows:

[1] 土木工事排水を受け入れる沈砂槽と、
該沈砂槽から水が移送される中継槽と、
該中継槽に酸を添加する酸添加装置と、
該中継槽から配管を介して水が移送されるシックナーと、
該配管に無機凝集剤を添加する無機凝集剤添加装置と、
前記シックナーから上澄水が流入する放流槽と、
を有した土木工事排水処理設備により土木工事排水を処理する方法において、
該沈砂槽から中継槽へ水を移送している時に該中継槽のpHが、予め設定した所定pH値A未満の場合には該中継槽への酸の添加を停止し、A以上の場合にはpHの目標値をAとするよう該中継槽への酸の添加量Xで添加することを特徴とする土木工事排水の処理方法。
[1] A grit tank for receiving wastewater from civil engineering works;
a relay tank to which water is transferred from the sand settling tank;
an acid adding device for adding acid to the relay tank;
a thickener to which water is transferred from the relay tank via a pipe;
an inorganic flocculant adding device for adding an inorganic flocculant to the pipe;
a discharge tank into which the supernatant water from the thickener flows;
A method for treating wastewater from civil engineering works using a civil engineering works wastewater treatment facility having the following features:
This method for treating wastewater from civil engineering works is characterized in that, when the pH of the relay tank during transfer from the grit settling tank to the relay tank is less than a preset pH value A, the addition of acid to the relay tank is stopped, and when the pH is A or higher, an amount of acid X is added to the relay tank so that the target pH value becomes A.

[2] 前記沈砂槽から中継槽へ水を移送していない時であって、該中継槽のpHが予め設定した所定値Bを超える場合に該中継槽へ前記酸添加装置によって酸を添加量Yで添加するものであって、
該所定値Aと該所定値Bとは以下式(1)を満たす関係にあり、
A+(0.5~1.5)=B (1)
該添加量Yは、前記添加量Xの10~90%である[1]の土木工事排水の処理方法。
[2] When water is not being transferred from the sand settling tank to the relay tank and the pH of the relay tank exceeds a preset predetermined value B, add an amount of acid to the relay tank by the acid addition device. It is added by Y,
The predetermined value A and the predetermined value B have a relationship that satisfies the following formula (1),
A+(0.5-1.5)=B (1)
The method for treating civil engineering wastewater according to [1], wherein the added amount Y is 10 to 90% of the added amount X.

[3] 該中継槽に、該中継槽内の水の粒子間濁度を検出するセンサを設置し、前記沈砂槽から中継槽に水を移送していない時に該センサで検出される粒子間濁度が予め設定した所定値C以上の場合、前記酸添加装置によって該中継槽に酸を添加量Yで添加するものであって、
該添加量Yは、前記添加量Xの10~90%の添加量とする[1]または[2]の土木工事排水の処理方法。
[3] A sensor for detecting interparticle turbidity of water in the relay tank is installed in the relay tank, and particle turbidity detected by the sensor when water is not being transferred from the sand settling tank to the relay tank. When the degree is equal to or higher than a predetermined value C, the acid addition device adds acid to the relay tank in an amount Y,
The method for treating civil engineering wastewater according to [1] or [2], wherein the addition amount Y is 10 to 90% of the addition amount X.

[4] 前記センサは、計測光を前記排水の計測領域に照射する計測光照射部と、前記計測領域にある前記排水中の粒子による散乱光を受光する散乱光受光部と、前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記排水の凝集に関わる指標を算出する計測値演算部とを備えている凝集状態モニタリングセンサであり、
該凝集状態モニタリングセンサの測定値の経時変化の極小値に基づいて前記粒子間濁度を検知することを特徴とする[3]の土木工事排水の処理方法。
[4] The sensor is an flocculation state monitoring sensor including a measurement light irradiating unit that irradiates a measurement area of the wastewater with measurement light, a scattered light receiving unit that receives scattered light by particles in the wastewater in the measurement area, and an amplitude measuring unit that measures the amplitude of a received light signal obtained in the scattered light receiving unit, and a measurement value calculating unit that monitors and tallys up the occurrence of the measured amplitudes, calculates an occurrence rate or occurrence frequency of a specific amplitude, and calculates an index related to the flocculation of the wastewater that represents the particle size of flocs in the treated water,
The method for treating wastewater from civil engineering works according to [3], characterized in that the interparticle turbidity is detected based on the minimum value of the change over time in the measurement value of the flocculation state monitoring sensor.

[5] 土木工事排水を受け入れる沈砂槽と、
該沈砂槽から水が移送される中継槽と、
該中継槽に酸を添加する酸添加装置と、
該中継槽から配管を介して水が移送されるシックナーと、
該配管に無機凝集剤を添加する無機凝集剤添加装置と、
前記シックナーから上澄水が流入する放流槽と
を有した土木工事排水処理設備により土木工事排水を処理する方法において、
前記シックナーは、前記配管からの水を受け入れるセンターコアを備えており、
該センターコアに、該センターコア内の水の粒子間濁度を検知するセンサを設置し、
該中継槽から該シックナーに水を移送している時に前記無機凝集剤添加装置を稼働させるものであって、
該センサで検知される粒子間濁度が予め設定した所定値Dとなるように前記無機凝集剤添加装置を稼働させることを特徴とする土木工事排水の処理方法。
[5] A grit tank for receiving wastewater from civil engineering works;
a relay tank to which water is transferred from the sand settling tank;
an acid adding device for adding acid to the relay tank;
a thickener to which water is transferred from the relay tank via a pipe;
an inorganic flocculant adding device for adding an inorganic flocculant to the pipe;
A method for treating wastewater from civil engineering works using a civil engineering works wastewater treatment facility having a discharge tank into which supernatant water flows from the thickener,
The thickener includes a center core that receives water from the piping;
a sensor for detecting interparticle turbidity of water in the center core is installed in the center core;
The inorganic flocculant adding device is operated while water is being transferred from the relay tank to the thickener,
A method for treating wastewater from civil engineering works, comprising operating the inorganic flocculant adding device so that the inter-particle turbidity detected by the sensor reaches a preset value D.

[6] 前記沈砂槽から中継槽へ水を移送している時に該中継槽のpHが、予め設定した所定pH値A未満の場合には該中継槽への酸の添加を停止し、A以上の場合にはpHの目標値をAとするよう該中継槽への酸の添加量Xで添加する[5]の土木工事排水の処理方法。 [6] A method for treating wastewater from civil engineering works according to [5], in which, when water is being transferred from the settling tank to the relay tank, if the pH of the relay tank is less than a preset pH value A, the addition of acid to the relay tank is stopped, and if the pH is A or higher, an amount of acid X is added to the relay tank so that the target pH value becomes A.

[7] 前記沈砂槽から中継槽へ水を移送していない時であって、該中継槽のpHが予め設定した所定値Bを超える場合に該中継槽へ前記酸添加装置によって酸を添加量Yで添加するものであって、
該所定値Aと該所定値Bとは以下式(1)を満たす関係にあり、
A+(0.5~1.5)=B (1)
該添加量Yは、前記酸添加量Xの10~90%である[6]の土木工事排水の処理方法。
[7] When water is not being transferred from the settling tank to the relay tank and the pH of the relay tank exceeds a preset value B, an amount of acid is added to the relay tank by the acid adding device,
The predetermined value A and the predetermined value B have a relationship satisfying the following formula (1):
A + (0.5 to 1.5) = B (1)
The method for treating wastewater from civil engineering works according to [6], wherein the amount Y of the acid to be added is 10 to 90% of the amount X of the acid to be added.

本発明の土木工事排水の処理方法によると、土木工事排水の処理におけるpH制御や凝集剤添加を適切に行い、土木工事排水を効率よく凝集処理することができる。 According to the method for treating wastewater from civil engineering works of the present invention, the pH control and addition of coagulant during the treatment of wastewater from civil engineering works can be appropriately performed, and the wastewater from civil engineering works can be efficiently coagulated and treated.

実施の形態を説明する土木工事排水処理設備のフロー図である。It is a flow diagram of civil engineering work wastewater treatment equipment explaining an embodiment. 従来例を説明する土木工事排水処理設備のフロー図である。FIG. 1 is a flow diagram of a civil engineering work wastewater treatment facility illustrating a conventional example. 凝集状態モニタリングセンサの構成図である。It is a block diagram of an aggregation state monitoring sensor. 凝集状態モニタリングセンサの計測領域の模式図である。FIG. 2 is a schematic diagram of a measurement area of the aggregation state monitoring sensor. 凝集状態モニタリングセンサの出力を示すグラフである。1 is a graph showing the output of an aggregation state monitoring sensor. 凝集状態モニタリングセンサの出力を示すグラフである。It is a graph showing the output of an aggregation state monitoring sensor. 凝集状態モニタリングセンサの出力を示すグラフである。1 is a graph showing the output of an aggregation state monitoring sensor. 凝集状態モニタリングセンサの出力を示すグラフである。It is a graph showing the output of an aggregation state monitoring sensor. 実験データを示すグラフである。1 is a graph showing experimental data. 実験データを示すグラフである。It is a graph showing experimental data. 実験データを示すグラフである。It is a graph showing experimental data. 実験データを示すグラフである。1 is a graph showing experimental data.

以下、図面を参照して実施の形態について説明する。 Embodiments will be described below with reference to the drawings.

図1は、実施の形態に係る土木工事排水の処理方法を実施するための土木工事排水処理設備を示している。 Figure 1 shows a civil engineering work wastewater treatment facility for carrying out a civil engineering work wastewater treatment method according to an embodiment of the present invention.

図1では、中継槽10及びセンターコア21に凝集状態モニタリングセンサ14,22が設置されている。また、硫酸添加装置11を制御する制御器12が設置されている。移送ポンプ3のON,OFFを表わす移送ポンプ稼働信号と、pH計13の検出信号と、凝集状態モニタリングセンサ14の検出信号とが制御器12に入力され、この制御器12によって硫酸添加装置11が制御される。 In FIG. 1, agglomeration state monitoring sensors 14 and 22 are installed in the relay tank 10 and the center core 21. Further, a controller 12 for controlling the sulfuric acid addition device 11 is installed. A transfer pump operation signal indicating ON/OFF of the transfer pump 3, a detection signal of the pH meter 13, and a detection signal of the aggregation state monitoring sensor 14 are input to the controller 12, and the controller 12 controls the sulfuric acid addition device 11. controlled.

また、各凝集剤添加装置17,18を制御する制御器26が設置されている。移送ポンプ15のON,OFFを表わす移送ポンプ稼働信号と、凝集状態モニタリングセンサ22の検出信号が制御器26に入力され、制御器26によって各凝集剤添加装置17,18が制御される。 A controller 26 is also installed to control each of the flocculant addition devices 17 and 18. A transfer pump operation signal indicating whether the transfer pump 15 is on or off and a detection signal from the flocculation state monitoring sensor 22 are input to the controller 26, and each of the flocculant addition devices 17 and 18 is controlled by the controller 26.

図1の設備のその他の構成は、図2の設備と同様であり、同一符号は同一部分を示している。 The rest of the configuration of the equipment in FIG. 1 is similar to the equipment in FIG. 2, and the same reference numerals indicate the same parts.

凝集状態モニタリングセンサ14,22としては、特許文献3(特開2017-26438)の凝集モニタリング装置(凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、計測光を前記被処理水の計測領域に照射する計測光照射部と、前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記被処理水の凝集に関わる指標を算出する計測値演算部と、を備える凝集モニタリング装置。)、特にそれが特許された特許第6281534号公報に記載のモニタリング装置を好適に用いることができるが、これに限定されるものではない。 The agglomeration state monitoring sensors 14 and 22 include an aggregation monitoring device (a coagulation monitoring device that monitors the treatment state of treated water to be agglomerated) disclosed in Patent Document 3 (Japanese Unexamined Patent Publication No. 2017-26438). A measurement light irradiation unit that irradiates a measurement area of treated water, a scattered light reception unit that receives scattered light by particles of the water to be treated in the measurement area, and an amplitude of a light reception signal obtained in the scattered light reception unit. The to-be-treated water includes an amplitude measuring means for measuring, monitors and aggregates the appearance of the measured amplitude, calculates the occurrence rate or frequency of occurrence of a specific amplitude, and represents the particle size of flocs in the to-be-treated water. Agglomeration monitoring device comprising a measurement value calculation unit that calculates an index related to aggregation of It is not something that will be done.

なお、特許第6281534号の凝集モニタリング装置は、
「 凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
計測光を前記被処理水の計測領域に照射する計測光照射部と、
前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、
前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記被処理水の凝集に関わる指標を算出する計測値演算部と、
を備え、
前記振幅計測手段は、前記受光信号が上昇から下降に変化する第1の変曲点および下降から上昇に変化する第2の変曲点を検出し、前記第1の変曲点および第2の変曲点のレベル差から前記振幅を計測することを特徴とする凝集モニタリング装置。」である。
In addition, the coagulation monitoring device of Patent No. 6281534 is
"A coagulation monitoring device for monitoring the treatment state of water undergoing coagulation treatment,
a measurement light irradiation unit that irradiates a measurement area of the water to be treated with measurement light;
a scattered light receiving unit that receives scattered light caused by particles of the water to be treated in the measurement area;
a measurement value calculation unit including an amplitude measurement means for measuring the amplitude of a received light signal obtained from the scattered light receiving unit, monitoring and aggregating the occurrence of the measured amplitude, calculating an occurrence rate or occurrence frequency of a specific amplitude, and calculating an index relating to the aggregation of the water to be treated that represents the particle size of flocs in the water to be treated;
Equipped with
The amplitude measuring means detects a first inflection point where the light receiving signal changes from increasing to decreasing and a second inflection point where the light receiving signal changes from decreasing to increasing, and measures the amplitude from a level difference between the first inflection point and the second inflection point."

図1の設備においても、図2の場合と同様に、土木工事排水は不定期に土木工事現場から排出される水であり、沈砂槽1に流れ込む。沈砂槽1内の水位が所定の上限値に達すると、移送ポンプ3が起動し、沈砂槽1内の水を中継槽10に移送する。沈砂槽1内の水位が下限値以下になると移送ポンプ3が停止する。移送ポンプ3の1回の稼働時間は、通常1~120分、特に0.1~30分程度の短いものである。ただし、ゲリラ豪雨や台風などにより、20mm/時間を超えるような降雨時には、数時間、場合によっては48時間以上となる場合もある。 In the facility of Figure 1, as in the case of Figure 2, civil engineering wastewater is water discharged from civil engineering work sites at irregular intervals, and flows into the grit tank 1. When the water level in the grit tank 1 reaches a specified upper limit, the transfer pump 3 starts up and transfers the water in the grit tank 1 to the relay tank 10. When the water level in the grit tank 1 falls below the lower limit, the transfer pump 3 stops. The operation time of the transfer pump 3 is usually short, from 1 to 120 minutes, and especially from 0.1 to 30 minutes. However, in the event of rainfall exceeding 20 mm/hour due to a sudden downpour or typhoon, it may take several hours, or in some cases more than 48 hours.

この実施の形態では、硫酸添加装置11は、沈砂槽1からポンプ3によって中継槽10に水が送り込まれている時(ポンプ3のON時)であって、pH計13で検出されるpHが予め設定した所定値A(6~10、特に7~9の間から選定された値。例えば8.5)未満の場合には中継槽10への硫酸の添加を停止し、pH計13で検出されるpHがA以上の時には、pH計13の目標値がAとなるよう制御器12で添加される硫酸添加量Xを演算し、該添加量Xで硫酸が中継槽10に添加される。なお、制御器12での制御は具体的には、所定値A(例えば8.5)を目標値とするPI或いはPID制御を適用することができるが、これに限定されるものでない。
本発明の一態様では、ポンプ3が停止したときであっても、pH計13で検出されるpH値が予め設定した所定値Bを超える場合には、硫酸を添加量Yで添加する。ここで、所定値Bは所定値Aと式(1)の関係にある。
A+(0.5~1.5)=B (1)
また、酸の添加量YもpH計13の測定値に対して制御されるものであるが、添加量Yは、ポンプ3が稼働して沈砂槽1から中継槽10に排水が移送されている場合の演算結果である添加量Xの10~90%、好ましくは20~80%とすることが好ましい。このような範囲とすることで、ポンプ3が停止中の硫酸の注入量を適切に設定することができる。
In this embodiment, the sulfuric acid addition device 11 is configured such that when water is being sent from the sand settling tank 1 to the relay tank 10 by the pump 3 (when the pump 3 is ON), the pH detected by the pH meter 13 is If it is less than a preset predetermined value A (a value selected from 6 to 10, especially 7 to 9, for example 8.5), the addition of sulfuric acid to the relay tank 10 is stopped, and the pH meter 13 detects the value. When the pH is greater than A, the controller 12 calculates the amount X of sulfuric acid to be added so that the target value of the pH meter 13 becomes A, and sulfuric acid is added to the relay tank 10 at the amount X. Note that the control by the controller 12 can specifically apply PI or PID control with a predetermined value A (for example, 8.5) as a target value, but is not limited to this.
In one aspect of the present invention, even when the pump 3 is stopped, if the pH value detected by the pH meter 13 exceeds a predetermined value B, sulfuric acid is added in an amount Y. Here, the predetermined value B has a relationship with the predetermined value A as shown in equation (1).
A+(0.5-1.5)=B (1)
Further, the amount Y of acid added is also controlled based on the measured value of the pH meter 13, but the amount Y added is determined by the amount Y being added when the pump 3 is in operation and the wastewater is transferred from the sand settling tank 1 to the relay tank 10. It is preferable to set it to 10 to 90%, preferably 20 to 80%, of the addition amount X, which is the calculation result in the case. With this range, the amount of sulfuric acid to be injected while the pump 3 is stopped can be appropriately set.

また、土木工事現場の排水の濁質成分はアルカリ分を主体とする。そのため、本発明の別の一態様では、ポンプ3が停止したときでも中継槽10に設置された凝集状態モニタリングセンサ14の出力のボトム値が、予め設定された所定値C以上であるときには、ポンプ3が停止したときでも硫酸を添加量Yで添加する。この時の硫酸の添加量Yは、上記と同様に設定される。 Also, the turbidity components of wastewater from civil engineering work sites are mainly alkaline. Therefore, in another aspect of the present invention, when the bottom value of the output of the flocculation state monitoring sensor 14 installed in the relay tank 10 is equal to or greater than the preset value C even when the pump 3 is stopped, sulfuric acid is added at the amount Y even when the pump 3 is stopped. The amount Y of sulfuric acid added at this time is set in the same manner as above.

図1においても、中継槽10内の水位が上限値に達すると、移送ポンプ15が起動し、配管16を介してシックナー20のセンターコア21内に中継槽10内の水を送り込む。移送ポンプ15の1回の稼働時間は、通常1~120分、特に0.1~30分程度の短いものである。ただし、ゲリラ豪雨や台風などにより、20mm/時間を超えるような降雨時には、数時間、場合によっては48時間以上となる場合もある。 As shown in FIG. 1, when the water level in the relay tank 10 reaches the upper limit, the transfer pump 15 starts and sends the water in the relay tank 10 into the center core 21 of the thickener 20 via the pipe 16. The operation time of the transfer pump 15 is usually short, about 1 to 120 minutes, and especially about 0.1 to 30 minutes. However, in the event of rainfall exceeding 20 mm/hour due to a sudden downpour or typhoon, it may take several hours, or even 48 hours or more.

ポンプ15が稼働している間は、原則として、配管16に凝集剤添加装置17,18から無機凝集剤及びポリマー凝集剤がそれぞれ注入され、配管15内で撹拌・混合が行われて、センターコア21内に放出される。 While the pump 15 is in operation, an inorganic flocculant and a polymer flocculant are injected into the piping 16 from the flocculant addition devices 17 and 18, and are stirred and mixed in the piping 15 to form the center core. It is released within 21 days.

センターコア21内の凝集水は、センターコア21の下部からシックナー20内に流入し、凝集フロックはシックナー20の底部に沈下して、固液分離が行われる。 The flocculated water in the center core 21 flows into the thickener 20 from the bottom of the center core 21, and the flocs sink to the bottom of the thickener 20, where solid-liquid separation takes place.

本発明の一態様では、ポンプ15が稼働している間、センターコア21の凝集状態モニタリングセンサ22のボトム値の変化(フロック間濁度の変化)から、凝集性を評価し、凝集剤添加装置17による凝集剤薬注量を調整する。具体的には、センサ22のボトム値(図7のImin(1),Imin(2)…)に基づいて凝集剤添加装置17による無機凝集剤薬注量をPI制御、又はPID制御する。
また、ポリマー凝集剤はポンプ15が稼働している間、一定量で添加される(ポンプ15が停止している場合は、ポリマー凝集剤の添加も停止する)。
In one aspect of the present invention, while the pump 15 is operating, the flocculating property is evaluated based on a change in the bottom value (change in turbidity between flocs) of the flocculation state monitoring sensor 22 of the center core 21, and the flocculant addition device Adjust the flocculant injection amount according to step 17. Specifically, based on the bottom value of the sensor 22 (Imin(1), Imin(2), . . . in FIG. 7), the amount of inorganic flocculant added by the flocculant addition device 17 is controlled by PI control or PID control.
Further, the polymer flocculant is added in a constant amount while the pump 15 is operating (if the pump 15 is stopped, the addition of the polymer flocculant is also stopped).

凝集フロックが沈下した後の上澄み液はオーバーフロー配管24を通って放流槽30に移動する。放流槽30の水位が所定以上となると、放流槽30内のポンプ31が起動し、槽内の清澄水が河川等に放出される。シックナー20内に堆積物が所定量以上溜まると、引き抜かれ、脱水機等で圧搾等によって脱水ケーキとなり、廃棄される。 The supernatant liquid after the flocs have settled moves through the overflow pipe 24 to the discharge tank 30. When the water level in the discharge tank 30 reaches a predetermined level or higher, the pump 31 in the discharge tank 30 starts up and the clear water in the tank is discharged into a river or the like. When a predetermined amount of sediment accumulates in the thickener 20, it is pulled out and compressed in a dehydrator or the like to become a dehydrated cake, which is then discarded.

本発明の好適な一態様の土木排水処理方法は、次の特徴を有している。 A civil engineering wastewater treatment method according to a preferred embodiment of the present invention has the following characteristics.

(1) 中継槽10に新たな排水が流入するタイミングであって、pH計13で検出されるpHが規定値(予め設定した所定値A)以上の場合に硫酸等の注入を実施する。この場合の硫酸の注入量は規定値を目標値として注入量が制御される(この時のpH値における添加量をXとする)。なお、規定値未満の場合には、排水が流入時(移送ポンプ3のON)であっても、硫酸の注入は停止する。 (1) When new wastewater flows into the relay tank 10 and the pH detected by the pH meter 13 is equal to or higher than a specified value (predetermined value A set in advance), sulfuric acid or the like is injected. In this case, the amount of sulfuric acid injected is controlled with the specified value as the target value (the amount added at the pH value at this time is X). Note that if the pH is below the specified value, the injection of sulfuric acid is stopped even if wastewater is flowing in (transfer pump 3 is ON).

逆に、中継槽10への排水の流入が停止している場合には、凝集状態モニタリングセンサ14で検出されるフロック間濁度が規定値(予め設定した所定値C)以上(又は超える)にあるか、またはpH計13で検出されるpHが規定値(予め設定した所定値B)以上(又は超える)である場合には、これら規定値を目標値として硫酸の添加量が演算制御される。このときの添加量Yは、中継槽10のpH値が同じ時のX(中継槽10への排水が流入している場合の添加量)の10~90%、好ましくは20~80%に設定される。なお、中継槽10への排水の流入が停止している場合、フロック間濁度が所定値C未満であるか、またはpHが所定値B未満の場合には、硫酸の注入は停止する。 Conversely, when the inflow of wastewater into the relay tank 10 is stopped, if the interfloc turbidity detected by the flocculation state monitoring sensor 14 is equal to or greater than a specified value (predetermined value C) or if the pH detected by the pH meter 13 is equal to or greater than a specified value (predetermined value B), the amount of sulfuric acid added is calculated and controlled with these specified values as target values. The amount of added Y at this time is set to 10 to 90%, preferably 20 to 80%, of X (the amount of added when wastewater is flowing into the relay tank 10) when the pH value of the relay tank 10 is the same. Note that when the inflow of wastewater into the relay tank 10 is stopped, if the interfloc turbidity is less than the specified value C or the pH is less than the specified value B, the injection of sulfuric acid is stopped.

(2) 中継槽10からシックナー20への移送も断続的に行われるため、凝集状態モニタリングセンサ22をシックナー20のセンターコア21に設置し、移送ポンプ15の稼働中におけるセンサ22のボトム値の規定値を目標値として無機凝集剤の添加量を制御する。 (2) Since the transfer from the relay tank 10 to the thickener 20 is performed intermittently, the aggregation state monitoring sensor 22 is installed in the center core 21 of the thickener 20, and the bottom value of the sensor 22 is specified while the transfer pump 15 is in operation. The amount of inorganic flocculant added is controlled using the target value.

土木工事現場に設置された図1の設備を用いて以下の土木工事排水処理を行った。なお、放流槽30に濁度計(オプテックス株式会社製)を設置して濁度を測定した。 The following civil engineering work wastewater treatment was performed using the equipment shown in Figure 1 installed at a civil engineering work site. Note that a turbidity meter (manufactured by Optex Co., Ltd.) was installed in the discharge tank 30 to measure the turbidity.

設備の各槽の容積、センサの仕様等は以下の通りである。 The capacity of each tank in the equipment and the specifications of the sensors are as follows:

沈砂槽1:100m、深さ1m
中継槽10:10m、深さ2m
シックナー20:30m、深さ3m
センターコア21:直径1m、水没部分の高さ1m
放流槽30:5m、深さ1m
凝集状態モニタリングセンサ14,22:栗田工業株式会社製S.sensingCS-PB
ポンプ3の送水速度:100m/Hr
ポンプ15の送水速度:100m/Hr
硫酸濃度:70質量%
無機凝集剤:PAC(ポリ塩化アルミニウム液状品)
ポリマー凝集剤:栗田工業株式会社製クリフロックPA-331
Sand settling tank 1: 100m3 , depth 1m
Relay tank 10: 10m3 , depth 2m
Thickener 20: 30m3 , depth 3m
Center core 21: diameter 1m, height of submerged part 1m
Discharge tank 30: 5m3 , depth 1m
Agglutination state monitoring sensor 14, 22: S.sensingCS-PB manufactured by Kurita Water Industries, Ltd.
Water supply speed of pump 3: 100m 3 /Hr
Water supply speed of pump 15: 100m 3 /Hr
Sulfuric acid concentration: 70% by mass
Inorganic flocculant: PAC (polyaluminum chloride liquid product)
Polymer flocculant: Clifflock PA-331 manufactured by Kurita Water Industries, Ltd.

この現場では、排水の平均的な水質はpH6.5~7.5、濁度0~50であった。 At this site, the average quality of the wastewater was pH 6.5-7.5 and turbidity 0-50.

[実験例1(比較例1)]
pH計13で検出される中継槽10内のpHが8.5以上にまで上昇すると硫酸を500L/minで添加し、pH計13の検出pHが8.3以下になると硫酸添加を停止した。
[Experimental example 1 (comparative example 1)]
When the pH in the relay tank 10 detected by the pH meter 13 rose to 8.5 or higher, sulfuric acid was added at a rate of 500 L/min, and when the pH detected by the pH meter 13 became 8.3 or lower, the addition of sulfuric acid was stopped.

PACとポリマー凝集剤は、中継槽10の移送ポンプ15のON時にのみ薬注した。PAC薬注量は15mL/min、ポリマー凝集剤薬注量は2L/minとした。 PAC and polymer flocculant were injected only when the transfer pump 15 of the relay tank 10 was ON. The PAC injection rate was 15 mL/min, and the polymer flocculant injection rate was 2 L/min.

このときの中継槽10内及び放流槽30内のpHの経時変化を図9に、放流槽30の濁度を図10に示す。 The change in pH over time in the relay tank 10 and the discharge tank 30 is shown in Figure 9, and the turbidity in the discharge tank 30 is shown in Figure 10.

この比較例は、硫酸添加を
中継槽10内pH≧8.5で添加
中継槽10内pH≦8.2で停止
とするものであり、中継槽10への流入水の有無(ポンプ3のON、OFF)にかかわらず硫酸を薬注するため、中継槽および放流槽ともにpHの変動が大きい(放流槽pH=5.5から9.5、中継槽pH=6から9.5で変動)。また、PACの添加量は移送ポンプ15のON時に定量注入するだけなので、放流槽の濁度は30度以下となることはなかった。
In this comparative example, the addition of sulfuric acid is performed when the pH in the relay tank 10 is ≧8.5, and is stopped when the pH in the relay tank 10 is ≦8.2, and the addition of sulfuric acid is performed when the pH in the relay tank 10 is ≦8.2. , OFF), the pH of both the relay tank and the discharge tank fluctuates greatly (the pH of the discharge tank varies from 5.5 to 9.5, and the pH of the relay tank varies from 6 to 9.5). In addition, since the amount of PAC added was simply injected in a fixed amount when the transfer pump 15 was turned on, the turbidity of the discharge tank did not fall below 30 degrees.

[実験例2(実施例1)]
沈砂槽1の移送ポンプ3のON時で、中継槽10のpH<7.5の際には硫酸の薬注を停止し、pH≧7.5の際には目標pH7.5となるように硫酸の添加量をPI制御で薬注し、ポンプ3の停止中でも中継槽10のpH≧8.5の時にはその時のpHに基づくPI演算時の50%となる添加量で硫酸を添加した(ポンプ停止中は、pH<8.5の場合にはPACの注入は停止)。PACとポリマー凝集剤は中継槽10の移送ポンプ15のON時にのみ薬注、さらに、PACの添加量は凝集状態モニタリングセンサ22のボトム値に基づいてPI制御した(ただし、放流水に過剰にPACが残留しないよう、PACの最大注入量は40mL/minとした)。また、ポリマー凝集剤薬注量は2L/min。
[Experiment Example 2 (Example 1)]
When the transfer pump 3 of the sand settling tank 1 is ON, if the pH of the relay tank 10 is <7.5, the injection of sulfuric acid is stopped, and if the pH is 7.5, the target pH is set to 7.5. The amount of sulfuric acid to be added was injected using PI control, and even when the pump 3 was stopped, when the pH of the relay tank 10 was 8.5, sulfuric acid was added at an amount that was 50% of the PI calculation based on the pH at that time. During shutdown, PAC injection is stopped if pH < 8.5). PAC and polymer flocculant were injected only when the transfer pump 15 of the relay tank 10 was turned on, and the amount of PAC added was controlled by PI based on the bottom value of the flocculation state monitoring sensor 22. The maximum injection volume of PAC was set to 40 mL/min to avoid any residue). In addition, the polymer flocculant injection rate was 2 L/min.

このときの中継槽10及び放流槽30内のpHの経時変化を図11に、放流槽の濁度を図12に示す。 FIG. 11 shows the change over time in the pH in the relay tank 10 and the discharge tank 30 at this time, and FIG. 12 shows the turbidity of the discharge tank.

流入水の有無による新たな負荷流入に対応して硫酸薬注を実施すると共に、移送ポンプ3の停止時であっても、pH≧8.5の時にはその時のpHに基づくPI演算時の50%となる添加量で硫酸の薬注を実施したので、中継槽10及び放流水槽30のいずれのpHも実験例1に比べて変動が抑えられている。
さらに、PACの添加量をPI制御したことにより、負荷状況に応じてPAC注入量を制御でき、排水中の濁質が多く、無機凝集剤の最大注入量でも無機凝集剤の添加量が不足した場合に最大で濁度が50度まで上昇するものの、実験例1の場合と比較して相対的に濁度は低く、放流槽濁度は良いときでほぼ0となっている。
In addition to carrying out sulfuric acid injection in response to new load inflow depending on the presence or absence of inflow water, even when the transfer pump 3 is stopped, when pH≧8.5, 50% of the PI calculation based on the pH at that time is performed. Since the chemical injection of sulfuric acid was carried out at the addition amount, fluctuations in the pH of both the relay tank 10 and the discharge water tank 30 were suppressed compared to Experimental Example 1.
Furthermore, by controlling the amount of PAC added by PI, it was possible to control the amount of PAC injection depending on the load situation, and there was a lot of turbidity in the wastewater, and the amount of inorganic flocculant added was insufficient even at the maximum injection amount. Although the turbidity rises to a maximum of 50 degrees in this case, the turbidity is relatively low compared to the case of Experimental Example 1, and the discharge tank turbidity is approximately 0 at best.

1 沈砂槽
10 中継槽
13 pH計
14,22 凝集状態モニタリングセンサ
17 無機凝集剤添加装置
18 ポリマー凝集剤添加装置
20 シックナー
21 センターコア
30 放流槽
1 Sand settling tank 10 Relay tank 13 pH meter 14, 22 Aggregation state monitoring sensor 17 Inorganic flocculant addition device 18 Polymer flocculant addition device 20 Thickener 21 Center core 30 Discharge tank

Claims (7)

土木工事排水を受け入れる沈砂槽と、
該沈砂槽から水が移送される中継槽と、
該中継槽に酸を添加する酸添加装置と、
該中継槽から配管を介して水が移送されるシックナーと、
該配管に無機凝集剤を添加する無機凝集剤添加装置と、
前記シックナーから上澄水が流入する放流槽と、
を有した土木工事排水処理設備により土木工事排水を処理する方法において、
該沈砂槽から中継槽へ水を移送している時に該中継槽のpHが、予め設定した所定pH値A未満の場合には該中継槽への酸の添加を停止し、A以上の場合にはpHの目標値をAとするよう該中継槽への酸の添加量Xで添加することを特徴とする土木工事排水の処理方法。
A grit tank for receiving wastewater from civil engineering works;
a relay tank to which water is transferred from the sand settling tank;
an acid adding device for adding acid to the relay tank;
a thickener to which water is transferred from the relay tank via a pipe;
an inorganic flocculant adding device for adding an inorganic flocculant to the pipe;
a discharge tank into which the supernatant water from the thickener flows;
A method for treating wastewater from civil engineering works using a civil engineering works wastewater treatment facility having the following features:
This method for treating wastewater from civil engineering works is characterized in that, when the pH of the relay tank during transfer from the grit settling tank to the relay tank is less than a preset pH value A, the addition of acid to the relay tank is stopped, and when the pH is A or higher, an amount of acid X is added to the relay tank so that the target pH value becomes A.
前記沈砂槽から中継槽へ水を移送していない時であって、該中継槽のpHが予め設定した所定値Bを超える場合に該中継槽へ前記酸添加装置によって酸を添加量Yで添加するものであって、
該所定値Aと該所定値Bとは以下式(1)を満たす関係にあり、
A+(0.5~1.5)=B (1)
該添加量Yは、前記添加量Xの10~90%である請求項1の土木工事排水の処理方法。
When water is not being transferred from the sand settling tank to the relay tank, and when the pH of the relay tank exceeds a preset predetermined value B, acid is added to the relay tank in an amount Y by the acid addition device. It is something that
The predetermined value A and the predetermined value B have a relationship that satisfies the following formula (1),
A+(0.5-1.5)=B (1)
The method for treating civil engineering wastewater according to claim 1, wherein the amount Y added is 10 to 90% of the amount X added.
該中継槽に、該中継槽内の水の粒子間濁度を検出するセンサを設置し、前記沈砂槽から中継槽に水を移送していない時に該センサで検出される粒子間濁度が予め設定した所定値C以上の場合、前記酸添加装置によって該中継槽に酸を添加量Yで添加するものであって、
該添加量Yは、前記添加量Xの10~90%の添加量とする請求項1または2の土木工事排水の処理方法。
A sensor for detecting interparticle turbidity of the water in the relay tank is installed in the relay tank, and when the interparticle turbidity detected by the sensor while water is not being transferred from the grit settling tank to the relay tank is equal to or greater than a preset value C, an amount of acid Y is added to the relay tank by the acid adding device,
3. The method for treating wastewater from civil engineering works according to claim 1, wherein the amount Y is 10 to 90% of the amount X.
前記センサは、計測光を前記排水の計測領域に照射する計測光照射部と、前記計測領域にある前記排水中の粒子による散乱光を受光する散乱光受光部と、前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記排水の凝集に関わる指標を算出する計測値演算部とを備えている凝集状態モニタリングセンサであり、
該凝集状態モニタリングセンサの測定値の経時変化の極小値に基づいて前記粒子間濁度を検知することを特徴とする請求項3の土木工事排水の処理方法。
The sensor includes a measurement light irradiation section that irradiates a measurement region of the wastewater with measurement light, a scattered light reception section that receives scattered light due to particles in the wastewater in the measurement region, and a measurement light reception section that receives measurement light from the scattered light reception section. includes an amplitude measuring means for measuring the amplitude of the received light signal, which monitors and aggregates the occurrence of the measured amplitude, calculates the occurrence rate or frequency of occurrence of a specific amplitude, and determines the particle size of flocs in the water to be treated. A coagulation state monitoring sensor comprising: a measurement value calculation unit that calculates an index related to coagulation of the wastewater representing
4. The method for treating civil engineering work wastewater according to claim 3, wherein the interparticle turbidity is detected based on a minimum value of a change over time of the measured value of the agglomeration state monitoring sensor.
土木工事排水を受け入れる沈砂槽と、
該沈砂槽から水が移送される中継槽と、
該中継槽に酸を添加する酸添加装置と、
該中継槽から配管を介して水が移送されるシックナーと、
該配管に無機凝集剤を添加する無機凝集剤添加装置と、
前記シックナーから上澄水が流入する放流槽と
を有した土木工事排水処理設備により土木工事排水を処理する方法において、
前記シックナーは、前記配管からの水を受け入れるセンターコアを備えており、
該センターコアに、該センターコア内の水の粒子間濁度を検知するセンサを設置し、
該中継槽から該シックナーに水を移送している時に前記無機凝集剤添加装置を稼働させるものであって、
該センサで検知される粒子間濁度が予め設定した所定値Dとなるように前記無機凝集剤添加装置を稼働させることを特徴とする土木工事排水の処理方法。
A settling tank that receives civil engineering work wastewater,
a relay tank to which water is transferred from the sand settling tank;
an acid addition device that adds acid to the relay tank;
a thickener to which water is transferred from the relay tank via piping;
an inorganic flocculant addition device that adds an inorganic flocculant to the pipe;
In a method for treating civil engineering work wastewater using a civil engineering work wastewater treatment facility having a discharge tank into which supernatant water flows from the thickener,
The thickener includes a center core that receives water from the pipe,
A sensor is installed in the center core to detect interparticle turbidity of water in the center core,
The inorganic flocculant addition device is operated while water is being transferred from the relay tank to the thickener,
A method for treating civil engineering wastewater, comprising operating the inorganic flocculant addition device so that the interparticle turbidity detected by the sensor becomes a predetermined value D.
前記沈砂槽から中継槽へ水を移送している時に該中継槽のpHが、予め設定した所定pH値A未満の場合には該中継槽への酸の添加を停止し、A以上の場合にはpHの目標値をAとするよう該中継槽への酸の添加量Xで添加する請求項5の土木工事排水の処理方法。 The method for treating wastewater from civil engineering works according to claim 5, wherein, when water is transferred from the settling tank to the relay tank, if the pH of the relay tank is less than a preset pH value A, the addition of acid to the relay tank is stopped, and if the pH is A or higher, an amount of acid X is added to the relay tank so that the target pH value becomes A. 前記沈砂槽から中継槽へ水を移送していない時であって、該中継槽のpHが予め設定した所定値Bを超える場合に該中継槽へ前記酸添加装置によって酸を添加量Yで添加するものであって、
該所定値Aと該所定値Bとは以下式(1)を満たす関係にあり、
A+(0.5~1.5)=B (1)
該添加量Yは、前記酸添加量Xの10~90%である請求項6の土木工事排水の処理方法。
When water is not being transferred from the sand settling tank to the relay tank, and when the pH of the relay tank exceeds a preset predetermined value B, acid is added to the relay tank in an amount Y by the acid addition device. It is something that
The predetermined value A and the predetermined value B have a relationship that satisfies the following formula (1),
A+(0.5-1.5)=B (1)
7. The method for treating civil engineering wastewater according to claim 6, wherein the amount Y added is 10 to 90% of the amount X added acid.
JP2022150158A 2022-09-21 2022-09-21 Treatment method for wastewater from civil engineering works Pending JP2024044564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022150158A JP2024044564A (en) 2022-09-21 2022-09-21 Treatment method for wastewater from civil engineering works

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022150158A JP2024044564A (en) 2022-09-21 2022-09-21 Treatment method for wastewater from civil engineering works

Publications (1)

Publication Number Publication Date
JP2024044564A true JP2024044564A (en) 2024-04-02

Family

ID=90479797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022150158A Pending JP2024044564A (en) 2022-09-21 2022-09-21 Treatment method for wastewater from civil engineering works

Country Status (1)

Country Link
JP (1) JP2024044564A (en)

Similar Documents

Publication Publication Date Title
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2019193916A (en) Coagulant injection control device, coagulant injection control method, and computer program
JP6589563B2 (en) Water treatment method and water treatment apparatus
JP2019089022A (en) Flocculant injection controller, flocculant injection control method and flocculant injection control system
JP6139314B2 (en) Aggregation control apparatus and aggregation control method
JP2024044564A (en) Treatment method for wastewater from civil engineering works
JP4933473B2 (en) Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof
JP6699690B2 (en) Flocculant injection controller
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
JP4985088B2 (en) Chemical injection control method
JP4111880B2 (en) Aggregation precipitation apparatus and control method thereof
WO2023017637A1 (en) Flocculation processing device
WO2021020125A1 (en) Flocculation processing device
JPWO2016006419A1 (en) Aggregation method and apparatus
JP2012024673A (en) Method of managing addition of flocculant
JP4400720B2 (en) Water treatment system
JP7249818B2 (en) Coagulant injection control device, coagulant injection control method and computer program
JP4968420B2 (en) Flocculant injection device
JP7037411B2 (en) Wastewater purification device
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
JP3314575B2 (en) Sedimentation equipment
JP2006272228A (en) Dewatering method and apparatus for sludge
JP2022166617A (en) Flocculant injection control method and flocculant injection control device
JPH0729101B2 (en) Inorganic wastewater coagulation treatment device