JP4968420B2 - Flocculant injection device - Google Patents

Flocculant injection device

Info

Publication number
JP4968420B2
JP4968420B2 JP2001296690A JP2001296690A JP4968420B2 JP 4968420 B2 JP4968420 B2 JP 4968420B2 JP 2001296690 A JP2001296690 A JP 2001296690A JP 2001296690 A JP2001296690 A JP 2001296690A JP 4968420 B2 JP4968420 B2 JP 4968420B2
Authority
JP
Japan
Prior art keywords
flocculant
water
treated
turbidity
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001296690A
Other languages
Japanese (ja)
Other versions
JP2003093806A (en
Inventor
直也 河原林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001296690A priority Critical patent/JP4968420B2/en
Publication of JP2003093806A publication Critical patent/JP2003093806A/en
Application granted granted Critical
Publication of JP4968420B2 publication Critical patent/JP4968420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、濁質を含有する排水を凝集剤で固液分離する水処理システムの凝集剤注入装置に関する。
【0002】
【関連する技術背景】
濁質を含有する排水を凝縮沈殿処理するための添加剤として、塩化アルミニウムやポリ塩化アルミニウム、硫酸アルミニウム、塩化第二鉄、ポリ硫酸第二鉄などの無機系凝集剤及び高分子凝集剤等が用いられている。従来の凝集剤注入装置は、濁質が含まれる排水の流量及び濁質濃度をセンサによって検出し、前記凝集剤の添加率を制御することによって凝縮沈殿処理を行っている(例えば、特公平7−29101号公報参照)。
【0003】
また、浄水処理を対象にした凝集剤注入装置としては処理水濁度と原水流量及び濁度値を検出し、これらの値を用いたフィードフォワード制御が行われている(例えば、特願昭58−40114号公報参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記凝集剤注入装置では排水の濁度を検出するため、排水の原水側に設けられた濁度計に汚れが付着すると、適切な濁度検出ができず制御不能に陥ることがあった。このため、頻繁に濁度計のメンテナンスを行わなければならず、排水処理系ではフィードフォワード制御の適用が難しいという問題がある。
【0005】
もちろん、排水処理系にフィードバック制御を適用すれば、排水を凝集処理した後の清澄度の高い処理水側に濁度計を設ければよく、濁度計の汚損対策としては有効な手段といえる。しかしながら、凝集剤投入から処理水が排出されるまでにはタイムラグがあるため、処理水の濁度を検出してからフィードバック制御すると適切な制御が難しく、場合によっては処理液の濁度が振動的に変動する現象が発生するという問題があった。
【0006】
このため排水処理系にフィードバック制御を適用する場合は、前記タイムラグによって制御量が振動しないように一定時間ホールドと制御を繰り返すサンプル値制御が適用される。しかし、サンプル値制御では制御系内のタイムラグ分、制御をホールドする必要があり、急な水質変動が生じた場合の初期動作が遅れてしまうという欠点があった。このため、ホールド時間を短縮する方法も考えられるが、その場合、制御出力にハンチングを生じて制御量が振動するという問題があった。また、制御量が振動すると、排水処理系では凝集剤の過不足が生じ、処理水の水質劣化や凝集剤の無駄な消費等を起こすという懸念もある。
【0007】
本発明は、上述した問題を考慮してなされ、その目的とするところは、処理水濁度に基づいた速やかな凝集剤注入制御ができ、かつ、必要最少の凝集剤使用量に収めると共に、メンテナンス周期を大幅に長期化できる排水処理に好適な凝集剤注入装置を提供することにある。
【0008】
【課題を解決するための手段】
前述した目的を達成するため、本発明の請求項1に係る凝集剤注入装置は、被処理水に凝集剤を注入し、固液分離する水処理システムにおける凝集剤の注入装置であって、予め測定した被処理水の平均濁度濃度の10〜90%の濁度濃度に予め測定した被処理水の流量を乗じて予め設定した注入量の凝集剤を固液分離前の被処理水に定量注入する第1の凝集剤注入手段と、前記凝集剤注入した被処理水を固液分離した処理水の濁度を計測する処理液測定手段と、前記処理液測定手段の計測結果に基づき、固液分離前の被処理水に追加して添加すべき不足分の前記凝集剤注入量を演算する演算手段と、前記演算手段の結果に基づいた注入量前記凝集剤を固液分離前の被処理水に変量注入する第2の凝集剤注入手段と、からなる凝集剤注入装置を提供する。
【0009】
また、本発明の請求項2に係る凝集剤注入装置は、被処理水に凝集剤を注入し、固液分離する水処理システムにおける凝集剤の注入装置であって、被処理液の流量を測定する流量測定手段と、予め測定した被処理水の平均濁度濃度の10〜90%の濁度濃度に前記流量測定手段で測定した被処理水の流量を乗じて得た注入量の凝集剤を固液分離前の被処理水に変量注入する第1の凝集剤注入手段と、前記凝集剤注入した被処理水を固液分離した処理水の濁度を計測する処理液測定手段と、前記処理液測定手段の計測結果に基づき、固液分離前の被処理水に追加して添加すべき不足分の前記凝集剤注入量を演算する演算手段と、前記演算手段の結果に基づいた注入量前記凝集剤を固液分離前の被処理水に変量注入する第2の凝集剤注入手段と、からなる凝集剤注入装置を提供する。
【0010】
したがって、本発明によれば、処理水濁度に基づいた速やかな凝集剤注入制御ができ、また、メンテナンス周期を大幅に長期化できる排水処理に好適な凝集剤注入装置を提供することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の請求項1に係る凝集剤注入装置について説明する。図1は凝集剤注入装置の概略構成図である。
この凝集剤注入装置は、濁質を含む無機系排水の原水(被処理水)が連続的に流入される反応槽1を備えている。また、凝集剤貯蔵タンク2に蓄えられている凝集剤は、前記原水に対して一定割合の量を凝集剤貯蔵タンク2から定量注入ポンプ3によって前記反応槽1に連続的または断続的に供給される。そして原水と凝集剤とが反応槽1内で撹拌され、沈殿槽5に流入する。沈殿槽5に流入した原水と凝集剤は沈殿槽5にて固液分離される。このとき、沈殿槽5で固液分離された固体物はスラッジとして、液体は処理水として排出される。また、沈殿槽5から排出された処理水の濁度は濁度計6でモニタされている。そしてモニタされた濁度はコントローラ(演算手段)7で演算処理され、その濁度に応じた量の凝集剤を注入すべく、インバータ8を制御し、変量注入ポンプ4を変速駆動する。
【0012】
このように構成された凝集剤注入装置では、原水が反応槽1に流入したとき、定量注入ポンプ3によって必要最少量の凝集剤があらかじめ反応槽1に注入される。
ここに前記必要最少の凝集剤注入量は次式で求めることができる。
必要最少の凝集剤注入量[g/H]=原水の流量[l/H]×濁度濃度[g/l]×安全係数
なお、上式の濁度濃度は平均濁度濃度の90〜10[%]、好ましくは80〜50[%]の濃度とするとよい。また、上式における安全係数とは、排水の原水の濃度や流量の変化などに対する凝集処理の余裕をとる係数(>1)を意味する。
【0013】
そして、反応槽1で原水と凝集剤が撹拌され、さらに沈殿槽5で固液分離された処理水の濁度は、濁度計6によってモニタされている。濁度計6のモニタ値から凝集剤が不足しているとコントローラ7が判断した場合は、インバータ8を制御し、変量注入ポンプ4を駆動させ、その濁度にふさわしい分量の凝集剤が反応槽1へ追加注入される。一方、処理水の濁度濃度から追加の凝集剤が不要な場合は、変量注入ポンプ4は駆動されない。
【0014】
さて、上述した凝集剤注入における排水濁度について図を用いて説明する。図2は従来のフィードバック方式による排水濁度変化を示す図である。図2においてPVは濁度計で検出した濁度値であり、SVは濁度の制御目標値である。また、MVは凝集剤注入量を示す。
排水の原水(被処理水)が凝集剤注入装置に流入すると、反応槽1及び沈殿槽5を経由して処理水として排出される。このときの被処理水は、反応槽1及び沈殿槽5を通過する時間分だけのタイムラグTDをもって濁度計6に検出される。被処理水に対する濁度計6の検出値が目標値SVを超えると凝集剤を注入するが、前記タイムラグがあるので、凝集剤注入後も濁度計6の検出値は増加を続ける。このため、更に凝集剤の注入量を増加させることになる。このとき、反応槽1における排水濃度は、目標値以下になるが、前記タイムラグによって凝集剤が注入され続けるので、凝集剤の注入過剰となる。そして、濁度計6の検出値が目標値SVを下回ったところで凝集剤の注入を停止するが、凝集剤が過剰注入されているので、更に目標値SVを大きく下回ることになる。そして、反応槽1には凝集剤が注入されていないので、再び反応槽1の排水濁度が上昇し、以後、上述と同じ動作を繰り返すこととなる。このため、排水濁度が振動的に変化することになる。
【0015】
次に図3は本発明における排水濁度変化を示す図である。排水の原水(被処理水)が凝集剤注入装置に流入すると、反応槽1には定量注入ポンプ3によってあらかじめ定められた一定量の凝集剤が注入される。この被処理水は反応槽1及び沈殿槽5を通過した後、タイムラグTDをもって濁度計6に検出される。濁度計6の検出値は、あらかじめ反応槽1に定量注入ポンプ3によって一定量の凝集剤が注入されているので、目標値SVに近い値を示す。したがって、変量注入ポンプ4によって、凝集剤の不足分を補えば良く、速やかに目標値に到達することができる。また、排水濁度の振動現象を生ずることもなく安定に制御することが可能となる。
【0016】
つまり、あらかじめ定められた必要最少量の凝集剤を最初に投入し、不足分の調整を変量注入ポンプ4で調整すればよいので、従来のフィードバック制御系で見られたようなタイムラグによる制御遅延を最小限に抑えることができる。
すなわち、本発明の凝集剤注入装置によれば最短時間で最適注入量へ到達させることができ、また、処理水濁度の周囲的な変動やハンチング現象を防止することも可能となる。
【0017】
更には、沈殿槽5で固液分離された処理水側に濁度計6を設けたことによって原水の汚れによる濁度計6の汚損が極めて少なくなるので、濁度計6のメンテナンス周期を大幅に延ばすことが可能となる。
次に、本発明の請求項2に係る発明の実施形態について説明する。図2は本凝集剤注入装置の概略構成図である。本実施形態が第1の実施形態と異なるのは、無機系排水の原水の流入量を測定する流量計9を備え、この流量情報を基に凝集剤の注入量を制御するフィードフォワード制御を更に設けたという点である。
【0018】
この凝集剤注入装置は、濁質を含む無機系排水の原水が連続的に流入する反応槽1があり、この原水の流入量を測定するための流量計9が設けられている。そして前記流量計9によって計測された原水の流入量に応じた量の凝集剤が凝集剤貯蔵タンク2から反応槽1に連続的または断続的に注入される。具体的には、流量計9の流量情報を基に第1のコントローラ(演算手段)10によって原水の流入量に応じた量の凝集剤を注入するため、第1のインバータ11を制御し、第1の変量注入ポンプ12を変速駆動するものである。
【0019】
そして原水と凝集剤とが反応槽1で撹拌され、沈殿槽5に流入する。沈殿槽5に流入した原水と凝集剤は沈殿槽5にて固液分離される。このとき、沈殿槽5で分離された固体物はスラッジとして、液体は処理水として排出される。また、該処理水は濁度計6で処理水の濁度がモニタされている。モニタされた濁度は第2のコントローラ13で演算処理され、濁度に応じた凝集剤を注入するため第2のインバータ14を制御し、第2の変量注入ポンプ15を変速駆動する。
【0020】
このように構成された凝集剤注入装置では、原水が反応槽1に流入するとその流入量に比例した必要最少の凝集剤があらかじめ第1の変量注入ポンプ12で反応槽1に注入される。凝集剤と撹拌された原液は沈殿槽5で固液分離され、処理水は濁度計6でモニタされる。そして、この濁度に応じてふさわしい凝集剤の注入量になるように第2の変量注入ポンプ15を変速駆動させる。つまり、濁度計6のモニタ値から凝集剤が不足していると第2のコントローラ13が判断した場合は、第2のインバータ14を制御し、第2の変量注入ポンプ15を駆動させ、凝集剤が反応槽1へ追加注入される。一方、処理水の濁度濃度から追加の凝集剤が不要な場合は、第2の変量注入ポンプ15は駆動されない。
【0021】
すなわち本発明の凝集剤注入装置によれば、排水の原水流入量が変動しても流入量に比例した量の凝集剤をあらかじめ反応槽1に注入することができる。このため、処理水の濁度を検出してから処理水の濁度に応じてフィードバック制御する際の制御遅延を改善することが可能となる。また、最適量の凝集剤注入が速やかに行われるため、凝集剤の無駄を生じない。
【0022】
上述した例では凝集剤の貯槽が1つの例を取り上げたが、例えば、凝集剤として、無機凝集剤および高分子凝集剤があり、これらがそれぞれ単独の貯槽もしくは複数の貯槽および複数のポンプを組み合わせた構成としてもよい。この場合は、上述したように一方の凝集剤を定量供給とし、他方の凝集剤を変量供給としてもよい。または、複数ある凝集剤の貯槽のそれぞれに定量注入ポンプおよび変量注入ポンプを有する構成としてもよい。その他、本発明の趣旨を逸脱しない範囲で種々組み合わせて構成してもよい。
【0023】
【発明の効果】
以上述べたように、本発明の凝集剤注入装置によれば、濁質を含有する排水の原水を処理するための必要最少の凝集剤をあらかじめ定量注入ポンプで供給するため、処理水濁度検出によるフィードバック制御であっても、処理水濁度に基づいた速やかな凝集剤注入制御ができ、かつ、必要最少の凝集剤使用量に収めることができる。また、排水の原水側に濁度計を設けていないため、排水の原水による濁度計の汚損の影響を避けることができ、安定した制御ができるとともに、濁度計のメンテナンス周期を大幅に延ばすことができる等の実用上多大なる効果が奏せられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る凝集剤注入装置の概略構成を示す図。
【図2】従来の凝集剤注入装置における排水濁度変化の概略を示す図。
【図3】本発明の一実施形態に係る凝集剤注入装置における排水濁度変化の概略を示す図。
【図4】本発明の別の実施形態に係る凝集剤注入装置の概略構成を示す図。
【符号の説明】
1 反応槽
2 凝集剤貯蔵タンク
3 定量注入ポンプ
4、12、15 変量注入ポンプ
5 沈殿槽
6 濁度計
7、10、13 コントローラ
8、11、14 インバータ
9 流量計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flocculant injecting device for a water treatment system for solid-liquid separation of wastewater containing turbidity with a flocculant.
[0002]
[Related technical background]
Additives for condensing and precipitating turbid wastewater include inorganic flocculants and polymer flocculants such as aluminum chloride, polyaluminum chloride, aluminum sulfate, ferric chloride, and ferric sulfate. It is used. Conventional flocculant injection devices detect the flow rate and turbidity concentration of wastewater containing turbidity with a sensor, and perform condensation precipitation processing by controlling the addition rate of the flocculant (for example, Japanese Patent Publication No. 7). -29101).
[0003]
In addition, as a flocculant injection device for water purification treatment, turbidity of treated water, raw water flow rate and turbidity value are detected, and feedforward control using these values is performed (for example, Japanese Patent Application No. 58). -40114).
[0004]
[Problems to be solved by the invention]
However, since the flocculant injection device detects the turbidity of the wastewater, if dirt adheres to the turbidimeter provided on the raw water side of the wastewater, appropriate turbidity detection could not be performed, resulting in uncontrollability. . For this reason, maintenance of the turbidimeter must be performed frequently, and there is a problem that it is difficult to apply feedforward control in a wastewater treatment system.
[0005]
Of course, if feedback control is applied to the wastewater treatment system, a turbidity meter may be provided on the treated water side with high clarity after the wastewater is agglomerated, which can be said to be an effective means for preventing turbidity contamination. . However, since there is a time lag from the addition of the flocculant to the discharge of the treated water, it is difficult to perform appropriate control if feedback control is performed after detecting the turbidity of the treated water. There is a problem that a phenomenon that fluctuates.
[0006]
For this reason, when applying feedback control to a wastewater treatment system, sample value control is applied in which holding and control are repeated for a certain period of time so that the control amount does not vibrate due to the time lag. However, in the sample value control, it is necessary to hold the control for the time lag in the control system, and there is a drawback that the initial operation is delayed when a sudden water quality change occurs. For this reason, a method of shortening the hold time is also conceivable. However, in that case, there is a problem that the control amount vibrates due to hunting in the control output. Further, when the control amount vibrates, there is a concern that the waste water treatment system may cause excess or deficiency of the flocculant, causing deterioration of the quality of the treated water, wasteful consumption of the flocculant, and the like.
[0007]
The present invention has been made in consideration of the above-mentioned problems, and the object of the present invention is to perform quick flocculant injection control based on the treated water turbidity, and to keep the required amount of flocculant used, and to perform maintenance. An object of the present invention is to provide a flocculant injecting apparatus suitable for wastewater treatment capable of extending the cycle significantly.
[0008]
[Means for Solving the Problems]
To achieve the above object, coagulant injection device according to claim 1 of the present invention is an injection device of the coagulant in the water treatment system by injecting the flocculant to the water to be treated, solid-liquid separation, advance Quantify the pre- injected amount of flocculant in the water to be treated before solid-liquid separation by multiplying the turbidity concentration of 10 to 90% of the measured average turbidity of the water to be treated by the flow rate of the water to be treated previously measured. a first coagulant injection means for injecting a treatment liquid measuring means for measuring the turbidity of the treated water separated treated water to solid-liquid injected the flocculant, based on the measurement result of the treatment liquid measuring means, calculating means for calculating an injection amount of the coagulant deficiency to be added in addition to the treatment water before solid-liquid separation, before solid-liquid separation injection amount of the coagulant based on the result of said arithmetic means a second coagulant injection means for variable injected into water to be treated, consisting of coagulant injection To provide a location.
[0009]
A flocculant injection device according to claim 2 of the present invention is a flocculant injection device in a water treatment system for injecting a flocculant into water to be treated and performing solid-liquid separation, and measures the flow rate of the liquid to be treated. And a flocculant having an injection amount obtained by multiplying the turbidity concentration of 10 to 90% of the average turbidity concentration of the treated water measured in advance by the flow rate of the treated water measured by the flow measuring means. a first coagulant injection means for variable injection water to be treated before solid-liquid separation, and the processing liquid measuring means for measuring the turbidity of the treated water separated treated water to solid-liquid injected the coagulant, the based on the measurement result of the processing liquid measuring means, a calculating means for calculating an injection amount of the solid-liquid separation prior to treatment water shortage of the flocculant to be added in addition to the injection based on the result of said arithmetic means second coagulant injection hand to variate injecting said flocculant amount to the solid-liquid separation before the water to be treated When, it provides a coagulant injection device comprising a.
[0010]
Therefore, according to the present invention, it is possible to provide a flocculant injecting apparatus suitable for wastewater treatment that can perform quick flocculant injection control based on the treated water turbidity and can greatly extend the maintenance cycle.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the flocculant injection device according to claim 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a flocculant injection device.
This coagulant injecting apparatus includes a reaction tank 1 into which raw water (treated water) of inorganic wastewater containing turbidity is continuously introduced. Further, the flocculant stored in the flocculant storage tank 2 is supplied to the reaction tank 1 continuously or intermittently from the flocculant storage tank 2 by the metering injection pump 3 in a certain amount with respect to the raw water. The The raw water and the flocculant are stirred in the reaction tank 1 and flow into the precipitation tank 5. The raw water and the flocculant that have flowed into the settling tank 5 are separated into solid and liquid in the settling tank 5. At this time, the solid material separated in the precipitation tank 5 is discharged as sludge, and the liquid is discharged as treated water. The turbidity of the treated water discharged from the sedimentation tank 5 is monitored by a turbidimeter 6. The monitored turbidity is calculated by a controller (calculation means) 7, and the inverter 8 is controlled to drive the variable injection pump 4 at a variable speed so as to inject an amount of flocculant corresponding to the turbidity.
[0012]
In the flocculant injection device configured as described above, when the raw water flows into the reaction tank 1, the minimum necessary amount of flocculant is injected into the reaction tank 1 in advance by the metering injection pump 3.
Here, the minimum amount of flocculant injected can be obtained by the following equation.
Minimum required flocculant injection amount [g / H] = raw water flow rate [l / H] × turbidity concentration [g / l] × safety factor The turbidity concentration in the above equation is 90 to 10 of the average turbidity concentration. [%], Preferably 80 to 50 [%]. In addition, the safety factor in the above equation means a factor (> 1) that provides a margin for the coagulation treatment with respect to changes in the concentration and flow rate of raw water of drainage.
[0013]
Then, the turbidity of the treated water in which the raw water and the flocculant are stirred in the reaction tank 1 and solid-liquid separated in the precipitation tank 5 is monitored by a turbidimeter 6. When the controller 7 determines that the flocculant is insufficient from the monitor value of the turbidimeter 6, the inverter 8 is controlled to drive the variable injection pump 4, and the amount of flocculant suitable for the turbidity is An additional injection is made to 1. On the other hand, when the additional flocculant is unnecessary from the turbidity concentration of the treated water, the variable injection pump 4 is not driven.
[0014]
Now, the drainage turbidity in the above-described coagulant injection will be described with reference to the drawings. FIG. 2 is a diagram showing changes in turbidity of wastewater by a conventional feedback method. In FIG. 2, PV is a turbidity value detected by a turbidimeter, and SV is a turbidity control target value. Moreover, MV shows the amount of flocculant injection.
When raw waste water (treated water) flows into the flocculant injection device, it is discharged as treated water via the reaction tank 1 and the settling tank 5. The water to be treated at this time is detected by the turbidimeter 6 with a time lag TD corresponding to the time for passing through the reaction tank 1 and the sedimentation tank 5. When the detected value of the turbidimeter 6 for the water to be treated exceeds the target value SV, the flocculant is injected. However, because of the time lag, the detected value of the turbidimeter 6 continues to increase even after the flocculant is injected. For this reason, the injection amount of the flocculant is further increased. At this time, the wastewater concentration in the reaction tank 1 is equal to or less than the target value, but the flocculant is continuously injected due to the time lag, so that the flocculant is excessively injected. Then, the injection of the flocculant is stopped when the detected value of the turbidimeter 6 falls below the target value SV. However, since the flocculant is excessively injected, it further falls below the target value SV. And since the flocculant is not inject | poured into the reaction tank 1, the waste water turbidity of the reaction tank 1 will rise again, and the same operation | movement as mentioned above will be repeated hereafter. For this reason, drainage turbidity changes in vibration.
[0015]
Next, FIG. 3 is a figure which shows the waste-water turbidity change in this invention. When raw waste water (treated water) flows into the coagulant injection device, a predetermined amount of coagulant predetermined by the metering injection pump 3 is injected into the reaction tank 1. This treated water is detected by the turbidimeter 6 with a time lag TD after passing through the reaction tank 1 and the sedimentation tank 5. The detection value of the turbidimeter 6 shows a value close to the target value SV because a predetermined amount of the flocculant is injected into the reaction tank 1 by the metering injection pump 3 in advance. Therefore, it is sufficient to compensate for the deficiency of the flocculant by the variable injection pump 4, and the target value can be reached quickly. In addition, it becomes possible to control stably without causing the vibration phenomenon of drainage turbidity.
[0016]
That is, a predetermined minimum required amount of flocculant is charged first, and the adjustment of the deficiency may be adjusted by the variable injection pump 4, so that the control delay due to the time lag as seen in the conventional feedback control system is reduced. Can be minimized.
That is, according to the flocculant injection device of the present invention, it is possible to reach the optimum injection amount in the shortest time, and it is also possible to prevent surrounding fluctuations in processing water turbidity and hunting phenomenon.
[0017]
Furthermore, since the turbidimeter 6 is provided on the treated water side separated from the solid and liquid in the sedimentation tank 5 so that the contamination of the turbidimeter 6 due to contamination of raw water is extremely reduced, the maintenance cycle of the turbidimeter 6 is greatly increased. Can be extended to
Next, an embodiment of the invention according to claim 2 of the present invention will be described. FIG. 2 is a schematic configuration diagram of the present flocculant injection device. This embodiment is different from the first embodiment in that it includes a flow meter 9 that measures the inflow amount of raw water of inorganic wastewater, and further performs feedforward control that controls the injection amount of the flocculant based on this flow rate information. It is that it was provided.
[0018]
This flocculant injection device has a reaction tank 1 into which raw water of inorganic wastewater containing turbidity flows continuously, and a flow meter 9 for measuring the amount of flow of the raw water. Then, an amount of the flocculant corresponding to the inflow amount of the raw water measured by the flow meter 9 is continuously or intermittently injected from the flocculant storage tank 2 into the reaction tank 1. Specifically, in order to inject the flocculant in an amount corresponding to the inflow amount of the raw water by the first controller (calculation means) 10 based on the flow rate information of the flow meter 9, the first inverter 11 is controlled, One variable injection pump 12 is driven at variable speed.
[0019]
The raw water and the flocculant are stirred in the reaction tank 1 and flow into the precipitation tank 5. The raw water and the flocculant that have flowed into the settling tank 5 are separated into solid and liquid in the settling tank 5. At this time, the solid substance separated in the settling tank 5 is discharged as sludge, and the liquid is discharged as treated water. The turbidity of the treated water is monitored by a turbidimeter 6. The monitored turbidity is calculated by the second controller 13, and the second inverter 14 is controlled to inject the flocculant corresponding to the turbidity, and the second variable injection pump 15 is driven at a variable speed.
[0020]
In the flocculant injection device configured as described above, when raw water flows into the reaction tank 1, the minimum necessary flocculant proportional to the inflow amount is injected into the reaction tank 1 in advance by the first variable injection pump 12. The flocculant and the stirred stock solution are solid-liquid separated in the precipitation tank 5, and the treated water is monitored by the turbidimeter 6. Then, the second variable injection pump 15 is driven to change speed so that the injection amount of the flocculant suitable for the turbidity is obtained. That is, when the second controller 13 determines that the coagulant is insufficient from the monitor value of the turbidimeter 6, the second inverter 14 is controlled to drive the second variable injection pump 15 to coagulate. The agent is additionally injected into the reaction vessel 1. On the other hand, when the additional flocculant is unnecessary from the turbidity concentration of the treated water, the second variable injection pump 15 is not driven.
[0021]
That is, according to the flocculant injection device of the present invention, even if the raw water inflow amount of the waste water fluctuates, an amount of the flocculant proportional to the inflow amount can be injected into the reaction tank 1 in advance. For this reason, it becomes possible to improve the control delay at the time of performing feedback control according to the turbidity of treated water after detecting the turbidity of treated water. In addition, since the optimum amount of the flocculant is quickly injected, the flocculant is not wasted.
[0022]
In the example described above, one example of the storage tank for the flocculant is taken up. For example, as the flocculant, there are an inorganic flocculant and a polymer flocculant, which are combined with a single storage tank or a plurality of storage tanks and a plurality of pumps, respectively. It is good also as a structure. In this case, as described above, one flocculant may be supplied as a fixed amount, and the other flocculant may be supplied as a variable amount. Or it is good also as a structure which has a fixed_quantity | specification injection pump and a variable_quantity | specification injection pump in each storage tank of a plurality of flocculants. In addition, you may comprise in various combinations in the range which does not deviate from the meaning of this invention.
[0023]
【Effect of the invention】
As described above, according to the flocculant injection device of the present invention, since the minimum amount of flocculant necessary for processing raw water of wastewater containing turbidity is supplied in advance by a metering injection pump, the treatment water turbidity detection Even with the feedback control according to the above, the flocculant injection control based on the treated water turbidity can be performed quickly and the required amount of the flocculant can be kept. In addition, since there is no turbidimeter installed on the raw water side of the wastewater, it is possible to avoid the influence of contamination of the turbidimeter due to the raw water of the wastewater, to achieve stable control, and to greatly extend the maintenance cycle of the turbidimeter. And the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a flocculant injection device according to an embodiment of the present invention.
FIG. 2 is a diagram showing an outline of a change in turbidity of drainage in a conventional flocculant injection device.
FIG. 3 is a diagram showing an outline of a change in turbidity of drainage in the flocculant injection device according to one embodiment of the present invention.
FIG. 4 is a diagram showing a schematic configuration of a flocculant injection device according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Coagulant storage tank 3 Fixed injection pump 4, 12, 15 Variable injection pump 5 Precipitation tank 6 Turbidimeter 7, 10, 13 Controller 8, 11, 14 Inverter 9 Flowmeter

Claims (2)

被処理水に凝集剤を注入し、固液分離する水処理システムにおける凝集剤の注入装置であって、
予め測定した被処理水の平均濁度濃度の10〜90%の濁度濃度に予め測定した被処理水の流量を乗じて予め設定した注入量の凝集剤を固液分離前の被処理水に定量注入する第1の凝集剤注入手段と、
前記凝集剤注入した被処理水を固液分離した処理水の濁度を計測する処理液測定手段と、
前記処理液測定手段の計測結果に基づき、固液分離前の被処理水に追加して添加すべき不足分の前記凝集剤注入量を演算する演算手段と、
前記演算手段の結果に基づいた注入量前記凝集剤を固液分離前の被処理水に変量注入する第2の凝集剤注入手段と、からなる凝集剤注入装置。
An apparatus for injecting a flocculant in a water treatment system for injecting a flocculant into water to be treated and performing solid-liquid separation,
The pre-measured turbidity concentration of 10 to 90% of the average turbidity concentration of the treated water is multiplied by the pre-measured flow rate of the treated water, and a preset amount of flocculant is added to the treated water before solid-liquid separation. First flocculant injection means for quantitative injection;
A treatment liquid measuring means for measuring the turbidity of the treated water wherein flocculant was solid-liquid separated water to be treated is injected,
A calculating means for calculating a measurement result based on the injection amount of the solid-liquid separation prior to shortage of the flocculant to be added in addition to the water to be treated of the treatment liquid measuring means,
Injection amount of the second coagulant injection means for variable injected into the water to be treated before the flocculant to solid-liquid separation, consisting coagulant injection device based on the result of said arithmetic means.
被処理水に凝集剤を注入し、固液分離する水処理システムにおける凝集剤の注入装置であって、
被処理液の流量を測定する流量測定手段と、
予め測定した被処理水の平均濁度濃度の10〜90%の濁度濃度に前記流量測定手段で測定した被処理水の流量を乗じて得た注入量の凝集剤を固液分離前の被処理水に変量注入する第1の凝集剤注入手段と、
前記凝集剤注入した被処理水を固液分離した処理水の濁度を計測する処理液測定手段と、
前記処理液測定手段の計測結果に基づき、固液分離前の被処理水に追加して添加すべき不足分の前記凝集剤注入量を演算する演算手段と、
前記演算手段の結果に基づいた注入量前記凝集剤を固液分離前の被処理水に変量注入する第2の凝集剤注入手段と、からなる凝集剤注入装置。
An apparatus for injecting a flocculant in a water treatment system for injecting a flocculant into water to be treated and performing solid-liquid separation,
A flow rate measuring means for measuring the flow rate of the liquid to be treated;
The flocculant of the injection amount obtained by multiplying the turbidity concentration of 10 to 90% of the average turbidity concentration of the treated water measured in advance by the flow rate of the treated water measured by the flow rate measuring means is obtained before the solid-liquid separation. First flocculant injection means for injecting a variable amount into treated water;
A treatment liquid measuring means for measuring the turbidity of the treated water wherein flocculant was solid-liquid separated water to be treated is injected,
A calculating means for calculating a measurement result based on the injection amount of the solid-liquid separation prior to shortage of the flocculant to be added in addition to the water to be treated of the treatment liquid measuring means,
Injection amount of the second coagulant injection means for variable injected into the water to be treated before the flocculant to solid-liquid separation, consisting coagulant injection device based on the result of said arithmetic means.
JP2001296690A 2001-09-27 2001-09-27 Flocculant injection device Expired - Lifetime JP4968420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296690A JP4968420B2 (en) 2001-09-27 2001-09-27 Flocculant injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296690A JP4968420B2 (en) 2001-09-27 2001-09-27 Flocculant injection device

Publications (2)

Publication Number Publication Date
JP2003093806A JP2003093806A (en) 2003-04-02
JP4968420B2 true JP4968420B2 (en) 2012-07-04

Family

ID=19117882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296690A Expired - Lifetime JP4968420B2 (en) 2001-09-27 2001-09-27 Flocculant injection device

Country Status (1)

Country Link
JP (1) JP4968420B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882632B2 (en) * 2006-09-25 2012-02-22 栗田工業株式会社 Method and apparatus for treating phosphoric acid-containing wastewater
KR100863522B1 (en) * 2007-03-21 2008-11-03 주식회사 백광아이에스티 Water purification apparatus injecting cohesive agents using a exhausting cylinder
KR100831243B1 (en) * 2007-11-23 2008-05-22 디에스환경기술 주식회사 Flocculating agent feeder
KR100840937B1 (en) * 2008-03-14 2008-06-24 디에스환경기술 주식회사 Flocculating agent feeder
WO2015047107A1 (en) * 2013-09-25 2015-04-02 Robert Coulson A flocculant dispensing system and method
KR101688301B1 (en) * 2015-01-16 2016-12-20 코오롱엔솔루션 주식회사 A Chemical Injecting and Mixing Method in Water Treatment Process

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840113A (en) * 1981-09-03 1983-03-09 Mitsubishi Electric Corp Flocculant pouring control apparatus in water treatment
JPS5840114A (en) * 1981-09-03 1983-03-09 Mitsubishi Electric Corp Flocculant pouring control apparatus in water treatment
JPS58180209A (en) * 1982-04-15 1983-10-21 Mitsubishi Electric Corp Method for controlling feeding of flocculating agent
JPS61141984A (en) * 1984-12-13 1986-06-28 Mitsubishi Electric Corp Apparatus for determining injection amount of chemicals
JPS6325101U (en) * 1986-08-04 1988-02-19
JPS63200807A (en) * 1987-02-16 1988-08-19 Meidensha Electric Mfg Co Ltd Injection controller for flocculant
JPH02258003A (en) * 1989-03-30 1990-10-18 Ebara Infilco Co Ltd Control method of chemical feeding to coagulator
JPH02261505A (en) * 1989-03-31 1990-10-24 Ebara Infilco Co Ltd Method for controlling chemical injection in flocculating and settling device
JP2693014B2 (en) * 1990-04-27 1997-12-17 株式会社東芝 Coagulant injection controller for water purification plants
JPH054009A (en) * 1991-06-27 1993-01-14 Kawasaki Steel Corp Method for clarifying waste water from production line of surface treated steel sheet
JPH05103910A (en) * 1991-10-15 1993-04-27 Matsushita Electric Works Ltd Treatment of drainage
JPH06289007A (en) * 1993-04-02 1994-10-18 Kurita Water Ind Ltd Device for determining flocculation property of flocculation flock
JPH06327907A (en) * 1993-05-20 1994-11-29 Mitsubishi Electric Corp Flocculation controller
JP3231164B2 (en) * 1993-10-19 2001-11-19 富士電機株式会社 Control device for water purification plant coagulation process
JP3312507B2 (en) * 1994-10-20 2002-08-12 栗田工業株式会社 Water treatment equipment
JPH1099887A (en) * 1996-09-27 1998-04-21 Unitika Ltd Apparatus for controlling addition amount of flocculant
JP3691650B2 (en) * 1997-12-11 2005-09-07 株式会社日立製作所 Water treatment method and control device
JP3905663B2 (en) * 1999-04-20 2007-04-18 オルガノ株式会社 Solid-liquid separator and flocculation condition determination method
JP3030024B1 (en) * 1999-04-22 2000-04-10 理水化学株式会社 Raw water treatment equipment
JP4365512B2 (en) * 2000-06-12 2009-11-18 株式会社東芝 Sewage treatment system and measurement system
JP4596108B2 (en) * 2001-05-30 2010-12-08 栗田工業株式会社 Flocculant injection method and flocculant injection apparatus
JP2003047806A (en) * 2001-08-03 2003-02-18 Kurita Water Ind Ltd Flocculation apparatus and flocculation method
JP2003047805A (en) * 2001-08-06 2003-02-18 Kurita Water Ind Ltd Water treatment apparatus and apparatus for adjusting quantity of flocculant to be added

Also Published As

Publication number Publication date
JP2003093806A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US9682872B2 (en) Wastewater treatment system
JP2009220085A5 (en)
JP4968420B2 (en) Flocculant injection device
KR100786776B1 (en) Apparatus for water treatment using membrane filtration
JPH06178979A (en) Device for separating solid from liquid
JP2007222814A (en) Flocculant injection volume control method and control controller
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
JP5782931B2 (en) Water treatment method and water treatment apparatus
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JP4596108B2 (en) Flocculant injection method and flocculant injection apparatus
JPH0389993A (en) Method for controlling concentration of phosphorus in waste water
JPH09174086A (en) Method for biological dephosphorization of wastewater and apparatus therefor
JP4882632B2 (en) Method and apparatus for treating phosphoric acid-containing wastewater
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JP5259365B2 (en) PH controller in water treatment plant
JP2003047806A (en) Flocculation apparatus and flocculation method
KR101272273B1 (en) Water purifing system for management of sludge blanket level
JPS625040B2 (en)
JP6743409B2 (en) Method of controlling pH in neutralization tank
JPH11169885A (en) Control method by water treatment process and device therefor
JP2004195304A (en) Coagulant injection control method and apparatus
JP2006272310A (en) Apparatus and method for coagulation
JP3937826B2 (en) Aggregation processing equipment
JPH04361821A (en) Replenishing water controller for circulating water system
JPH03284303A (en) Control method for injecting flocculant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4968420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150