JPH04361821A - Replenishing water controller for circulating water system - Google Patents

Replenishing water controller for circulating water system

Info

Publication number
JPH04361821A
JPH04361821A JP13476391A JP13476391A JPH04361821A JP H04361821 A JPH04361821 A JP H04361821A JP 13476391 A JP13476391 A JP 13476391A JP 13476391 A JP13476391 A JP 13476391A JP H04361821 A JPH04361821 A JP H04361821A
Authority
JP
Japan
Prior art keywords
water
amount
circulating
tank
water system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13476391A
Other languages
Japanese (ja)
Other versions
JPH089054B2 (en
Inventor
Yoshiji Nishimoto
西本 俶士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP3134763A priority Critical patent/JPH089054B2/en
Publication of JPH04361821A publication Critical patent/JPH04361821A/en
Publication of JPH089054B2 publication Critical patent/JPH089054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To reduce equipment cost by controlling water supply quantity in accordance with the difference between a total holding water quantity which is detected in each relay tank in a circulating system and a total reference quantity of each holding water. CONSTITUTION:In the circulating water system containing plural relay tanks, the total of each holding water quantity, which is detected by the detecting means 21-24 of the holding water quantity in each relay tank, and the total of each holding water reference quantity are compared; and water replenishing means 17, 25 are controlled by a water supply control means at a water supply quantity corresponding to the difference. Thus, the decrease of the holding water quantity in the circulating water system is constantly and surely grasped, simultaneously the holding water quantity in the circulating water system is held at a constant level, and the reduction in the equipment cost is attained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、循環水系における補給
水制御装置に関し、詳細には、複数の中継槽を含む循環
冷却水系及び洗浄水系からなる循環水系における補給水
制御装置に関し、主として鉄鋼業における真空脱ガス設
備、連続鋳造設備、各種圧延設備、又は電子部品工業に
おける超純水洗浄クローズドシステム等における冷却水
系、洗浄水系への補給水の制御装置に関する。
[Field of Industrial Application] The present invention relates to a make-up water control device in a circulating water system, and more particularly, to a make-up water control device in a circulating water system consisting of a circulating cooling water system including a plurality of relay tanks and a washing water system, and is mainly used in the steel industry. The present invention relates to a control device for supplying water to cooling water systems and cleaning water systems in vacuum degassing equipment, continuous casting equipment, various rolling equipment, or ultrapure water cleaning closed systems in the electronic parts industry.

【0002】0002

【従来の技術】循環水系は前記鉄鋼業、電子部品工業の
他、化学工業等の各工業界において広く用いられている
。かかる循環水系において、保有水量を一定に保持する
ことが必要であるが、系外への水の流出(排出)は不可
避であり、従って、保有水量を出来るだけ一定に保持す
べく、補給水の供給が行われる。
BACKGROUND OF THE INVENTION Circulating water systems are widely used in various industries such as the above-mentioned steel industry, electronic parts industry, and chemical industry. In such a circulating water system, it is necessary to maintain a constant amount of retained water, but the outflow (discharge) of water to the outside of the system is unavoidable. Supply is made.

【0003】その詳細を、図1に示す如き圧延設備にお
ける循環水系の場合を例に挙げて以下説明する。図1に
示す循環水系において、冷却水はスケールピット2,沈
澱池3,濾過器4,冷却塔5,冷水槽6を経由して圧延
設備1に送られ、これにより循環冷却水系が形成されて
いる。又、濾過器4には、逆洗排水槽7が接続されてい
て、循環水系の一部の水が逆洗排水槽7を経て循環冷却
水系に返送される。
[0003] The details will be explained below, taking as an example the case of a circulating water system in a rolling equipment as shown in FIG. In the circulating water system shown in Fig. 1, cooling water is sent to the rolling equipment 1 via the scale pit 2, sedimentation tank 3, filter 4, cooling tower 5, and cold water tank 6, thereby forming a circulating cooling water system. There is. Further, a backwash drainage tank 7 is connected to the filter 4, and part of the water in the circulating water system is returned to the circulating cooling water system via the backwash drainage tank 7.

【0004】この循環水系において、スケールピット2
等の各設備から水分が排出されるので、保有水量を一定
に保持するための補給水の供給が必要である。例えば、
排出されるものは、スケールピット2で排出されるスケ
ールの付着水、沈澱池3の排泥中の水分、濾過器4での
逆洗排水、冷却塔5での蒸発及び飛散水分(ドリフトロ
ス)、蒸発による水中溶解物の成分濃縮を防止するため
のブロー水等が挙げられる。一方、排泥中の水分の一部
や、逆洗排水の処理水は循環水系に流入してくる。しか
し、排出量の方が多いため、補給水を供給しないと保有
水量が時間とともに減少して運転不能となることを防止
すると共に、循環系の濃縮度を一定にするため、補給水
の供給が必要となる。
[0004] In this circulating water system, scale pit 2
Since water is discharged from each facility, it is necessary to supply make-up water to maintain a constant amount of water. for example,
What is discharged is water adhered to the scale discharged from the scale pit 2, water in the waste sludge from the sedimentation tank 3, backwash water from the filter 4, and evaporation and scattered water from the cooling tower 5 (drift loss). , blow water for preventing concentration of components of a dissolved substance in water due to evaporation, and the like. On the other hand, part of the water in the waste sludge and treated water from backwash wastewater flow into the circulating water system. However, since the amount of water discharged is larger, it is necessary to supply makeup water in order to prevent the amount of retained water from decreasing over time and becoming unable to operate if makeup water is not supplied, and to keep the concentration level of the circulation system constant. It becomes necessary.

【0005】従来、かかる循環水系における補給水の供
給は下記方法により行われている。即ち、冷水槽6での
水位(レベル)によって補給水量を調節する方法、又は
、予め定めた一定量の補給水を常時供給する方法により
行われている。
[0005] Conventionally, supply of make-up water in such a circulating water system has been carried out by the following method. That is, this is carried out by adjusting the amount of make-up water depending on the water level in the cold water tank 6, or by constantly supplying a predetermined amount of make-up water.

【0006】[0006]

【発明が解決しようとする課題】ところが、前記従来の
補給水の供給方法においては、基本的に保有水量を一定
に保持するのが容易でないという問題点を有しており、
特に鉄鋼業等で使用される如き数千〜数万m3/Hrの
大量の循環水系の場合において種々の深刻な問題点を生
じている。即ち、大量の循環水系の場合、レベルコント
ロールを容易にするために大量のオーバーフローを吸収
する必要があって、排水設備が大形化すると共に運転コ
ストが嵩むこと、補給のタイミングを一つの排槽(例え
ば冷水槽6)で行うために過大補給となりがちとなり、
補給水の無駄が多く、薬品処理をする場合にはさらに薬
品費の増大を招く。又、大容量のポンプ用モータを保護
する必要上、スイッチングアワーの関係から滞留時間の
長い大容量の水槽が必要となり、設備コストが高くつく
こと等の問題点を生じている。
However, the conventional make-up water supply method has a problem in that it is basically not easy to maintain a constant amount of water.
In particular, various serious problems arise in the case of a large-volume circulating water system of several thousand to several tens of thousands of cubic meters per hour, such as those used in the steel industry. In other words, in the case of a large-volume circulating water system, it is necessary to absorb a large amount of overflow to facilitate level control, which increases the size of the drainage equipment and increases operating costs. (For example, cold water tank 6) tends to lead to oversupply.
There is a lot of wastage of make-up water, and when chemical treatment is used, the cost of chemicals further increases. Furthermore, in order to protect the large-capacity pump motor, a large-capacity water tank with a long residence time is required due to switching hours, resulting in problems such as high equipment costs.

【0007】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記従来のものが有する問
題点を解消し、大形の排水設備等を要することなく、必
要とされる水量に見合った補給水の供給を実現して、保
有水量を一定に保持し得、しかも設備コスト、運転コス
トの低減化、及び水損失量の軽減化を果たし得る循環水
系における補給水制御装置を提供しようとするものであ
る。
[0007] The present invention has been made in view of these circumstances, and its purpose is to solve the problems of the above-mentioned conventional methods and to eliminate the need for large-scale drainage equipment. Make-up water control in a circulating water system that can supply make-up water commensurate with the amount of water being used, maintain a constant amount of water, and reduce equipment costs, operating costs, and water loss. The aim is to provide equipment.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のような構成の循環水系における補給水
制御装置としている。即ち、本発明に係る補給水制御装
置は、保有水量の基準値が定められていて水の流入量と
流出量との少なくともいづれか一方が調節される複数の
中継槽を含む循環冷却水系及び洗浄水系からなる循環水
系において、補給水を水量調節可能に前記循環水系に供
給する水補給手段と、各中継槽に検出部が設けられて各
保有水量を検出する保有水量検出手段と、この保有水量
検出手段が検出した各保有水量の総和と各保有水基準量
の総和とを比較し、その差に応じた供給水量に前記水補
給手段を制御する供給水量制御手段とを含んで構成され
ることを特徴とする循環水系における補給水制御装置で
ある。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a make-up water control device for a circulating water system having the following configuration. That is, the make-up water control device according to the present invention includes a circulating cooling water system and a cleaning water system including a plurality of relay tanks in which a reference value of the amount of water held is determined and at least one of the inflow and outflow of water is adjusted. A water replenishment means for supplying make-up water to the circulating water system in a manner that allows the amount of water to be adjusted; a water amount detection means for detecting the amount of water held in each relay tank by providing a detection unit in each relay tank; A supply water amount control means that compares the total amount of each retained water amount detected by the means with the total amount of each retained water reference amount and controls the water supply amount according to the difference. This is a make-up water control device in a circulating water system.

【0009】[0009]

【作用】本発明に係る循環水系における補給水制御装置
は、前記の如く、補給水を水量調節可能に循環水系に供
給する水補給手段と、循環水系の各中継槽に検出部が設
けられて各保有水量を検出する保有水量検出手段と、こ
の保有水量検出手段が検出した各保有水量の総和と各保
有水基準量の総和とを比較し、その差に応じた供給水量
に前記水補給手段を制御する供給水量制御手段とを有す
る。故に、循環水系の運転中、上記保有水量検出手段に
より保有水量の減少量を随時又は常時確実に把握し得る
と共に、その減少量に見合った補給水を供給水量制御手
段により水補給手段から供給し得る。そのため、各槽で
の水の流入量と流出量が均衡するような補給水の制御が
でき、従って、循環水系の保有水量を一定に保持し得る
と共に、補給水の過大供給を避けることができる。
[Operation] As described above, the make-up water control device for a circulating water system according to the present invention includes a water replenishing means for supplying make-up water to the circulating water system in an adjustable amount, and a detection unit provided in each relay tank of the circulating water system. A retained water amount detection means detects each retained water amount, and the water replenishment means compares the sum of each retained water amount detected by this retained water amount detection means with the total of each retained water reference amount, and adjusts the supplied water amount according to the difference. and a supply water amount control means for controlling the amount of water supplied. Therefore, during the operation of the circulating water system, the amount of decrease in the amount of retained water can be reliably grasped at any time or all the time by the above-mentioned retained water amount detection means, and the supply water amount control means can supply make-up water commensurate with the decreased amount from the water replenishment means. obtain. Therefore, it is possible to control make-up water so that the inflow and outflow of water in each tank are balanced, and therefore, the amount of water held in the circulating water system can be maintained constant, and oversupply of make-up water can be avoided. .

【0010】又、上記の如く循環水系の保有水量を一定
に保持し得るため、各槽の水位シミュレーションが可能
となり、各槽の送水ポンプのスイッチングアワーの定量
化も可能となる。更に、運転開始時及び停止時における
オーバフローを回避できる。従って、給水設備等を小形
化し得、設備コストの低減が図れると共に運転管理が容
易になって運転コストの低減が図れる。
Furthermore, since the amount of water held in the circulating water system can be held constant as described above, it is possible to simulate the water level in each tank, and it is also possible to quantify the switching hours of the water pumps in each tank. Furthermore, overflow can be avoided at the time of starting and stopping the operation. Therefore, the water supply equipment etc. can be downsized, equipment costs can be reduced, and operation management can be facilitated, leading to reductions in operating costs.

【0011】しかも、各槽での保有水量を把握し得ると
共に調整し得るので、各槽での処理を支障なく安全に遂
行し得るようになる。
Moreover, since the amount of water held in each tank can be grasped and adjusted, the treatment in each tank can be carried out safely without any trouble.

【0012】0012

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1に、実施例に係る圧延設備冷却用の循環水系
のブロック図を示す。この循環水系において、循環冷却
水系は、圧延設備1の冷却水通路、スケールピット2、
沈澱池3、濾過器4、冷却塔5、冷水槽6を循環的に接
続して形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of a circulating water system for cooling rolling equipment according to an embodiment. In this circulating water system, the circulating cooling water system includes a cooling water passage of the rolling equipment 1, a scale pit 2,
It is formed by cyclically connecting a sedimentation tank 3, a filter 4, a cooling tower 5, and a cold water tank 6.

【0013】上記循環冷却水系において、圧延設備1の
ロールは冷水槽6からポンプ12によって送られてくる
冷却水で冷却される。この冷却水はロールとの熱交換に
より温度上昇すると共に、圧延時に発生するスケールを
含有して、スケールピット2に流入する。ここでスケー
ルピット2の水平断面積をA1、又、水位検出手段21
によって検出した水位をL1とすると、スケールピット
2の保有水量はA1×L1となる。
In the circulating cooling water system, the rolls of the rolling equipment 1 are cooled by cooling water sent from the cold water tank 6 by the pump 12. This cooling water increases in temperature due to heat exchange with the rolls, contains scale generated during rolling, and flows into the scale pit 2. Here, the horizontal cross-sectional area of the scale pit 2 is A1, and the water level detection means 21
Assuming that the water level detected by is L1, the amount of water held in the scale pit 2 is A1×L1.

【0014】スケールピット2において粗スケールが殆
ど沈澱分離された後、冷却水(処理水)は細かいスケー
ルを除去するためポンプ10により沈澱池3に送られる
。 一方、スケールピット2で沈澱した粗スケールはクラブ
バケット等で系外に出、それに伴ってスケール付着水も
系外に出ることになる。沈澱池3の槽の水平断面積をA
2、又、水位検出手段22によって検出した水位をL2
とすると、該槽の保有水量はA2×L2となる。
After most of the coarse scale has been separated by sedimentation in the scale pit 2, the cooling water (treated water) is sent to the settling tank 3 by a pump 10 to remove fine scale. On the other hand, the coarse scale precipitated in the scale pit 2 is discharged from the system by a club bucket or the like, and the scale-attached water is accordingly discharged from the system. The horizontal cross-sectional area of the sedimentation tank 3 is A
2. Also, the water level detected by the water level detection means 22 is set to L2.
Then, the amount of water held in the tank is A2×L2.

【0015】沈澱池3において沈澱した細かいスケール
は、排泥ポンプ14によりスラッジシックナー8に送ら
れ、更にポンプ16によりスレッジラグーン又は脱水機
9に送られ、脱水後のケーキは排出され、脱水作用によ
り出た水は再び沈澱池3に送り戻される。一方、沈澱池
3において細かいスケールの除去後の水は、更に微細な
スケールを除去するため、濾過器4にポンプ11を介し
て送られて濾過され、次いで冷却塔5に送られて大気と
接触して冷却された後、冷水槽6に流入する。このとき
、冷却塔5では蒸発及びドリフトによる系外への水排出
がある。又、冷水槽6において水の伝導度を測定し、こ
の結果に基づき濾過後の水の一部は、濃縮度を一定にす
るためにブロー水として排出される。
Fine scale precipitated in the sedimentation tank 3 is sent to the sludge thickener 8 by the sludge pump 14, and further sent to the sledge lagoon or dewatering machine 9 by the pump 16, and the cake after dewatering is discharged and dehydrated by the dewatering action. The discharged water is sent back to the settling tank 3 again. On the other hand, the water after fine scale removal in the sedimentation tank 3 is sent to the filter 4 via the pump 11 to be filtered in order to further remove fine scale, and then sent to the cooling tower 5 where it comes into contact with the atmosphere. After being cooled, it flows into the cold water tank 6. At this time, in the cooling tower 5, water is discharged to the outside of the system due to evaporation and drift. Further, the conductivity of the water is measured in the cold water tank 6, and based on this result, a portion of the water after filtration is discharged as blow water in order to keep the concentration constant.

【0016】冷水槽6の水の一部は、濾過器4の逆洗用
水として使用され、一定時間に一定量がポンプ13によ
り排出されて濾過器4に送り込まれる。但し、逆洗条件
が一致しないときは時間が若干変動するときもある。こ
こで冷水槽6の水平断面積をA3、又、水位検出手段2
3によって検出した水位をL3とすると、冷水槽6の保
有水量はA3×L3となる。
A part of the water in the cold water tank 6 is used as water for backwashing the filter 4, and a certain amount is discharged by the pump 13 at a certain time and sent to the filter 4. However, the time may vary slightly if the backwash conditions do not match. Here, the horizontal cross-sectional area of the cold water tank 6 is A3, and the water level detection means 2
If the water level detected in step 3 is L3, the amount of water held in the cold water tank 6 is A3×L3.

【0017】上記濾過器4での逆洗後の水は、逆洗排水
槽7に流入する。ここで逆洗排水槽7の水平断面積をA
4、又、水位検出手段24によって検出した水位をL4
とすると、保有水量はA4×L4となる。逆洗排水槽7
から逆洗排水は一定量ずつポンプ15によりスラッジシ
ックナー8に送られ、凝集沈澱することによって非常に
微細なスケール(1〜50μm )は完全に処理され、
シックナー8の底部に堆積する。このシックナー8には
前記沈澱池3からのスケールも流入し底部に沈澱堆積す
る。シックナー8においてスケール分離された水は脱水
機9の脱離水とともに沈澱池3の入口に再び送られる。
The water after backwashing in the filter 4 flows into a backwash drainage tank 7. Here, the horizontal cross-sectional area of the backwash drainage tank 7 is A
4. Also, the water level detected by the water level detection means 24 is
Then, the amount of water held is A4 x L4. Backwash drainage tank 7
A certain amount of the backwash wastewater is sent to the sludge thickener 8 by a pump 15, where it coagulates and settles, completely treating very fine scales (1 to 50 μm).
It is deposited on the bottom of the thickener 8. The scale from the sedimentation tank 3 also flows into the thickener 8 and is deposited at the bottom. The scale-separated water in the thickener 8 is sent again to the inlet of the sedimentation tank 3 together with the dehydrated water from the dehydrator 9.

【0018】このような循環冷却水系及び洗浄水系から
なる循環水系において、冷却対象の圧延設備1での蒸発
や、冷却塔5での蒸発やドリフト等により、冷却水が減
少するため、ブロー水を確保しつつ、補給水の供給が必
要となる。そこで、冷水槽6には、流量調節弁25を介
設して有する補給水給水管17によって実現される水補
給手段が接続され、下記の如く補給水を供給する。
In such a circulating water system consisting of a circulating cooling water system and a washing water system, the amount of cooling water decreases due to evaporation in the rolling equipment 1 to be cooled, evaporation or drift in the cooling tower 5, and so the blow water is It is necessary to secure the supply of make-up water. Therefore, a water replenishment means realized by a make-up water supply pipe 17 having a flow rate regulating valve 25 interposed therein is connected to the cold water tank 6, and supplies make-up water as described below.

【0019】即ち、各槽の保有水量が前述の如く測定し
て求められるので、循環水系の保有水量の総和ΣQは、
ΣQ=A1×L1+A2×L2+A3×L3+A4×L
4の式より求めることができ、このΣQを予め定めた一
定値になるように、水補給手段により補給水を供給する
。そうすると、各槽での水の流入量と流出量が均衡する
ような理想的な補給水供給量制御システムとなる。
That is, since the amount of water held in each tank is determined by measurement as described above, the total amount of water held in the circulating water system ΣQ is
ΣQ=A1×L1+A2×L2+A3×L3+A4×L
4, and supplementary water is supplied by the water replenishing means so that ΣQ becomes a predetermined constant value. This results in an ideal make-up water supply amount control system in which the inflow and outflow amounts of water in each tank are balanced.

【0020】かかる制御は具体的には、次のような制御
回路を使用することにより自動的に行うことができる。 即ち、図2は実施例に係る制御回路ブロック図であり、
処理部18は保有水量検出手段19と、制御手段20と
、個別水位調節手段26と、タイマー回路27とが設け
られ、インプットポートには各水位検出手段21〜24
が接続され、又、アウトプットポートには各ポンプ10
〜15のモータ及び流量調節弁25の駆動部が接続され
ている。
Specifically, such control can be performed automatically by using the following control circuit. That is, FIG. 2 is a control circuit block diagram according to the embodiment,
The processing unit 18 is provided with a retained water amount detection means 19, a control means 20, an individual water level adjustment means 26, and a timer circuit 27, and the input port is provided with water level detection means 21 to 24.
is connected, and each pump 10 is connected to the output port.
-15 motors and a drive unit for the flow rate control valve 25 are connected.

【0021】この処理部18の動作を図3により以下説
明する。動作開始がステップS1によって成されると、
タイマー回路27からのクロックパルス信号に基づいて
ステップS2に移行し、各検出手段21〜24からの水
位信号は保有水量検出手段19に送り込まれる。該検出
手段19は次のステップS3において各水槽2,3,6
及び7の保有水量A1×L1,A2×L2,A3×L3
及びA4×L4を検出する。
The operation of this processing section 18 will be explained below with reference to FIG. When the operation starts in step S1,
The process moves to step S2 based on the clock pulse signal from the timer circuit 27, and the water level signals from each of the detection means 21 to 24 are sent to the retained water amount detection means 19. The detection means 19 detects each water tank 2, 3, 6 in the next step S3.
and the amount of water held in 7 A1 x L1, A2 x L2, A3 x L3
and detect A4×L4.

【0022】この各保有水量の値に応じて、各槽での個
別水位調節が次のステップS4で個別水位調節手段26
により成される。具体的には、スケールピット2ではポ
ンプ10を水位L1で停止し、冷水槽6では水位L3を
上限100%のレベルとして警報を発信する等の処置を
とり、逆洗排水槽7では逆洗排水ポンプ15を水位L4
で停止する。
In accordance with the value of each retained water amount, the individual water level in each tank is adjusted in the next step S4 by the individual water level adjusting means 26.
It is done by. Specifically, in the scale pit 2, the pump 10 is stopped at the water level L1, in the cold water tank 6, measures are taken such as issuing an alarm with the water level L3 as the upper limit level of 100%, and in the backwash drainage tank 7, the backwash drainage is stopped. pump 15 to water level L4
Stop at.

【0023】この個別水位調節と相前後してステップS
5で制御手段20の作動に入り、先ず、全保有水量ΣQ
を算出し、次のステップS6に移行して基準保有水量Σ
Q0との比較を行わせ、ΣQ<ΣQ0であればステップ
S7において流量調節弁25の開度を制御し、ΣQ0−
ΣQの値に応じた弁開度で補給水を冷水槽6に供給する
。尚、保有水量の制御範囲は計器の誤差を考慮して±2
%の範囲とし、流量調節弁25のオン・オフによりこの
範囲に制御するようにするのが実用的である。
[0023]Sequentially to this individual water level adjustment, step S
5, the control means 20 starts operating, and first, the total retained water amount ΣQ
is calculated, and the process moves to the next step S6 to calculate the standard retained water amount Σ
A comparison is made with Q0, and if ΣQ<ΣQ0, the opening degree of the flow rate control valve 25 is controlled in step S7, and ΣQ0-
Makeup water is supplied to the cold water tank 6 at a valve opening degree according to the value of ΣQ. In addition, the control range of the amount of water held is ±2 considering the error of the meter.
% range, and it is practical to control the flow rate within this range by turning on/off the flow control valve 25.

【0024】以上の如くして、全保有水量ΣQが安定し
、且つ個々の水槽での水位変動が小さい理想的な補給水
供給量制御システムが実現される。
[0024] As described above, an ideal make-up water supply amount control system is realized in which the total amount of retained water ΣQ is stabilized and water level fluctuations in individual water tanks are small.

【0025】[0025]

【発明の効果】本発明に係る循環水系における補給水制
御装置によれば、保有水量の減少量を随時又は常時確実
に把握し得ると共に、その減少量に見合った補給水を供
給し得るので、各槽での水の流入量と流出量が均衡する
ような補給水の制御ができ、従って、循環水系の保有水
量を一定に保持し得ると共に、補給水の過大供給を避け
ることができるようになる。又、各槽の水位シミュレー
ションが可能であるので、各槽送水ポンプのスイッチン
グアワーの定量化が可能となり、更に、運転開始時及び
停止時におけるオーバフローを回避でき、従って、給水
設備等を小形化し得て設備コストの低減が図れると共に
、運転管理が容易になって運転コストの低減が図れるよ
うになる。しかも、各槽での保有水量を把握し得ると共
に調整し得るので、各槽での処理を支障なく安全に遂行
し得るようになる。
Effects of the Invention According to the make-up water control device for a circulating water system according to the present invention, the amount of decrease in the amount of retained water can be reliably grasped at any time or all the time, and make-up water commensurate with the amount of decrease can be supplied. Make-up water can be controlled so that the inflow and outflow of water in each tank are balanced. Therefore, the amount of water held in the circulating water system can be maintained constant, and oversupply of make-up water can be avoided. Become. In addition, since the water level of each tank can be simulated, it is possible to quantify the switching hours of each tank water pump, and furthermore, it is possible to avoid overflow at the start and stop of operation, and therefore it is possible to downsize water supply equipment, etc. This makes it possible to reduce equipment costs, and also facilitates operation management, thereby reducing operating costs. Furthermore, since the amount of water held in each tank can be grasped and adjusted, processing in each tank can be carried out safely without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る圧延設備冷却用の循環
水系を示すブロック図である。
FIG. 1 is a block diagram showing a circulating water system for cooling rolling equipment according to an embodiment of the present invention.

【図2】本発明の実施例に係る制御回路ブロック図であ
る。
FIG. 2 is a control circuit block diagram according to an embodiment of the present invention.

【図3】図2に示す処理部18の動作を説明するフロー
チャート図である。
FIG. 3 is a flowchart illustrating the operation of the processing unit 18 shown in FIG. 2.

【符号の説明】[Explanation of symbols]

1−−圧延設備            2−−スケー
ルピット          3−−沈澱池 4−−濾過器              5−−冷却
塔                  6−−冷水槽 7−−逆洗排水槽          8−−スラッジ
シックナー      9−−脱水機 10,11,12,13,14,15,16−−ポンプ
                  17−−補給水
給水管 18−−処理部              19−−
保有水量検出手段        20−−制御手段 21,22,23,24−−水位検出手段      
            25−−流量調節弁 26−−個別水位調節手段             
                   27−−タイ
マー回路
1--Rolling equipment 2--Scale pit 3--Sedimentation tank 4--Filter 5--Cooling tower 6--Cold water tank 7--Backwash drain tank 8--Sludge thickener 9--Dehydrator 10, 11 , 12, 13, 14, 15, 16--Pump 17--Makeup water supply pipe 18--Processing section 19--
Retained water amount detection means 20--Control means 21, 22, 23, 24--Water level detection means
25--Flow rate control valve 26--Individual water level control means
27--Timer circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  保有水量の基準値が定められていて水
の流入量と流出量との少なくともいづれか一方が調節さ
れる複数の中継槽を含む循環冷却水系及び洗浄水系から
なる循環水系において、補給水を水量調節可能に前記循
環水系に供給する水補給手段と、各中継槽に検出部が設
けられて各保有水量を検出する保有水量検出手段と、こ
の保有水量検出手段が検出した各保有水量の総和と各保
有水基準量の総和とを比較し、その差に応じた供給水量
に前記水補給手段を制御する供給水量制御手段とを含ん
で構成されることを特徴とする循環水系における補給水
制御装置。
Claim 1: In a circulating water system consisting of a circulating cooling water system and a washing water system including a plurality of relay tanks in which a reference value for the amount of water held is determined and at least one of the inflow and outflow of water is adjusted, Water replenishment means for supplying water to the circulating water system in an adjustable amount; water quantity detection means for detecting each quantity of water in which each relay tank is provided with a detection unit; and each quantity of water detected by the quantity of water detected by the water quantity detection means. Replenishment in a circulating water system characterized by comprising: a supply water amount control means that compares the sum of the total amount of water with the total of each water reference amount and controls the water supply amount according to the difference. Water control device.
JP3134763A 1991-06-06 1991-06-06 Make-up water control device in circulating water system Expired - Lifetime JPH089054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3134763A JPH089054B2 (en) 1991-06-06 1991-06-06 Make-up water control device in circulating water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3134763A JPH089054B2 (en) 1991-06-06 1991-06-06 Make-up water control device in circulating water system

Publications (2)

Publication Number Publication Date
JPH04361821A true JPH04361821A (en) 1992-12-15
JPH089054B2 JPH089054B2 (en) 1996-01-31

Family

ID=15135992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3134763A Expired - Lifetime JPH089054B2 (en) 1991-06-06 1991-06-06 Make-up water control device in circulating water system

Country Status (1)

Country Link
JP (1) JPH089054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477329A (en) * 2022-02-22 2022-05-13 江苏舜维环境工程有限公司 Integrated water treatment device for cement plant
DE102022210057A1 (en) 2022-09-23 2024-03-28 Sms Group Gmbh Method and computer program for operating a production plant for a metal product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983589A (en) * 2015-02-25 2016-10-05 鞍钢股份有限公司 Rinsing water control method for cleaning unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169611A (en) * 1983-03-16 1984-09-25 Kobe Steel Ltd Method for controlling shape of rolling material
JP3000709U (en) * 1994-02-02 1994-08-16 政美 立柳 Mountain burdough coarse sorter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169611A (en) * 1983-03-16 1984-09-25 Kobe Steel Ltd Method for controlling shape of rolling material
JP3000709U (en) * 1994-02-02 1994-08-16 政美 立柳 Mountain burdough coarse sorter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477329A (en) * 2022-02-22 2022-05-13 江苏舜维环境工程有限公司 Integrated water treatment device for cement plant
CN114477329B (en) * 2022-02-22 2023-01-06 江苏舜维环境工程有限公司 Cement plant integrates water treatment facilities
DE102022210057A1 (en) 2022-09-23 2024-03-28 Sms Group Gmbh Method and computer program for operating a production plant for a metal product

Also Published As

Publication number Publication date
JPH089054B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
KR20190119841A (en) Advanced wastewater treatment system
KR100786776B1 (en) Apparatus for water treatment using membrane filtration
JP3473309B2 (en) Operation control device for membrane separation device
JPH04361821A (en) Replenishing water controller for circulating water system
JP2002035503A (en) Turbid water treatment apparatus
CN116643514A (en) Operation control method of power plant pretreatment system based on water balance
JP3826829B2 (en) Water treatment method using membrane filtration
JP4968420B2 (en) Flocculant injection device
JP2003088707A (en) Solid-liquid separator
EP0627504A1 (en) Method and apparatus for controlling electrolytic silver recovery for two film processing machines
JP3104313B2 (en) Membrane separation device
JPH08257310A (en) Sedimentation apparatus
JPH1119485A (en) Method for controlling operation in water treatment using membrane
KR101156592B1 (en) Apparatus for water treatment filtration facility operation and method thereof
JPH04317791A (en) Operating method of raw water concentrating apparatus
JPH07171561A (en) Hydrogen peroxide removal method using granular activated carbon packed tower
JP2907657B2 (en) Operation method of floc blanket type coagulating sedimentation equipment
JPS6028560B2 (en) Control method for activated sludge water treatment equipment
JP2002066535A (en) Waste water system
RU2229445C2 (en) Method of automatic control of process of industrial waste water purification
JPH025123B2 (en)
JPH04305206A (en) Flocculating and filtration tank for water treatment
JPH0788311A (en) Controller for washing of filtering basin
JP2002282612A (en) Method for operating spontaneous equilibrium type quick filter basin
JPH06312105A (en) Filtration pond control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 16