JPH11169885A - Control method by water treatment process and device therefor - Google Patents

Control method by water treatment process and device therefor

Info

Publication number
JPH11169885A
JPH11169885A JP34104597A JP34104597A JPH11169885A JP H11169885 A JPH11169885 A JP H11169885A JP 34104597 A JP34104597 A JP 34104597A JP 34104597 A JP34104597 A JP 34104597A JP H11169885 A JPH11169885 A JP H11169885A
Authority
JP
Japan
Prior art keywords
water
phosphorus
concentration
tank
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34104597A
Other languages
Japanese (ja)
Other versions
JP3691651B2 (en
Inventor
Shoji Watanabe
昭二 渡辺
Naoki Hara
直樹 原
Fumitomo Kimura
文智 木村
Yoshiaki Tashiro
義昭 田代
Yoshiyuki Osawa
義行 大沢
Saburo Ando
三郎 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34104597A priority Critical patent/JP3691651B2/en
Publication of JPH11169885A publication Critical patent/JPH11169885A/en
Application granted granted Critical
Publication of JP3691651B2 publication Critical patent/JP3691651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To properly control the injection time and injection quantity of a flocculant necessary for maintaining the concentration of phosphorus in a treating water to a desired value from a phosphorus excess intake state of a biological reaction vessel. SOLUTION: The sewerage disposal equipment is provided with a biological reaction vessel 1 having an anaerobic vessel 1A and an aerobic vessel 1C, a sedimentation pond 2, a flocculant injection equipment 9 for removing phosphorus in the aerobic vessel IC and a computer 30 for controlling the flocculant injection. The computer 30 has a phosphorus removal judging part 37 for judging whether the biological reaction vessel 1 has good phosphorous removing ability by judging >=2 measured values of a rainfall SR, a flowing-in water DO1, a flowing-water ORP1 and an aerobic vessel DOK corresponding to the judging indexes, computing parts 31-34 for obtaining the injecting quantity of the flocculant based on a logarithmic ratio of the phosphorus concentration Pi to the desired value Pm of a water to be treated at the upstream position from a flocculant injection part of the aerobic vessel 1C when the resultant judgment is bad and the phosphorus concentration is not kept to the desired value Pm and a flocculant quantity control part 36 for operating a flocculant injection equipment 9 by the computed result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や産業排
水、湖沼水あるいはダム湖水の有機物や窒素、りんを生
物学的処理と物理化学凝集の併用で除去する水処理シス
テムに関し、特に、物理化学凝集の目的で注入する凝集
剤を適正に調節し、処理水中のりん濃度を目標値に維持
する水処理制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment system for removing organic matter, nitrogen, and phosphorus from municipal sewage, industrial wastewater, lake water or dam lake water by a combination of biological treatment and physicochemical coagulation. The present invention relates to a water treatment control method and apparatus that appropriately adjusts a coagulant to be injected for the purpose of chemical flocculation and maintains a phosphorus concentration in treated water at a target value.

【0002】[0002]

【従来の技術】近年、湖沼やダム湖、湾などでは富栄養
化が進行しており、この原因となる窒素、りんの流入を
低減し、水質を保全する必要がある。下水処理場では、
生活排水や工場排水などを活性汚泥法と呼ばれる微生物
処理で主に有機物を除去している。下水中には有機物の
他に窒素やりんが含まれており、りんはオルトりん酸
(PO4-P)、窒素はアンモニア性窒素として下水処理場
に流入する。これらのりんや窒素を除去せずに放流する
と、放流水域では富栄養が進み、藻類の異常繁殖により
さらに水質が悪化する。したがって、下水処理場では有
機物に加えてりんや窒素の除去も要求されている。
2. Description of the Related Art In recent years, eutrophication has been progressing in lakes, marshes, dam lakes, bays, and the like, and it is necessary to reduce the inflow of nitrogen and phosphorus, which cause this, and conserve water quality. At the sewage treatment plant,
Organic matter is mainly removed from domestic wastewater and industrial wastewater by microbial treatment called the activated sludge method. Sewage contains nitrogen and phosphorus in addition to organic matter, and phosphorus flows into sewage treatment plants as orthophosphoric acid (PO4-P) and nitrogen as ammonia nitrogen. If the water is released without removing these phosphorus and nitrogen, eutrophication will proceed in the discharge water area, and the water quality will be further deteriorated due to abnormal growth of algae. Therefore, sewage treatment plants are also required to remove phosphorus and nitrogen in addition to organic matter.

【0003】下水処理場においては流入する下水中のり
んや窒素を除去するために、活性汚泥プロセスの一施設
である曝気槽を好気領域と嫌気領域に分けた微生物反応
槽を使用している。微生物反応槽の方式には嫌気‐無酸
素‐好気法(A2O法)、嫌気‐好気法(AO法)、活性汚
泥循環変法などがあり、少なくとも嫌気槽を前段に、好
気槽を後段に配置している。これらの方式のうち、A2
O法は窒素とりん、AO法はりん、活性汚泥循環変法は
窒素の除去率の向上が期待できる。
[0003] In a sewage treatment plant, a microbial reaction tank is used in which an aeration tank, which is one facility of an activated sludge process, is divided into an aerobic region and an anaerobic region in order to remove phosphorus and nitrogen in inflowing sewage. . Microbial reaction tanks include the anaerobic-anoxic-aerobic method (A2O method), anaerobic-aerobic method (AO method), and modified activated sludge circulation method. It is arranged at the latter stage. Of these methods, A2
The O method can be expected to improve nitrogen and phosphorus, the AO method can be phosphorus, and the modified activated sludge circulation method can improve nitrogen removal rate.

【0004】A2O法やAO法は嫌気槽を前段に、好気
槽を後段に配置することによって活性汚泥(複合微生物
の総称)のりん過剰摂取機能を利用し、活性汚泥は嫌気
槽でりんを放出し、好気槽で放出した以上にりんを摂取
することで、流入水中のりんを生物学的に除去する。し
かし、活性汚泥のりん過剰摂取機能は流入水の水質状態
やプラント操作条件、あるいは活性汚泥の管理状態によ
って変化し、放出不良や摂取不良などを生じて処理水中
のりん濃度を増加させることがある。
[0004] The A2O method and the AO method utilize a phosphorus excess intake function of activated sludge (general term of complex microorganisms) by arranging an anaerobic tank at the front and an aerobic tank at the latter. Release and biological intake of phosphorus in the influent water by ingesting more phosphorus than released in the aerobic tank. However, the excess sludge phosphorous intake function varies depending on the quality of the influent water, plant operating conditions, or the activated sludge management conditions, and may result in poor discharge or poor intake, resulting in an increase in the phosphorus concentration in the treated water. .

【0005】このため、下水処理場では金属塩などの凝
集剤を注入し、物理化学的に除去する方法を併用してい
る。凝集剤は注入量が不足するとりん除去が不十分とな
り、処理水中のりん濃度を高める。一方、過剰注入は運
転コストや汚泥発生量の増加、さらに微生物の活性にも
影響を与える。したがって、凝集剤の注入量は必要最小
限にする必要がある。
[0005] For this reason, a method of injecting a coagulant such as a metal salt and removing it physicochemically is also used in the sewage treatment plant. If the injection amount of the coagulant is insufficient, the removal of phosphorus becomes insufficient, and the concentration of phosphorus in the treated water is increased. On the other hand, excessive injection has an effect on the operation cost, the amount of sludge generated, and the activity of microorganisms. Therefore, the injection amount of the coagulant must be minimized.

【0006】下水処理場において、りんを物理化学凝集
によって除去する場合、アルミニウム系や鉄系の金属
塩、あるいは消石灰が凝集剤として用いられる。液中で
のりんはオルトりん酸や縮合りん酸の形態で存在し、凝
集剤の注入により難溶性の塩を形成する。また、凝集剤
は重炭酸塩と反応し、水酸化物のフロックを形成してさ
らにりんを吸着除去する。アルミニウム系の凝集剤を用
いた場合の反応式は、化1により表される。
[0006] When phosphorus is removed by physicochemical coagulation in a sewage treatment plant, an aluminum or iron metal salt or slaked lime is used as a coagulant. Phosphorus in the liquid exists in the form of orthophosphoric acid or condensed phosphoric acid, and forms a sparingly soluble salt upon injection of a flocculant. Further, the flocculant reacts with the bicarbonate to form a floc of hydroxide and further adsorbs and removes phosphorus. The reaction formula when an aluminum-based flocculant is used is represented by Chemical Formula 1.

【0007】[0007]

【化1】 Embedded image

【0008】液中のりんを難溶性塩にするには、理論的
には(カ1)式から1モル比のアルミニウムを注入すれ
ばよい。しかし、(カ2)式のように他の物質にも消費
されるので、モル比を1より大きくする必要がある(引
用例1:村田恒雄編著;「下水の高度処理技術」、理工
図書、平成4年5月)。
In order to convert the phosphorus in the solution into a poorly soluble salt, it is theoretically sufficient to inject 1 mole ratio of aluminum from the formula (1). However, since it is also consumed by other substances as in the formula (f2), it is necessary to make the molar ratio larger than 1 (cited example 1: edited by Tsuneo Murata; "Advanced Sewage Treatment Technology", Science and Engineering Books, May 1992).

【0009】りん除去を目的とした公知の凝集剤注入量
制御方法として、現在の処理水のりん濃度Piと一定時間
b前の処理水のりん濃度Poから変化率d(=(PiーPo)/
b)を求め、この変化率で将来も推移するとしてc時間
後の処理水のりん濃度変化ΔPc(=d・c)予測し、
目標値との偏差で注入量を設定する提案がある(引用例
2:特開平3-89993号)。あるいは、好気槽から採水し
た活性汚泥混合水を固液分離した液部分のりん濃度と好
気槽から流出する処理水流量からりん成分物量を求め、
化学的当量関係を利用してりん成分物量から凝集剤所要
量を算出して凝集剤量を制御する方式(引用例3:特開
平9-174086号)、処理水のりん濃度に対して凝集剤をモ
ル比換算で一定に制御し、りん含有フロックを砂ろ過で
分離する方式(引用例4:特開昭63-242392号)、脱水
ろ液のりん濃度に当量換算係数を乗じて凝集剤注入量を
設定する方式(引用例5:特開平7-88497号)などの提
案がある。
As a well-known method for controlling the coagulant injection amount for the purpose of removing phosphorus, a change rate d (= (Pi−Po) is calculated based on the current phosphorus concentration Pi of the treated water and the phosphorus concentration Po of the treated water before a predetermined time b. /
b) is determined, and it is predicted that the phosphorus concentration change ΔPc (= dc) of the treated water after c hours assuming that the change will continue in the future,
There is a proposal to set the injection amount based on a deviation from a target value (cited example 2: Japanese Patent Application Laid-Open No. 3-89993). Alternatively, the phosphorus component amount is determined from the phosphorus concentration of the liquid portion obtained by solid-liquid separation of the activated sludge mixed water sampled from the aerobic tank and the flow rate of the treated water flowing out of the aerobic tank,
A method of controlling the amount of flocculant by calculating the required amount of flocculant from the amount of the phosphorus component using the chemical equivalent relationship (Cited Example 3: JP-A-9-74086). Is controlled to be constant in terms of molar ratio, and the phosphorus-containing floc is separated by sand filtration (Cited Example 4: JP-A-63-242392). The coagulant is injected by multiplying the phosphorus concentration of the dehydrated filtrate by an equivalent conversion coefficient. There are proposals such as a method for setting the amount (Cited Example 5: Japanese Patent Application Laid-Open No. 7-88497).

【0010】[0010]

【発明が解決しようとする課題】上記した引用例2〜5
の凝集剤注入量制御は、(カ1)式及び(カ2)式に基
づいて、モル比あるいはアルミニウムとりんの濃度比を
予め設定し、凝集剤を制御する比率一定制御方式を採用
している。
The above cited examples 2 to 5
In the control of the coagulant injection amount, the molar ratio or the concentration ratio of aluminum and phosphorus is set in advance based on the equations (1) and (2), and a constant ratio control method for controlling the coagulant is adopted. I have.

【0011】例えば、引用例2でその試験結果(第1
表)によれば、流入水のりん濃度に対してアルミニウム
注入率がほぼ比例関係にあり、モル比換算で約1.3と
推算できる。しかし、引用例2の第2図からも明らかな
ように、下水処理場などの流入水中のりん濃度は人間の
生活周期によって大きく変化する。したがって、将来の
処理水のりん濃度が過去と同じ変化率で推移するとした
予測法では、凝集剤の適正な制御は困難となる。
For example, in the cited example 2, the test results (first
According to Table, the aluminum injection rate is almost proportional to the phosphorus concentration of the inflow water, and can be estimated to be about 1.3 in terms of molar ratio. However, as is clear from FIG. 2 of Reference 2, the phosphorus concentration in the influent water of a sewage treatment plant or the like greatly changes depending on the life cycle of a human. Therefore, it is difficult to properly control the coagulant by the prediction method in which the future phosphorus concentration of the treated water changes at the same rate as in the past.

【0012】さらに、流入水りん濃度に比例して凝集剤
注入量を制御しているが、嫌気槽と好気槽からなる微生
物反応槽のように、流入水のりん濃度より反応槽のりん
濃度が高くなる場合もある処理プロセスに、モル比を一
定とした制御方式を適用することには問題がある。引用
例2〜5では、凝集剤注入位置に近い上流部のりん濃度
を計測し、このりん濃度あるいは凝集剤注入後のりん濃
度目標値との偏差に一定値を乗算して凝集剤注入量を設
定している。しかし、本発明者らの試験結果によれば、
アルミニウムとりんの濃度比を一定とする引用例のよう
な凝集剤制御方式では、処理水のりん濃度を目標値以下
に維持することができなかった。
Further, the coagulant injection amount is controlled in proportion to the phosphorus concentration in the inflow water. However, as in a microbial reaction tank comprising an anaerobic tank and an aerobic tank, the phosphorus concentration in the reaction tank is determined by the phosphorus concentration in the inflow water. However, there is a problem in applying a control method with a constant molar ratio to a treatment process in which the ratio may increase. In Reference Examples 2 to 5, the phosphorus concentration in the upstream part near the coagulant injection position is measured, and the deviation from the phosphorus concentration or the target value of the phosphorus concentration after the coagulant injection is multiplied by a constant value to obtain the coagulant injection amount. You have set. However, according to the test results of the present inventors,
In the coagulant control method as in the cited example in which the concentration ratio between aluminum and phosphorus is kept constant, the phosphorus concentration in the treated water cannot be maintained below the target value.

【0013】また、生物反応槽は活性汚泥の生物状態が
正常なときりん過剰摂取機能により、流入水の通常範囲
のりん濃度を目標値以下に維持することは可能である。
しかし、活性汚泥のりん過剰摂取機能は流入水の水質状
態やプラント操作条件等によって大きく変化するので、
りん濃度を目標値以下に管理しようとすると、結果的に
凝集剤の過剰注入を招き、ランニングコストの上昇のみ
ならず、活性汚泥にも悪影響を及ぼす。したがって、生
物反応層のりん過剰摂取機能、すなわちりん除去能力を
定量的に評価し、目標値を維持できない程度にりん除去
能力が低下した場合に凝集剤を注入する必要がある。
In addition, the biological reaction tank can maintain the phosphorus concentration in the normal range of the influent water below a target value by the phosphorus excess intake function when the biological state of the activated sludge is normal.
However, the excess sludge phosphorus intake function varies greatly depending on the quality of influent water and plant operating conditions.
Attempts to control the phosphorus concentration below the target value result in excessive injection of the coagulant, which not only increases running costs but also adversely affects activated sludge. Therefore, it is necessary to quantitatively evaluate the excess phosphorus intake function of the biological reaction layer, that is, the ability to remove phosphorus, and to inject a flocculant when the ability to remove phosphorus is reduced to such an extent that the target value cannot be maintained.

【0014】本発明の目的は、上記した従来技術の状況
に鑑み、生物反応槽でのりん除去能力を予測し、その能
力の低下時に適正量の凝集剤を注入して、処理水のりん
濃度を目標値以下に維持する、生物学的水処理方法及び
装置を提供することにある。
An object of the present invention is to consider the state of the prior art described above and predict the phosphorus removal capacity in a biological reaction tank, and when the capacity is reduced, inject an appropriate amount of a coagulant to reduce the phosphorus concentration in the treated water. It is an object of the present invention to provide a biological water treatment method and apparatus for maintaining the water content below a target value.

【0015】[0015]

【課題を解決するための手段】本発明の生物学的水処理
制御方法は、嫌気槽を前段に、好気槽を後段に位置させ
た生物反応槽と沈殿池を有し、前記好気槽にりん除去用
の凝集剤注入設備を具備する生物学的水処理プロセスに
おいて、前記生物反応槽のりん除去能力を予め設定して
いる判定指標に基づいて判定し、前記沈殿池の処理水の
りん濃度がその目標値以下に維持できないと予測される
とき、前記好気槽の前記凝集剤の注入前の被処理水(以
下、被処理水)または前記処理水中のりん濃度計測値と
前記目標値との対数比率に基づいて凝集剤注入量を求
め、前記凝集剤注入設備を制御するすることを特徴とす
る。
A biological water treatment control method according to the present invention comprises a biological reaction tank and a sedimentation tank in which an anaerobic tank is located in the first stage and an aerobic tank is located in the second stage. In a biological water treatment process equipped with a coagulant injection facility for removing phosphorus, the ability of the biological reaction tank to remove phosphorus is determined based on a preset determination index, and the phosphorus of the treated water in the sedimentation basin is determined. When it is predicted that the concentration cannot be maintained below the target value, the water to be treated (hereinafter referred to as water to be treated) before the coagulant is injected into the aerobic tank or the measured phosphorus concentration in the treated water and the target value The injection amount of the coagulant is obtained based on the logarithmic ratio of the above, and the coagulant injection equipment is controlled.

【0016】また、本発明生物学的水処理制御方法は、
前記生物学的水処理プロセスにおいて、前記生物反応槽
に流入する流入水の環境下における所定期間内の総降雨
量(SR1)が一定量を越える場合に、前記生物反応槽のり
ん除去能力を判定指標に基づいて判定し、予め設定され
ている処理水のりん濃度目標値(Pm)を維持できないと予
測されるとき、前記好気槽の前記凝集剤の注入前の被処
理水中のりん濃度(Pi)及び/又は前記処理水中のりん濃
度(Po)と、前記りん濃度目標値(Pm)から前記処理水への
凝集剤注入濃度を演算し、該注入濃度と被処理水流量の
積により、前記目標値を維持するのに必要な凝集剤注入
量を求め、前記凝集剤注入設備を制御することを特徴と
する。
Further, the biological water treatment control method of the present invention comprises:
In the biological water treatment process, when the total rainfall (SR1) within a predetermined period in the environment of the influent flowing into the biological reaction tank exceeds a certain amount, the phosphorus removal ability of the biological reaction tank is determined. Determined based on the index, when it is predicted that the preset phosphorus concentration target value of the treated water (Pm) cannot be maintained, the phosphorus concentration in the treated water before the injection of the coagulant in the aerobic tank ( Pi) and / or the phosphorus concentration in the treated water (Po), and the concentration of the coagulant injected into the treated water from the phosphorus concentration target value (Pm) is calculated, and the product of the injected concentration and the flow rate of the water to be treated, A coagulant injection amount necessary to maintain the target value is obtained, and the coagulant injection equipment is controlled.

【0017】上記の本発明において、前記生物反応槽へ
の流入水の溶存酸素濃度(DOI)、酸化還元電位(ORPI)及
び前記好気槽の溶存酸素濃度(DOK)の少なくとも1つに
予め設定されている判定指標とその計測値を比較し、該
計測値がその判定指標を越える場合に前記りん濃度目標
値を維持できないと予測する。
In the present invention, at least one of a dissolved oxygen concentration (DOI), an oxidation-reduction potential (ORPI) and a dissolved oxygen concentration (DOK) in the aerobic tank is set in advance. The determined index is compared with the measured value, and if the measured value exceeds the determined index, it is predicted that the phosphorus concentration target value cannot be maintained.

【0018】また、前記計測値が前記判定指標を継続し
て越えている時間が第1の基準時間以上となる場合に、
前記凝集剤の注入制御を開始することを特徴とする。
In the case where the time during which the measured value continuously exceeds the judgment index is equal to or longer than a first reference time,
The injection control of the coagulant is started.

【0019】さらに、前記生物反応槽への流入水の溶存
酸素濃度または酸化還元電位の一方または両方の計測値
と各々に予め設定されている第2判定指標を比較し、該
計測値が前記第2定指標を下回る場合に、前記注入制御
を開始して以後の総降雨量(SRt)に基づいた第2の基準
時間の経過後に、前記凝集剤の注入制御を停止すること
を特徴とする。
Further, one or both of the measured values of the dissolved oxygen concentration and the oxidation-reduction potential of the influent water flowing into the biological reaction tank are compared with a second judgment index set in advance, and the measured value is compared with the second judgment index. When the value is lower than the second constant index, the injection control of the coagulant is stopped after a lapse of a second reference time based on the total rainfall (SRt) after the start of the injection control.

【0020】本発明の生物学的水処理制御装置は、少な
くとも嫌気槽と好気槽、及び沈殿池を有し、好気槽の流
出部(出口または近傍)に凝集剤を注入する設備を具備
する水処理設備において、前記生物反応槽のりん除去能
力の良否を所定の判定指標に従って判定する判定手段
と、前記好気槽の前記凝集剤の注入前の被処理水(以
下、被処理水)または前記処理水中のりん濃度計測値と
前記目標値との対数比率に基づいて凝集剤注入量を求め
る演算手段を設け、前記判定手段でりん除去能力が不良
と判定されたときに、前記演算手段からの出力信号に対
応して前記凝集剤注入設備を稼動させることを特徴とす
る。
The biological water treatment control device of the present invention has at least an anaerobic tank, an aerobic tank, and a sedimentation tank, and is equipped with a facility for injecting a flocculant into the outlet (outlet or near) of the aerobic tank. Determining means for determining the quality of the phosphorus removal capacity of the biological reaction tank according to a predetermined determination index, and water to be treated before the coagulant is injected into the aerobic tank (hereinafter referred to as water to be treated). Or calculating means for calculating the coagulant injection amount based on the logarithmic ratio between the measured value of the phosphorus concentration in the treated water and the target value, and when the determining means determines that the phosphorus removing ability is defective, the calculating means The coagulant injection equipment is operated in response to an output signal from the apparatus.

【0021】前記水処理制御装置は、前記生物反応槽へ
の流入水の環境下の降雨量を測定する計測手段と、流入
水溶存酸素濃度、流入水酸化還元電位及び好気槽溶存酸
素濃度の少なくとも1つを測定する計測手段を設け、前
記判定手段は前記りん除去能力の良否を判定し、前記凝
集剤の注入制御を指示するために、前記降雨量の判定指
標と、前記流入水溶存酸素濃度、前記流入水酸化還元電
位及び前記好気槽溶存酸素濃度の少なくとも1つに設定
された判定指標を有している。
The water treatment control device includes a measuring means for measuring the amount of rainfall in the environment of the inflow of the inflow water into the biological reaction tank, and a concentration of the inflow water-soluble oxygen concentration, the inflow hydroxylation-reduction potential, and the aerobic tank dissolved oxygen concentration. Measuring means for measuring at least one, the determining means for determining whether the phosphorus removal ability is good or not, and for instructing the coagulant injection control, the rainfall determination index; The determination index is set to at least one of a concentration, the inflow hydroxylation reduction potential, and the dissolved oxygen concentration in the aerobic tank.

【0022】前記判定手段による前記りん除去能力の判
定結果(良/否)と、前記演算手段による前記対数比率
の演算結果(0より大/0以下)が相反する場合に、前
記生物反応槽の運転操作を支援するメッセージを出力す
る表示手段を設けていることを特徴とする。前記メッセ
ージは「返送汚泥流量の変更」および/または「好気槽
溶存酸素濃度の設定値(判定指標)の変更」である。
In the case where the result of determination of the phosphorus removal ability (good / fail) by the determination means and the result of calculation of the logarithmic ratio (greater than 0 / less than 0) by the calculation means conflict with each other, the biological reaction tank is A display means for outputting a message for assisting the driving operation is provided. The message is "change of return sludge flow rate" and / or "change of set value (determination index) of dissolved oxygen concentration in aerobic tank".

【0023】上記した本発明の作用を説明する。本発明
は、(1)生物反応槽のりん放出と摂取によるりん除去
能力は流入下水の水質に影響され、流入水質あるいはこ
の水質に影響を与える降雨量、さらには流入水質に対応
して変化する生物反応槽の好気度などから判定でき、ま
た、(2)凝集剤の注入前/後の被処理水または処理水
のりん濃度は、凝集剤注入濃度(初期値は注入濃度=
0)に応じて所定時間後に対数関係に減少するという、
二つの実験的知見に基づいてなされたものである。以
下、本発明の生物処理によるりん除去特性と、凝集剤注
入による反応特性を説明する。
The operation of the present invention will be described. According to the present invention, (1) the ability of the biological reaction tank to remove phosphorus by releasing and ingesting phosphorus is influenced by the quality of the incoming sewage, and changes in accordance with the quality of the incoming water or the amount of rainfall affecting this quality, and further, the quality of the incoming water. It can be determined from the aerobicity of the biological reaction tank and the like. (2) The phosphorus concentration of the water to be treated or treated water before / after the injection of the flocculant is determined by the flocculant injection concentration (the initial value is the injection concentration =
0) that the logarithmic relationship decreases after a predetermined time,
This is based on two experimental findings. Hereinafter, the phosphorus removal characteristics by the biological treatment of the present invention and the reaction characteristics by the coagulant injection will be described.

【0024】図2は、生物処理による処理水の溶解性り
ん濃度と降雨量の変化である。流入水のりん濃度は2〜
5mg/Lで1日を周期として変動するが、処理水のりん
濃度は特定量以上の降雨がある場合に上昇する。
FIG. 2 shows changes in the concentration of soluble phosphorus and the amount of rainfall in treated water obtained by biological treatment. The concentration of phosphorus in the influent is 2
It fluctuates every day at 5 mg / L, but the phosphorus concentration of treated water rises when there is more than a specified amount of rainfall.

【0025】前段に嫌気槽、後段に好気槽を配置する生
物反応槽では嫌気槽で活性汚泥の体内からオルトりん酸
を放出し、好気槽で放出量以上に摂取して体内に蓄積す
る。りん摂取は前段の嫌気槽で十分にりんを放出させる
ことが不可欠で、この放出が不十分なときは好気槽での
摂取も不十分となり、結果的に処理水のりん濃度が高ま
る。この現象をりん除去不良と呼ぶ。
In a biological reaction tank in which an anaerobic tank is provided in the first stage and an aerobic tank is provided in the second stage, orthophosphoric acid is released from the body of the activated sludge in the anaerobic tank, and is ingested in the aerobic tank in excess of the released amount and accumulated in the body. . It is essential for phosphorus intake to release phosphorus sufficiently in the preceding anaerobic tank, and when this release is insufficient, intake in the aerobic tank becomes insufficient, resulting in an increase in the phosphorus concentration of the treated water. This phenomenon is called phosphorus removal failure.

【0026】図3は、嫌気槽のりん放出量と流入水D
O、ORPの関係を示したものである。いづれも特定値
以上になると放出量が悪化し、摂取量の低下も認められ
た。図4は、図2の経過日数90〜120日の間で、処理水
のりん濃度が上昇したケースの流入水DO,ORPと好
気槽DOの変化である。この試験で、好気槽に供給する
空気量は、好気槽の流出部に設置したDO計の計測値と
予め設定している目標値KO*との偏差で調節した。
FIG. 3 shows the amount of phosphorus released from the anaerobic tank and the inflow water D.
It shows the relationship between O and ORP. In any case, when the amount exceeded a specific value, the release amount worsened and the intake amount was also reduced. FIG. 4 shows changes in the inflow water DO, ORP and the aerobic tank DO in the case where the phosphorus concentration of the treated water has increased during the elapsed days of 90 to 120 days in FIG. In this test, the amount of air supplied to the aerobic tank was adjusted by the deviation between the measured value of the DO meter installed at the outlet of the aerobic tank and a preset target value KO *.

【0027】処理水りん濃度は流入水DOやORPの上
昇に伴い高くなり、これらが回復した数日後Aに目標値
(0.5mg/L)以下を示した。好気槽DOは目標値1.5mg/L
で運転したが、滞留時間の影響により流入水DOに遅れ
て上昇し、同様に回復時も遅れている。好気槽DOが制
御目標値を越えたのは、雨により流入水の有機物や窒素
が希釈されて低濃度となり、酸素要求の少ない被処理水
であったが、空気吹込み用散気管の目詰りを防止するた
めに予め設定している空気量下限値で運転されたことに
よる。
The phosphorus concentration in the treated water increased with the rise of the inflow water DO and ORP, and several days after the recovery, the concentration A was below the target value (0.5 mg / L). The target value of aerobic tank DO is 1.5mg / L
However, due to the influence of the residence time, the ascent of the inflow water DO was increased, and the recovery was similarly delayed. The reason why the aerobic tank DO exceeded the control target value was that the organic matter and nitrogen in the inflow water were diluted by the rain to a low concentration, and the water to be treated was low in oxygen demand. This is because the operation was performed at the preset lower limit of the amount of air to prevent clogging.

【0028】これらの結果から、生物反応槽でのりん除
去不良は降雨量、流入水DO値やORP値に基づいて判
定できる。また、好気槽の空気量をDO値で制御すると
きは、好気槽DO値を判定指標に適用できる。なお、り
ん除去不良を予測し、凝集剤の注入・停止を判定する指
標は、上記した総降雨量、流入水DO値、流入水ORP
値、及び好気槽DO値の全てを用いる必要はなく、基本
的には降雨量を前提条件とし、流入水DO値または流入
水ORP値の1指標があればよい。
From these results, it is possible to determine the poor phosphorus removal in the biological reaction tank based on the amount of rainfall, the DO value of the influent water, and the ORP value. When the air amount in the aerobic tank is controlled by the DO value, the aerobic tank DO value can be applied to the determination index. Indices for predicting poor phosphorus removal and determining injection / stop of the coagulant include the above-mentioned total rainfall, inflow DO value, and inflow ORP.
It is not necessary to use all of the values and the aerobic tank DO values, and it is basically necessary to use one index of the inflow DO value or the inflow ORP value on the premise of rainfall.

【0029】凝集剤注入期間における凝集剤注入濃度
は、以下の実験的知見に基づいて求めることができる。
The coagulant injection concentration during the coagulant injection period can be determined based on the following experimental findings.

【0030】図5は、処理水中の溶解性りん濃度とアル
ミニウム注入濃度の関係を示したものである。活性汚泥
の存在する好気槽の混合液にアルミニウム系凝集剤(PA
C:ポリ塩化アルミニウム)を注入し、30分後におけ
る処理水中の溶解性りん濃度とアルミニウム注入濃度の
測定値を表わし、縦軸のりん濃度は対数値である。
FIG. 5 shows the relationship between the concentration of soluble phosphorus in the treated water and the concentration of aluminum injection. Aluminum-based flocculant (PA
C: polyaluminum chloride) was injected, and the measured values of the soluble phosphorus concentration and the aluminum injection concentration in the treated water 30 minutes after the injection, the phosphorus concentration on the vertical axis is a logarithmic value.

【0031】注入濃度が0におけるりん濃度Pをパラメ
ータとすれば、図6に示すように、注入濃度Rに対する
対数値表示のりん濃度Pは比例関係で減少している。し
たがって、被処理水のりん濃度計測値Pi及び処理水の
りん濃度目標値Pmを基に、必要凝集剤注入濃度Rmは
(1)式によって求めることができる。
If the phosphorus concentration P at the injection concentration of 0 is used as a parameter, as shown in FIG. 6, the phosphorus concentration P expressed by a logarithmic value with respect to the injection concentration R decreases in a proportional relationship. Therefore, the necessary coagulant injection concentration Rm can be obtained by the equation (1) based on the measured phosphorus concentration Pi of the water to be treated and the target phosphorus concentration Pm of the treated water.

【0032】[0032]

【数1】 Rm=k1・(LogPiーLogPm)=k1・Log(Pi/Pm) …(1) ただし、k1:係数(勾配tanθの逆数)である。(1)
式で、対数比率が0以下のときは、被処理水のりん濃度
計測値が目標値Pm以下となっているので凝集剤の注入
は不要となる。
Rm = k1 · (LogPi−LogPm) = k1 · Log (Pi / Pm) (1) where k1 is a coefficient (reciprocal of the gradient tan θ). (1)
In the equation, when the logarithmic ratio is 0 or less, since the measured value of the phosphorus concentration of the water to be treated is equal to or less than the target value Pm, it is not necessary to inject the coagulant.

【0033】ところで、(1)式は図6のA点とB点の
加算値と見ることができるので、処理水のりん濃度計測
値Poを用いて変換すると、凝集剤注入濃度不足分(補
正値)ΔRmを求める(2)式を誘導できる。
Since equation (1) can be regarded as an added value of points A and B in FIG. 6, when converted using the measured phosphorus concentration Po of the treated water, the coagulant injection concentration shortage (correction) Expression (2) for determining the value) ΔRm can be derived.

【0034】[0034]

【数2】 ΔRm=RmーRm’ =k1・{(LogPiーLogPm)ー(LogPiーLogPo)} =k1・Log(Po/Pm) …(2) すなわち、処理水のりん濃度計測値と目標値の対数比率
に応じて凝集剤注入濃度の補正値ΔRmを決定できる。
ΔRm = Rm−Rm ′ = k1 · {(LogPi−LogPm) − (LogPi−LogPo)} = k1 · Log (Po / Pm) (2) That is, the measured value of the phosphorus concentration of the treated water and the target The correction value ΔRm of the coagulant injection concentration can be determined according to the logarithmic ratio of the values.

【0035】りん濃度の計測精度は反応槽の混合液より
処理水の方が高いので、(1)式による場合に比べて応
答性は劣るが制御精度を向上できる。なお、(2)式で
対数比率が0以下のときは補正不要であり、凝集剤注入
量は現在値に維持される。
Since the measurement accuracy of the phosphorus concentration is higher in the treated water than in the mixed solution in the reaction tank, the response is inferior to the case of the formula (1), but the control accuracy can be improved. When the logarithmic ratio is equal to or less than 0 in the equation (2), no correction is required, and the coagulant injection amount is maintained at the current value.

【0036】さらに、被処理水のりん濃度計測値Piと
処理水のりん濃度計測値Poを用いると、精度と応答性
を共に向上できる制御が可能となる。図7に示すよう
に、被処理水のりん濃度計測値Piで目標値Pmとなるよ
うに係数k1の直線関係によって凝集剤注入濃度をC点
(Rm’)に設定する。一方、この時の処理水のりん濃
度計測値PoがA点であれば、目標値Pmは係数k2に
従うB点となるので、ΔRm分の補正が必要になる。従
って、必要凝集剤注入濃度Rmは両計測値Pi、Poから
(3)式によって表される。
Further, by using the measured phosphorus concentration Pi of the water to be treated and the measured phosphorus concentration Po of the treated water, it is possible to perform control capable of improving both accuracy and responsiveness. As shown in FIG. 7, the coagulant injection concentration is set to the point C (Rm ') by a linear relationship of the coefficient k1 so that the measured phosphorus concentration Pi of the water to be treated becomes the target value Pm. On the other hand, if the measured phosphorus concentration Po of the treated water at this time is point A, the target value Pm is point B according to the coefficient k2, so that a correction of ΔRm is required. Therefore, the required coagulant injection concentration Rm is expressed by equation (3) from both measured values Pi and Po.

【0037】[0037]

【数3】 Rm=Rm+ΔRm =k1・(LogPiーLogPm)+k2・(LogPoーLogPm) =k3・Log(Pi・Po/Pm2) …(3) なお、(1)〜(3)式で、対数値からの偏差と比率か
らの対数値とは同値であり、本発明で述べる対数比率の
定義には両者を含む。
Rm = Rm + ΔRm = k1 · (LogPi−LogPm) + k2 · (LogPo−LogPm) = k3 · Log (Pi · Po / Pm2) (3) In the expressions (1) to (3), The deviation from the numerical value and the logarithmic value from the ratio are equivalent, and the definition of the logarithmic ratio described in the present invention includes both.

【0038】本発明によれば、生物反応槽におけるりん
除去不良を活性汚泥に直接影響されず、信頼性の高い計
測器である雨量計やDO計、ORP計で判定し、りん除
去不良と判定した場合に、被処理水または処理水中のり
ん濃度計測値と処理水の目標値との対数比率に基づいて
凝集剤注入量を制御することで、必要最小限の凝集剤量
で処理水中のりん濃度を目標値以下に維持することがで
き、凝集剤過剰注入による活性汚泥への悪影響も防止で
きる低コストの運転管理を実現できる。
According to the present invention, the poor phosphorus removal in the biological reaction tank is not directly affected by the activated sludge, and is determined by a reliable gauge such as a rain gauge, a DO meter, or an ORP meter. In this case, by controlling the coagulant injection amount based on the logarithmic ratio of the measured value of the phosphorus concentration in the water to be treated or the treated water and the target value of the treated water, the amount of phosphorus in the treated water can be reduced to a minimum necessary amount. The concentration can be maintained at or below the target value, and low-cost operation management can be realized in which an adverse effect on activated sludge due to coagulant excess injection can be prevented.

【0039】また、りん除去が正常との判定結果にも係
わらず、(1)〜(3)式の対数比率が0以上となる場
合は、計測器に異常があるか、または活性汚泥の微生物
相変化や反応槽の操作条件が不適切などと判断でき、警
報を発することもできる。この警報により、計測器の維
持管理や微生物の適正な管理をタイミングよく支援でき
る。
If the logarithmic ratio in the expressions (1) to (3) is 0 or more, despite the determination result that phosphorus removal is normal, there is an abnormality in the measuring instrument or microorganisms in the activated sludge. It is possible to judge that the phase change or the operation condition of the reaction tank is inappropriate, and to issue an alarm. With this alarm, maintenance of the measuring instrument and proper management of the microorganisms can be supported in a timely manner.

【0040】[0040]

【発明の実施の形態】以下、本発明の複数の実施例を図
面に沿って詳細に説明する。なお、各図を通して同等の
構成要素には同一の符号を付してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings. Note that the same components are denoted by the same reference numerals throughout the drawings.

【0041】〔実施例1〕図1は、嫌気‐好気法(AO
法)による下水処理設備の構成図で、処理水のりん濃度
を目標値以下に管理する凝集剤制御装置を設けている。
実施例1の下水処理設備は嫌気槽1Aと好気槽1Cから成る
生物反応槽1、最終沈殿池2、水中撹拌機3、送風機
5、汚泥返送設備6、汚泥排出設備7、凝集剤タンク
8、凝集剤注入設備9から構成されている。
Example 1 FIG. 1 shows an anaerobic-aerobic method (AO
2) is a block diagram of the sewage treatment equipment according to the present invention, and a flocculant control device for controlling the phosphorus concentration of treated water to a target value or less is provided.
Example 1 The sewage treatment equipment of Example 1 is a biological reaction tank 1 composed of an anaerobic tank 1A and an aerobic tank 1C, a final sedimentation tank 2, an underwater stirrer 3, a blower 5, a sludge return equipment 6, a sludge discharge equipment 7, and a flocculant tank 8. And a coagulant injection equipment 9.

【0042】家庭や工場から排出された流入下水は最初
沈殿池(図示せず)で粗大な狭雑物が沈殿除去され、生物
反応槽1に流入する。流入下水11の導かれる嫌気槽1Aに
は最終沈殿池2から汚泥返送設備6を介して活性汚泥と
呼ばれる微生物群である返送汚泥12が供給され、流入下
水11と返送汚泥12が水中撹拌機3で撹拌混合される。嫌
気状態下の嫌気槽1Aにおいて、活性汚泥は細胞内に蓄積
していたポリりん酸を加水分解してオルトりん酸(PO4-
P)として液中に放出する。また、活性汚泥はリン放出時
に有機物を吸着し、細胞内に蓄積する。このため、嫌気
槽1Aではりん濃度が増加し、有機物が減少する。
Inflow sewage discharged from homes and factories is first settled and removed in a sedimentation basin (not shown), and flows into the biological reaction tank 1. Return sludge 12, which is a group of microorganisms called activated sludge, is supplied from the final sedimentation tank 2 to the anaerobic tank 1A into which the inflow sewage 11 is led through the sludge return equipment 6, and the inflow sewage 11 and the return sludge 12 are mixed with the submerged stirrer 3 With stirring. In the anaerobic tank 1A under the anaerobic condition, the activated sludge hydrolyzes the polyphosphoric acid accumulated in the cells and orthophosphoric acid (PO4-
Released into the liquid as P). Activated sludge adsorbs organic matter when phosphorus is released and accumulates in cells. Therefore, in the anaerobic tank 1A, the phosphorus concentration increases, and the organic matter decreases.

【0043】嫌気槽1Aの混合液は隔壁19を介して好気槽
1Cに導かれる。好気槽1Cの底部には散気管4が設置され
ており、送風機5からの空気16を散気し、混合液を撹拌
するとともに活性汚泥の酸素源を供給する。好気槽1Cに
おいて、活性汚泥は吸着した有機物を酸素存在下のもと
水と炭酸ガスに分解する。また、アンモニア性窒素を硝
酸性あるいは亜硝酸性窒素に酸化する。さらに、液中の
オルトりん酸をポリりん酸として細胞内に摂取する。こ
の摂取量は、通常、嫌気槽1Aで放出した以上の過剰摂取
となるため、プロセス全体ではりんが減少し、除去され
たことになる。
The mixed solution in the anaerobic tank 1A is supplied to the aerobic tank via the partition wall 19.
Led to 1C. A diffuser pipe 4 is provided at the bottom of the aerobic tank 1C to diffuse the air 16 from the blower 5 to agitate the mixed liquid and supply the oxygen source of the activated sludge. In the aerobic tank 1C, the activated sludge decomposes the adsorbed organic matter into water and carbon dioxide in the presence of oxygen. It oxidizes ammonia nitrogen to nitric or nitrite nitrogen. Further, orthophosphoric acid in the solution is taken into cells as polyphosphate. Since this intake amount is usually an excess intake amount that was released in the anaerobic tank 1A, phosphorus was reduced and removed in the entire process.

【0044】好気槽1Cの流出水13は最終沈殿池2に導か
れ、混合液中の活性汚泥が重力沈降する。上澄み液は処
理水14として塩素殺菌後河川や海洋に放流される。一
方、沈殿した高濃度の活性汚泥は、その大部分が汚泥返
送設備6により返送汚泥12として生物反応槽1に返送さ
れ、増殖分に相当する一部を余剰汚泥15として汚泥排出
設備7を介して系外に排出する。余剰汚泥15には生物反
応槽1で除去されたりんも含まれている。
The effluent 13 of the aerobic tank 1C is led to the final sedimentation basin 2, where the activated sludge in the mixed solution is settled by gravity. The supernatant liquid is discharged to rivers and oceans after chlorine sterilization as treated water 14. On the other hand, most of the precipitated high-concentration activated sludge is returned to the biological reaction tank 1 as returned sludge 12 by the sludge return facility 6, and a part corresponding to the multiplied portion is converted into excess sludge 15 via the sludge discharge facility 7. To discharge out of the system. The surplus sludge 15 contains phosphorus removed in the biological reaction tank 1.

【0045】このように生物学的にりんを除去するプロ
セスでは、嫌気槽1Aでの嫌気状態を維持してりんを良好
に放出させる必要がある。りん放出が不十分である場
合、好気槽1Cでのりんの摂取も悪く、過剰摂取をしなく
なる。りん除去能力の悪化は、プロセス全体でのりん除
去率の低下を招き、さらに処理水14のりん濃度が流入下
水11より高くなることもある。
In the process of biologically removing phosphorus as described above, it is necessary to maintain the anaerobic state in the anaerobic tank 1A and release phosphorus appropriately. If the release of phosphorus is insufficient, the intake of phosphorus in the aerobic tank 1C is poor, and the overdose is not required. Deterioration of the phosphorus removal capacity leads to a decrease in the phosphorus removal rate in the whole process, and the phosphorus concentration of the treated water 14 may be higher than that of the inflow sewage 11.

【0046】本発明では、りん除去能力が悪化した場
合、生物処理による急激な回復は困難なので、その悪化
状態を速やかに検知し、処理水14のりん濃度を目標値以
下に維持するために金属塩などの凝集剤を注入する化学
凝集処理を併用する。
According to the present invention, when the phosphorus removing ability is deteriorated, it is difficult to rapidly recover by the biological treatment. Therefore, the state of the deterioration is quickly detected, and the phosphorus concentration in the treated water 14 is maintained at a target value or less. A chemical coagulation treatment for injecting a coagulant such as a salt is used together.

【0047】このため、本実施例の水処理設備は凝集剤
タンク8と凝集剤注入設備9を配設し、撹拌混合の必要
がない好気槽1Cの流出部に、計算機30により演算制御さ
れる必要量の凝集剤17を注入する。以下、計算機30によ
って実現される凝集剤注入制御装置の構成と動作につい
て説明する。
For this reason, the water treatment equipment of the present embodiment is provided with a coagulant tank 8 and a coagulant injection equipment 9, and is operated and controlled by the computer 30 at the outlet of the aerobic tank 1C which does not require stirring and mixing. The required amount of coagulant 17 is injected. Hereinafter, the configuration and operation of the coagulant injection control device realized by the computer 30 will be described.

【0048】好気槽1Cに採水設備20を設置し、りん濃度
計21に送水する。りん濃度計21では、送水された好気槽
1Cの混合液の活性汚泥を分離し、液中の溶解性りん濃度
を計測し、計算機30に入力する。採水設備20の設置位置
は少なくとも凝集剤17の注入位置より上流側とし、凝集
剤注入前(本例では好気槽の混合液)の被処理水のりん
濃度を測定する。好気槽1C混合液の活性汚泥分離は平膜
や中空膜などの膜ろ過方式が適用でき、採水設備20に設
置してもよい。
A water sampling facility 20 is installed in the aerobic tank 1C, and water is sent to a phosphorus concentration meter 21. In the phosphorus concentration meter 21, the aerobic tank
The activated sludge of the mixed liquid of 1C is separated, and the concentration of soluble phosphorus in the liquid is measured and input to the computer 30. The installation position of the water sampling facility 20 is at least upstream of the injection position of the coagulant 17, and the phosphorus concentration of the water to be treated before the coagulant injection (in this example, the mixed solution in the aerobic tank) is measured. For the activated sludge separation of the aerobic tank 1C mixed solution, a membrane filtration method such as a flat membrane or a hollow membrane can be applied.

【0049】雨量計29で計測された降雨量SR、流量計22
及び23で計測された流入下水流量Qiと返送汚泥流量Qr、
溶存酸素濃度計(DO計)25,27で計測された流入水DO
値(DOI)と好気槽DO(DOK)、酸化還元電位計(ORP計)
26で計測された流入水ORP値(ORPI)も計算機30に取り込
まれる。
The rainfall SR measured by the rain gauge 29, the flow meter 22
And the inflow sewage flow rate Qi and return sludge flow rate Qr measured at 23,
Inflow water DO measured by dissolved oxygen concentration meter (DO meter) 25,27
Value (DOI) and aerobic tank DO (DOK), oxidation-reduction potentiometer (ORP meter)
The inflow water ORP value (ORPI) measured at 26 is also taken into the computer 30.

【0050】これらの入力値に基づいて、計算機30のリ
ン除去判定部37が生物反応槽1のりん除去能力の良否を
判定する。りん除去能力が正常な場合は、沈殿池2の処
理水のりん濃度が予め計算機30に記憶されているりん濃
度目標値Po以下に維持できる。一方、りん除去能力が不
良な場合は、処理水のりん濃度が目標値Poを越えるの
で、必要な凝集剤注入量を演算し、凝集剤注入設備9を
制御する。
Based on these input values, the phosphorus removal determination unit 37 of the computer 30 determines whether the phosphorus removal ability of the biological reaction tank 1 is good. When the phosphorus removal ability is normal, the phosphorus concentration of the treated water in the sedimentation basin 2 can be maintained below the phosphorus concentration target value Po stored in the computer 30 in advance. On the other hand, if the phosphorus removal ability is poor, the required coagulant injection amount is calculated and the coagulant injection equipment 9 is controlled because the phosphorus concentration of the treated water exceeds the target value Po.

【0051】図8及び図9に、りん除去判定部の判定処
理のフロー図を示す。図8は、注入開始時の判定処理
で、りん除去判定部37は雨量計29の計測値SRによる降雨
時に本処理を開始する。まず、予め設定した期間(5日
間以内)の総降雨量SRが設定量SR1を越え(s10
1)、さらに、流入水DO値やORP値及び好気槽DO値がそ
れぞれ設定値ID1、IO1、及びKO*を越えたとき(s10
2)、りん除去能力が不良と判定し、その状態が設定さ
れている持続時間T1nに達したとき(s103)、凝集
剤の注入を開始する。
FIGS. 8 and 9 show flowcharts of the determination process of the phosphorus removal determination unit. FIG. 8 shows a determination process at the start of injection. The phosphorus removal determination unit 37 starts this process at the time of rainfall based on the measured value SR of the rain gauge 29. First, the total rainfall SR for a preset period (within 5 days) exceeds the set amount SR1 (s10
1) Further, when the inflow water DO value, the ORP value, and the aerobic tank DO value exceed the set values ID1, IO1, and KO *, respectively (s10).
2), when the phosphorus removal ability is determined to be defective and the state reaches the set duration T1n (s103), the injection of the flocculant is started.

【0052】ここで、総降雨量の設定量SR1は10mm以
上、流入水DO設定値ID1は1.0mg/L以上、流入水ORP設定
値IO1はー300mV以上とする。また、好気槽DO設定値KO*
は空気量制御を実施する時のDO目標値を用いる。それぞ
れの設定値を連続して越える持続時間TInは、生物反応
槽1の凝集剤注入位置までの滞留時間を考慮して、24時
間以内の範囲で設定する。なお、判定に用いる各設定値
は目標値入力部32に予め入力されている。
Here, the set amount SR1 of the total rainfall is 10 mm or more, the inflow water DO set value ID1 is 1.0 mg / L or more, and the inflow water ORP set value IO1 is -300 mV or more. Also, aerobic tank DO set value KO *
Uses the DO target value at the time of performing the air amount control. The duration TIn continuously exceeding each set value is set within a range of 24 hours or less in consideration of the residence time of the biological reaction tank 1 up to the coagulant injection position. Each set value used for the determination is input in advance to the target value input unit 32.

【0053】図9は、注入停止時の判定処理で、雨が止
んだ時に開始される。まず、流入水DO値やORP値がそれ
ぞれ設定値ID2、IO2以下になったか、及び好気槽DO値が
約KO*になったかチエックする(s201)。設定値ID
2、IO2は、注入開始前でかつ降雨前のDO値やORP値を記
憶するか、注入開始判定処理時の設定値ID1、IO1に所定
オフセット値を減算した値を用いる。計測値が設定値以
下となったとき、その時点を基準として、凝集剤注入期
間の総降雨量SRtを算出する(s202)。総降雨量SRt
<SR2の場合は(s203)、継続時間T2nに到達した時
に凝集剤の注入を停止する(s204)。総降雨量SRt
≧SR2の場合は(s205)、継続時間T3nに到達した時
に凝集剤の注入を停止する(s206)。総降雨量判定
値SR2は20〜80mm、継続時間T2n及びT3nは5日以内に設
定する。
FIG. 9 shows a process for judging when injection is stopped, which is started when rain stops. First, it is checked whether the inflow water DO value and the ORP value have become equal to or less than the set values ID2 and IO2, respectively, and whether the aerobic tank DO value has become about KO * (s201). Set value ID
2. For IO2, a DO value or an ORP value before the start of injection and before rainfall is stored, or a value obtained by subtracting a predetermined offset value from the set values ID1 and IO1 at the time of injection start determination processing is used. When the measured value becomes equal to or less than the set value, the total rainfall SRt during the coagulant injection period is calculated based on the time (s202). Total rainfall SRt
In the case of <SR2 (s203), the injection of the flocculant is stopped when the duration time reaches T2n (s204). Total rainfall SRt
If ≧ SR2 (s205), the injection of the flocculant is stopped when the duration time reaches T3n (s206). The total rainfall determination value SR2 is set to 20 to 80 mm, and the durations T2n and T3n are set within 5 days.

【0054】なお、上記したりん除去判定部37でのりん
除去能力の悪化及び回復の判定に、複数の判定指標をA
ND条件で用いているが、これに限られるものではな
い。たとえば、上記のように総降雨量SRの判定を前提と
する場合は、流入水DO値とORP値及び好気槽DO値のOR
条件でもよい。あるいは、総降雨量SRを判定指標に含め
ず、流入水DO値、ORP値及び好気槽DO値のいずれか2つ
のAND条件、または全てのOR条件としてもよい。
A plurality of determination indices are used for the determination of deterioration and recovery of the phosphorus removal ability in the phosphorus removal determination section 37 described above.
Although used under the ND condition, the present invention is not limited to this. For example, when assuming the determination of the total rainfall SR as described above, the OR of the inflow water DO value and the ORP value and the aerobic tank DO value is used.
Conditions may be used. Alternatively, the total rainfall SR may not be included in the determination index, and may be any two AND conditions of the inflow water DO value, the ORP value, and the aerobic tank DO value, or all OR conditions.

【0055】また、判定指標の1つとして嫌気槽のORP
値も考慮できる。本発明者等の実験によれば、嫌気槽の
ORPは指示値が不安定であり、これをりん除去能力の単
独の判定指標とすることは難しい。しかし、嫌気槽ORP
は流入水DOや流入水ORPにある程度連動した変化を示す
ので、上記判定指標の1つ以上とのAND条件として判
定指標に加えることは可能である。また、嫌気槽に複数
のORP計を設置し、それらの間で連動性が確認できると
きは、その指示値が安定していると見れるので、上記判
定指標と同列に用いることもできる。
The ORP of the anaerobic tank is used as one of the judgment indices.
Values can also be considered. According to the experiments of the present inventors, the anaerobic tank
The indication value of ORP is unstable, and it is difficult to use this as the sole indicator of phosphorus removal ability. But anaerobic tank ORP
Indicates a change that is linked to the inflow water DO and the inflow water ORP to some extent, and can be added to the determination index as an AND condition with one or more of the above determination indexes. In addition, when a plurality of ORP meters are installed in the anaerobic tank and the interoperability can be confirmed among them, the indicated value can be considered to be stable, and thus can be used in the same column as the above-mentioned determination index.

【0056】リン除去判定部37から凝集剤注入開始の指
示を受けた注入濃度演算部37は、目標値入力部32から入
力された処理水のりん濃度目標値Pmと好気槽1Cの被処理
水から計測したりん濃度Piを比較し、Pi>Pmの場合、上
記した(1)式より金属塩注入濃度Rmを演算する。係
数k1は、金属塩がPACの場合、5〜20の範囲で設定され
る。
Upon receiving an instruction to start the coagulant injection from the phosphorus removal determination unit 37, the injection concentration calculation unit 37 determines the phosphorus concentration target value Pm of the treated water input from the target value input unit 32 and the processing target of the aerobic tank 1C. The phosphorus concentration Pi measured from water is compared, and if Pi> Pm, the metal salt injection concentration Rm is calculated from the above equation (1). The coefficient k1 is set in the range of 5 to 20 when the metal salt is PAC.

【0057】注入量演算部33は注入濃度Rmと流入下水
流量Qiと返送汚泥流量Qrから、金属塩注入量Mを(4)
式より演算する。
The injection amount calculator 33 calculates the metal salt injection amount M from the injection concentration Rm, the inflow sewage flow rate Qi, and the return sludge flow rate Qr (4).
Calculate from the formula.

【0058】[0058]

【数4】M=Rm・(Qi+Qr) …(4) 凝集剤に含有する金属塩濃度Cmは使用する凝集剤や溶
解条件により異なる。凝集剤量演算部34は必要とする金
属塩注入量Mが含まれる凝集剤量Gを(6)式より演算
する。
## EQU4 ## M = Rm. (Qi + Qr) (4) The concentration Cm of the metal salt contained in the coagulant differs depending on the coagulant used and the dissolution conditions. The coagulant amount calculation unit 34 calculates the coagulant amount G including the required metal salt injection amount M from the equation (6).

【0059】[0059]

【数5】G=M/Cm …(5) 凝集剤量制御部36は凝集剤注入設備9を調節し、好気槽
1Cへ注入する凝集剤量Gとなるように制御する。この例
の注入設備9はポンプであり、制御部36は流量計24Aの
計測値が凝集剤量Gの流量値となるようにポンプ回転
数、あるいはストローク長を設定する。
G = M / Cm (5) The coagulant amount control unit 36 adjusts the coagulant injection equipment 9 to provide an aerobic tank.
Control is performed so that the amount of coagulant G to be injected into 1C is obtained. The injection equipment 9 in this example is a pump, and the control unit 36 sets the pump rotation speed or the stroke length so that the measured value of the flow meter 24A becomes the flow value of the coagulant amount G.

【0060】なお、(1)式の対数項で、比率Pi/Pm≦
1あるいはPi/(Pm+ΔP)≦1となれば、処理水のりん
濃度は目標値を満たしていると判定し、その期間は凝集
剤の注入を停止する。この間欠操作により、余分な凝集
剤の注入を抑制して運転コストを低減し、かつ、活性汚
泥への悪影響を回避する。ここで、ΔPはりん除去能力
が正常時に、採水設備20から処理水14の間で低下する溶
解性りん濃度で、プロセスの固有値として設定でき、予
め目標値に含んでもよい。また、間欠制御の停止または
再開時のりん濃度には通常、目標値に対する許容誤差が
含まれる。
In the logarithmic term of the equation (1), the ratio Pi / Pm ≦
If 1 or Pi / (Pm + ΔP) ≦ 1, it is determined that the phosphorus concentration of the treated water satisfies the target value, and the injection of the flocculant is stopped during that period. By this intermittent operation, the injection of an extra flocculant is suppressed, the operating cost is reduced, and the adverse effect on the activated sludge is avoided. Here, ΔP is a soluble phosphorus concentration that decreases between the water sampling facility 20 and the treated water 14 when the phosphorus removal capacity is normal, and can be set as a unique value of the process, and may be included in the target value in advance. Further, the phosphorus concentration at the time of stopping or restarting the intermittent control usually includes an allowable error with respect to the target value.

【0061】計算機30の機能として、空気量制御部39A
及び返送量制御部39Bを設け、送風機5及び汚泥返送設
備6を制御する。空気量制御部39AはDO計28で計測され
た好気槽1CのDO計測値KOと目標値入力部32からのDO目標
値KO*との偏差に対応して送風機5を調節し、空気16の
流量を制御する。返送量制御部39Bは、目標値入力部32
に設定された操作比率η1と流入下水流量Qiの乗算によ
り求められた流量となるように汚泥返送設備6を調節
し、返送汚泥12の流量を制御する。
As a function of the computer 30, the air amount control unit 39A
And a return amount control unit 39B for controlling the blower 5 and the sludge return equipment 6. The air amount control unit 39A adjusts the blower 5 in accordance with the deviation between the DO measurement value KO of the aerobic tank 1C measured by the DO meter 28 and the DO target value KO * from the target value input unit 32, and To control the flow rate. The return amount control unit 39B includes the target value input unit 32
The sludge return facility 6 is adjusted so that the flow rate is obtained by multiplying the operation ratio η1 set in the above and the inflow sewage flow rate Qi, and the flow rate of the returned sludge 12 is controlled.

【0062】この操作により、生物反応槽1の活性汚泥
濃度が安定し、りん放出・摂取に対する活性汚泥濃度の
影響をなくし、りん除去能力の良否を正確に判定でき
る。また、りん除去能力の悪化した場合、操作比率ηを
増加させて嫌気槽の還元度を強め、回復を促進させるこ
とができるので、凝集剤の注入時間の短縮や注入量の低
減にもなる。
By this operation, the activated sludge concentration in the biological reaction tank 1 is stabilized, the influence of the activated sludge concentration on the release and intake of phosphorus can be eliminated, and the quality of the phosphorus removing ability can be accurately determined. In addition, when the phosphorus removal ability is deteriorated, the operation ratio η is increased to enhance the degree of reduction of the anaerobic tank and promote the recovery, so that the injection time of the flocculant and the injection amount are also reduced.

【0063】さらに、計算機30の機能として表示部38を
設け、必要に応じてプロセス状態や計測値あるいは警報
などを出力する。たとえば、りん除去判定部37でりん除
去能力が正常と判定されているときにPi>Pmになるな
どの相反する結果が得られた場合、りん除去悪化の原因
は流入水質よりも生物反応槽の運転条件による影響と考
えられるので、返送汚泥流量の変更操作や、DO設定値
の変更を行なった後、再びりん除去能力の判定や凝集剤
量の演算による制御が行なわれる。
Further, a display unit 38 is provided as a function of the computer 30, and outputs a process state, a measured value, an alarm, and the like as necessary. For example, if contradictory results such as Pi> Pm are obtained when the phosphorus removal determining section 37 determines that the phosphorus removal capability is normal, the cause of deterioration in phosphorus removal is more in the biological reaction tank than in the inflow water quality. Since it is considered that the influence is caused by the operating conditions, the operation of changing the return sludge flow rate and the DO set value are performed, and then the control by the determination of the phosphorus removal capacity and the calculation of the flocculant amount are performed again.

【0064】そこで、相反する結果が得られた場合に表
示部38は、「返送汚泥流量を変更する」、「DO目標値=
KO*を高める」などのメッセージを表示する。このと
き、関連するプロセス量として、返送汚泥流量Qrの計
測値や設定値、空気16の流量が空気量下限設定値(目標
値入力部)に維持されているのに、目標値KO*を越えてい
るDO計測値などの状態も出力できる。
Therefore, when an inconsistent result is obtained, the display unit 38 displays “change the return sludge flow rate” and “DO target value =
Display a message such as "Enhance KO *". At this time, as the related process amount, the measured value and the set value of the returned sludge flow rate Qr, and the flow rate of the air 16 are maintained at the air amount lower limit set value (target value input section), but exceed the target value KO *. It can also output the state of the DO measurement value etc.

【0065】〔実施例2〕図10は、嫌気‐好気法によ
る下水処理設備の構成図で、処理水りん濃度の計測値を
用いる凝集剤制御装置を設けている。図1の構成との相
違は、処理水14を対象に採水設備20とりん濃度計21を設
置し、計算機30に処理水のりん濃度計測値Poを入力する
点と、凝集剤量の演算方式にある。
[Embodiment 2] FIG. 10 is a block diagram of a sewage treatment facility based on an anaerobic-aerobic method, in which a coagulant control device using a measured value of the concentration of treated water phosphorus is provided. 1 is different from the configuration of FIG. 1 in that a water sampling facility 20 and a phosphorus concentration meter 21 are installed for the treated water 14, a measured phosphorus concentration Po of the treated water is input to a computer 30, and a calculation of the amount of the flocculant is performed. In the formula.

【0066】注入濃度演算部31では処理水のりん濃度計
測値Poと目標値Pmから金属塩注入濃度補正値ΔRmを上
記の(2)式により演算する。注入量演算部33は金属塩
注入補正量ΔMを(6)式より演算し、凝集剤補正量演
算部35は凝集剤補正量ΔGを(7)式より演算する。
The injection concentration calculator 31 calculates the metal salt injection concentration correction value ΔRm from the phosphorus concentration measurement value Po and the target value Pm of the treated water by the above equation (2). The injection amount calculation unit 33 calculates the metal salt injection correction amount ΔM from equation (6), and the coagulant correction amount calculation unit 35 calculates the coagulant correction amount ΔG from equation (7).

【0067】[0067]

【数6】ΔM=ΔRm・(Qi+Qr) …(6) ΔG=ΔM/Cm …(7) 凝集剤量演算部34は現在の凝集剤量Gと補正量ΔGから
操作量G’を演算し、現在の凝集剤量Gに対応する流量
計25の信号値との偏差で凝集剤注入設備9を調節して好
気槽1Cへの凝集剤17を制御する。
ΔM = ΔRm · (Qi + Qr) (6) ΔG = ΔM / Cm (7) The coagulant amount calculation unit 34 calculates an operation amount G ′ from the current coagulant amount G and the correction amount ΔG. The coagulant injection equipment 9 is adjusted based on the deviation from the signal value of the flow meter 25 corresponding to the current coagulant amount G to control the coagulant 17 to the aerobic tank 1C.

【0068】実施例2の方式は実施例1に比べて最終沈
殿池2の滞留時間に相当する制御遅れを生じる。しか
し、採水設備20で送水される処理水は活性汚泥が非常に
低濃度で、前処理分離装置の保守頻度が向上し、より正
確な計測情報に基づいた凝集剤制御が可能である。
The system of the second embodiment causes a control delay corresponding to the residence time of the final sedimentation tank 2 as compared with the first embodiment. However, the treated water sent by the water sampling facility 20 has a very low concentration of activated sludge, the maintenance frequency of the pretreatment separation device is improved, and the flocculant control based on more accurate measurement information is possible.

【0069】〔実施例3〕図11は、嫌気‐好気法によ
る下水処理設備の構成図で、被処理水と処理水のりん濃
度を用いる凝集剤制御装置を設けている。実施例3は図
1と図10を合わせた構成で、採水設備20及び20Aを好
気槽1Cと処理水14を対象に設置し、りん濃度計21及び21
Aでそれぞれのりん濃度を計測する。好気槽1Cのりん濃
度Piと処理水のりん濃度Po及び目標値Pmに基づき、注入
濃度演算回路31で金属塩注入濃度Rmを上記の(3)式
により演算する。その後は実施例1の場合と同様にし
て、凝集剤注入量Gを決定し、凝集剤制御部36より凝集
剤注入設備9を調節して好気槽1Cへの凝集剤を制御す
る。
[Embodiment 3] FIG. 11 is a block diagram of a sewage treatment system based on an anaerobic-aerobic method, in which a coagulant control device using the phosphorus concentration of the water to be treated and the treated water is provided. Example 3 is a combination of FIG. 1 and FIG. 10 in which water sampling facilities 20 and 20A are installed for aerobic tank 1C and treated water 14, and phosphorus concentration meters 21 and 21 are used.
Measure each phosphorus concentration with A. Based on the phosphorus concentration Pi of the aerobic tank 1C, the phosphorus concentration Po of the treated water, and the target value Pm, the injection concentration calculation circuit 31 calculates the metal salt injection concentration Rm by the above equation (3). Thereafter, in the same manner as in the first embodiment, the coagulant injection amount G is determined, and the coagulant injection unit 9 is adjusted by the coagulant control unit 36 to control the coagulant into the aerobic tank 1C.

【0070】本実施例によれば、好気槽1Cのりん濃度の
誤差を処理水の計測値で補正でき、かつ最終沈殿池2に
よる制御遅れを伴わないので制御精度が向上する。
According to this embodiment, the error of the phosphorus concentration in the aerobic tank 1C can be corrected by the measured value of the treated water, and the control accuracy is improved because the control by the final sedimentation basin 2 is not accompanied.

【0071】〔実施例4〕図12は、嫌気‐無酸素‐好
気法(A2O法)による下水処理設備の構成図で、好気槽1
Cの被処理水のりん濃度を用いる凝集剤制御装置を設け
ている。本下水処理設備は生物反応槽1を嫌気槽1A、無
酸素槽1B、好気槽1Cの3室に分け、好気槽1Cに設置した
送水設備10で好気槽混合液を第2室目の無酸素槽1Bに循
環液18として環流する。無酸素槽1Bでは、好気槽1Cで生
成された硝酸性あるいは亜硝酸性窒素を窒素ガスに還元
する脱窒機能を有する。
[Embodiment 4] FIG. 12 is a block diagram of a sewage treatment facility using an anaerobic-anoxic-aerobic method (A2O method).
A flocculant control device using the phosphorus concentration of the C water to be treated is provided. In this sewage treatment equipment, the biological reaction tank 1 is divided into three chambers: an anaerobic tank 1A, an oxygen-free tank 1B, and an aerobic tank 1C. To the oxygen-free tank 1B. The anoxic tank 1B has a denitrification function of reducing nitric or nitrite nitrogen generated in the aerobic tank 1C to nitrogen gas.

【0072】実施例4における凝集剤注入制御方式は、
注入量演算部33の演算を除いて図1と同じである。注入
量演算部33では、流量計24からの循環液流量Qjも加算し
た(8)式で金属塩注入量Mを演算する。
The coagulant injection control method in Example 4 is as follows.
This is the same as FIG. 1 except for the calculation of the injection amount calculation unit 33. The injection amount calculation unit 33 calculates the metal salt injection amount M by the equation (8) in which the circulating fluid flow rate Qj from the flow meter 24 is also added.

【0073】[0073]

【数7】M=Rm・(Qi+Qr+Qj) …(8) 本下水処理設備において、被処理水に変えて処理水のり
ん濃度を用いる場合は金属塩注入濃度補正値ΔMを求め
る(6)式に循環液流量Qjを加える以外は実施例2と同
じである。また、被処理水と処理水のりん濃度を用いる
場合は、(3)式で求めた金属塩注入濃度Rmに基づ
き、(4)式で金属塩注入量Mを演算する以外は実施例
3と同じである。
M = Rm · (Qi + Qr + Qj) (8) In the present sewage treatment equipment, when the phosphorus concentration of the treated water is used instead of the water to be treated, the correction value ΔM of the metal salt injection concentration is calculated by the equation (6). The second embodiment is the same as the second embodiment except that the circulating fluid flow rate Qj is added. Further, when the phosphorus concentration of the water to be treated and the treated water is used, the third embodiment differs from the third embodiment in that the metal salt injection amount M is calculated by the equation (4) based on the metal salt injection concentration Rm obtained by the equation (3). Is the same.

【0074】なお、計算機30の機能として空気量制御部
39A、返送量制御部39Bの他に循環量制御部39Cを設け、
送水設備10を制御する。循環量制御部39Cは目標値入力
部32に設定された操作比率η2と流入下水流量Qiの乗算
により求められた流量となるように送水設備10を調節
し、循環液18の流量を制御する。これら空気量、返送汚
泥量、及び循環液量を操作することにより、有機物と窒
素の除去効率が安定し、さらに上記した凝集剤注入量制
御の実施によりりん濃度も含めて所定値以下とする処理
水を維持できる。
It should be noted that the function of the computer 30 is as follows.
39A, a circulation amount control unit 39C is provided in addition to the return amount control unit 39B,
The water supply equipment 10 is controlled. The circulation amount control unit 39C adjusts the water supply equipment 10 so that the flow rate obtained by multiplying the operation ratio η2 set in the target value input unit 32 and the inflow sewage flow rate Qi, and controls the flow rate of the circulating fluid 18. By controlling the amount of air, the amount of returned sludge, and the amount of circulating liquid, the efficiency of removing organic substances and nitrogen is stabilized, and the above-described control of the coagulant injection amount is performed to reduce the concentration to a predetermined value or less including the phosphorus concentration. Can maintain water.

【0075】以上のように、本発明の実勢例1〜4では
嫌気‐好気法と嫌気‐無酸素‐好気法を対象としたが、
嫌気‐好気‐嫌気‐好気法(AOAO法)にも適用可能であ
る。AOAO法では、後段の好気槽流出部に凝集剤を注入
し、流入下水量と返送汚泥量で金属塩注入量Mを演算す
る。
As described above, in the practical examples 1-4 of the present invention, the anaerobic-aerobic method and the anaerobic-anoxic-aerobic method were targeted.
Applicable to the anaerobic-aerobic-anaerobic-aerobic method (AOAO method). In the AOAO method, a coagulant is injected into the downstream aerobic tank outlet, and the metal salt injection amount M is calculated from the inflow sewage amount and the returned sludge amount.

【0076】[0076]

【発明の効果】本発明によれば、生物反応槽のりん放出
・摂取状態の変化を早期に予測し、リン除去能力が処理
水のりん目標値を維持できない場合に、凝集剤の注入を
速やかに開始して水質の悪化を防止できる効果がある。
According to the present invention, the change in the state of phosphorus release / uptake in the biological reaction tank is predicted at an early stage, and when the phosphorus removal ability cannot maintain the target phosphorus value of the treated water, the injection of the flocculant is promptly performed. The effect is that the deterioration of water quality can be prevented by starting.

【0077】また、凝集剤注入量は被処理水及び/また
は処理水中のりん濃度と凝集剤注入濃度の対数比率特性
に基づいて必要最小量に限定でき、かつりん除去能力の
悪化時期に限られるので、運転コストの低減及び凝集剤
による活性汚泥への悪影響を抑制できる。
Further, the coagulant injection amount can be limited to a necessary minimum amount based on the logarithmic ratio characteristic between the phosphorus concentration in the water to be treated and / or the treated water and the coagulant injection concentration, and is limited to the period when the phosphorus removal ability deteriorates. Therefore, it is possible to reduce the operating cost and suppress the adverse effect of the flocculant on the activated sludge.

【0078】さらに、りん除去能力の予測結果とりん濃
度の計測値に基く対数比率との間で、凝集剤注入の必要
に対し相反する結果が得られる場合に、その原因となる
プロセス状態等を表示して適切な運転支援を行なうの
で、生物処理プラントの適正な運転状態への速やかな回
復が可能になる。
Further, when a result that is inconsistent with the need for coagulant injection is obtained between the predicted result of the phosphorus removal ability and the logarithmic ratio based on the measured value of the phosphorus concentration, the process state or the like that causes this is determined. Since the display is performed and appropriate operation support is performed, it is possible to quickly recover the biological treatment plant to an appropriate operation state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による凝集剤制御装置を含む
下水処理設備の構成図。
FIG. 1 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a first embodiment of the present invention.

【図2】下水処理設備での処理水りん濃度の試験結果の
一例を示すグラフ。
FIG. 2 is a graph showing an example of a test result of a treated water phosphorus concentration in a sewage treatment facility.

【図3】嫌気槽のりん放出特性の試験結果の一例を示す
グラフ。
FIG. 3 is a graph showing an example of a test result of phosphorus release characteristics of an anaerobic tank.

【図4】りん放出・摂取悪化時期の詳細な試験結果の一
例を示すグラフ。
FIG. 4 is a graph showing an example of detailed test results at the time of deterioration of phosphorus release / intake.

【図5】アルミニウム注入濃度と溶解性りん濃度の変化
特性を示す説明図。
FIG. 5 is an explanatory diagram showing a change characteristic of an aluminum injection concentration and a soluble phosphorus concentration.

【図6】凝集剤注入濃度の演算方式を解説する説明図。FIG. 6 is an explanatory diagram explaining a calculation method of a coagulant injection concentration.

【図7】凝集剤注入濃度の他の演算方式を解説する説明
図。
FIG. 7 is an explanatory diagram explaining another calculation method of the coagulant injection concentration.

【図8】実施例1〜4における凝集剤注入判定方式の処
理フロー図。
FIG. 8 is a processing flowchart of a coagulant injection determination method in Examples 1 to 4.

【図9】実施例1〜4における凝集剤停止判定方式の処
理フロー図。
FIG. 9 is a processing flowchart of a flocculant stop determination method in Examples 1 to 4.

【図10】実施例2による凝集剤制御装置を含む下水処理
設備の構成図。
FIG. 10 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a second embodiment.

【図11】実施例3による凝集剤制御装置を含む下水処理
設備の構成図。
FIG. 11 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a third embodiment.

【図12】実施例4による凝集剤制御装置を含む下水処理
設備の構成図。
FIG. 12 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

1…生物反応槽、1A…嫌気槽、1B…無酸素槽、1C…好気
槽、2…沈殿池、5…送風機、6…汚泥返送設備、7…
汚泥排出設備、8…凝集剤タンク、9…凝集剤注入設
備、10…循環設備、20…採水設備、21…リン濃度計、2
2,23,24…流量計、25,27…溶存酸素濃度計、26…酸
化還元電位計、29…雨量計、30…計算機、31…注入濃度
演算部、32…目標値入力部、33…注入量演算部、34…凝
集剤量演算部、65…凝集剤補正量演算部、36…凝集剤量
制御部、37…りん除去判定部、38…表示部、39A…空気
量制御部、39B…返送量制御部、39C…循環量制御部。
DESCRIPTION OF SYMBOLS 1 ... Biological reaction tank, 1A ... Anaerobic tank, 1B ... Oxygen-free tank, 1C ... Aerobic tank, 2 ... Sedimentation tank, 5 ... Blower, 6 ... Sludge return equipment, 7 ...
Sludge discharge equipment, 8 ... flocculant tank, 9 ... flocculant injection equipment, 10 ... circulation equipment, 20 ... water sampling equipment, 21 ... phosphorus concentration meter, 2
2, 23, 24 ... flow meter, 25, 27 ... dissolved oxygen concentration meter, 26 ... oxidation-reduction potentiometer, 29 ... rain gauge, 30 ... computer, 31 ... injection concentration calculation unit, 32 ... target value input unit, 33 ... Injection amount calculation unit, 34 ... flocculant amount calculation unit, 65 ... flocculant correction amount calculation unit, 36 ... flocculant amount control unit, 37 ... phosphorus removal determination unit, 38 ... display unit, 39A ... air amount control unit, 39B ... Return amount control unit, 39C ... Circulation amount control unit.

【手続補正書】[Procedure amendment]

【提出日】平成10年1月19日[Submission date] January 19, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 水処理プロセスの制御方法及び装置 Title: Method and apparatus for controlling a water treatment process

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や産業排
水あるいは水道原水を生物学的に処理する水処理プロセ
に係わり、特に、流入水中のリンを安定に除去する
御方法及び装置に関する。
TECHNICAL FIELD The present invention relates to a water treatment process for biologically treating municipal sewage, industrial wastewater or tap water.
In particular, a system that stably removes phosphorus in the influent water.
It relates to a control method and an apparatus .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】本発明の目的は、上記した従来技術の状況
に鑑み、生物反応槽でのりん除去能力を予測し、その能
力の低下時に適正量の凝集剤を注入して、処理水のりん
濃度を目標値以下に維持する、水処理プロセスの制御方
法及び装置を提供することにある。
An object of the present invention is to consider the state of the prior art described above and predict the phosphorus removal capacity in a biological reaction tank, and when the capacity is reduced, inject an appropriate amount of a coagulant to reduce the phosphorus concentration in the treated water. To control the water treatment process so that
It is to provide a method and an apparatus .

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】[0015]

【課題を解決するための手段】本発明の水処理プロセス
の制御方法は、嫌気槽を前段に、好気槽を後段に位置さ
せた生物反応槽と沈殿池を有し、前記好気槽にりん除去
用の凝集剤注入設備を具備する水処理プロセスにおい
て、前記生物反応槽のりん除去能力を予め設定している
判定指標に基づいて判定し、前記沈殿池の処理水のりん
濃度がその目標値以下に維持できないと予測されると
き、前記好気槽の前記凝集剤の注入前の被処理水(以
下、被処理水)または前記処理水中のりん濃度計測値と
前記目標値との対数比率に基づいて凝集剤注入量を求
め、前記凝集剤注入設備を制御するすることを特徴とす
る。
SUMMARY OF THE INVENTION The water treatment process of the present invention
Is a biological treatment tank and a sedimentation tank in which an anaerobic tank is located in the first stage and an aerobic tank is located in the second stage, and the water treatment process includes a coagulant injection facility for removing phosphorus in the aerobic tank. When the phosphorus removal capacity of the biological reaction tank is determined based on a preset determination index, and it is predicted that the phosphorus concentration of the treated water of the settling basin cannot be maintained below its target value. Calculating the coagulant injection amount based on the water to be treated before injection of the coagulant in the aerobic tank (hereinafter, the water to be treated) or the logarithmic ratio of the measured phosphorus concentration in the treated water and the target value, The coagulant injection equipment is controlled.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】また、本発明の制御方法は、前記水処理プ
ロセスにおいて、前記生物反応槽に流入する流入水の環
境下における所定期間内の総降雨量(SR1)が一定量を越
える場合に、前記生物反応槽のりん除去能力を判定指標
に基づいて判定し、予め設定されている処理水のりん濃
度目標値(Pm)を維持できないと予測されるとき、前記好
気槽の前記凝集剤の注入前の被処理水中のりん濃度(Pi)
及び/又は前記処理水中のりん濃度(Po)と、前記りん濃
度目標値(Pm)から前記処理水への凝集剤注入濃度を演算
し、該注入濃度と被処理水流量の積により、前記目標値
を維持するのに必要な凝集剤注入量を求め、前記凝集剤
注入設備を制御することを特徴とする。
Further, the control method of the present invention, the water treatment flop
In the process , when the total rainfall (SR1) within a predetermined period in the environment of the influent flowing into the biological reaction tank exceeds a certain amount, the phosphorus removal capacity of the biological reaction tank is determined based on a determination index. When it is predicted that the preset phosphorus concentration target value of the treated water (Pm) cannot be maintained, the phosphorus concentration (Pi) in the water to be treated before the injection of the flocculant in the aerobic tank.
And / or calculating the concentration of the coagulant injected into the treated water from the phosphorus concentration (Po) in the treated water and the target phosphorus concentration (Pm), and calculating the target by the product of the injected concentration and the flow rate of the water to be treated. The amount of coagulant injection required to maintain the value is obtained, and the coagulant injection equipment is controlled.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】本発明の水処理プロセスの制御装置は、少
なくとも嫌気槽と好気槽、及び沈殿池を有し、好気槽の
流出部(出口または近傍)に凝集剤を注入する設備を具
備する水処理設備において、前記生物反応槽のりん除去
能力の良否を所定の判定指標に従って判定する判定手段
と、前記好気槽の前記凝集剤の注入前の被処理水(以
下、被処理水)または前記処理水中のりん濃度計測値と
前記目標値との対数比率に基づいて凝集剤注入量を求め
る演算手段を設け、前記判定手段でりん除去能力が不良
と判定されたときに、前記演算手段からの出力信号に対
応して前記凝集剤注入設備を稼動させることを特徴とす
る。
The control device of the water treatment process of the present invention has at least an anaerobic tank, an aerobic tank, and a sedimentation tank, and is equipped with a facility for injecting a flocculant into an outlet (outlet or near) of the aerobic tank. In the water treatment equipment, determining means for determining whether or not the phosphorus removal ability of the biological reaction tank is good or not according to a predetermined determination index, and water to be treated (hereinafter, water to be treated) before injection of the flocculant into the aerobic tank. Provision is made for a calculating means for determining the coagulant injection amount based on the logarithmic ratio of the measured phosphorus concentration in the treated water and the target value, and when the determining means determines that the phosphorus removal capability is defective, the calculating means The coagulant injection equipment is operated in response to the output signal of (1).

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】前記水処理プロセスの制御装置は、前記生
物反応槽への流入水の環境下の降雨量を測定する計測手
段と、流入水溶存酸素濃度、流入水酸化還元電位及び好
気槽溶存酸素濃度の少なくとも1つを測定する計測手段
を設け、前記判定手段は前記りん除去能力の良否を判定
し、前記凝集剤の注入制御を指示するために、前記降雨
量の判定指標と、前記流入水溶存酸素濃度、前記流入水
酸化還元電位及び前記好気槽溶存酸素濃度の少なくとも
1つに設定された判定指標を有している。
The control device for the water treatment process includes a measuring means for measuring rainfall in the environment of the inflowing water into the biological reaction tank, an inflowing water-soluble oxygen concentration, an inflowing hydroxylation reduction potential, and an aerobic tank dissolved oxygen. Measuring means for measuring at least one of the concentrations; the judging means judges the quality of the phosphorus removal ability, and instructs the coagulant injection control; The determination index is set to at least one of the dissolved oxygen concentration, the inflow hydroxylation reduction potential, and the aerobic tank dissolved oxygen concentration.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 3/12 C02F 3/12 K (72)発明者 木村 文智 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 田代 義昭 東京都新宿区西新宿二丁目8番1号 (72)発明者 大沢 義行 東京都荒川区荒川八丁目25番1号 東京都 下水道局 三河島処理場内 (72)発明者 安藤 三郎 東京都足立区宮城二丁目1番14号 東京都 下水道局 小台処理場内──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 6 Identification code FI C02F 3/12 C02F 3/12 K (72) Inventor Fumichi Kimura 5-2-1 Omikacho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. (72) Inventor Yoshiaki Tashiro 2-8-1, Nishishinjuku, Shinjuku-ku, Tokyo (72) Inventor Yoshiyuki Osawa 25-1, Arakawa, Arakawa-ku, Tokyo Tokyo Sewerage Bureau Mikawashima Treatment Plant (72) 72) Inventor Saburo Ando 2-1-1-14 Miyagi, Adachi-ku, Tokyo Inside the Tokyo Sewerage Bureau Kodai Treatment Plant

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 嫌気槽を前段に、好気槽を後段に位置さ
せた生物反応槽と沈殿池を有し、前記好気槽にりん除去
用の凝集剤注入設備を具備する生物学的水処理プロセス
において、 前記生物反応槽のりん除去能力を予め設定している判定
指標に基づいて判定し、前記沈殿池の処理水(以下、処
理水)のりん濃度がその目標値以下に維持できないと予
測されるとき、前記好気槽の前記凝集剤の注入前の被処
理水(以下、被処理水)または前記処理水中のりん濃度
計測値と前記目標値との対数比率に基づいて凝集剤注入
量を求め、前記凝集剤注入設備を制御することを特徴と
する生物学的水処理制御方法。
1. Biological water having a biological reaction tank and a sedimentation tank in which an anaerobic tank is located at a preceding stage and an aerobic tank is located at a later stage, and a coagulant injection facility for removing phosphorus in the aerobic tank. In the treatment process, the phosphorus removal capacity of the biological reaction tank is determined based on a preset determination index, and if the phosphorus concentration of the treated water (hereinafter, treated water) of the sedimentation basin cannot be maintained below its target value. When predicted, the coagulant is injected based on the water to be treated (hereinafter referred to as water to be treated) before the coagulant is injected into the aerobic tank or the logarithmic ratio of the measured phosphorus concentration in the treated water to the target value. A method for controlling biological water treatment, comprising determining an amount and controlling the coagulant injection equipment.
【請求項2】 嫌気槽を前段に、好気槽を後段に位置さ
せた生物反応槽と沈殿池を有し、前記好気槽にりん除去
用の凝集剤注入設備を具備する生物学的水処理プロセス
において、 前記生物反応槽に流入する流入水の環境下における所定
期間内の総降雨量(SR1)が一定量を越える場合に、前記
生物反応槽のりん除去能力を判定指標に基づいて判定
し、予め設定されている処理水のりん濃度目標値(Pm)を
維持できないと予測されるとき、前記好気槽の前記凝集
剤の注入前の被処理水(以下、被処理水)中のりん濃度
(Pi)及び/または前記処理水中のりん濃度(Po)と前記り
ん濃度目標値(Pm)から前記処理水への凝集剤注入濃度を
演算し、該注入濃度と被処理水流量の積により、前記目
標値を維持するのに必要な凝集剤注入量を求め、前記凝
集剤注入設備を制御することを特徴とする生物学的水処
理制御方法。
2. Biological water having a biological reaction tank and a sedimentation tank in which an anaerobic tank is located in the first stage and an aerobic tank in the second stage, and wherein the aerobic tank is equipped with a coagulant injection facility for removing phosphorus. In the treatment process, when the total rainfall (SR1) within a predetermined period in the environment of the inflowing water flowing into the biological reaction tank exceeds a certain amount, the phosphorus removal capacity of the biological reaction tank is determined based on the determination index. However, when it is predicted that the preset phosphorus concentration target value (Pm) of the treated water cannot be maintained, the water to be treated (hereinafter, the treated water) in the aerobic tank before the coagulant injection is performed. Phosphorus concentration
(Pi) and / or the phosphorus concentration in the treated water (Po) and the phosphorus concentration target value (Pm) to calculate the coagulant injection concentration into the treated water from the product of the injected concentration and the flow rate of the water to be treated, A method for controlling biological water treatment, comprising: obtaining a coagulant injection amount required to maintain the target value; and controlling the coagulant injection equipment.
【請求項3】 請求項1または2において、 前記生物反応槽への流入水の溶存酸素濃度(DOI)、酸化
還元電位(ORPI)及び前記好気槽の溶存酸素濃度(DOK)の
少なくとも1つに予め設定されている判定指標とその計
測値を比較し、該計測値がその判定指標を越える場合に
前記りん濃度目標値を維持できないと予測することを特
徴とする生物学的水処理制御方法。
3. The method according to claim 1, wherein at least one of a dissolved oxygen concentration (DOI), an oxidation-reduction potential (ORPI), and a dissolved oxygen concentration (DOK) of the inflow water into the biological reaction tank is provided. Comparing the measured value with a judgment index which is set in advance, and predicting that the phosphorus concentration target value cannot be maintained when the measured value exceeds the judgment index. .
【請求項4】 請求項3において、 前記計測値が前記判定指標を継続して越えている時間が
第1の基準時間以上となる場合に、前記凝集剤の注入制
御を開始することを特徴とする生物学的水処理制御方
法。
4. The coagulant injection control according to claim 3, wherein the coagulant injection control is started when a time during which the measured value continuously exceeds the determination index is equal to or longer than a first reference time. Biological water treatment control method.
【請求項5】 請求項4において、 前記生物反応槽への流入水の溶存酸素濃度または酸化還
元電位の一方または両方の計測値と各々に予め設定され
ている第2判定指標を比較し、該計測値が前記第2定指
標を下回る場合に、前記注入制御を開始して以後の総降
雨量(SRt)に基づいた第2の基準時間の経過後に、前記
凝集剤の注入制御を停止することを特徴とする生物学的
水処理制御方法。
5. The method according to claim 4, wherein a measured value of one or both of a dissolved oxygen concentration and an oxidation-reduction potential of the inflow water into the biological reaction tank is compared with a second determination index preset for each of the measured values. When the measured value falls below the second constant index, the injection control is started, and after a second reference time based on the total rainfall (SRt) has elapsed, the injection control of the coagulant is stopped. A biological water treatment control method, comprising:
【請求項6】 嫌気槽を前段に、好気槽を後段に位置さ
せた生物反応槽と沈殿池を有し、前記好気槽にりん除去
用の凝集剤注入設備を具備する生物学的水処理設備にお
いて、 前記生物反応槽のりん除去能力の良否を所定の判定指標
に従って判定する判定手段と、前記好気槽の前記凝集剤
の注入前の被処理水(以下、被処理水)または前記処理
水中のりん濃度計測値と前記目標値との対数比率に基づ
いて凝集剤注入量を求める演算手段を設け、 前記判定手段でりん除去能力が不良と判定されたとき
に、前記演算手段からの出力信号に対応して前記凝集剤
注入設備を稼動させることを特徴とする生物学的水処理
制御装置。
6. Biological water having a biological reaction tank and a sedimentation tank in which an anaerobic tank is located in the first stage and an aerobic tank in the second stage, and wherein the aerobic tank is equipped with a coagulant injection facility for removing phosphorus. In the treatment equipment, a determination unit that determines the quality of the phosphorus removal ability of the biological reaction tank according to a predetermined determination index, and water to be treated (hereinafter, water to be treated) before the injection of the flocculant into the aerobic tank. Arithmetic means for calculating the coagulant injection amount based on the logarithmic ratio between the measured phosphorus concentration in the treated water and the target value is provided.When the phosphorus removal ability is determined to be poor by the determination means, A biological water treatment control device, wherein the coagulant injection equipment is operated in response to an output signal.
【請求項7】 請求項6において、 前記生物反応槽への流入水の環境下の降雨量を測定する
計測手段と、流入水溶存酸素濃度、流入水酸化還元電位
及び好気槽溶存酸素濃度の少なくとも1つを測定する計
測手段を設け、 前記判定手段は前記りん除去能力の良否を判定し、前記
凝集剤の注入制御を指示するために、前記降雨量の判定
指標と、前記流入水溶存酸素濃度、前記流入水酸化還元
電位及び前記好気槽溶存酸素濃度の少なくとも1つに設
定された判定指標を有していることを特徴とする生物学
的水処理制御装置。
7. The method according to claim 6, wherein a measuring means for measuring a rainfall in the environment of the inflow of the inflow water into the biological reaction tank, the inflow water-soluble oxygen concentration, the inflow hydroxylation reduction potential, and the aerobic tank dissolved oxygen concentration. Measuring means for measuring at least one; the determining means determines whether the phosphorus removing ability is good or not, and instructs the injection control of the coagulant; A biological water treatment control device having a determination index set to at least one of a concentration, an inflow hydroxylation reduction potential, and an aerobic tank dissolved oxygen concentration.
【請求項8】 請求項6または7において、 前記判定手段による前記りん除去能力の判定結果(良/
否)と、前記演算手段による前記対数比率の演算結果
(0より大/0以下)が相反する場合に、前記生物反応
槽の運転操作を支援するメッセージを出力する表示手段
を設けていることを特徴とする生物学的水処理制御装
置。
8. The determination result (good / good) of the phosphorus removal ability by the determination means according to claim 6 or 7.
No) and display means for outputting a message for supporting the operation of the biological reaction tank when the calculation result (greater than 0 / less than 0) of the log ratio by the calculation means conflicts with each other. A biological water treatment control device characterized.
【請求項9】 請求項8において、 前記メッセージが「返送汚泥流量の変更」および/また
は「好気槽溶存酸素濃度の設定値の変更」であることを
特徴とする生物学的水処理制御装置。
9. The biological water treatment control device according to claim 8, wherein the message is “change of return sludge flow rate” and / or “change of set value of dissolved oxygen concentration in aerobic tank”. .
JP34104597A 1997-12-11 1997-12-11 Water treatment method and control device for water treatment facility Expired - Fee Related JP3691651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34104597A JP3691651B2 (en) 1997-12-11 1997-12-11 Water treatment method and control device for water treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34104597A JP3691651B2 (en) 1997-12-11 1997-12-11 Water treatment method and control device for water treatment facility

Publications (2)

Publication Number Publication Date
JPH11169885A true JPH11169885A (en) 1999-06-29
JP3691651B2 JP3691651B2 (en) 2005-09-07

Family

ID=18342733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34104597A Expired - Fee Related JP3691651B2 (en) 1997-12-11 1997-12-11 Water treatment method and control device for water treatment facility

Country Status (1)

Country Link
JP (1) JP3691651B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353496A (en) * 2000-06-12 2001-12-25 Toshiba Corp Sewage disposal system and measuring system
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
KR101138319B1 (en) 2011-07-11 2012-04-20 (주) 이에이치솔루션 Monitoring and proportional control system for phosphate removal process
KR101410524B1 (en) * 2012-01-05 2014-07-04 한국교통대학교산학협력단 Phosphorus removal system and method with SBR effluent using the auto control method
CN105399274A (en) * 2015-11-26 2016-03-16 常州大学 Strontium-containing radioactive wastewater treatment device
CN115259575A (en) * 2022-08-24 2022-11-01 中原环保股份有限公司 Front-end dephosphorization method in sewage treatment A2O process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353496A (en) * 2000-06-12 2001-12-25 Toshiba Corp Sewage disposal system and measuring system
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
KR101138319B1 (en) 2011-07-11 2012-04-20 (주) 이에이치솔루션 Monitoring and proportional control system for phosphate removal process
KR101410524B1 (en) * 2012-01-05 2014-07-04 한국교통대학교산학협력단 Phosphorus removal system and method with SBR effluent using the auto control method
CN105399274A (en) * 2015-11-26 2016-03-16 常州大学 Strontium-containing radioactive wastewater treatment device
CN115259575A (en) * 2022-08-24 2022-11-01 中原环保股份有限公司 Front-end dephosphorization method in sewage treatment A2O process
CN115259575B (en) * 2022-08-24 2023-10-24 中原环保股份有限公司 Front-end dephosphorization method in sewage treatment A2O process

Also Published As

Publication number Publication date
JP3691651B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3691650B2 (en) Water treatment method and control device
JP4334317B2 (en) Sewage treatment system
CN112794444B (en) A 2 Optimization method of reflux ratio of O biological nitrogen and phosphorus removal
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
JP4008694B2 (en) Sewage treatment plant water quality controller
JPH11169885A (en) Control method by water treatment process and device therefor
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2011005354A (en) Method of operating activated sludge capable of simultaneously treating bod and nitrogen
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JPH11169887A (en) Flocculant injection control method in water treatment process and device therefor
JP3384951B2 (en) Biological water treatment method and equipment
KR101272273B1 (en) Water purifing system for management of sludge blanket level
JPH0938682A (en) Biological water treatment
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JP6384168B2 (en) Sludge treatment method
JP4248043B2 (en) Biological phosphorus removal equipment
JP2000325991A (en) Control device of biological water treatment apparatus
JP2010269276A (en) Method and apparatus for controlling water treatment
JP2001009497A (en) Biological water treatment and equipment therefor
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
KR20030057220A (en) Controlling system for a sequening batch reactor and controlling method of the same
KR100424999B1 (en) Controlling system and method of sequencing batch reactor
KR101229455B1 (en) System for managing water quality of discharging water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees