JP2006136820A - Method for removing phosphorus and/or nitrogen from sewage - Google Patents

Method for removing phosphorus and/or nitrogen from sewage Download PDF

Info

Publication number
JP2006136820A
JP2006136820A JP2004329223A JP2004329223A JP2006136820A JP 2006136820 A JP2006136820 A JP 2006136820A JP 2004329223 A JP2004329223 A JP 2004329223A JP 2004329223 A JP2004329223 A JP 2004329223A JP 2006136820 A JP2006136820 A JP 2006136820A
Authority
JP
Japan
Prior art keywords
tank
anaerobic tank
anaerobic
aerobic
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004329223A
Other languages
Japanese (ja)
Other versions
JP4409415B2 (en
Inventor
Osamu Miki
理 三木
Toshiro Kato
敏朗 加藤
Hisao Taima
久夫 當間
Naoya Takahashi
直哉 高橋
Takao Murakami
孝雄 村上
Hironori Itokawa
浩紀 糸川
Hiroshi Setoguchi
浩 瀬戸口
Masaharu Yamasato
昌春 山里
Yuzo Okamoto
裕三 岡本
Kiwamu Matsubara
極 松原
Koichiro Kando
公一郎 甘道
Shigeru Hatsumata
繁 初又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Japan Sewage Works Agency
Fuji Electric Co Ltd
Nippon Steel Corp
DKK TOA Corp
Original Assignee
NGK Insulators Ltd
Japan Sewage Works Agency
Nippon Steel Corp
DKK TOA Corp
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Japan Sewage Works Agency, Nippon Steel Corp, DKK TOA Corp, Fuji Electric Systems Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2004329223A priority Critical patent/JP4409415B2/en
Publication of JP2006136820A publication Critical patent/JP2006136820A/en
Application granted granted Critical
Publication of JP4409415B2 publication Critical patent/JP4409415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To remove nitrogen and phosphorus efficiently and stably from sewage. <P>SOLUTION: In a process for removing biological phosphorus and/or nitrogen by using an anaerobic tank, an oxygen-free tank and an aerobic tank, an organic acid is loaded into the anaerobic tank by using the value of ORP in the anaerobic tank as an indicator and nitrogen and phosphorus are stably removed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水中に含まれるリン及び/または窒素を安定的かつ効率的に除去する方法に関する。   The present invention relates to a method for stably and efficiently removing phosphorus and / or nitrogen contained in sewage.

まず、リンの除去に関する従来技術を説明する。   First, the prior art regarding phosphorus removal will be described.

都市下水中の全リン濃度は、通常3〜5mg/L程度あり、下水中のリンを除去する方法としては、以下のような方法が公知である。   The total phosphorus concentration in city sewage is usually about 3 to 5 mg / L, and the following methods are known as methods for removing phosphorus in sewage.

(1)凝集沈殿法:塩化第二鉄、硫酸第二鉄などの鉄塩や硫酸アルミニウムやポリ塩化アルミニウム等の凝集剤を用いる凝集沈殿法が広く公知である。最も確実な方法であるが、凝集剤添加により、余剰汚泥量の増加に伴う処理費や薬品費などランニングコストが上昇する課題がある。   (1) Coagulation precipitation method: Coagulation precipitation methods using iron salts such as ferric chloride and ferric sulfate, and coagulants such as aluminum sulfate and polyaluminum chloride are widely known. Although it is the most reliable method, there is a problem that running costs such as treatment costs and chemical costs accompanying an increase in the amount of excess sludge increase due to the addition of the flocculant.

(2)生物学的リン除去プロセス:活性汚泥(微生物の集合体)中の一部の細菌群(以下、ポリリン酸蓄積細菌と述べる)は、嫌気条件下(溶存酸素も硝酸イオン等の結合態酸素もない状態)においてリンを放出させると、好気条件下ではリンを過剰に摂取しようとする。この性質を利用し、リン除去をはかるもので、このような方式を採用するとポリリン酸蓄積細菌がリンを摂取することにより下水の活性汚泥中のリン濃度は2〜3%から5〜6%程度に増大し、下水中のリン濃度が低下するといわれている。生物学的リン除去プロセスは、都市下水処理の分野で実用化が進んでいる。   (2) Biological phosphorus removal process: Some bacterial groups in activated sludge (aggregates of microorganisms) (hereinafter referred to as polyphosphate-accumulating bacteria) are under anaerobic conditions (dissolved oxygen is also bound by nitrate ions, etc.) When phosphorus is released in the absence of oxygen), it tends to overtake phosphorus under aerobic conditions. Utilizing this property, phosphorus removal is achieved. When such a method is adopted, the concentration of phosphorus in the activated sludge of the sewage is about 2 to 3 to 6% as the polyphosphate-accumulating bacteria ingest phosphorus. It is said that the phosphorus concentration in the sewage will decrease. The biological phosphorus removal process is in practical use in the field of municipal sewage treatment.

以下に、本発明に関わる生物学的なリンと窒素除去の従来方法について説明する。   Hereinafter, a conventional method for removing biological phosphorus and nitrogen related to the present invention will be described.

生物学的リン除去プロセスは、一般に最初沈殿池、反応槽(嫌気槽、および好気槽)、および最終沈澱池から構成されている。最初沈殿池は下水中の粗大浮遊物を沈降除去し、反応槽への有機物負荷を減じる。反応槽は、嫌気槽と好気槽とからなりたっており、嫌気槽において、嫌気性条件下におき、活性汚泥中のポリリン酸蓄積細菌からリンを放出させる。さらに、好気槽においてポリリン酸蓄積細菌にリンを放出量以上過剰に摂取させる。最終沈殿池においては、活性汚泥を沈降分離させ上澄み液は放流する。最終沈殿池で沈降分離された濃縮活性汚泥は、その一部を余剰汚泥として引きぬくとともに、返送汚泥として、嫌気槽に返送ポンプにより返送される。ポリリン酸蓄積細菌により余剰汚泥は、リンを高濃度に含むため、下水中に含まれていたリンは余剰汚泥の形で系外に引き抜かれることとなる。   The biological phosphorus removal process generally consists of an initial settling tank, a reaction tank (anaerobic tank and an aerobic tank), and a final settling tank. The first sedimentation basin removes coarse suspended solids in the sewage and reduces the organic load on the reaction tank. The reaction tank is composed of an anaerobic tank and an aerobic tank. The anaerobic tank is subjected to anaerobic conditions to release phosphorus from polyphosphate-accumulating bacteria in the activated sludge. Furthermore, in the aerobic tank, polyphosphate-accumulating bacteria are caused to ingest phosphorus in excess of the released amount. In the final sedimentation basin, the activated sludge is settled and the supernatant liquid is discharged. A part of the concentrated activated sludge separated and separated in the final sedimentation basin is pulled off as excess sludge and returned to the anaerobic tank by a return pump as return sludge. Since excess sludge contains phosphorus in a high concentration due to polyphosphate-accumulating bacteria, phosphorus contained in sewage is extracted out of the system in the form of excess sludge.

生物学的リン除去プロセスは、上述の凝集沈殿法と比較するとランニングコストが安いという利点がある。   The biological phosphorus removal process has the advantage of lower running costs compared to the above-described coagulation precipitation method.

次に、窒素の除去に関する従来技術を説明する。   Next, a conventional technique related to nitrogen removal will be described.

下水からの窒素の除去方法としては、以下のような生物学的硝化−窒素除去プロセスが、安価であり、広く採用されている。この方法は、絶対好気性の独立栄養細菌であるNitrosomonas、およびNitrobacter等の硝化細菌による生物学的酸化反応(硝化反応)と通性嫌気性の従属栄養細菌であるPseudomonas等の脱窒細菌による生物学的還元反応(脱窒反応)との組み合わせから成っている。   As a method for removing nitrogen from sewage, the following biological nitrification-nitrogen removal process is inexpensive and widely used. This method consists of biological oxidation reaction (nitrification reaction) by nitrifying bacteria such as Nitrobomoter, which is an absolute aerobic autotrophic bacterium, and denitrifying bacteria such as Pseudomonas, which is a facultative anaerobic heterotrophic bacterium. It consists of a combination with a chemical reduction reaction (denitrification reaction).

まず、硝化反応について説明する。硝化反応は、溶存酸素の存在下、すなわち、好気性の条件下において、硝化細菌を用いて、アンモニア性窒素(以下、NH−Nと記載)を亜硝酸性窒素(以下、NO−Nと記載)または硝酸性窒素(以下、NO−Nと記載)まで酸化させる工程である。硝化反応は以下の化学式1および化学式2に示す反応の2段の反応から成っており、関与する硝化細菌の種類は異なっている。すなわち、化学式1に示す反応は、Nitrosomonasを代表種とするアンモニア酸化細菌によってもたらされ、化学式2に示す反応は、Nitrobacterを代表種とする亜硝酸酸化細菌によってもたらされる。 First, the nitrification reaction will be described. In the nitrification reaction, ammonia nitrogen (hereinafter referred to as NH 4 -N) is converted into nitrite nitrogen (hereinafter referred to as NO 2 -N) using nitrifying bacteria in the presence of dissolved oxygen, that is, under aerobic conditions. Or nitrate nitrogen (hereinafter referred to as NO 3 -N). The nitrification reaction consists of a two-stage reaction represented by the following chemical formula 1 and chemical formula 2, and the types of nitrifying bacteria involved are different. That is, the reaction shown in Chemical Formula 1 is brought about by ammonia oxidizing bacteria having Nitrosomonas as a representative species, and the reaction shown in Chemical Formula 2 is brought about by nitrite oxidizing bacteria having Nitrobacter as a representative species.

窒素を除去するためには、硝化細菌を活性汚泥中に大量に増殖させることが極めて重要である。しかし、硝化細菌は、有機物を分解する従属栄養細菌と比較すると、増殖速度が小さく、また、下水や排水中の成分変動によって活性阻害を受けやすい。硝化細菌の増殖は通常、好気槽中での活性汚泥滞留時間(SRT:Sludge Retention Time)や溶存酸素濃度(DO:Disolved Oxygen)を指標として管理されている。   In order to remove nitrogen, it is extremely important to grow nitrifying bacteria in large quantities in activated sludge. However, nitrifying bacteria have a low growth rate compared to heterotrophic bacteria that decompose organic substances, and are susceptible to activity inhibition due to component fluctuations in sewage and wastewater. The growth of nitrifying bacteria is usually managed by using activated sludge residence time (SRT) and dissolved oxygen concentration (DO: Dissolved Oxygen) in an aerobic tank.

次に脱窒反応について説明する。硝化反応によって生成したNO−NおよびNO−Nは、活性汚泥中の脱窒細菌により、無酸素かつ有機物の存在下で、以下の化学式3および化学式4に示すように還元されて、酸化窒素ガス(NO)あるいは窒素ガス(N)となり大気中に放散される。 Next, the denitrification reaction will be described. NO 2 —N and NO 3 —N produced by the nitrification reaction are reduced by denitrifying bacteria in the activated sludge in the presence of oxygen-free and organic substances as shown in the following chemical formula 3 and chemical formula 4, and oxidized. Nitrogen gas (N 2 O) or nitrogen gas (N 2 ) is released into the atmosphere.

脱窒素を安定して行なうためには、以下の2点が極めて重要である。   In order to perform denitrification stably, the following two points are extremely important.

(1)溶存酸素が存在しないこと(無酸素条件):脱窒細菌は、溶存酸素が存在すると、溶存酸素を優先的に用いてしまう。このため、NO−NやNO−Nが残留しやすい。 (1) No dissolved oxygen (anoxic condition): Denitrifying bacteria preferentially use dissolved oxygen when dissolved oxygen is present. Therefore, NO 2 -N and NO 3 -N is apt to remain.

(2)十分な有機物(水素供与体)があること:脱窒素を行なうためには十分な水素供与体が必要である。水素供与体として、都市下水などでは、下水中の有機物(以下、BODとも記載する)成分がそのまま用いられ、有機物を含まない廃水ではメタノールなどが外部から添加されることが多い。BODの場合、BOD濃度(mg/L)は窒素濃度(mg/L)に対して、BOD/N比が3以上必要(Nは窒素元素として)とされている。また、有機物の種類も重要であり、脱窒速度に大きく影響する。   (2) A sufficient organic substance (hydrogen donor) is present: a sufficient hydrogen donor is necessary for denitrification. As a hydrogen donor, in municipal sewage and the like, organic matter (hereinafter also referred to as BOD) component in sewage is used as it is, and in wastewater not containing organic matter, methanol or the like is often added from the outside. In the case of BOD, the BOD concentration (mg / L) is required to have a BOD / N ratio of 3 or more (N is a nitrogen element) with respect to the nitrogen concentration (mg / L). Also, the type of organic matter is important and greatly affects the denitrification rate.

生物学的硝化−窒素除去プロセスは、最初沈殿池、反応槽(無酸素槽、および好気槽)、および最終沈澱池からから構成されている。最初沈殿池は下水中の粗大浮遊物を沈降除去し、反応槽での有機物負荷を減じる。反応槽は、無酸素槽と好気槽とからなりたっている。無酸素槽(溶存酸素のない状態)には、好気槽から硝化液(好気槽内の処理水)の一部が循環返送される。硝化液中のNO−N並びにNO−Nは、活性汚泥中の脱窒細菌により、下水中の有機物との脱窒反応により、窒素ガスとして除去される。好気槽では、活性汚泥中の硝化細菌によりNH−Nの酸化(硝化)が行なわれ、硝化液の一部が無酸素槽に循環される。最終沈殿池においては、活性汚泥を沈降分離させ上澄み液は放流する。沈降分離された濃縮活性汚泥は、その一部を余剰汚泥として引きぬくとともに返送汚泥として、無酸素槽にポンプにより返送される。 The biological nitrification-nitrogen removal process consists of an initial settling tank, a reaction tank (anoxic tank, and an aerobic tank), and a final settling tank. The first settling basin removes coarse suspended solids in the sewage and reduces the organic load in the reactor. The reaction tank consists of an anoxic tank and an aerobic tank. A part of the nitrification liquid (treated water in the aerobic tank) is circulated and returned from the aerobic tank to the anoxic tank (the state without dissolved oxygen). NO 2 —N and NO 3 —N in the nitrification solution are removed as nitrogen gas by a denitrification bacterium in the activated sludge and a denitrification reaction with organic matter in the sewage. In the aerobic tank, NH 4 -N is oxidized (nitrification) by nitrifying bacteria in the activated sludge, and a part of the nitrifying liquid is circulated to the anoxic tank. In the final sedimentation basin, the activated sludge is settled and the supernatant liquid is discharged. The concentrated activated sludge separated and separated is pulled back as excess sludge and returned to the anoxic tank by a pump as return sludge.

生物学的リン・窒素除去プロセスは、前述した生物学的リン除去プロセスと生物学的硝化−窒素除去プロセスとを組み合わせたプロセスであり、最初沈殿池、反応槽(嫌気槽、無酸素槽、および好気槽)、および最終沈澱池から構成されている。最初沈殿池は下水中の粗大浮遊物を沈降除去し、反応槽での有機物負荷を減じる。反応槽は、嫌気槽、無酸素槽および好気槽からなりたっている。嫌気槽では前述したように活性汚泥中のポリリン酸蓄積細菌がリンの吐き出しをおこなう。無酸素槽には、好気槽から硝化液の一部が循環返送される。無酸素槽においては、この硝化液中のNO−NおよびNO−Nは、活性汚泥中の脱窒細菌により、下水中の有機物との脱窒反応により、窒素ガスとして除去される。 The biological phosphorus / nitrogen removal process is a process in which the biological phosphorus removal process and the biological nitrification-nitrogen removal process described above are combined, and the first settling tank, reaction tank (anaerobic tank, anoxic tank, and Aerobic tank), and final sedimentation basin. The first settling basin removes coarse suspended solids in the sewage and reduces the organic load in the reactor. The reaction tank consists of an anaerobic tank, an oxygen-free tank, and an aerobic tank. In the anaerobic tank, as described above, the polyphosphate-accumulating bacteria in the activated sludge discharges phosphorus. A part of the nitrification liquid is circulated back to the anaerobic tank from the aerobic tank. In the anoxic tank, NO 2 —N and NO 3 —N in the nitrification liquid are removed as nitrogen gas by denitrification bacteria with activated organic sludge and denitrification reaction with organic matter in sewage.

一方、好気槽では、活性汚泥中の硝化細菌によりNH−Nの酸化(硝化)が行なわれ、硝化液の一部は、嫌気槽に循環される。また、活性汚泥中のポリリン酸蓄積細菌は、リンを過剰に摂取する。最終沈殿池では、活性汚泥を沈降分離し、上澄み液は放流する。沈降分離された濃縮活性汚泥は、その一部を余剰汚泥として引きぬくとともに返送汚泥として、嫌気槽に返送ポンプにより返送される。ポリリン酸蓄積細菌により余剰活性汚泥は、リンを高濃度に含むため、下水に含まれていた、リンは余剰汚泥の形で系外に引き抜かれることとなる。 On the other hand, in the aerobic tank, NH 4 -N is oxidized (nitrification) by nitrifying bacteria in the activated sludge, and a part of the nitrifying liquid is circulated to the anaerobic tank. In addition, polyphosphate-accumulating bacteria in activated sludge ingest phosphorus excessively. In the final sedimentation basin, activated sludge is settled and the supernatant is discharged. The concentrated activated sludge separated and separated is pulled back as excess sludge and returned to the anaerobic tank by a return pump as return sludge. Since the excess activated sludge contains phosphorus in a high concentration due to the polyphosphate-accumulating bacteria, phosphorus contained in the sewage is extracted out of the system in the form of excess sludge.

生物学的リン除去プロセスの最も大きな課題は、不安定性である。例えば、雨水などの下水への混入などにより、下水中の有機物濃度が低下するとともにDOが上昇し、嫌気槽において嫌気性条件が達成されずリンの放出が抑制される。嫌気槽で、一旦、リンの放出現象が抑制されると、好気槽でのリンの過剰な取り込み能力が低下してしまう。嫌気槽でのリン放出を良好に行なうためには下水中に大量のBODが必要であり、嫌気槽流入水のBOD(mg/L)/T−P(全リン:mg/L)濃度比が20〜25以上あればリンの放出は良好であるとされている(非特許文献1、非特許文献2)。   The biggest challenge of the biological phosphorus removal process is instability. For example, contamination with sewage such as rainwater reduces the concentration of organic matter in sewage and increases DO, and anaerobic conditions are not achieved in the anaerobic tank, and phosphorus release is suppressed. Once the release phenomenon of phosphorus is suppressed in the anaerobic tank, the ability of excessive intake of phosphorus in the aerobic tank is reduced. A large amount of BOD is required in the sewage in order to successfully release phosphorus in the anaerobic tank, and the BOD (mg / L) / TP (total phosphorus: mg / L) concentration ratio of the anaerobic tank inflow water is If it is 20-25 or more, it is said that the release | release of phosphorus is favorable (nonpatent literature 1, nonpatent literature 2).

さらに、好気槽でのリンの過剰摂取については、DOとの関連が多く指摘されている。DOが不足するとリン摂取が阻害されるため、概ね、好気槽末端のDOは、1.5〜2.0mg/L(非特許文献1)あるいは1.5〜3.0mg/Lが望ましいとされている(非特許文献2)。   Furthermore, regarding the excessive intake of phosphorus in the aerobic tank, many relations with DO have been pointed out. Since phosphorus intake is inhibited when DO is insufficient, the DO at the end of the aerobic tank is generally preferably 1.5 to 2.0 mg / L (Non-patent Document 1) or 1.5 to 3.0 mg / L. (Non-Patent Document 2).

しかし、嫌気槽流入水のBOD/T−P比が25以上あっても、嫌気槽でのリンの放出が不良で、処理水中に多量のリンが残留するケースがある。この原因としては、次のような要因が考えられる。(I)雨水が混入した下水や返送汚泥からのNO−NおよびNO−N(以下、NOx−Nと記載)または溶存酸素の嫌気槽への流入。(II)無酸素槽に返送される硝化液からのNOx−Nや溶存酸素の嫌気槽への逆流。(III)嫌気槽での過度の攪拌による溶存酸素の巻き込み。(IV)嫌気槽での短絡流の発生による水理学的滞留時間(以下、HRTと記載)の短縮などが挙げられる。 However, even if the BOD / TP ratio of the anaerobic tank inflow water is 25 or more, there is a case where phosphorus release in the anaerobic tank is poor and a large amount of phosphorus remains in the treated water. The following factors can be considered as the cause. (I) NO 2 -N and NO 3 -N from sewage and return sludge rainwater is mixed (hereinafter, described as NOx-N) or flowing into the anaerobic tank dissolved oxygen. (II) Backflow of NOx-N or dissolved oxygen from the nitrification solution returned to the anoxic tank to the anaerobic tank. (III) Entrainment of dissolved oxygen by excessive stirring in an anaerobic tank. (IV) The hydraulic residence time (henceforth HRT) shortening by generation | occurrence | production of the short circuit flow in an anaerobic tank etc. are mentioned.

これらの嫌気槽の緒条件は、各下水処理場で大きく異なり、このため、嫌気槽流入水のBOD/T−P比が25以上あっても、嫌気槽でのリンの放出が良好とは限らないと思われる。   The conditions of these anaerobic tanks vary greatly depending on the sewage treatment plant. Therefore, even if the BOD / TP ratio of the anaerobic tank inflow water is 25 or more, the release of phosphorus in the anaerobic tank is not always good. It seems not.

これらのことから、リンの除去については、嫌気槽でリンの放出状況をいかに簡易にモニタリングし、この対処方法を開発するかが重要である。この課題に対して、以下のような検討報告例がある。例えば、嫌気槽でリンの放出状況を簡易にモニタリングする方法として、酸化還元電位(以下、ORPと記載、銀/塩化銀電極基準)値に着目した事例がある。 例えば、嫌気槽のORP値とリンの吐き出し現象が密接に関係しており、生物学的リン除去プロセスの嫌気槽のORP値が−270mV超になったら、有機物を多く含む下水(最初沈殿池流入水)や最初沈殿池沈殿汚泥を嫌気槽に流入させ、嫌気槽のORP値を−270mV以下に維持する方法が提案されている(特許文献1)。   For these reasons, it is important to remove phosphorus by simply monitoring the release status of phosphorus in an anaerobic tank and developing a countermeasure. There are the following examples of reports on this issue. For example, as a method for simply monitoring the state of phosphorus release in an anaerobic tank, there is an example focusing on a redox potential (hereinafter referred to as ORP, silver / silver chloride electrode reference) value. For example, the ORP value of the anaerobic tank is closely related to the phosphorus discharge phenomenon, and if the ORP value of the anaerobic tank of the biological phosphorus removal process exceeds -270 mV, sewage containing a large amount of organic matter (first sedimentation tank inflow) Water) or first sedimentation basin sediment sludge is allowed to flow into the anaerobic tank and the ORP value of the anaerobic tank is maintained at −270 mV or less (Patent Document 1).

また、下水(最初沈殿池流入水)や最初沈殿池流出水のORP値を測定し、このORP値の測定値に応じて、下水(最初沈殿池流入水)と最初沈殿池流出水の混合割合を変動させ、嫌気槽のORP値を−270mV以下に維持する方法も提案されている(特許文献2)。   Also, the ORP value of the sewage (first sedimentation basin inflow water) and the first sedimentation basin effluent is measured, and the mixing ratio of the sewage (first sedimentation basin inflow water) and the first sedimentation basin effluent according to the measured value of this ORP value. And a method of maintaining the ORP value of the anaerobic tank at −270 mV or less has been proposed (Patent Document 2).

しかし、特許文献1のような最初沈殿池流入水を用いる方法は、最初沈殿池流入水自体の有機物濃度が不安定であるばかりでなく、反応槽での有機物負荷、窒素負荷を大きく変動させるため、廃水中のBOD成分や窒素の除去を制御することはかなり難しい。   However, the method using the first sedimentation basin inflow water as in Patent Document 1 not only makes the organic matter concentration of the first sedimentation basin inflow water itself unstable, but also greatly fluctuates the organic matter load and nitrogen load in the reaction tank. It is quite difficult to control the removal of BOD components and nitrogen in wastewater.

次に、生物学的硝化−窒素除去プロセスの課題について説明する。窒素除去については、硝化反応にともない、化学式1及び化学式2から4.57kgO/kgNH−Nの酸素消費が発生する。通常、好気槽における硝化反応を促進するため、通常1.5mg/Lの溶存酸素が残存することが必要とされ、管理されている(非特許文献1および非特許文献2)。このため、曝気量が増加し、ブロアーによる電力消量が大きいため、硝化反応を維持できる範囲で、エネルギー消費量を小さくする方策が強く求められている。 Next, the problem of the biological nitrification-nitrogen removal process will be described. For nitrogen removal, oxygen consumption of 4.57 kgO 2 / kgNH 4 —N occurs from Chemical Formula 1 and Chemical Formula 2 with the nitrification reaction. Usually, in order to promote the nitrification reaction in the aerobic tank, it is usually required and managed that 1.5 mg / L of dissolved oxygen remains (Non-Patent Document 1 and Non-Patent Document 2). For this reason, since the amount of aeration is increased and the amount of power consumed by the blower is large, there is a strong demand for measures to reduce the energy consumption within a range where the nitrification reaction can be maintained.

また、生物学的硝化−窒素除去プロセスに関しては、リン除去と同様、有機物の不足により、脱窒反応が進行しにくくなる場合がある。脱窒反応を円滑に進めるためには、下水のBOD(mg/L)/T−N(全窒素、mg/L)濃度比は3程度以上あることが望ましいとされている。下水中の有機物が不足し脱窒反応が進まない場合は、無酸素槽に有機物として例えば、メチルアルコールを添加する方法は広く知られている(非特許文献1)しかし、下水のBOD(mg/L)/T−N(mg/L)濃度比が3以上あっても、無酸素槽での脱窒素が不良で、処理水中に窒素が残留するケースがある。例えば、無酸素槽に返送される硝化液の過剰なDOによる脱窒阻害、過剰な循環量、無酸素槽での短絡流の発生によるHRTの短縮などの原因がある。したがって、一概に下水のBOD(mg/L)/T−N(mg/L)濃度比が3以上あっても、無酸素槽での窒素の除去が良好とは限らない。   Further, regarding the biological nitrification-nitrogen removal process, the denitrification reaction may be difficult to proceed due to the lack of organic matter, as in the case of phosphorus removal. In order to facilitate the denitrification reaction, the BOD (mg / L) / TN (total nitrogen, mg / L) concentration ratio of sewage is desirably about 3 or more. When the organic matter in the sewage is insufficient and the denitrification reaction does not proceed, for example, a method of adding methyl alcohol as an organic matter to the anoxic tank is widely known (Non-patent Document 1). Even if the L) / TN (mg / L) concentration ratio is 3 or more, there are cases in which denitrification in the anoxic tank is poor and nitrogen remains in the treated water. For example, there are causes such as inhibition of denitrification due to excessive DO of the nitrifying liquid returned to the anoxic tank, excessive circulation amount, shortening of HRT due to occurrence of a short circuit flow in the anoxic tank, and the like. Therefore, even if the sewage BOD (mg / L) / TN (mg / L) concentration ratio is generally 3 or more, the removal of nitrogen in the anoxic tank is not always good.

したがって、無酸素槽での脱窒素の状況をいかに簡易にモニタリングし、この対処方法を開発するかが重要である。
特開平3−278893号公報 特開2003−053384号公報 高度処理施設設計マニュアル、p225−252、日本下水道協会、平成6年 嫌気−無酸素−好気法運転管理マニュアル(案)、東京都下水道サービス、平成9年3月、p21−p53
Therefore, it is important how to easily monitor the denitrification situation in the anoxic tank and develop a countermeasure.
JP-A-3-278893 JP 2003-053384 A Advanced treatment facility design manual, p225-252, Japan Sewerage Association, 1994 Anaerobic-anoxic-aerobic operation management manual (draft), Tokyo Sewerage Service, March 1997, p21-p53

上記課題を簡単にまとめると、生物学的リン除去プロセスは、下水中の有機物濃度の低下、好気槽末端のDOの低下、嫌気槽流入水のBOD/T−P濃度比の低下、嫌気槽のNOx−N濃度の上昇、嫌気槽のDOの上昇、および嫌気槽でのHRTの短絡などの多くの不安定要素によりリンの除去が阻害されるおそれがある。また、多くの不安定要素をそれぞれモニタリングすることは困難である。   To summarize the above problems, the biological phosphorus removal process consists of a reduction in organic matter concentration in sewage, a decrease in DO at the end of the aerobic tank, a decrease in the BOD / TP concentration ratio of the anaerobic tank inflow water, an anaerobic tank The removal of phosphorus may be hindered by a number of unstable factors such as an increase in NOx-N concentration, an increase in DO in the anaerobic tank, and a short circuit of HRT in the anaerobic tank. In addition, it is difficult to monitor many unstable elements.

一方、窒素除去は、下水中の有機物濃度の低下、好気層末端のDOの低下、下水のBOD/T−N濃度比の低下、無酸素層のDOの上昇、無酸素槽でのHRTの短絡、および無酸素槽での循環量の上昇などの多くの不安定要素により窒素の除去が阻害されるおそれがある。また、多くの不安定要素をそれぞれモニタリングすることは困難である。更に、ブロアーによる電力の消費が上昇するという問題もある。   On the other hand, nitrogen removal is a reduction in organic matter concentration in sewage, a decrease in DO at the end of the aerobic layer, a decrease in the BOD / TN concentration ratio of sewage, an increase in DO in the anaerobic layer, and Nitrogen removal may be hindered by many unstable factors such as short circuits and increased circulation in anoxic tanks. In addition, it is difficult to monitor many unstable elements. Furthermore, there is a problem that power consumption by the blower increases.

下水からの生物学的リン・窒素除去プロセスについては、前述したリン除去、および、窒素除去の課題を併せ持つが、窒素除去の最適条件とリン除去の最適条件が相反する場合が多いため、課題解決がより難しい。   The biological phosphorus / nitrogen removal process from sewage has both the above-mentioned problems of phosphorus removal and nitrogen removal, but there are many cases where the optimal conditions for nitrogen removal and the optimal conditions for phosphorus removal are often contradictory. Is more difficult.

本発明は嫌気槽でのリン除去と、無酸素槽での脱窒素の状況とを簡易にモニタリングすることにより、安定的に下水からリンおよび/または窒素を除去することのできる生物学的除去方法を提供することを目的とする。   The present invention provides a biological removal method capable of stably removing phosphorus and / or nitrogen from sewage by simply monitoring phosphorus removal in an anaerobic tank and denitrification in an anaerobic tank. The purpose is to provide.

本発明者らは、上記の課題を解決すべく検討を重ねた結果、以下の方法により、下水から安定して窒素および/またはリンを除去することに成功した。本発明の要旨とするところは、次の(1)〜(10)である。   As a result of repeated studies to solve the above problems, the present inventors succeeded in stably removing nitrogen and / or phosphorus from sewage by the following method. The gist of the present invention is the following (1) to (10).

(1)最初沈殿池、嫌気槽、好気槽及び最終沈殿池の各下水処理槽、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池の各下水処理槽を用いた生物学的な下水処理方法において、嫌気槽のORP値が−400mV以上−200mV以下の範囲に維持されるように有機酸を嫌気槽に添加することを特徴とする下水処理方法である。   (1) Each sewage treatment tank of the first settling basin, anaerobic tank, aerobic tub and final basin, or each sewage treatment tank of the first settling basin, anaerobic tub, anaerobic tank, aerobic tub and final basin was used. In the biological sewage treatment method, the organic acid is added to the anaerobic tank so that the ORP value of the anaerobic tank is maintained in the range of −400 mV to −200 mV.

(2)嫌気槽のORP値の累積頻度の50%以上が−350mV以上−250mV以下の範囲に維持されるように、前記有機酸を嫌気槽に添加することを特徴とする(1)に記載の下水処理方法である。   (2) The organic acid is added to the anaerobic tank so that 50% or more of the cumulative frequency of the ORP value of the anaerobic tank is maintained in the range of −350 mV to −250 mV. Is a sewage treatment method.

(3)最初沈殿池、無酸素槽、好気槽及び最終沈殿池の各下水処理槽、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池の各下水処理槽を用いた生物学的な下水処理方法において、無酸素槽のORP値が−200mV以上−100mV以下の範囲に維持されるように有機酸を前記無酸素槽に添加すること、前記好気槽から前記無酸素槽への硝化液の循環量を調整すること、前記好気槽のORP値を調整すること、および前記好気槽のDOを調整すること、からなる群より選択される少なくとも1種を行なうことを特徴とする下水処理方法である。   (3) Use each sewage treatment tank of the first sedimentation basin, anoxic tank, aerobic tank and final sedimentation basin, or each sewage treatment tank of the first sedimentation basin, anaerobic tank, anaerobic tank, aerobic tank and final sedimentation basin In the biological sewage treatment method, an organic acid is added to the anaerobic tank so that the ORP value of the anaerobic tank is maintained in the range of −200 mV to −100 mV. At least one selected from the group consisting of adjusting the amount of nitrating liquid circulating to the oxygen tank, adjusting the ORP value of the aerobic tank, and adjusting the DO of the aerobic tank is performed. This is a method for treating sewage.

(4)無酸素槽のORP値の累積頻度の50%以上が−200mV以上−150mV以下の範囲に維持されるように、前記第二有機酸を前記無酸素槽に添加すること、前記好気槽から前記無酸素槽への硝化液の循環量を調整すること、前記好気槽のORP値を調整すること、および前記好気槽のDOを調整すること、からなる群より選択される少なくとも1種を行なうことを特徴とする3)に記載の下水処理方法である。   (4) adding the second organic acid to the anaerobic tank so that 50% or more of the cumulative frequency of the ORP value of the anoxic tank is maintained in a range of −200 mV to −150 mV, the aerobic At least selected from the group consisting of adjusting the circulation rate of the nitrification liquid from the tank to the anaerobic tank, adjusting the ORP value of the aerobic tank, and adjusting the DO of the aerobic tank The sewage treatment method according to 3), wherein one type is performed.

(5)前記嫌気槽のPO−P濃度が10mg/Lとなるように前記有機酸の前記嫌気槽への添加量を調整し、前記嫌気槽に流入する下水中および返送汚泥中のNOx−N濃度及びDOによって単位時間当たりに消費される有機酸量を計算し、前記嫌気槽に添加する前記有機酸の量を増やすことを特徴とする(1)〜(4)のいずれかに記載の下水処理方法である。 (5) The amount of the organic acid added to the anaerobic tank is adjusted so that the PO 4 -P concentration in the anaerobic tank is 10 mg / L, and NOx− in the sewage and return sludge flowing into the anaerobic tank The amount of the organic acid consumed per unit time by N concentration and DO is calculated, and the amount of the organic acid added to the anaerobic tank is increased, (1) to (4), Sewage treatment method.

(6)好気槽のORP値が+70mV以上+100mV以下となるように、好気槽のブロアーによる曝気量を調整することを特徴とする(1)〜(5)のいずれかに記載の下水からのからの下水処理方法である。   (6) The aeration amount by the blower of the aerobic tank is adjusted so that the ORP value of the aerobic tank becomes +70 mV or more and +100 mV or less. The sewage according to any one of (1) to (5) This is a sewage treatment method.

(7)好気槽のDOが0.5mg/L以上1.5mg/L以下となるように好気槽のブロアーによる曝気量を調整することを特徴とする(1)〜(6)のいずれかに記載の下水処理方法である。   (7) Any of (1) to (6), wherein the aeration amount by the blower of the aerobic tank is adjusted so that DO of the aerobic tank is 0.5 mg / L or more and 1.5 mg / L or less. This is a sewage treatment method described in the above.

(8)好気槽の後段に更に第2無酸素槽及び第2好気槽を順に有することを特徴とする(1)〜(7)のいずれかに記載の下水処理方法である。   (8) The sewage treatment method according to any one of (1) to (7), further including a second anaerobic tank and a second aerobic tank in order after the aerobic tank.

(9)嫌気槽、無酸素槽、好気槽の1槽又は2槽以上に微生物固定化担体を投入することを特徴とする(1)〜(8)のいずれかに記載の下水処理方法である。   (9) The sewage treatment method according to any one of (1) to (8), wherein the microorganism-immobilized carrier is introduced into one or more of an anaerobic tank, an oxygen-free tank, and an aerobic tank. is there.

(10)嫌気槽、無酸素槽の少なくともいずれかに添加する有機酸が、酢酸および/または酢酸塩であることを特徴とする(1)〜(9)のいずれかに記載の下水処理方法である。   (10) The sewage treatment method according to any one of (1) to (9), wherein the organic acid added to at least one of the anaerobic tank and the anaerobic tank is acetic acid and / or acetate. is there.

本発明により、窒素及びリンを含有する下水から、安定して窒素および/またはリンを除去することが可能となる。   According to the present invention, nitrogen and / or phosphorus can be stably removed from sewage containing nitrogen and phosphorus.

本発明の処理フロ−の1例を図1、図2、および図3に示す。図1は、本発明の生物学的リン除去プロセスである。反応槽は、嫌気槽4と好気槽6とから成り立っている。図2は、本発明の生物学的硝化−窒素除去プロセスである。反応槽は、無酸素槽5と好気槽6とから成り立っている。図3は、リン除去機能に加え、脱窒素機能も有する本発明の生物学的リン・窒素除去プロセスである。反応槽は、嫌気槽4、無酸素槽5、および好気槽6から成り立っている。   An example of the processing flow of the present invention is shown in FIGS. FIG. 1 is the biological phosphorus removal process of the present invention. The reaction tank is composed of an anaerobic tank 4 and an aerobic tank 6. FIG. 2 is the biological nitrification-nitrogen removal process of the present invention. The reaction tank is composed of an oxygen-free tank 5 and an aerobic tank 6. FIG. 3 shows the biological phosphorus / nitrogen removal process of the present invention having a denitrification function in addition to a phosphorus removal function. The reaction tank includes an anaerobic tank 4, an oxygen-free tank 5, and an aerobic tank 6.

生物学的リン・窒素除去プロセスは、図1の生物学的リン除去プロセス、および、図2の生物学的硝化−窒素除去プロセスの機能を包含しているため、図3の生物学的リン・窒素除去プロセスを事例として発明の形態を説明する。   The biological phosphorus / nitrogen removal process includes the functions of the biological phosphorus removal process of FIG. 1 and the biological nitrification-nitrogen removal process of FIG. The embodiment of the present invention will be described using a nitrogen removal process as an example.

まず、下水1に含まれる粗大浮遊物(主として汚泥)は、最初沈殿池2において沈降除去される。その後、最初沈殿池流出水3は、嫌気槽4に流入する。   First, coarse suspended matters (mainly sludge) contained in the sewage 1 are settled and removed in the first settling basin 2. Thereafter, the first settling basin effluent 3 flows into the anaerobic tank 4.

(嫌気槽)
嫌気槽4は、以下のように管理する。まず、生物学的リン除去の機構について簡単に述べる。生物学的リン除去を行なうポリリン酸蓄積細菌は、好気条件下で吸収したPO−Pを細胞内でポリリン酸の顆粒として保持しており、嫌気槽4においては、この顆粒のポリリン酸を加水分解して、PO−Pとして放出するとともに、下水1中の有機物、特に有機酸20や発酵産物を優先的に細胞内に摂取する。PO−Pの放出速度は、基質の種類や濃度によって大きく異なっており、酢酸などの有機酸20が基質である場合にPO−Pの放出速度が大きいとされている。細胞内に摂取された有機物は、グリコーゲンやPHB(ポリハイドロブチレイト)などの高分子物質の形で貯蔵される。これらの細胞内物質は、再び、ポリリン酸蓄積細菌を好気条件下に置くと、酸化分解され減少するが、ポリリン酸蓄積細菌はこの基質を利用することにより増殖する。また、ポリリン酸蓄積細菌は嫌気槽4で放出した量以上のPO−Pを過度にとりこみ、細胞内でポリリン酸の顆粒として保持するため、下水1中のPO−Pは減少する。
(Anaerobic tank)
The anaerobic tank 4 is managed as follows. First, the mechanism of biological phosphorus removal will be briefly described. The polyphosphate-accumulating bacterium that performs biological phosphorus removal retains PO 4 -P absorbed under aerobic conditions as granules of polyphosphate in cells, and in the anaerobic tank 4, the polyphosphate of the granules is retained. It was hydrolyzed with release as PO 4 -P, organic matter in sewage 1, especially ingested organic acid 20 and fermentation product preferentially to the cell. The release rate of PO 4 -P varies greatly depending on the type and concentration of the substrate, and it is said that the release rate of PO 4 -P is high when the organic acid 20 such as acetic acid is the substrate. Organic substances taken into cells are stored in the form of polymer substances such as glycogen and PHB (polyhydrobutyrate). These intracellular substances are reduced by oxidative degradation when the polyphosphate-accumulating bacteria are put under aerobic conditions, but the polyphosphate-accumulating bacteria grow by utilizing this substrate. In addition, since the polyphosphate-accumulating bacteria excessively take up PO 4 -P more than the amount released in the anaerobic tank 4 and hold it as granules of polyphosphate in the cells, the PO 4 -P in the sewage 1 decreases.

このような生物学的リン除去を行なうポリリン酸蓄積細菌の反応を促進する上で重要なことは、有機酸20や発酵産物の存在であるが、これらの有機酸20や発酵産物は、BOD成分の一部ではあるものの、下水1のBOD濃度が高いからといってこれらの有機酸20や発酵産物濃度が高いとは必ずしも限らない。したがって、BOD濃度よりも下水1中の有機酸の濃度(mg/L)などを指標とする方がより有効である。嫌気槽4において、リン放出に必要な有機物の種類や必要量に関しては多くの研究事例があるが、希望するリンの放出量を1としたときに、添加する有機酸20の量をモル比で1.3程度とすることが好ましいとの報告がある(例えば、The effect of organic compounds on biological phosphorus removal,Water Science Technology,1991,Vol.23,No.4/6,p585−p591)。したがって、嫌気槽4への有機酸20の添加量は公知となっているこの数字を参考にすることができる。例えば、リン放出に対する酢酸利用をモル比で1.3とする場合、嫌気槽4で10mg/LのPO−P放出を促すためには、必要な酢酸量は嫌気槽の容量あたり25mg/Lとなる。しかし、実際の処理設備では、雨水や返送汚泥8の影響により、嫌気槽4にNOx−Nや溶存酸素が流入する場合がしばしばあり、嫌気槽4において、NOx−N、及び溶存酸素が存在すると、有機酸20は直ちに分解されてしまう。以下に、有機酸20として、酢酸を用いた場合の反応を示す。 What is important in promoting the reaction of polyphosphate-accumulating bacteria that perform such biological phosphorus removal is the presence of organic acid 20 and fermentation products. These organic acids 20 and fermentation products contain BOD components. However, just because the sewage 1 has a high BOD concentration, the organic acid 20 and the fermentation product concentration are not necessarily high. Therefore, it is more effective to use the concentration (mg / L) of the organic acid in the sewage 1 as an index than the BOD concentration. In the anaerobic tank 4, there are many research examples regarding the types and required amounts of organic substances required for phosphorus release. When the desired release amount of phosphorus is 1, the amount of organic acid 20 to be added is in molar ratio. There is a report that it is preferably about 1.3 (for example, The effects of organic compounds on biological phosphorous removal, Water Science Technology, 1991, Vol. 23, No. 4/6, p585-p591). Therefore, the number of the organic acid 20 added to the anaerobic tank 4 can be referred to this known number. For example, when the molar ratio of acetic acid utilization to phosphorus release is 1.3, in order to promote 10 mg / L PO 4 -P release in the anaerobic tank 4, the amount of acetic acid required is 25 mg / L per anaerobic tank volume. It becomes. However, in actual treatment equipment, NOx-N and dissolved oxygen often flow into the anaerobic tank 4 due to the influence of rainwater and return sludge 8, and NOx-N and dissolved oxygen exist in the anaerobic tank 4. The organic acid 20 is immediately decomposed. The reaction when acetic acid is used as the organic acid 20 is shown below.

化学式5〜7から、例えば、NO−Nが1mg/L存在すると、これに伴い、酢酸2.7mg/Lが消費されることとなる。また、NO−Nが1mg/L存在すると、これに伴い、酢酸1.6mg/Lが消費されることとなる。一方、溶存酸素は1mg/L存在すると、これに伴い、酢酸0.9mg/Lが消費されることとなる。この結果から、特に、NO−Nの存在が酢酸の消費に及ぼす影響が極めて大きいことがわかる。 From Chemical Formulas 5 to 7, for example, when NO 3 -N is present at 1 mg / L, acetic acid 2.7 mg / L is consumed accordingly. Further, when NO 2 —N is present at 1 mg / L, acetic acid 1.6 mg / L is consumed accordingly. On the other hand, when 1 mg / L of dissolved oxygen is present, acetic acid 0.9 mg / L is consumed accordingly. From this result, it can be seen that the influence of the presence of NO 3 -N particularly on the consumption of acetic acid is extremely large.

NO−N、NO−N、及び溶存酸素は、調査の結果、雨水が混入する下水1や返送汚泥8中にも存在する場合がたびたびあるが、特に、好気槽6の運転条件によっては、最終沈殿池7から嫌気槽4に返送される返送汚泥8中に高濃度のNO−Nが存在することが判明した。この場合、嫌気槽4においてリンの放出が極めて生じにくくなるおそれがある。例えば、流入してくる下水の酢酸濃度が20mg/Lあったとしても、NO−Nを10mg/L含む返送汚泥8が下水1に対して50V/V%混入すると、NO−Nが13.5mg/Lの酢酸を消費してしまう。 As a result of investigation, NO 3 -N, NO 2 -N, and dissolved oxygen often exist in the sewage 1 and the return sludge 8 mixed with rainwater, but in particular, depending on the operating conditions of the aerobic tank 6. It was found that high concentration of NO 3 -N exists in the return sludge 8 returned from the final sedimentation tank 7 to the anaerobic tank 4. In this case, there is a possibility that release of phosphorus is extremely difficult to occur in the anaerobic tank 4. For example, even if the concentration of acetic acid flowed come sewage was 20 mg / L, the return sludge 8 containing NO 3 -N 10mg / L is mixed 50 V / V% relative to sewage 1, NO 3 -N 13 Consumes 5 mg / L of acetic acid.

また、下水1中あるいは返送汚泥8中のNOx−Nや溶存酸素による有機酸20の消費ばかりでなく、無酸素槽からの逆流などの装置特性も影響する場合がある。したがって、下水1中の有機酸20の濃度のみで、嫌気槽4でのリンの放出を判断するのは難しく、また、この嫌気槽4でのリンの吐き出しに関与する要因(有機酸20、NOx−N濃度、DO、装置特性など)を、すべて事前に把握して有機酸20の添加量を制御することは困難と考えられる。   Moreover, not only the consumption of the organic acid 20 by NOx-N or dissolved oxygen in the sewage 1 or the returned sludge 8 but also apparatus characteristics such as backflow from the anoxic tank may be affected. Therefore, it is difficult to judge the release of phosphorus in the anaerobic tank 4 only by the concentration of the organic acid 20 in the sewage 1, and the factors (organic acid 20, NOx, which are involved in the discharge of phosphorus in the anaerobic tank 4). -N concentration, DO, device characteristics, etc.) are all known in advance, and it is considered difficult to control the amount of organic acid 20 added.

そこで、発明者らは嫌気槽4のORP計13によるモニタリングを行いながら有機酸20を添加する方法を発案し、嫌気槽4のORP値を−200mV以下−400mV以上に維持し、好ましくはORP値の測定累積頻度の50%以上が−250mV以下−350mV以上に維持されるように有機酸20を嫌気槽4に添加する方法を開発した。   Therefore, the inventors have devised a method of adding the organic acid 20 while monitoring the anaerobic tank 4 with the ORP meter 13, and maintain the ORP value of the anaerobic tank 4 at −200 mV or lower and −400 mV or higher, preferably the ORP value. The method of adding the organic acid 20 to the anaerobic tank 4 was developed so that 50% or more of the measured cumulative frequency was maintained at −250 mV or less and −350 mV or more.

ORP値の制御による有機酸20の添加の具体的方法の1例を示すと、嫌気槽4のORP値が−250mV以上になると、有機酸タンク11から有機酸20を薬注ポンプ12により、嫌気槽4に添加し、嫌気槽4のORP値が目的の値になると停止させることにより、嫌気槽4のORP値が−200mV以下−400mV以上に納まるように運転する。   An example of a specific method for adding the organic acid 20 by controlling the ORP value is as follows. When the ORP value of the anaerobic tank 4 is −250 mV or more, the organic acid 20 is anaerobically removed from the organic acid tank 11 by the chemical injection pump 12. By adding to the tank 4 and stopping when the ORP value of the anaerobic tank 4 reaches a target value, the ORP value of the anaerobic tank 4 is operated so as to be within −200 mV or less and −400 mV or more.

より詳細には、一定期間、嫌気槽4のORP値の累積頻度を測定し、嫌気槽4のORP計13によるモニタリングを行い、ORP値が−200mV以下−400mV以上となるように有機酸20を添加する。更に、ORP値の累積頻度の50%以上が−350mV以上−250mV以下の範囲に維持されるように有機酸20を添加することが好ましい。累積頻度の採取頻度は、1分から10分毎にデータを毎日採取し、これをデータ解析し、一定期間あたりのORP値の累積頻度を算出する。累積頻度の算出の詳細例を示すと、嫌気槽4のORP計13にて計測したORP値を、1分から10分の間で設定した任意の時間間隔毎に自動データ収集装置(例えば、キーエンス社 モデルGR3500)で記録し、記録したORP測定データのうち累積頻度を解析したい所定の期間に属する素データについてORP値にして1mVから50mVの範囲で選ばれる任意のデータ区間毎の出現度数を例えばマイクロソフト社マイクロソフトエクセルなどの表計算ソフトを使用して集計し、その出現度数に基づいて累積頻度を算出する。例えば、流入してくる下水1の水質時間変動のパターンがほぼ一定の場合は、1日あたりのORP値の累積頻度で判断すればよい。降雨などの影響で下水1の水質に急激な変動がある場合は、降雨の影響が認められる期間でのORP値の累積頻度で判断すればよい。   More specifically, the cumulative frequency of the ORP value in the anaerobic tank 4 is measured for a certain period, and monitoring is performed by the ORP meter 13 in the anaerobic tank 4, and the organic acid 20 is adjusted so that the ORP value is −200 mV or less and −400 mV or more. Added. Furthermore, it is preferable to add the organic acid 20 so that 50% or more of the cumulative frequency of the ORP value is maintained in the range of −350 mV to −250 mV. As for the collection frequency of the cumulative frequency, data is collected every 1 to 10 minutes every day, this is analyzed, and the cumulative frequency of ORP values per fixed period is calculated. A detailed example of the calculation of the cumulative frequency will show an automatic data collection device (for example, Keyence Corporation) at an arbitrary time interval set between 1 minute and 10 minutes with the ORP value measured by the ORP meter 13 of the anaerobic tank 4 Model GR3500), and the ORP value of the raw data belonging to a predetermined period for which the cumulative frequency is to be analyzed among the recorded ORP measurement data is expressed as an ORP value for each arbitrary data section selected in the range of 1 mV to 50 mV, for example, Microsoft Aggregate using spreadsheet software such as Microsoft Excel, Inc., and calculate the cumulative frequency based on the frequency of appearance. For example, when the pattern of the water quality time fluctuation of the inflowing sewage 1 is substantially constant, the determination may be made based on the cumulative frequency of the ORP values per day. If there is a sudden change in the quality of the sewage 1 due to the influence of rainfall or the like, the determination may be made based on the cumulative frequency of ORP values during the period in which the influence of the rain is recognized.

図6に発明者らが検討した嫌気槽4のORP値と嫌気槽4のPO−P濃度の関係を示す。図6には、ORP計13によるモニタリングを行い、有機酸20として酢酸を嫌気槽4に下水流入量あたり30mg/Lで添加し、ORP値を制御した本発明の有機酸20の添加方法(図6では発明法と記載)の場合と、有機酸20を無添加の従来の方法(図6では従来法と記載)とを示す。従来法では、嫌気槽4のORP値が−100〜−300mVと大きくばらつき、リンの放出量も小さいが、発明法では、嫌気槽4のORP値の測定累積頻度の50%以上が−250mV以下となり、又リンの放出量が大きくなった。このようにORP値を制御するように有機酸20を添加すると嫌気槽4のORP値を低く維持でき、リンの放出量が大きくなる。 FIG. 6 shows the relationship between the ORP value of the anaerobic tank 4 and the PO 4 -P concentration in the anaerobic tank 4 examined by the inventors. In FIG. 6, monitoring is performed by the ORP meter 13, and acetic acid is added as an organic acid 20 to the anaerobic tank 4 at a rate of 30 mg / L per sewage inflow to add the organic acid 20 of the present invention in which the ORP value is controlled (FIG. 6). 6 shows the case of the invention method) and the conventional method without addition of the organic acid 20 (shown as the conventional method in FIG. 6). In the conventional method, the ORP value of the anaerobic tank 4 varies greatly from −100 to −300 mV, and the amount of released phosphorus is small, but in the invention method, 50% or more of the measured cumulative frequency of the ORP value of the anaerobic tank 4 is −250 mV or less. In addition, the amount of phosphorus released increased. When the organic acid 20 is added so as to control the ORP value in this way, the ORP value of the anaerobic tank 4 can be kept low, and the amount of phosphorus released increases.

薬品のコストを考慮すると、ORP値は−350mV以上に維持することが好ましい。   Considering the cost of chemicals, the ORP value is preferably maintained at −350 mV or higher.

この有機酸20の添加及び停止のタイミングは、反応槽の容量、HRT、有機酸20の濃度および有機酸20の投入流量に応じて適宜決定することができる。   The timing of adding and stopping the organic acid 20 can be appropriately determined according to the capacity of the reaction vessel, HRT, the concentration of the organic acid 20, and the flow rate of the organic acid 20.

図7に嫌気槽4のORP値と嫌気槽4のNOx−N濃度との関係を示す。有機酸20として酢酸を、ORP計13によるモニタリングを行いながら嫌気槽4に下水流入量あたり30mg/Lで添加した、本発明の有機酸20の添加方法(図7では発明法と記載)の場合と、有機酸20を無添加の従来の方法(図7では従来法と記載)を示す。この結果から、嫌気槽4にNOx−Nが存在すれば、ORP値が上昇し易いことがわかる。NOx−Nは、雨水や返送汚泥8から嫌気槽4に流入する。外部から酢酸を添加するとNOx−Nは、脱窒素反応により嫌気槽4で活性汚泥中の脱窒細菌により容易に消費され、この結果、ORP値も−300〜−200mVと低くなることがわかる。   FIG. 7 shows the relationship between the ORP value in the anaerobic tank 4 and the NOx-N concentration in the anaerobic tank 4. In the case of the addition method of organic acid 20 of the present invention (described as “invention method” in FIG. 7) in which acetic acid is added to the anaerobic tank 4 at 30 mg / L per sewage inflow while monitoring with the ORP meter 13 as the organic acid 20 And a conventional method in which the organic acid 20 is not added (referred to as a conventional method in FIG. 7). From this result, it can be seen that if NOx-N is present in the anaerobic tank 4, the ORP value is likely to increase. NOx-N flows into the anaerobic tank 4 from rainwater or return sludge 8. When acetic acid is added from the outside, NOx-N is easily consumed by the denitrifying bacteria in the activated sludge in the anaerobic tank 4 by the denitrification reaction, and as a result, the ORP value is also reduced to -300 to -200 mV.

また、図8に本発明の有機酸20の添加方法(図8では発明法と記載)の場合と、有機酸20を無添加の従来の方法(図8では従来法と記載)における嫌気槽4のPO−Pと最終沈殿池流出水19のPO−P濃度との関係を示す。この結果から、嫌気槽4のPO−P濃度が10mg/L以上あれば、最終沈殿池流出水19のPO−P濃度は0.5mg/L以下となることがわかる。また、この結果から、嫌気槽4でのPO−P放出濃度の目安は、10mg/L程度と考えられる。 8 shows the anaerobic tank 4 in the case of the method of adding the organic acid 20 of the present invention (described as the invention method in FIG. 8) and the conventional method in which the organic acid 20 is not added (described in the conventional method in FIG. 8). shows the relationship between PO 4 -P concentration of PO 4 -P and settling tank effluent 19. From this result, if PO 4 -P concentration of the anaerobic tank 4 is 10 mg / L or more, PO 4 -P concentration of the final sedimentation effluent 19 is seen to be a less 0.5 mg / L. Moreover, from this result, the standard of the PO 4 -P release concentration in the anaerobic tank 4 is considered to be about 10 mg / L.

以上のように、嫌気槽4のORP値を連続してモニタリングすると、下水1、返送汚泥8及び嫌気槽4のNOx−Nまたは有機酸20を連続測定しなくても、嫌気槽4でのリンの放出状態をリアルタイムに推定することができる。また、嫌気槽4のORP値を制御するための有機酸20の添加は、従来技術では不安定であったリン除去の安定化に極めて効果がある。   As described above, when the ORP value in the anaerobic tank 4 is continuously monitored, the phosphorus in the anaerobic tank 4 can be obtained without continuously measuring the sewage 1, the return sludge 8 and the NOx-N or the organic acid 20 in the anaerobic tank 4. Can be estimated in real time. Further, the addition of the organic acid 20 for controlling the ORP value of the anaerobic tank 4 is extremely effective for stabilizing phosphorus removal, which was unstable in the prior art.

さらに、嫌気槽4への有機酸20の添加量であるが、嫌気槽4のORP値をORP計13でモニタリングしながら嫌気槽4のORP値が所定の範囲となるように適宜添加することができ、添加流量も適宜決定することができる。しかし、有機酸20の添加量が小さすぎると、有機酸20を添加してから実際にORP値が変化するまでは、タイムラグを生じて所定のORP値の範囲から逸脱することもありうる。このことから、ORP値を所定の制御範囲内に留めることができるように、予め有機酸20の添加量をある程度予測しておくことが望ましい。   Furthermore, the amount of the organic acid 20 added to the anaerobic tank 4 is appropriately added so that the ORP value of the anaerobic tank 4 falls within a predetermined range while monitoring the ORP value of the anaerobic tank 4 with the ORP meter 13. The addition flow rate can also be determined as appropriate. However, if the amount of the organic acid 20 added is too small, there may be a time lag from the ORP value range until the ORP value actually changes after the organic acid 20 is added. For this reason, it is desirable to predict the amount of organic acid 20 added to some extent in advance so that the ORP value can be kept within a predetermined control range.

例えば、有機酸の添加量は、先にも述べたように、リン放出に対する酢酸利用は、モル比で1.3程度とすることが好ましい。したがって、嫌気槽への有機酸添加量は公知となっているこれらの数字を参考することができる。例えば、モル比が1.3の場合、嫌気槽で10mg/LのPO−P放出を促すためには、必要な酢酸量は25mg/Lとなる。 For example, as described above, the amount of organic acid added is preferably about 1.3 in terms of molar ratio for the use of acetic acid for phosphorus release. Therefore, it is possible to refer to these known numbers for the amount of organic acid added to the anaerobic tank. For example, when the molar ratio is 1.3, the amount of acetic acid required to promote the release of 10 mg / L PO 4 -P in the anaerobic tank is 25 mg / L.

しかし、下水1や返送汚泥8により、嫌気槽4に、溶存酸素やNOx−Nが存在し、有機酸20が大きく消費されることが明らかな場合には、以下のような方法を用いることができる。すなわち、最初沈澱池流出水3および返送汚泥8中のNOx−N濃度及びDOを定期的に測定し、嫌気槽4に流入するこれらNOx−N及び溶存酸素の質量から、消費される有機酸20の量を化学式5〜7を用いて計算し、嫌気槽4に添加する有機酸20の添加量を、計算によって算出した値の分だけ、更に増やして添加することが好ましい。   However, when it is clear that dissolved oxygen and NOx-N are present in the anaerobic tank 4 due to the sewage 1 and the returned sludge 8, and the organic acid 20 is consumed greatly, the following method may be used. it can. That is, the NOx-N concentration and DO in the first sedimentation basin effluent 3 and the return sludge 8 are periodically measured, and the consumed organic acid 20 is determined from the mass of these NOx-N and dissolved oxygen flowing into the anaerobic tank 4. It is preferable to further increase the amount of the organic acid 20 added to the anaerobic tank 4 by the value calculated by calculation.

以上の方法によっても、嫌気槽4の構造的な問題からORP値を所定の範囲内に維持できない場合は、ORP値をORP計13でモニタリングしながら適宜有機酸20の添加量をさらに増加させてもかまわない。   If the ORP value cannot be maintained within the predetermined range due to the structural problem of the anaerobic tank 4 even by the above method, the amount of the organic acid 20 added is appropriately increased while monitoring the ORP value with the ORP meter 13. It doesn't matter.

また、最初沈澱池流出水3の有機酸20の濃度が常に低く、嫌気槽4のORP値が高く推移し、有機酸20の外部添加が常時必要な場合には、有機酸20の添加に加えて、嫌気槽4のORP値が−250mV以下になるように、下水1の一部(例えば10%程度)を嫌気槽4に直接流入させてもかまわない。   In addition, when the concentration of the organic acid 20 in the first settling basin effluent 3 is always low, the ORP value of the anaerobic tank 4 is high, and external addition of the organic acid 20 is always required, in addition to the addition of the organic acid 20 Then, a part (for example, about 10%) of the sewage 1 may be directly flowed into the anaerobic tank 4 so that the ORP value of the anaerobic tank 4 becomes −250 mV or less.

(無酸素槽)
次に、無酸素槽5の運転方法を説明する。
(Anoxic tank)
Next, an operation method of the anoxic tank 5 will be described.

無酸素槽5では、好気槽6で生成したNO−N及びNO−Nを含む硝化液15を無酸素槽5に循環ポンプ16を用いて循環し、最初沈澱池流出水3中のBODを用いて硝化液15中のNO−N及びNO−Nを窒素ガスまで還元する。前段に嫌気槽4がある場合、下水1中の一部のBOD成分、例えば有機酸20は、ポリリン酸蓄積細菌による取りこみで減少するので、残留BOD成分を用いて、脱窒反応を行なう。この残留BOD成分の測定は、活性汚泥に吸着されているものもあり、かなり困難である。 In the anaerobic tank 5, the nitrification liquid 15 containing NO 2 —N and NO 3 —N generated in the aerobic tank 6 is circulated to the anoxic tank 5 using the circulation pump 16, NO 2 —N and NO 3 —N in the nitrification solution 15 are reduced to nitrogen gas using BOD. When there is an anaerobic tank 4 in the previous stage, a part of the BOD component in the sewage 1, for example, the organic acid 20, decreases due to the uptake by the polyphosphate-accumulating bacteria, so the denitrification reaction is performed using the residual BOD component. The measurement of this residual BOD component is quite difficult because there are some adsorbed on activated sludge.

硝化液15の循環量は、下水1の流入量に対して、通常100〜200V/V%とすることが好ましい。この場合、理論窒素除去率Eは、以下の式1で表される。   The circulating amount of the nitrifying solution 15 is preferably 100 to 200 V / V% with respect to the inflow amount of the sewage 1. In this case, the theoretical nitrogen removal rate E is expressed by the following formula 1.

式1において、Eは理論窒素除去率(%)であり、Rは硝化液循環比(−)である。   In Equation 1, E is the theoretical nitrogen removal rate (%), and R is the nitrification liquid circulation ratio (−).

しかし、実際には下水1の流入量に対する硝化液15の循環量は200V/V%までは窒素除去率が向上するが、これ以上増加させても窒素除去率を向上させることは難しい。これは、硝化液15の循環量を増やしても、無酸素槽5での有機物/窒素比が低下したり、硝化液15中の溶存酸素の持ち込み量が増え、脱窒阻害が生じやすいためである。   However, in practice, the nitrogen removal rate is improved up to 200 V / V% as the circulation amount of the nitrification liquid 15 with respect to the inflow amount of the sewage 1, but it is difficult to improve the nitrogen removal rate even if it is increased further. This is because even if the circulation amount of the nitrification solution 15 is increased, the organic matter / nitrogen ratio in the anaerobic tank 5 is reduced, or the amount of dissolved oxygen brought into the nitrification solution 15 is increased, which tends to cause denitrification inhibition. is there.

図9に本発明の有機酸20の添加方法(図9では発明法と記載)の場合と、有機酸20を無添加の従来の方法(図9では従来法と記載)における無酸素槽5のORP値と無酸素槽5のNOx−N濃度との関係を示す。無酸素槽5の脱窒反応が低下し、NOx−Nが残留するとORP値が上昇する。例えば、ORP値が−150mV以下ではNOx−N濃度は0.5mg/L以下であるが、ORP値が−100mVを越えるとNOx−N濃度は2.0mg/Lをオーバーする。この結果から、無酸素槽5のORP値は、−200mV以上−100mV以下であることが望ましい。また、一定期間、無酸素槽5のORP値の累積頻度を測定し、無酸素槽5のORP値が−200mV以上−100mV以下で、累積頻度の50%以上が−200mV以上−150mV以下の範囲に維持されているとより好ましい。   FIG. 9 shows the method of adding the organic acid 20 according to the present invention (described as the inventive method in FIG. 9) and the conventional method in which the organic acid 20 is not added (described as the conventional method in FIG. 9). The relationship between the ORP value and the NOx-N concentration in the oxygen-free tank 5 is shown. When the denitrification reaction of the anaerobic tank 5 decreases and NOx-N remains, the ORP value increases. For example, when the ORP value is −150 mV or less, the NOx—N concentration is 0.5 mg / L or less, but when the ORP value exceeds −100 mV, the NOx—N concentration exceeds 2.0 mg / L. From this result, it is desirable that the ORP value of the oxygen-free tank 5 is −200 mV or more and −100 mV or less. In addition, the cumulative frequency of the ORP value in the anaerobic tank 5 is measured for a certain period, and the ORP value in the anaerobic tank 5 is −200 mV to −100 mV and 50% or more of the cumulative frequency is −200 mV to −150 mV. It is more preferable that it is maintained.

累積頻度の採取頻度は、1分から10分毎にデータを毎日採取し、これをデータ解析し、一定期間あたりのORP値の累積頻度を算出する。流入してくる下水の水質時間変動のパターンがほぼ一定の場合は、1日あたりのORP値の累積頻度で判断すればよい。降雨などの影響で下水1の水質に急激な変動がある場合は、降雨の影響が認められる期間でのORP値の累積頻度で判断すればよい。   As for the collection frequency of the cumulative frequency, data is collected every 1 to 10 minutes every day, this is analyzed, and the cumulative frequency of ORP values per fixed period is calculated. When the pattern of fluctuations in the quality of the sewage water flowing in is almost constant, it may be determined by the cumulative frequency of ORP values per day. If there is a sudden change in the quality of the sewage 1 due to the influence of rainfall or the like, the determination may be made based on the cumulative frequency of ORP values during the period in which the influence of the rain is recognized.

無酸素槽5でORP値が−100mV超まで上昇する場合、あるいは、無酸素槽5のORP値の累積頻度の50%以上が−200mV以上−150mV以下の範囲に維持されない場合には、無酸素槽5のORP値を指標としてさらに有機物を無酸素槽5に添加してもかまわない。有機物の中でも有機酸20は、反応速度が速く、脱リンにも用いるため、これを無酸素槽5に添加することは望ましい。また、無酸素槽5のORP値を指標として硝化液15の循環量を下げ、無酸素槽5のORP値を低下させてもかまわない。また、硝化反応の阻害が起こらない範囲で、好気槽6のORP値及び/又はDOを低下させ、無酸素槽5のORP値を低下させてもかまわない。   When the ORP value rises to over −100 mV in the anaerobic tank 5, or when 50% or more of the cumulative frequency of the ORP value in the anaerobic tank 5 is not maintained in the range of −200 mV to −150 mV An organic substance may be further added to the oxygen-free tank 5 using the ORP value of the tank 5 as an index. Among organic substances, the organic acid 20 has a high reaction rate and is also used for dephosphorization. Therefore, it is desirable to add it to the oxygen-free tank 5. Also, the ORP value of the anaerobic tank 5 may be reduced using the ORP value of the anaerobic tank 5 as an index to reduce the ORP value of the anoxic tank 5. Further, the ORP value and / or DO of the aerobic tank 6 may be lowered and the ORP value of the anaerobic tank 5 may be lowered within a range where the nitrification reaction is not inhibited.

一方で、無酸素槽5のORP値が−200mV未満に低下すると、NOx−Nは消失しているものの、下水1中の有機物が過剰に残留していることが推測される。残留した有機物は、後段の好気槽6に流入し、溶存酸素をNH−Nよりも優先的に消費するため、硝化反応への阻害が出やすい。このため、このような場合には、無酸素槽5に設置したORP計13によるモニタリングを行いながら、無酸素槽5を曝気し、過剰に残留する有機物を除去し、ORP値を−200mV以上に維持することが望ましい。 On the other hand, when the ORP value of the oxygen-free tank 5 is reduced to less than −200 mV, it is estimated that although the NOx—N disappears, the organic matter in the sewage 1 remains excessively. The remaining organic matter flows into the aerobic tank 6 at the subsequent stage and consumes dissolved oxygen preferentially over NH 4 -N, so that inhibition of the nitrification reaction tends to occur. For this reason, in such a case, while monitoring with the ORP meter 13 installed in the oxygen-free tank 5, the oxygen-free tank 5 is aerated to remove excessive residual organic substances, and the ORP value is set to -200 mV or more. It is desirable to maintain.

(好気槽)
次に好気槽6の運転方法を説明する。
(Aerobic tank)
Next, a method for operating the aerobic tank 6 will be described.

好気槽6では、常時、ブロアー10によって曝気を行ない、溶存酸素の存在下で、アンモニア酸化細菌により、NH−NをNO−Nまで酸化する。続いて、亜硝酸酸化細菌により、NO−NをNO−Nまで酸化する。DOのモニタリングはDO計14により行われる。 In the aerobic tank 6, aeration is always performed by the blower 10, and NH 4 -N is oxidized to NO 2 -N by ammonia oxidizing bacteria in the presence of dissolved oxygen. Subsequently, NO 2 -N is oxidized to NO 3 -N by nitrite-oxidizing bacteria. The DO monitoring is performed by the DO meter 14.

硝化反応が順調に進行すると、NOx−Nが蓄積し、好気槽6のORP値は、徐々に上昇していく。通常、好気槽6のORP値は、好気槽6出口付近のORP値を基準とし、ORP値によりブロアー10による曝気量を調整する。   When the nitrification reaction proceeds smoothly, NOx-N accumulates and the ORP value of the aerobic tank 6 gradually increases. Normally, the ORP value of the aerobic tank 6 is based on the ORP value near the outlet of the aerobic tank 6, and the aeration amount by the blower 10 is adjusted by the ORP value.

硝化反応促進の視点からは、通常、好気槽6末端のDOは、1.5〜3.0mg/L、あるいは、好気槽6末端のORP値は+100〜125mV以上が望ましいとされている(非特許文献1、下水のCOD、リン及び窒素の高効率処理の研究、下水道協会誌、1993、Vol.30、No.364、p96−p106)。   From the viewpoint of promoting nitrification reaction, it is usually desirable that DO at the aerobic tank 6 end is 1.5 to 3.0 mg / L, or ORP value at the aerobic tank 6 end is +100 to 125 mV or more. (Non-patent document 1, Research on high-efficiency treatment of sewage COD, phosphorus and nitrogen, Journal of Sewerage Society, 1993, Vol. 30, No. 364, p96-p106).

しかし、今回、発明者らは、省エネルギーの観点から、好気槽6末端のORP値が+70mV以上+100mV以下、また、好気槽6末端のDOが、0.5〜1.5mg/Lに維持されるように曝気量を制御した。この結果、図10に示すように好気槽6末端のORP値が+70mV程度であれば、DOが0.5〜1.5mg/Lと従来の維持管理指針よりもかなり低くても硝化反応は90%以上進行していることを見いだした。すなわち、省エネルギーの視点からは、好気槽6末端のORP値を+70mVから+100mVの範囲にすることが好ましい。   However, this time, from the viewpoint of energy saving, the inventors maintained the ORP value at the end of the aerobic tank at +70 mV or more and +100 mV or less, and the DO at the end of the aerobic tank at 0.5 to 1.5 mg / L. The amount of aeration was controlled as indicated. As a result, if the ORP value at the end of the aerobic tank 6 is about +70 mV as shown in FIG. Found more than 90% progress. That is, from the viewpoint of energy saving, the ORP value at the end of the aerobic tank 6 is preferably in the range of +70 mV to +100 mV.

また、脱窒素促進の視点から考えると、好気槽6から硝化液15を無酸素槽5へ送水しているが、好気槽6でのDOが高すぎると、無酸素槽5での脱窒反応が阻害を受ける。この視点からも、好気槽6のDOを1.5mg/L以下とすることは極めて望ましい。   Further, from the viewpoint of promoting denitrification, the nitrification solution 15 is fed from the aerobic tank 6 to the anaerobic tank 5, but if the DO in the aerobic tank 6 is too high, the denitrification in the anaerobic tank 5 is performed. Nitrogen reaction is inhibited. Also from this viewpoint, it is extremely desirable to set the DO of the aerobic tank 6 to 1.5 mg / L or less.

さらに、好気槽6では、ポリリン酸蓄積細菌によるリンの過剰摂取も行われ、好気槽6でのリンの過剰摂取について、DOとの関連が多く指摘されている。概ね、好気槽6末端のDOが1.5〜3.0mg/Lが望ましいとされている。しかし、発明者らは、好気槽6のORP値が+70mV以上あれば、DOが0.5〜1.5mg/Lでもリンのとりこみに何ら問題は生じないことを見いだした。したがって、リンの取りこみの視点からも、好気槽6のORP値が+70mV以上あれば、DOを0.5〜1.5mg/Lとすることが好ましい。   Furthermore, in the aerobic tank 6, excessive intake of phosphorus by polyphosphate-accumulating bacteria is also performed, and many relations with DO have been pointed out regarding excessive intake of phosphorus in the aerobic tank 6. In general, the DO at the end of the aerobic tank 6 is preferably 1.5 to 3.0 mg / L. However, the inventors have found that if the ORP value of the aerobic tank 6 is +70 mV or higher, there will be no problem in phosphorus incorporation even if DO is 0.5 to 1.5 mg / L. Therefore, from the viewpoint of phosphorus incorporation, if the ORP value of the aerobic tank 6 is +70 mV or more, it is preferable to set DO to 0.5 to 1.5 mg / L.

無酸素槽5と好気槽6との単段での組み合わせの場合、上述したように硝化液15の循環量をいくら上げても、原理上、窒素除去率に限界があり、最終沈殿池流出水19中にNOx−Nが残留するおそれがある。窒素濃度が高い下水1の場合、嫌気槽4へのNOx−Nの流入が増加しやすく、リン除去が悪化しやすい。窒素除去率を100%近くに向上させれば、このような問題は生じなくなる。これに対処するためには、好気槽6の後段に新たにORP計13を組み込んだ第2無酸素槽17と第2好気槽18を設置することが好ましい。本発明の処理フロ−の1例を図11に示す。   In the case of a single-stage combination of the anaerobic tank 5 and the aerobic tank 6, no matter how much the nitrification liquid 15 is circulated as described above, the nitrogen removal rate is limited in principle, and the final sedimentation tank outflow There is a possibility that NOx-N remains in the water 19. In the case of the sewage 1 having a high nitrogen concentration, the inflow of NOx-N to the anaerobic tank 4 tends to increase, and the phosphorus removal tends to deteriorate. If the nitrogen removal rate is improved to nearly 100%, such a problem will not occur. In order to cope with this, it is preferable to install a second anaerobic tank 17 and a second aerobic tank 18 in which the ORP meter 13 is newly incorporated in the subsequent stage of the aerobic tank 6. An example of the processing flow of the present invention is shown in FIG.

この場合、第2無酸素槽17への流入水には、有機物はほとんど含まれていないので、第2無酸素槽17において効率的に脱窒素を行なうためには外部から有機物、例えば有機酸20を添加する必要がある。有機物無添加でも基本的には脱窒素は可能である(内生脱窒素として公知)が、この場合は、かなりのHRTが必要となる。第2無酸素槽17のORP値は、−200mV以上−150mV以下であることが望ましいが、一定期間、無酸素槽5のORP値の累積頻度を測定し、第2無酸素槽17のORP値が−200mV以上−100mV以下で、累積頻度50%以上が−200mV以上−150mV以下の範囲に維持されていれば大きな影響はない。累積頻度の採取頻度は、1分から10分毎にデータを毎日採取し、これをデータ解析し、一定期間あたりのORP値の累積頻度を算出する。流入してくる下水の水質時間変動のパターンがほぼ一定の場合は、1日あたりのORP値の累積頻度で判断すればよい。降雨などの影響で下水1の水質に急激な変動がある場合は、降雨の影響が認められる期間でのORP値の累積頻度で判断すればよい。   In this case, since the inflow water to the second anaerobic tank 17 contains almost no organic matter, in order to efficiently perform denitrification in the second anaerobic tank 17, an organic matter such as an organic acid 20 is externally provided. Need to be added. Denitrification is basically possible even without addition of organic substances (known as endogenous denitrification), but in this case, considerable HRT is required. The ORP value of the second anaerobic tank 17 is preferably −200 mV or more and −150 mV or less, but the ORP value of the second anaerobic tank 17 is measured by measuring the cumulative frequency of the ORP value of the anoxic tank 5 for a certain period. Is −200 mV or more and −100 mV or less, and if the cumulative frequency of 50% or more is maintained in the range of −200 mV or more and −150 mV or less, there is no significant influence. As for the collection frequency of the cumulative frequency, data is collected every 1 to 10 minutes every day, this is analyzed, and the cumulative frequency of ORP values per fixed period is calculated. When the pattern of fluctuations in the quality of the sewage water flowing in is almost constant, it may be determined by the cumulative frequency of ORP values per day. If there is a sudden change in the quality of the sewage 1 due to the influence of rainfall or the like, the determination may be made based on the cumulative frequency of ORP values during the period in which the influence of the rain is recognized.

第2好気槽18では、有機酸20は水素供与体として添加し、第2無酸素槽17の出口水中に残存した有機物の酸化が主目的である。したがって、第2好気槽18のORP値やDOは、硝化反応を促進させる目的の好気槽6よりも、更に低くてもかまわない。   In the second aerobic tank 18, the organic acid 20 is added as a hydrogen donor, and the main purpose is to oxidize the organic matter remaining in the outlet water of the second anoxic tank 17. Therefore, the ORP value and DO of the second aerobic tank 18 may be lower than those of the aerobic tank 6 for the purpose of promoting the nitrification reaction.

なお、第2好気槽18のORP値は、+50〜+70mVでDOが0.5〜1.0mg/Lでも有機物分解に問題は生じない。   Even if the ORP value of the second aerobic tank 18 is +50 to +70 mV and the DO is 0.5 to 1.0 mg / L, there is no problem in organic matter decomposition.

本方法では、単段の方法よりも第2好気槽18のORP値やDOをより低めに保てるので省エネルギー化が容易であり、窒素を100%近く除去できる。また、返送汚泥8中にNOx−Nがほとんど存在しないため、嫌気槽4でのリンの吐き出しをより安定化できる。   In this method, since the ORP value and DO of the second aerobic tank 18 can be kept lower than in the single-stage method, energy saving is easy, and nitrogen can be removed nearly 100%. Moreover, since almost NOx-N does not exist in the return sludge 8, the discharge of phosphorus in the anaerobic tank 4 can be further stabilized.

小規模の下水処理場のように、下水1の性状変動や水量変動が大きい場合、処理が不安定になりやすいため、無酸素槽5と好気槽6とを、上述のように連続して2段以上組み合わせて用いることは望ましい。   As in a small-scale sewage treatment plant, when the property fluctuation or water quantity fluctuation of the sewage 1 is large, the treatment tends to become unstable. Therefore, the anoxic tank 5 and the aerobic tank 6 are continuously connected as described above. It is desirable to use two or more stages in combination.

更に、施設に余裕がなく、下水1の性状変動や水量変動によって、脱窒素反応や硝化反応が低下しやすい下水処理場の場合、微生物固定化担体(プラスチックス、セラミックス、スラグ、およびゲル等)を、各反応槽に投入し微生物を高濃度化してもかまわない。微生物を高濃度化することにより、処理速度が上昇し、処理の安定化、高効率処理につながる。各槽への微生物固定化担体投入量は、担体のみかけ容積で反応槽容量あたり、5〜20V/V%程度である。   Furthermore, in the case of a sewage treatment plant where the denitrification reaction and nitrification reaction are likely to be reduced due to fluctuations in the properties of the sewage 1 and fluctuations in the amount of water, the microorganism immobilization carrier (plastics, ceramics, slag, gel, etc.) May be added to each reaction tank to increase the concentration of microorganisms. By increasing the concentration of microorganisms, the processing speed increases, leading to stabilization of processing and high-efficiency processing. The amount of the microorganism-immobilized carrier charged into each tank is about 5 to 20 V / V% per reaction tank volume in the apparent volume of the carrier.

嫌気槽、無酸素槽、または第2無酸素槽に添加される有機酸としては、酢酸および/または酢酸塩が好ましい。   As the organic acid added to the anaerobic tank, the oxygen-free tank, or the second oxygen-free tank, acetic acid and / or acetate is preferable.

ORP計13は、反応槽が押し出し流れ、または、押し出し流れに近い場合、反応が終了している各槽の出口付近に設置することが望ましい。完全混合の場合は、押し出し流れの場合のように特に限定しないが、流入水の影響を避けるため、反応槽の中央部から出口付近に設置することが望ましい。   The ORP meter 13 is desirably installed in the vicinity of the outlet of each tank where the reaction is completed when the reaction tank is extruded flow or close to the extrusion flow. In the case of complete mixing, it is not particularly limited as in the case of an extruded flow, but it is desirable to install from the central part of the reaction tank to the vicinity of the outlet in order to avoid the influence of the inflowing water.

最終沈殿池7は、活性汚泥の沈降分離を行なう。通常、水面積負荷が20〜25m/m・日程度、有効水深3.5〜4.0mで設計されるが、適宜決定することができる。 The final sedimentation basin 7 performs sedimentation separation of activated sludge. Usually, it is designed with a water area load of about 20 to 25 m 3 / m 2 · day and an effective water depth of 3.5 to 4.0 m, but can be determined as appropriate.

以下、本発明の実施例を説明する。なお、本発明は本実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to a present Example.

(実施例1)
図3に示すように、下水1は、最初沈殿池1、嫌気槽4、無酸素槽5、好気槽6、および最終沈殿池7を用いて処理を行った。硝化液15は、循環ポンプ16により下水1に対して150V/V%の条件で無酸素槽5に返送した。返送汚泥8は、返送汚泥ポンプ9により、下水1に対して50V/V%の条件で嫌気槽4に返送した。各反応槽のMLSS(汚泥濃度)は2500〜3000mg/Lに維持した。また、A−SRT(好気槽6での汚泥滞留時間)は12〜13日で管理した。
Example 1
As shown in FIG. 3, the sewage 1 was treated using the first sedimentation tank 1, the anaerobic tank 4, the anoxic tank 5, the aerobic tank 6, and the final sedimentation tank 7. The nitrification solution 15 was returned to the anoxic tank 5 by the circulation pump 16 under the condition of 150 V / V% with respect to the sewage 1. The return sludge 8 was returned to the anaerobic tank 4 by the return sludge pump 9 under the condition of 50 V / V% with respect to the sewage 1. The MLSS (sludge concentration) of each reaction tank was maintained at 2500 to 3000 mg / L. Moreover, A-SRT (sludge residence time in the aerobic tank 6) was managed in 12 to 13 days.

最初沈殿池流出水3の水質は、BODが平均100mg/L、T−Nが平均30mg/L、T−Pが4mg/L、PO−Pが2.4mg/L程度である。 The water quality of the first settling basin effluent 3 is about 100 mg / L for BOD, about 30 mg / L for TN, about 4 mg / L for TP, and about 2.4 mg / L for PO 4 -P.

嫌気槽4のORP計13(東亜ディーケーケー株式会社製 モデルHBM−312型)によるモニタリングの結果を指標とし、ORP値が−250mV基準で有機酸20を嫌気槽4に添加し、嫌気槽4のORP値を−400mV以上−200mV以下、累積頻度で−250mV以下が50%を占めるように制御した。   Using the ORP meter 13 of the anaerobic tank 4 (model HBM-312 manufactured by Toa DKK Co., Ltd.) as an index, the organic acid 20 was added to the anaerobic tank 4 on the basis of the ORP value of −250 mV, and the ORP of the anaerobic tank 4 The value was controlled such that 50% was from −400 mV to −200 mV, and the cumulative frequency was −250 mV or less.

また、嫌気槽4への有機酸20の添加濃度は、以下のように決定した。嫌気槽4での目標リン放出濃度を10mg/Lとすると、先にも述べたように、リン放出に対する酢酸利用は、モル比で0.6〜1.3程度であるから、モル比が1.3の場合、嫌気槽4で必要な酢酸濃度は、嫌気槽4容量あたり25mg/Lとなる。嫌気槽4に返送汚泥8が流入するが、返送汚泥8は、NO−Nを4mg/L含有していた。返送汚泥8の量は、下水1の流入量に対して50V/V%であったので、嫌気槽4でのNO−Nの流入濃度は、2mg/Lである。そこで、嫌気槽4におけるNO−Nに伴う酢酸消費量は、5.4mg/Lと推定した。なお、NO−N、およびDOはほぼ0であり、無視できた。 Moreover, the addition density | concentration of the organic acid 20 to the anaerobic tank 4 was determined as follows. Assuming that the target phosphorus release concentration in the anaerobic tank 4 is 10 mg / L, as described above, the use of acetic acid for phosphorus release is about 0.6 to 1.3 in molar ratio, so the molar ratio is 1 .3, the acetic acid concentration required in the anaerobic tank 4 is 25 mg / L per 4 volumes of the anaerobic tank. Return sludge 8 to the anaerobic tank 4 flows, but return sludge 8, the NO 3 -N contained 4 mg / L. Since the amount of the return sludge 8 was 50 V / V% with respect to the inflow amount of the sewage 1, the inflow concentration of NO 3 -N in the anaerobic tank 4 is 2 mg / L. Therefore, acid consumption due to NO 3 -N in the anaerobic tank 4 was estimated to be 5.4 mg / L. Incidentally, NO 2 -N, and DO is almost 0, was negligible.

この結果と、先の25mg/Lとを合算すると、嫌気槽4で必要な酢酸濃度は、嫌気槽4容量あたり30mg/Lとなる。上記の酢酸をすべて下水1で補おうとすると、返送汚泥8の量を考慮して、下水流量あたりに換算し45mg/L−下水の酢酸が必要である。しかし、下水1中には平均15mg/L−下水(0〜30mg/L)の程度の酢酸しか含まなかったため、下水流量あたりの酢酸添加量は30mg/L−下水とした。   When this result and the previous 25 mg / L are added together, the acetic acid concentration required in the anaerobic tank 4 is 30 mg / L per 4 volumes of the anaerobic tank. If all the acetic acid is to be supplemented with sewage 1, 45 mg / L-sewage acetic acid is required in terms of the sewage flow rate in consideration of the amount of returned sludge 8. However, since the sewage 1 contained only an average of 15 mg / L-sewage (0-30 mg / L) of acetic acid, the amount of acetic acid added per sewage flow rate was 30 mg / L-sewage.

好気槽6のORP値を指標とし、+90mVで曝気量を増減させ、ORP値を+80〜+100mVの範囲で推移させた。同時にDO計14(東亜ディーケーケー株式会社製 モデルDDIC−7型)により好気槽6のDOを測定し、ORP値の制御のもとでDOが0.5〜1.0mg/Lの範囲で推移するようにORP値の制御に用いる曝気風量を調整した。硝化液15は、循環ポンプ16により下水1に対して150V/V%無酸素槽5に返送した。また、返送汚泥8は、返送汚泥ポンプ9により、下水1に対して50V/V%、嫌気槽4に返送した。なお、硝化液15の循環量は、両方法ともに150V/V%とした。 (比較例1)
嫌気槽のORP値の制御は行わなかった。
Using the ORP value of the aerobic tank 6 as an index, the amount of aeration was increased or decreased at +90 mV, and the ORP value was changed in the range of +80 to +100 mV. At the same time, the DO in the aerobic tank 6 is measured with a DO meter 14 (model DDIC-7 manufactured by Toa DK Corporation), and the DO changes within the range of 0.5 to 1.0 mg / L under the control of the ORP value. Thus, the amount of aeration air used for controlling the ORP value was adjusted. The nitrification liquid 15 was returned to the 150 V / V% anoxic tank 5 with respect to the sewage 1 by the circulation pump 16. The return sludge 8 was returned to the anaerobic tank 4 by 50 V / V% with respect to the sewage 1 by the return sludge pump 9. The circulating amount of the nitrification solution 15 was 150 V / V% for both methods. (Comparative Example 1)
The ORP value of the anaerobic tank was not controlled.

好気槽6のORP値の制御は行なわず、DOの管理(DO管理値=2−3mg/L)を行なった。上記以外は、実施例1と同じ装置を用いて、同様の操作を行った。   Control of the ORP value of the aerobic tank 6 was not performed, and DO management (DO management value = 2-3 mg / L) was performed. Except for the above, the same operation as in Example 1 was performed.

図4に実施例1および比較例1の嫌気槽4のORP値の累積頻度を示す。図4に示すように、実施例1では嫌気槽4のORP値は0mVから−400mVと大きく変動し、累積頻度で−200mV以上が40%を占めた。一方、比較例1では、嫌気槽4のORP値は−200mVから−400mVの範囲に維持されており、累積頻度で−250mV以下が50%を占めた。このように実施例1は、比較例1よりも嫌気槽4のORP値を低い水準に維持することができた。   FIG. 4 shows the cumulative frequency of ORP values in the anaerobic tank 4 of Example 1 and Comparative Example 1. As shown in FIG. 4, in Example 1, the ORP value of the anaerobic tank 4 varied greatly from 0 mV to −400 mV, and −200 mV or more accounted for 40% in cumulative frequency. On the other hand, in Comparative Example 1, the ORP value of the anaerobic tank 4 was maintained in the range of −200 mV to −400 mV, and −250 mV or less accounted for 50% in cumulative frequency. Thus, Example 1 was able to maintain the ORP value of the anaerobic tank 4 at a lower level than that of Comparative Example 1.

実施例1では、好気槽6において、DOが0.5〜1.0mg/Lであっても、ORP値が+90mVに維持されていれば、硝化反応はほぼ完全に進行しており、かつ、脱窒素反応も比較例1よりも優れていた。また、リンの取りこみについては十分に行われていた。   In Example 1, even if DO is 0.5 to 1.0 mg / L in the aerobic tank 6, if the ORP value is maintained at +90 mV, the nitrification reaction proceeds almost completely, and The denitrification reaction was also superior to that of Comparative Example 1. In addition, phosphorus was taken in sufficiently.

表1に、実施例1および比較例1の平均水質の比較を示す。   Table 1 shows a comparison of average water quality between Example 1 and Comparative Example 1.

比較例1では、嫌気槽4でのORP値が高く、リンの吐き出しが安定せず、この結果、処理水19のリン濃度も安定しなかった。一方、発明法では嫌気槽4でのリンの吐き出しが顕著に生じ、好気槽6でのリンの取りこみも問題なく、処理水19のリン濃度も安定した。発明法では処理水19のPO―P濃度も、処理の開発目標値である1mg/L以下となった。 In Comparative Example 1, the ORP value in the anaerobic tank 4 was high, and the discharge of phosphorus was not stable. As a result, the phosphorus concentration of the treated water 19 was not stable. On the other hand, in the method of the invention, the discharge of phosphorus in the anaerobic tank 4 occurred remarkably, the phosphorus uptake in the aerobic tank 6 was no problem, and the phosphorus concentration in the treated water 19 was stable. In the invention method, the PO 4 -P concentration in the treated water 19 was also 1 mg / L or less, which is the treatment development target value.

図5に実施例1および比較例1の無酸素槽5のORP値の累積頻度を示す。図5に示すように、比較例1では、無酸素槽5のORP値が0mVから−200mVで推移し、NOx−Nも残留しやすかった。この一方、好気槽6のORP値及びDOを制御する発明法では、無酸素槽5のORP値は−100〜−200mVの範囲に維持されており、1日あたりの累積頻度で−150mV以下が50%を占めた。このように実施例1は、比較例1よりも無酸素槽5のORP値を低い水準に維持することができた。この結果、実施例1では比較例1よりも脱窒素性能が改善された。   FIG. 5 shows the cumulative frequency of ORP values in the oxygen-free tank 5 of Example 1 and Comparative Example 1. As shown in FIG. 5, in Comparative Example 1, the ORP value of the oxygen-free tank 5 changed from 0 mV to -200 mV, and NOx-N was likely to remain. On the other hand, in the method of controlling the ORP value and DO of the aerobic tank 6, the ORP value of the anaerobic tank 5 is maintained in the range of −100 to −200 mV, and the cumulative frequency per day is −150 mV or less. Accounted for 50%. Thus, Example 1 was able to maintain the ORP value of the oxygen-free tank 5 at a lower level than that of Comparative Example 1. As a result, in Example 1, the denitrification performance was improved as compared with Comparative Example 1.

表2に、平均水質の比較を示す。実施例1では、NH−Nが0.5mg/L程度とやや残留したが、脱窒素性能が2mg/L改善され、結果的には窒素除去性能が1.5mg/L改善された。 Table 2 shows a comparison of average water quality. In Example 1, NH 4 —N remained slightly at about 0.5 mg / L, but the denitrification performance was improved by 2 mg / L, and as a result, the nitrogen removal performance was improved by 1.5 mg / L.

図6に嫌気槽のORP値と嫌気槽のNOx−N濃度との関係を示す。図7に嫌気槽のORP値と嫌気槽のPO−P濃度との関係を示す。図8に嫌気槽のPO−P濃度と最終沈殿池流出水のPO−P濃度との関係を示す。図9に無酸素槽のORP値と無酸素槽のNO−N濃度との関係を示す。図10に好気槽のORP値と硝化反応の進行度との関係を示す。図6〜10に関しては、上述したとおりである。 FIG. 6 shows the relationship between the ORP value in the anaerobic tank and the NOx-N concentration in the anaerobic tank. FIG. 7 shows the relationship between the ORP value in the anaerobic tank and the PO 4 -P concentration in the anaerobic tank. FIG. 8 shows the relationship between the PO 4 -P concentration in the anaerobic tank and the PO 4 -P concentration in the final sedimentation basin effluent. FIG. 9 shows the relationship between the ORP value of the oxygen-free tank and the NO 3 —N concentration of the oxygen-free tank. FIG. 10 shows the relationship between the ORP value of the aerobic tank and the progress of the nitrification reaction. 6 to 10 are as described above.

本発明に係る、ORP値の制御を組み込んだ下水からの生物学的リン除去プロセスである。Figure 2 is a biological phosphorus removal process from sewage incorporating the control of ORP values according to the present invention. 本発明に係る、ORP値の制御を組み込んだ下水からの生物学的硝化−窒素除去プロセスである。Figure 2 is a biological nitrification-nitrogen removal process from sewage incorporating the control of ORP values according to the present invention. 本発明に係る、ORP値の制御を組み込んだ下水からの生物学的リン・窒素除去プロセスである。Figure 2 is a biological phosphorus / nitrogen removal process from sewage incorporating control of the ORP value according to the present invention. 嫌気槽のORP値の累積頻度を示す図である。It is a figure which shows the accumulation frequency of the ORP value of an anaerobic tank. 無酸素槽のORP値の累積頻度を示す図である。It is a figure which shows the cumulative frequency of the ORP value of an anaerobic tank. 嫌気槽のORP値と嫌気槽のNOx−N濃度との関係を示す図である。It is a figure which shows the relationship between the ORP value of an anaerobic tank, and the NOx-N density | concentration of an anaerobic tank. 嫌気槽のORP値と嫌気槽のPO−P濃度との関係を示す図である。Is a diagram showing a relationship between PO 4 -P concentration of ORP value and anaerobic tank of the anaerobic tank. 嫌気槽のPO−P濃度の最終沈殿池流出水のPO−P濃度との関係を示す図である。It is a diagram showing a relationship between PO 4 -P concentration of the final sedimentation tank effluent PO 4 -P concentration of anaerobic tank. 無酸素槽のORP値と無酸素槽のNO−N濃度との関係を示す図である。It is a diagram showing a relationship between NO 3 -N concentrations of ORP value and the anoxic tank in the anoxic tank. 好気槽のORP値と硝化反応の進行度との関係を示す図である。It is a figure which shows the relationship between the ORP value of an aerobic tank, and the progress degree of nitrification reaction. 本発明に係る、ORP値の制御を組み込んだ下水からの生物学的リン・窒素除去プロセスである。Figure 2 is a biological phosphorus / nitrogen removal process from sewage incorporating control of the ORP value according to the present invention.

符号の説明Explanation of symbols

1 下水、
2 最初沈殿池、
3 最初沈殿池流出水、
4 嫌気槽、
5 無酸素槽、
6 好気槽、
7 最終沈殿池、
8 返送汚泥、
9 返送汚泥ポンプ、
10 ブロアー、
11 有機酸タンク、
12 薬注ポンプ、
13 ORP計、
14 DO計、
15 硝化液、
16 循環ポンプ、
17 第2無酸素槽、
18 第2好気槽、
19 最終沈殿池流出水、
20 有機酸。
1 Sewage,
2 First sedimentation basin,
3 First settling basin effluent,
4 Anaerobic tank,
5 Anoxic tank,
6 Aerobic tank,
7 Final sedimentation basin,
8 Return sludge,
9 Return sludge pump,
10 Blower,
11 Organic acid tank,
12 Medication pump,
13 ORP meter,
14 DO meter,
15 Nitrification solution,
16 Circulation pump,
17 Second oxygen-free tank,
18 Second aerobic tank,
19 Final sedimentation basin effluent,
20 Organic acid.

Claims (10)

最初沈殿池、嫌気槽、好気槽及び最終沈殿池の各下水処理槽、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池の各下水処理槽を用いた生物学的な下水処理方法において、
前記嫌気槽のORP値が−400mV以上−200mV以下の範囲に維持されるように、有機酸を前記嫌気槽に添加することを特徴とする下水処理方法。
Biologicals using each sewage treatment tank of the first sedimentation tank, anaerobic tank, aerobic tank, and final sedimentation tank, or each sewage treatment tank of the first sedimentation tank, anaerobic tank, anoxic tank, aerobic tank, and final sedimentation tank Sewage treatment methods
An organic acid is added to the anaerobic tank so that the ORP value of the anaerobic tank is maintained in a range of −400 mV to −200 mV.
前記嫌気槽のORP値の累積頻度の50%以上が−350mV以上−250mV以下の範囲に維持されるように、前記有機酸を前記嫌気槽に添加することを特徴とする請求項1に記載の下水処理方法。   The organic acid is added to the anaerobic tank so that 50% or more of the cumulative frequency of the ORP value of the anaerobic tank is maintained in a range of -350 mV to -250 mV. Sewage treatment method. 最初沈殿池、無酸素槽、好気槽及び最終沈殿池の各下水処理槽、又は最初沈殿池、嫌気槽、無酸素槽、好気槽及び最終沈殿池の各下水処理槽を用いた生物学的な下水処理方法において、
前記無酸素槽のORP値が−200mV以上−100mV以下の範囲に維持されるように、
有機酸を前記無酸素槽に添加すること、前記好気槽から前記無酸素槽への硝化液の循環量を調整すること、前記好気槽のORP値を調整すること、および前記好気槽のDOを調整すること、からなる群より選択される少なくとも1種を行なうことを特徴とする下水処理方法。
Biology using each sewage treatment tank of the first sedimentation tank, anoxic tank, aerobic tank, and final sedimentation tank, or each sewage treatment tank of the first sedimentation tank, anaerobic tank, anoxic tank, aerobic tank, and final sedimentation tank In a typical sewage treatment method,
In order to maintain the ORP value of the anaerobic tank in the range of −200 mV to −100 mV,
Adding an organic acid to the anaerobic tank, adjusting a circulation amount of the nitrification liquid from the aerobic tank to the anoxic tank, adjusting an ORP value of the aerobic tank, and the aerobic tank A sewage treatment method characterized by performing at least one selected from the group consisting of:
前記無酸素槽のORP値の累積頻度の50%以上が−200mV以上−150mV以下の範囲に維持されるように、
前記有機酸を前記無酸素槽に添加すること、前記好気槽から前記無酸素槽への硝化液の循環量を調整すること、前記好気槽のORP値を調整すること、および前記好気槽のDOを調整すること、からなる群より選択される少なくとも1種を行なうことを特徴とする請求項3に記載の下水処理方法。
50% or more of the cumulative frequency of ORP values in the anaerobic tank is maintained in the range of −200 mV to −150 mV,
Adding the organic acid to the anaerobic tank, adjusting the amount of nitrification liquid circulating from the aerobic tank to the anaerobic tank, adjusting the ORP value of the aerobic tank, and the aerobic The sewage treatment method according to claim 3, wherein at least one selected from the group consisting of adjusting DO of the tank is performed.
前記嫌気槽のPO−P濃度が10mg/Lとなるように前記有機酸の前記嫌気槽への添加量を調整し、
さらに、前記嫌気槽に流入する下水中および返送汚泥中のNOx−N濃度及びDOによって単位時間当たりに消費される有機酸量を計算し、前記嫌気槽に添加する前記有機酸の量を増やすことを特徴とする請求項1〜4のいずれか1項に記載の下水処理方法。
Adjusting the amount of the organic acid added to the anaerobic tank so that the PO 4 -P concentration in the anaerobic tank is 10 mg / L;
Furthermore, calculating the amount of organic acid consumed per unit time by the NOx-N concentration and DO in the sewage and return sludge flowing into the anaerobic tank, and increasing the amount of the organic acid added to the anaerobic tank The sewage treatment method according to any one of claims 1 to 4, wherein:
前記好気槽のORP値が+70mV以上+100mV以下となるように、前記好気槽のブロアーによる曝気量を調整することを特徴とする請求項1〜5のいずれか1項に記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 5, wherein an aeration amount by a blower of the aerobic tank is adjusted so that an ORP value of the aerobic tank is +70 mV or more and +100 mV or less. . 前記好気槽のDOが0.5mg/L以上1.5mg/L以下となるように前記好気槽のブロアーによる曝気量を調整することを特徴とする請求項1〜6のいずれか1項に記載の下水処理方法。   The aeration amount by the blower of the aerobic tank is adjusted so that DO of the aerobic tank is 0.5 mg / L or more and 1.5 mg / L or less. A sewage treatment method described in 1. 前記好気槽の後段に更に第2無酸素槽及び第2好気槽を順に有することを特徴とする請求項1〜7のいずれか1項に記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 7, further comprising a second anaerobic tank and a second aerobic tank in order after the aerobic tank. 前記嫌気槽、前記無酸素槽、前記好気槽の1槽又は2槽以上に微生物固定化担体を投入することを特徴とする請求項1〜8のいずれか1項に記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 8, wherein a microorganism-immobilized carrier is introduced into one or more of the anaerobic tank, the anoxic tank, and the aerobic tank. 嫌気槽、無酸素槽の少なくともいずれかに添加する有機酸が、酢酸および/または酢酸塩であることを特徴とする請求項1〜9のいずれか1項に記載の下水処理方法。   The sewage treatment method according to any one of claims 1 to 9, wherein the organic acid added to at least one of the anaerobic tank and the oxygen-free tank is acetic acid and / or acetate.
JP2004329223A 2004-11-12 2004-11-12 Method for removing phosphorus and / or nitrogen from sewage Active JP4409415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329223A JP4409415B2 (en) 2004-11-12 2004-11-12 Method for removing phosphorus and / or nitrogen from sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329223A JP4409415B2 (en) 2004-11-12 2004-11-12 Method for removing phosphorus and / or nitrogen from sewage

Publications (2)

Publication Number Publication Date
JP2006136820A true JP2006136820A (en) 2006-06-01
JP4409415B2 JP4409415B2 (en) 2010-02-03

Family

ID=36617970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329223A Active JP4409415B2 (en) 2004-11-12 2004-11-12 Method for removing phosphorus and / or nitrogen from sewage

Country Status (1)

Country Link
JP (1) JP4409415B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2009063432A (en) * 2007-09-06 2009-03-26 Dkk Toa Corp Indication electrode and composite electrode for measuring oxidation-reduction potential
JP2009063433A (en) * 2007-09-06 2009-03-26 Dkk Toa Corp Method for cleaning electrode for measuring oxidation-reduction potential
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012232268A (en) * 2011-05-09 2012-11-29 Central Research Institute Of Electric Power Industry Method for biologically removing phosphorous
JP2014046301A (en) * 2012-09-04 2014-03-17 Toshiba Corp Method for recovering phosphorus from a phosphorus-containing effluent and apparatus for the same
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
JP2015116516A (en) * 2013-12-17 2015-06-25 学校法人 東洋大学 Waste water treatment apparatus and inclusive immobilization carrier
JP6188264B1 (en) * 2016-12-19 2017-08-30 フィル−ジャパン ワールドワイド マネジメント サービス, インコーポレイテッド Activated sludge process for simultaneous biological removal of nitrogen and phosphorus
WO2018123449A1 (en) * 2016-12-27 2018-07-05 株式会社クボタ Method for treating methane fermentation waste water and treatment equipment
CN110589969A (en) * 2019-10-28 2019-12-20 北京城市排水集团有限责任公司 Efficient and stable synchronous nitrogen and phosphorus removal device and method for sewage treatment plant
CN113402115A (en) * 2021-06-15 2021-09-17 中山大学 Low-carbon source sewage treatment device and treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534625B (en) * 2019-01-25 2020-12-11 清华大学 Method for enhanced phosphorus removal of membrane bioreactor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage
JP2009063432A (en) * 2007-09-06 2009-03-26 Dkk Toa Corp Indication electrode and composite electrode for measuring oxidation-reduction potential
JP2009063433A (en) * 2007-09-06 2009-03-26 Dkk Toa Corp Method for cleaning electrode for measuring oxidation-reduction potential
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012232268A (en) * 2011-05-09 2012-11-29 Central Research Institute Of Electric Power Industry Method for biologically removing phosphorous
JP2014046301A (en) * 2012-09-04 2014-03-17 Toshiba Corp Method for recovering phosphorus from a phosphorus-containing effluent and apparatus for the same
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
JP2015116516A (en) * 2013-12-17 2015-06-25 学校法人 東洋大学 Waste water treatment apparatus and inclusive immobilization carrier
JP6188264B1 (en) * 2016-12-19 2017-08-30 フィル−ジャパン ワールドワイド マネジメント サービス, インコーポレイテッド Activated sludge process for simultaneous biological removal of nitrogen and phosphorus
WO2018116507A1 (en) * 2016-12-19 2018-06-28 フィル-ジャパン ワールドワイド マネジメント サービス, インコーポレイテッド Activated sludge method for biological simultaneous removal of nitrogen and phosphorous
WO2018123449A1 (en) * 2016-12-27 2018-07-05 株式会社クボタ Method for treating methane fermentation waste water and treatment equipment
CN110589969A (en) * 2019-10-28 2019-12-20 北京城市排水集团有限责任公司 Efficient and stable synchronous nitrogen and phosphorus removal device and method for sewage treatment plant
CN110589969B (en) * 2019-10-28 2023-12-29 北京城市排水集团有限责任公司 High-efficiency stable synchronous denitrification and dephosphorization device and method for sewage treatment plant
CN113402115A (en) * 2021-06-15 2021-09-17 中山大学 Low-carbon source sewage treatment device and treatment method

Also Published As

Publication number Publication date
JP4409415B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP2007136298A (en) Removal method of nitrogen and phosphorus from sewage, and removal apparatus
JP6720100B2 (en) Water treatment method and water treatment device
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP2009142787A (en) Method for removing nitrogen and cod component from ammoniacal liquor
JP4872171B2 (en) Biological denitrification equipment
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4995215B2 (en) Sewage treatment equipment
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP4298405B2 (en) Wastewater treatment method
KR20180117340A (en) The Sewage Disposal Systems
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
CN103073156B (en) Method for treating poly butylene succinate production waste water by biochemical method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
US20180273408A1 (en) Wastewater denitrification method utilizing recycling of nitrified treated effluent
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
Juan et al. Biological nitrogen removal in a step-feed CAST with real-time control treating municipal wastewater
JP2001079593A (en) Removing method of nitrogen in waste water
JP6605843B2 (en) Waste water treatment method and waste water treatment equipment
JP3858271B2 (en) Wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R151 Written notification of patent or utility model registration

Ref document number: 4409415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250