JP2007136298A - Removal method of nitrogen and phosphorus from sewage, and removal apparatus - Google Patents

Removal method of nitrogen and phosphorus from sewage, and removal apparatus Download PDF

Info

Publication number
JP2007136298A
JP2007136298A JP2005331462A JP2005331462A JP2007136298A JP 2007136298 A JP2007136298 A JP 2007136298A JP 2005331462 A JP2005331462 A JP 2005331462A JP 2005331462 A JP2005331462 A JP 2005331462A JP 2007136298 A JP2007136298 A JP 2007136298A
Authority
JP
Japan
Prior art keywords
tank
aerobic
anaerobic
oxygen
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005331462A
Other languages
Japanese (ja)
Inventor
Osamu Miki
理 三木
Toshiro Kato
敏朗 加藤
Naoya Takahashi
直哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005331462A priority Critical patent/JP2007136298A/en
Publication of JP2007136298A publication Critical patent/JP2007136298A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new removal method of nitrogen and phosphorus, and a removal apparatus. <P>SOLUTION: The biological nitrogen and phosphorus removal process (A<SB>2</SB>O method) comprises a primary settling tank, an anaerobic tank, anoxic tanks (denitrification tank), an aerobic tank, and a final settling tank, and circulates active sludge of a terminal part of the aerobic tank to the anoxic tank (denitrification tank). A second anoxic tank is provided at a rear stage of the aerobic tank, and the activated sludge of the terminal part of the second anoxic tank is circulated to the preceding anoxic tank (denitrification tank), and circulation of the activated sludge from the aerobic tank to the preceding anoxic tank (denitrification tank) is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水や廃水中に含まれる窒素およびりんを生物学的に除去する方法、特に嫌気槽、無酸素槽、好気槽からなる生物学的窒素およびりん同時除去法を安定的かつ効率的に運転する方法、並びにその装置に関する。   The present invention provides a stable and efficient method for biologically removing nitrogen and phosphorus contained in sewage and wastewater, in particular, a method for removing biological nitrogen and phosphorus simultaneously comprising an anaerobic tank, an anaerobic tank, and an aerobic tank. The present invention relates to a method of operating automatically, and an apparatus therefor.

まず、りんの除去に関する従来技術の原理を説明する。
都市下水中の全りん濃度は、5〜10mg/L程度であり、これは屎尿、洗剤、工業薬品などに由来している。りんを除去する方法としては、鉄やアルミニウムの凝集剤を用いる凝集沈殿法が最も確実であるものの、凝集剤による余剰汚泥量の増加や薬品費の増大の短所がある。このため、下水からのりんの除去方法として、活性汚泥を用いるりん除去プロセスも広く用いられるようになった。
First, the principle of the prior art regarding phosphorus removal will be described.
The total phosphorus concentration in city sewage is about 5 to 10 mg / L, which is derived from manure, detergents, industrial chemicals and the like. As a method for removing phosphorus, the coagulation sedimentation method using an iron or aluminum coagulant is the most reliable, but has the disadvantages of increasing the amount of excess sludge and chemical costs due to the coagulant. For this reason, a phosphorus removal process using activated sludge has been widely used as a method for removing phosphorus from sewage.

これは、活性汚泥中のある種の微生物(以下、りん蓄積細菌)は、先ず嫌気性条件下において、りんを放出させると、次に好気性条件下ではりんを過剰に摂取しようとする性質を利用したもので、都市下水処理の分野で実用化が進んでいる。このような方式を採用すると下水の活性汚泥中のりん濃度が2〜3%から5〜6%程度に増大するといわれている。   This is because certain microorganisms (hereinafter referred to as phosphorus-accumulating bacteria) in activated sludge tend to release phosphorus under anaerobic conditions, and then try to consume excess phosphorus under aerobic conditions. Practical use is progressing in the field of urban sewage treatment. If such a system is adopted, it is said that the phosphorus concentration in the activated sludge of sewage increases from 2-3% to about 5-6%.

次に、窒素の除去に関する従来技術の原理を説明する。
都市下水中の大半の窒素は、アンモニア性窒素(NH4−N)であり、通常、20〜50mg/L程度の濃度である。都市下水からのNH4−N除去方法としては、以下のような生物学的硝化−脱窒法が広く知見されている。これは、絶対好気性・独立栄養細菌(Nitrosomonas、Nitrobacter等の硝化細菌)による生物学的酸化反応(硝化工程ともいう)と通性嫌気性・従属栄養細菌(Pseudomonas等)による生物学的還元反応(脱窒工程ともいう)の組み合わせから成っている。
Next, the principle of the prior art regarding nitrogen removal will be described.
Most nitrogen in city sewage is ammoniacal nitrogen (NH 4 -N), usually at a concentration of about 20-50 mg / L. The following biological nitrification-denitrification methods are widely known as methods for removing NH 4 —N from municipal sewage. Biological oxidation reaction (also called nitrification process) by absolute aerobic / autotrophic bacteria (Nitrosomonas, Nitrobacter, etc.) and biological reduction reaction by facultative anaerobic, heterotrophic bacteria (Pseudomonas, etc.) It consists of a combination (also called denitrification process).

まず、硝化工程は以下の2段の反応から成っており、関与する硝化細菌の種類は異なっている。   First, the nitrification process consists of the following two-stage reaction, and the types of nitrifying bacteria involved are different.

2NH4 + + 3O2 → 2NO2 -+2H2O+4H+ −−−−−−−−(1)
2NO2 - + O2 → 2NO3 - −−−−−−−−−(2)
2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + −−−−−−−− (1)
2NO 2 - + O 2 → 2NO 3 - --------- (2)

(1)式に示す反応は、Nitrosomonasを代表種とするアンモニア酸化細菌によってもたらされ、(2)式に示す反応は、Nitrobacterを代表種とする亜硝酸酸化細菌によってもたらされる。 The reaction represented by the formula (1) is brought about by an ammonia oxidizing bacterium represented by Nitrosomonas, and the reaction represented by the formula (2) is brought about by a nitrite oxidizing bacterium represented by Nitrobacter.

次に脱窒工程であるが、 上記反応によって生成した亜硝酸性窒素(NO2−N)並びに硝酸性窒素(NO3−N)は、通性嫌気性従属栄養細菌を用いて、無酸素条件下で、以下のように還元されて酸化窒素ガス(N2O)あるいは窒素ガス(N2)となり大気中に放散される。 Next, in the denitrification process, nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N) produced by the above reaction are subjected to oxygen-free conditions using facultative anaerobic heterotrophic bacteria. Below, it is reduced as follows, and is converted into nitrogen oxide gas (N 2 O) or nitrogen gas (N 2 ) and diffused into the atmosphere.

2NO2 - + 6H2 → N2 +2H2O+2OH- −−−−−−−−−(3)
2NO3 - +10H2 → N2 +4H2O+2OH- −−−−−−−−−(4)
2NO 2 + 6H 2 → N 2 + 2H 2 O + 2OH −−−−−−−−− (3)
2NO 3 + 10H 2 → N 2 + 4H 2 O + 2OH −−−−−−−−−− (4)

通性嫌気性従属栄養細菌は、水素供与体が必要であり、水素供与体として有機物が通常利用される。都市下水などでは、下水中の有機物(BOD成分)がそのまま用いられ、有機物を含まない廃水ではメチルアルコールなどが外部から添加されることが多い。   Facultative anaerobic heterotrophic bacteria require a hydrogen donor, and organic matter is usually used as the hydrogen donor. In municipal sewage and the like, organic matter (BOD component) in sewage is used as it is, and in wastewater not containing organic matter, methyl alcohol or the like is often added from the outside.

最後に、下水処理の分野で実用化されている下水からの窒素およびりんの同時除去プロセスについて説明する。本法は、原理的には生物学的りん除去プロセスと生物学的窒素除去プロセスを組み合わせてりんと窒素を同時に除去するものである。   Finally, the simultaneous removal process of nitrogen and phosphorus from sewage that has been put into practical use in the field of sewage treatment will be described. In principle, this method combines a biological phosphorus removal process and a biological nitrogen removal process to remove phosphorus and nitrogen simultaneously.

具体的には、本プロセスは、図1に示すように、最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽(硝化槽)、最終沈殿池から構成されている。A2O法(Anaerobic−Anoxic−Oxic Process)として広く呼称されている。 Specifically, as shown in FIG. 1, the present process is composed of a first sedimentation tank, an anaerobic tank, an oxygen-free tank (denitrification tank), an aerobic tank (nitrification tank), and a final sedimentation tank. It is widely called as A 2 O method (Anaerobic-Anoxic-Oxic Process).

まず、下水は、最初沈澱池において、重力沈降によって下水中の粗大な懸濁物質を除去する。嫌気槽においては、りんを過剰に放出させる。嫌気状態とは、溶存酸素(DO)およびNOx−Nとして存在する結合態の酸素が無い状態として定義される。その後、りんは無酸素槽および好気槽において順次摂取させる。また、無酸素状態とはDOの無い状態として定義されている。好気状態とはDOの存在する状態として定義されている。   First, sewage removes coarse suspended solids in the sewage by gravity sedimentation in the first sedimentation basin. In the anaerobic tank, excessive phosphorus is released. An anaerobic state is defined as a state without dissolved oxygen (DO) and bound oxygen present as NOx-N. Thereafter, phosphorus is taken in order in an anaerobic tank and an aerobic tank. An anoxic state is defined as a state without DO. The aerobic state is defined as a state where DO exists.

下水中のNH4−Nは、好気槽において硝化細菌によりNO3−Nまで酸化させる。この好気槽のNO3−Nを含有した活性汚泥を無酸素槽に循環させる。無酸素槽において、NO3−Nは多くの種類の脱窒細菌によりN2まで還元され水中から除去される。窒素の除去率は循環量によって決定され、循環率(循環水量/最初沈殿池流出水量)は、通常100V/V%から200V/V%程度である。最終沈澱池においては活性汚泥を重力沈降により分離し、上澄液は処理水として放流し、沈降した汚泥は嫌気槽に返送される。返送率(汚泥返送量/最初沈殿池流出水量)は、通常、50V/V%程度である。一部の汚泥は、余剰汚泥として系外に引き抜かれる。すなわち、下水に含まれていたりんは、汚泥中に含まれるりんの形で引き抜かれるのである。 NH 4 —N in sewage is oxidized to NO 3 —N by nitrifying bacteria in an aerobic tank. The activated sludge containing NO 3 —N in the aerobic tank is circulated in the anoxic tank. In anoxic tank, NO 3 -N is removed from the water is reduced to N 2 by a number of types of denitrifying bacteria. The nitrogen removal rate is determined by the circulation rate, and the circulation rate (circulation water amount / first sedimentation basin outflow amount) is usually about 100 V / V% to 200 V / V%. In the final sedimentation basin, activated sludge is separated by gravity sedimentation, the supernatant is discharged as treated water, and the settled sludge is returned to the anaerobic tank. The return rate (sludge return amount / initial sedimentation basin effluent amount) is usually about 50 V / V%. Some sludge is extracted outside the system as surplus sludge. That is, the phosphorus contained in the sewage is extracted in the form of phosphorus contained in the sludge.

このようにA2O法は、生物学的な窒素及びりん除去の原理を巧みに組み合わせた優れた方法であり、実用化が進んでいる。
この一方で、生物学的なりん除去と窒素除去の制御が難しく、処理性能が安定しない事例が多く見られる。
Thus, the A 2 O method is an excellent method that skillfully combines the principles of biological nitrogen and phosphorus removal, and its practical application is progressing.
On the other hand, there are many cases where biological phosphorus removal and nitrogen removal are difficult to control and the processing performance is not stable.

例えば、りん除去に関しては、嫌気槽において十分なりんの放出を起こさせることが重要である。りん除去阻害の要因としては、DO、NOx−Nの流入や有機物(特に有機酸)の欠乏があげられる。例えば、雨水が下水に流入すると上記のような処理性能が安定しない現象が生じることが知られている。また、無酸素槽においては、十分な脱窒反応が得られなかったり、脱窒は進むもののりんの放出が生じてしまうことがある。脱窒阻害の要因としてはDO、NOx−Nの過剰な流入や有機物の欠乏があげられる。りん放出の要因としては、逆に、有機物の過剰な残存が考えられる。   For example, regarding phosphorus removal, it is important to cause sufficient release of phosphorus in an anaerobic tank. Factors that inhibit phosphorus removal include the inflow of DO and NOx-N and the deficiency of organic substances (particularly organic acids). For example, it is known that when rainwater flows into sewage, such a phenomenon that the processing performance is not stable occurs. In addition, in the oxygen-free tank, sufficient denitrification reaction may not be obtained, or phosphorus may be released although denitrification proceeds. Factors that inhibit denitrification include excessive inflow of DO and NOx-N and lack of organic substances. On the contrary, it is conceivable that the organic substance remains excessively as a cause of the release of phosphorus.

発明者らは、このようなA2O法の不安定化の要因として、好気槽の運転方法の影響が特に大きいと考えた。すなわち、通常、A2O法における好気槽出口付近のDOは、硝化促進の観点から1.5〜3.0mg/Lが望ましいとされている(非特許文献1を参照のこと)。 The inventors considered that the influence of the operating method of the aerobic tank was particularly large as a factor of destabilization of the A 2 O method. That is, it is usually considered that the DO in the vicinity of the aerobic tank outlet in the A 2 O method is desirably 1.5 to 3.0 mg / L from the viewpoint of promoting nitrification (see Non-Patent Document 1).

さらに、実際には好気槽のDOは、これ以上のDO値、例えば3〜5mg/Lのレベルで運転されている場合もしばしば知見される。この現象は、実際に処理している下水量が計画下水量よりも少ない場合や水質が計画値よりも低い場合に特に多く見られる。加えて、水温が上昇し、反応速度の上昇する夏場には好気槽のDOはさらに高くなりやすい。これは、好気槽の途中で硝化反応が完了すると、活性汚泥による酸素要求量が激減するため、曝気量をかなり下げても、好気槽のDOが過剰に残存しやすくなる理由による。また、曝気量を極端に低下させると活性汚泥の沈降、堆積が生ずるので、活性汚泥の攪拌の観点から曝気量の削減に限界がある。このため、どうしても好気槽末端のDOは高くなりやすい。   Furthermore, in practice, the aerobic tank DO is often found to be operated at higher DO values, for example 3-5 mg / L. This phenomenon is particularly common when the amount of sewage actually being treated is smaller than the planned amount of sewage or when the water quality is lower than the planned value. In addition, the DO in the aerobic tank tends to be higher in summer when the water temperature rises and the reaction rate increases. This is because when the nitrification reaction is completed in the middle of the aerobic tank, the oxygen demand by the activated sludge is drastically reduced, so that DO in the aerobic tank tends to remain excessively even if the aeration amount is considerably reduced. Further, when the aeration amount is extremely reduced, the activated sludge settles and accumulates, so there is a limit to the reduction of the aeration amount from the viewpoint of stirring the activated sludge. For this reason, the DO at the end of the aerobic tank tends to be high.

さらに、実際の下水量や下水水質が計画値にほぼ沿っている場合には、好気槽でDOをあえて上げなくても、硝化反応を完全に終了させることができるはずである。しかし、このような場合においても、好気槽のDOを1.5〜3.0mg/Lにあえて維持する必要は全く無いにもかかわらず、好気槽のDOを高めに維持している場合が多々ある。   Furthermore, if the actual amount of sewage and the quality of sewage are in line with the planned values, the nitrification reaction should be able to be completed completely without raising DO in the aerobic tank. However, even in such a case, there is no need to maintain the aerobic tank DO at 1.5 to 3.0 mg / L at all, but the DO of the aerobic tank is maintained high. There are many.

このような好気槽のDOを高めに維持する運転は、エネルギー消費の面でデメリットがあるものの、最終沈殿池での汚泥嫌気化によるりん放出の防止や透視度向上などの様々なメリットがあるとされており、一見すると極めて安全側にたった管理のようにも思える。   Although the operation of maintaining a high aerobic tank DO has disadvantages in terms of energy consumption, it has various advantages such as prevention of phosphorus release due to sludge anaerobization in the final sedimentation basin and improved transparency. At first glance, it seems like a very safe management.

しかしながら、実際には、A2O法におけるこのような運転管理こそが、さまざまな弊害を生じてしまう原因となるのである。
まず、このような好気槽の運転方法は、好気槽から無酸素槽への循環水中に大量のDOを存在させることとなるため、無酸素槽における脱窒性能を悪化させることとなる。
However, in practice, such operation management in the A 2 O method is a cause of various harmful effects.
First, since the operation method of such an aerobic tank causes a large amount of DO to exist in the circulating water from the aerobic tank to the anoxic tank, the denitrification performance in the anaerobic tank is deteriorated.

以下に、有機物として、酢酸の場合のDOとの反応式、NOx−Nとの反応式を示す。一般に活性汚泥中の脱窒細菌は、通性の細菌であり、DOとNOx−Nの両方を利用できるが、並存する場合はDOを優先して用いてしまう。したがって、無酸素槽において、DOが流入すると、DOはNOx−Nに先行して、(5)式のように下水中の有機物と脱窒細菌を介してすぐに反応してしまう。NOx−Nと酢酸の反応(6)は、DOが消失してから開始されるが、それまでに有機物が使われてしまえば、(6)式は進行せず、 NOx−Nは、残存することとなり、結果として脱窒効率が低下してしまうのである。たとえば、(5)式のようにO2が1.5mg/Lから3.0mg/L存在すると、酢酸もほぼ同様の1.5mg/Lから3.0mg/L消費されてしまう。 Below, the reaction formula with DO and the reaction formula with NOx-N in the case of acetic acid are shown as an organic substance. In general, denitrifying bacteria in activated sludge are facultative bacteria, and both DO and NOx-N can be used. However, if they coexist, DO is preferentially used. Therefore, when DO flows in the oxygen-free tank, DO immediately reacts with NOx-N via organic matter in the sewage and denitrifying bacteria as shown in the equation (5). The reaction (6) of NOx-N and acetic acid starts after the disappearance of DO, but if organic substances are used up to that point, equation (6) does not proceed and NOx-N remains. As a result, the denitrification efficiency decreases. For example, if O 2 is present in the range of 1.5 mg / L to 3.0 mg / L as shown in Equation (5), acetic acid is also consumed in the same amount of 1.5 mg / L to 3.0 mg / L.

2O2 + CH3COOH → 2CO2+2H2O −−−−−−(5)
8NO3 - + 5CH3COOH → 4N2+10CO2+6H2O+8OH(6)
したがって、最初沈殿池、嫌気槽、無酸素槽、好気槽、最終沈澱池からなり、好気槽の汚泥を無酸素槽に循環させる生物学的窒素およびりん除去プロセス(A2O法)においては、汚泥循環水のDOはできれば0mg/Lであることが望ましいが、DOが0.5mg/L以下であれば、DOの影響をほぼ無視することができる。
2O 2 + CH 3 COOH → 2CO 2 + 2H 2 O ------ (5)
8NO 3 - + 5CH 3 COOH → 4N 2 + 10CO 2 + 6H 2 O + 8OH - (6)
Therefore, in the biological nitrogen and phosphorus removal process (A 2 O method), which consists of a first settling tank, anaerobic tank, anaerobic tank, aerobic tank, and final settling tank, and circulates the sludge of the aerobic tank to the anoxic tank. The DO of sludge circulating water is preferably 0 mg / L if possible, but if DO is 0.5 mg / L or less, the influence of DO can be almost ignored.

次に、好気槽のDOが高いとNOx−Nが返送汚泥中に残存しやすくなることがあげられる。最終沈殿池において、汚泥が沈降し濃縮すると汚泥内部で内生呼吸によりDOが徐々に消費される。DOが消失すると内生脱窒反応(活性汚泥内に蓄積、吸着された有機物とNOx−Nの反応)によりNOx−Nが消費される。さらに、NOx−Nが消失するとりんの放出が観測されることになる。しかし、DOが大量に存在すると、上記のような内生脱窒反応が生じにくくなるため、NOx−Nはそのまま返送汚泥に残存しやすくなる。この結果、嫌気槽に返送汚泥を介してNOx−Nが流入しやすくなる。嫌気槽において、NOx−Nが存在すると、(6)式のようにりんの放出に必要な有機酸は直ちに分解されてしまう。例えば、NO3−Nが1mg/L存在すると、これに伴い、酢酸2.7mg/Lが消費されることとなる。NO3−Nの存在が酢酸の消費に及ぼす影響が極めて大きいことがわかる。嫌気槽において、酢酸が欠乏すれば、りんの放出が継続的に抑制され、結果的にはりんの除去率の低下を招くこととなる。 Next, when DO in the aerobic tank is high, NOx-N tends to remain in the returned sludge. When the sludge settles and concentrates in the final sedimentation basin, DO is gradually consumed by endogenous respiration inside the sludge. When DO disappears, NOx-N is consumed by an endogenous denitrification reaction (reaction between NOx-N accumulated and adsorbed in the activated sludge). Furthermore, when NOx-N disappears, phosphorus release is observed. However, if DO is present in a large amount, it is difficult for the endogenous denitrification reaction as described above to occur, so NOx-N tends to remain in the return sludge as it is. As a result, NO x -N easily flows into the anaerobic tank through the returned sludge. If NO x -N is present in the anaerobic tank, the organic acid necessary for the release of phosphorus is immediately decomposed as shown in the equation (6). For example, when NO 3 —N is present at 1 mg / L, acetic acid 2.7 mg / L is consumed accordingly. It can be seen that the presence of NO 3 —N has an extremely large influence on the consumption of acetic acid. If acetic acid is deficient in the anaerobic tank, the release of phosphorus is continuously suppressed, resulting in a decrease in the phosphorus removal rate.

さらに、好気槽の高いDOの存在は、硝化反応の進行を必ずしも意味しないと考えられる。言い換えれば、硝化反応を進行させるためには酸素はもちろん必要であるが、酸素が存在したからといって、硝化反応が進行していると判断することはできない。例えば、硝化細菌の活性が低下したり、死滅した場合には酸素消費がなくなり、好気槽は高いDOを示すこととなる。   Furthermore, it is considered that the presence of DO in a high aerobic tank does not necessarily mean the progress of the nitrification reaction. In other words, oxygen is of course required for the nitrification reaction to proceed, but it cannot be determined that the nitrification reaction is proceeding because oxygen is present. For example, when the activity of nitrifying bacteria is reduced or killed, the oxygen consumption is lost and the aerobic tank shows a high DO.

また、同様に、好気槽の高いDOの存在は、りん摂取反応の進行も意味しないと考えられる。りん摂取反応は、りん蓄積細菌による有機物分解であり、酸素は必要であるが、酸素が存在するからといって、りん摂取反応が進行しているとは限らない。例えば、りん蓄積細菌の活性が低下したり、死滅した場合には酸素消費がなくなり、好気槽は高いDOを示すこととなる。このように、好気槽を高いDOで管理したとしても、そのことは必ずしも処理性能の安定を示すものではないのである。   Similarly, the presence of DO in a high aerobic tank is not considered to mean the progress of phosphorus uptake reaction. The phosphorus ingestion reaction is an organic matter decomposition by phosphorus accumulating bacteria and requires oxygen, but the presence of oxygen does not necessarily cause the phosphorus ingestion reaction to proceed. For example, if the activity of phosphorus accumulating bacteria is reduced or killed, oxygen consumption is lost and the aerobic tank will show high DO. Thus, even if the aerobic tank is managed with high DO, this does not necessarily indicate the stability of the processing performance.

このような観点から、A2O法の運転は、従来の考え方のままでは、窒素とりんの安定的除去は難しいと考えられる。
高度処理設計マニュアル、p225−252、日本下水道協会、平成6年
From this point of view, it is considered that the operation of the A 2 O method is difficult to remove nitrogen and phosphorus stably with the conventional idea.
Advanced treatment design manual, p225-252, Japan Sewerage Association, 1994

上記課題を簡単にまとめると、A2O法においては好気槽の運転方法の影響が極めて大きく、従来の好気槽の運転方法は、必ずしもすべての現場に一般的に適用できるものではない。すなわち、好気槽でのDOを高めに維持する運転方法が処理の不安定さの主要な要因となっている場合が多い。好気槽でのDOの高めの維持が、嫌気槽でのりん放出の抑制や無酸素槽での脱窒効率の低下と深く結びつき、処理の不安定化を招いているのである。今回の発明はこのような観点から、A2O法の運転管理方法の抜本的な変更をはかり、処理水質を安定化する方法を提供することを目的とする。 To summarize the above problems, the influence of the operating method of the aerobic tank is extremely large in the A 2 O method, and the conventional operating method of the aerobic tank is not necessarily applicable to all sites. That is, in many cases, the operation method for maintaining the DO in the aerobic tank at a high level is a major factor in the instability of the processing. Maintaining a high DO in the aerobic tank is deeply linked to the suppression of phosphorus release in the anaerobic tank and the decrease in denitrification efficiency in the anaerobic tank, leading to instability of the process. From this point of view, the present invention aims to provide a method for stabilizing the quality of treated water by drastically changing the operation management method of the A 2 O method.

本発明者らは、上記の課題を解決すべく検討を重ねた結果、以下の方法により、窒素とりんを含有する下水を安定して効率的に処理することに成功した。本発明の要旨とするところは、次の(1)〜(10)である。   As a result of repeated studies to solve the above problems, the present inventors have succeeded in stably and efficiently treating sewage containing nitrogen and phosphorus by the following method. The gist of the present invention is the following (1) to (10).

(1)最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、最終沈澱池からなり、好気槽末端部の活性汚泥を無酸素槽(脱窒槽)に循環させる生物学的窒素およびりん除去プロセス(A2O法)において、好気槽の後段に第2の無酸素槽を設け、当該第2の無酸素槽末端部の活性汚泥を前段の無酸素槽(脱窒槽)に循環させるとともに、前記好気槽末端部から前段の無酸素槽(脱窒槽)への汚泥循環を停止することを特徴とする下水からの窒素及びりんの除去方法。 (1) Biological cycle consisting of first sedimentation tank, anaerobic tank, anaerobic tank (denitrification tank), aerobic tank, and final sedimentation tank, and circulating activated sludge at the end of the aerobic tank to the anoxic tank (denitrification tank) In the nitrogen and phosphorus removal process (A 2 O method), a second oxygen-free tank is provided after the aerobic tank, and the activated sludge at the end of the second oxygen-free tank is used as the oxygen-free tank (denitrification tank) in the previous stage. And removing the sludge circulation from the end portion of the aerobic tank to the preceding anaerobic tank (denitrification tank).

(2)好気槽後段の第2無酸素槽の底部に水中攪拌機を設置し、活性汚泥を攪拌するとともに活性汚泥中のDOを0.5mg/L以下まで低下させることを特徴とする上記(1)に記載の下水からの窒素及びりんの除去方法。 (2) The above characterized in that an underwater stirrer is installed at the bottom of the second anaerobic tank after the aerobic tank to stir the activated sludge and lower the DO in the activated sludge to 0.5 mg / L or less ( The method for removing nitrogen and phosphorus from sewage as described in 1).

(3)最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、最終沈澱池からなり、好気槽末端部の活性汚泥を無酸素槽(脱窒槽)に循環させる生物学的窒素およびりん除去プロセス(A2O法)において、活性汚泥を循環させる好気槽末端部分の曝気を削減することにより、汚泥循環水中のDOを0.5mg/L以下とするとともに好気槽末端部の底部に水中攪拌機を設置し、活性汚泥を攪拌することを特徴とする下水からの窒素及びりんの除去方法。 (3) Biological cycle consisting of first sedimentation tank, anaerobic tank, anaerobic tank (denitrification tank), aerobic tank, and final sedimentation tank, and circulating activated sludge at the end of the aerobic tank to the anoxic tank (denitrification tank) In the nitrogen and phosphorus removal process (A 2 O method), by reducing aeration at the end of the aerobic tank where the activated sludge is circulated, the DO in the sludge circulating water is 0.5 mg / L or less and the end of the aerobic tank A method for removing nitrogen and phosphorus from sewage, wherein an underwater stirrer is installed at the bottom of the section to stir the activated sludge.

(4)好気槽後段の第2無酸素槽または好気槽末端部のDOを0.5mg/L以下まで低下させる手段として、活性汚泥の内生呼吸を利用することを特徴とする上記(1)〜(3)のいずれかに記載の下水からの窒素及びりんの除去方法。 (4) The above characterized in that the endogenous respiration of activated sludge is used as means for lowering the DO at the end of the second anaerobic tank or the aerobic tank to 0.5 mg / L or less, following the aerobic tank ( The removal method of nitrogen and phosphorus from the sewage in any one of 1)-(3).

(5)好気槽において、NH4−N濃度を連続測定し、NH4−Nの測定値によって好気槽の曝気量を制御することにより、汚泥循環水中のNH4−N濃度を0.5mg/L以下まで低下させることを特徴とする上記(1)〜(4)のいずれかに記載の下水からの窒素及びりんの除去方法。 (5) In the aerobic tank, an NH 4 -N concentration measured continuously, by controlling the aeration of the aerobic tank by measurement of NH 4 -N, the NH 4 -N concentration of the sludge circulation water 0. The method for removing nitrogen and phosphorus from sewage according to any one of the above (1) to (4), wherein the method is reduced to 5 mg / L or less.

(6)返送汚泥と最初沈殿池流出水を混合し、DOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減した後、この混合水を嫌気槽に流入させることを特徴とする上記(1)〜(5)のいずれかに記載の下水からの窒素及びりんの除去方法。 (6) Mix the returned sludge and the first settling basin effluent, reduce DO and NOx-N (the sum of NO 2 -N and NO 3 -N) to below the detection limit, and then flow this mixed water into the anaerobic tank A method for removing nitrogen and phosphorus from sewage according to any one of the above (1) to (5), wherein

(7)返送汚泥と最初沈殿池流出水を混合し、DOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減する手段として、第3の無酸素槽(脱窒槽)を嫌気槽の前段に設けることを特徴とする上記(6)に記載の下水からの窒素及びりんの除去方法。 (7) As a means for mixing the return sludge and the first settling basin effluent and reducing DO and NOx-N (the sum of NO 2 -N and NO 3 -N) to below the detection limit, The method for removing nitrogen and phosphorus from sewage as described in (6) above, wherein a denitrification tank) is provided in front of the anaerobic tank.

(8)嫌気槽の前段に設けた第3の無酸素槽に有機物、硫黄化合物の少なくともいずれかを添加して、嫌気槽流入水中のDOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減することを特徴とする上記(6)又は(7)に記載の下水からの窒素及びりんの除去方法。 (8) At least one of an organic substance and a sulfur compound is added to a third oxygen-free tank provided in the front stage of the anaerobic tank, and DO and NOx-N (NO 2 -N and NO 3 -N in the anaerobic tank inflow water) (6) or (7) above, wherein nitrogen and phosphorus are removed from sewage.

(9)最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、第2の無酸素槽、及び最終沈澱池を順に備え、更に、前記最終沈殿池の活性汚泥の一部を前記嫌気槽に循環する装置と、前記第2の無酸素槽内の活性汚泥の一部を前記無酸素槽(脱窒槽)へ循環する装置とを、備えることを特徴とする下水からの生物学的窒素及びりんの除去装置。 (9) A first sedimentation basin, an anaerobic tank, an anaerobic tank (denitrification tank), an aerobic tank, a second anaerobic tank, and a final sedimentation tank are provided in this order, and a part of the activated sludge in the final sedimentation tank is further provided. Biology from sewage comprising: an apparatus for circulating to the anaerobic tank; and an apparatus for circulating a part of the activated sludge in the second anoxic tank to the anoxic tank (denitrification tank). Nitrogen and phosphorus removal equipment.

(10)前記最初沈殿池と前記嫌気槽との間に、更に第3の無酸素槽を備え、前記最終沈殿池の活性汚泥の一部を前記嫌気槽に循環する装置に替えて、前記最終沈殿池の活性汚泥の一部を前記第3の無酸素槽に循環する装置を、備えることを特徴とする下水からの生物学的窒素及びりんの除去装置。 (10) A third oxygen-free tank is further provided between the first settling basin and the anaerobic tank, and the final sludge is replaced with a device that circulates part of the activated sludge in the final settling basin to the anaerobic tank. An apparatus for removing biological nitrogen and phosphorus from sewage, comprising an apparatus for circulating a part of activated sludge in a sedimentation basin to the third oxygen-free tank.

本発明により、窒素およびりんを含有する下水から窒素およびりんを安定して除去することが可能となる。   According to the present invention, nitrogen and phosphorus can be stably removed from sewage containing nitrogen and phosphorus.

従来のA2O法のフローを図1に示す。また、又本発明の処理フロ−の1例を図2、図3、図4に示す。 A flow of the conventional A 2 O method is shown in FIG. An example of the processing flow of the present invention is shown in FIGS.

本発明は、換言すれば従来のA2O法の変法である。A2OA法(嫌気−無酸素−好気−無酸素)あるいはA3OA法(無酸素−嫌気−無酸素−好気−無酸素)ともいうことができる。
すなわち、図2のA2OA法は、最初沈殿池2、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2無酸素槽8、最終沈澱池9を備え、更に、前記最終沈殿池の活性汚泥の一部を前記嫌気槽に循環する装置(返送汚泥15を送る配管と返送汚泥ポンプ14からなる)、と、前記第2の無酸素槽内の活性汚泥の一部を前記無酸素槽(脱窒槽)へ循環する装置(活性汚泥を含む汚泥循環水18を送る配管と汚泥循環ポンプ13からなる)とを備える。
In other words, the present invention is a modification of the conventional A 2 O method. It can also be called A 2 OA method (anaerobic-anoxic-aerobic-anoxic) or A 3 OA method (anoxic-anaerobic-anoxic-aerobic-anoxic).
That is, the A 2 OA method of FIG. 2 includes a first sedimentation tank 2, an anaerobic tank 5, an oxygen-free tank (denitrification tank) 6, an aerobic tank 7, a second oxygen-free tank 8, and a final sedimentation tank 9. A device that circulates part of the activated sludge in the final sedimentation basin to the anaerobic tank (consisting of a pipe for sending the return sludge 15 and the return sludge pump 14), and a part of the activated sludge in the second anoxic tank Is connected to the anaerobic tank (denitrification tank) (consisting of a pipe for sending sludge circulating water 18 including activated sludge and a sludge circulation pump 13).

また、図3のA3OA法は、最初沈殿池2、第3無酸素槽(脱窒槽)20、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2無酸素槽8、最終沈澱池9を備え、更に、前記最終沈殿池の汚泥の一部を前記第3の無酸素槽に循環する装置(返送汚泥15を送る配管と返送汚泥ポンプ14からなる)と、前記第2の無酸素槽内の活性汚泥の一部を前記無酸素槽(脱窒槽)へ循環する装置(活性汚泥を含む汚泥循環水18を送る配管と汚泥循環ポンプ13からなる)とを備える。 In addition, the A 3 OA method of FIG. 3 includes the first sedimentation tank 2, the third oxygen-free tank (denitrification tank) 20, the anaerobic tank 5, the oxygen-free tank (denitrification tank) 6, the aerobic tank 7, and the second oxygen-free tank. 8. A final sedimentation basin 9 is provided, and a device for circulating a part of the sludge from the final sedimentation basin to the third oxygen-free tank (consisting of a pipe for sending the return sludge 15 and a return sludge pump 14), An apparatus (consisting of a pipe for sending the sludge circulating water 18 including the activated sludge and the sludge circulation pump 13) that circulates a part of the activated sludge in the second oxygen-free tank to the oxygen-free tank (denitrification tank).

図2、図3は共に、好気槽7の活性汚泥ではなく、第2無酸素槽8の活性汚泥を循環させるのである。
図4は好気槽7の活性汚泥を無酸素槽6(脱窒槽)に循環させる点では、従来法と同一であるが、好気槽7末端付近に水中攪拌機11を設置するとともにDO値17が0.5mg/L以下である点が大きく異なっている。
2 and 3 circulate not the activated sludge in the aerobic tank 7 but the activated sludge in the second anoxic tank 8.
FIG. 4 is the same as the conventional method in that the activated sludge in the aerobic tank 7 is circulated to the anoxic tank 6 (denitrification tank), but an underwater agitator 11 is installed near the end of the aerobic tank 7 and the DO value 17 Is greatly different in that it is 0.5 mg / L or less.

図1に示す従来のA2O法における好気槽7出口のDO17は、硝化促進、りん摂取促進、最終沈殿池でのりん放出防止などの観点から1.5〜3.0mg/Lが望ましいとされていた。しかしながら、このような運転指標は、多くの課題がある。この課題を列挙すると以下のようになる。 The DO 17 at the outlet of the aerobic tank 7 in the conventional A 2 O method shown in FIG. 1 is preferably 1.5 to 3.0 mg / L from the viewpoint of promoting nitrification, promoting phosphorus intake, and preventing phosphorus release in the final sedimentation basin. It was said. However, such an operation index has many problems. This problem is enumerated as follows.

1) 高いDOを保持する好気槽7の末端の活性汚泥が無酸素槽6に送られるため、無酸素槽6での脱窒反応が阻害されやすい。
2) 高いDOを保持する好気槽7の末端の活性汚泥が最終沈殿池9に送られるため、返送汚泥15にNOx−Nが残留しやすくなる。このNOx−Nは、嫌気槽5におけるりん放出の阻害となる。
3) 好気槽7末端の高いDOの存在は、硝化反応の進行を意味しない。言い換えれば、硝化反応の進行には酸素は必要であるが、酸素が存在するからといって、硝化反応が進行しているとは限らない。
4) 好気槽7末端の高いDOの存在は、りん摂取反応の進行を意味しない。言い換えれば、りん摂取反応の進行には酸素は必要であるが、酸素が存在するからといって、りん摂取反応が進行しているとは限らない。
5) 嫌気槽5や無酸素槽6においてDOがたとえ0であっても、NOx−Nが存在すれば、嫌気槽5でのりんの放出は抑制される。りんの放出が生じるのはNOx−Nが消失した後である。したがって、りんの放出を促進あるいは抑制する場合にはDOばかりでなくNOx−Nの管理が必要である。この視点が嫌気槽5、無酸素槽(脱窒槽)6、最終沈殿池9の管理から抜け落ちている。
1) Since the activated sludge at the end of the aerobic tank 7 holding high DO is sent to the anoxic tank 6, the denitrification reaction in the anoxic tank 6 is likely to be hindered.
2) Since the activated sludge at the end of the aerobic tank 7 holding high DO is sent to the final sedimentation tank 9, NOx-N tends to remain in the return sludge 15. This NOx-N inhibits phosphorus release in the anaerobic tank 5.
3) The presence of high DO at the end of the aerobic tank 7 does not mean the progress of the nitrification reaction. In other words, oxygen is necessary for the progress of the nitrification reaction, but just because oxygen is present does not mean that the nitrification reaction is progressing.
4) The presence of high DO at the end of the aerobic tank 7 does not mean the progress of the phosphorus intake reaction. In other words, oxygen is necessary for the progress of the phosphorus uptake reaction, but the presence of oxygen does not necessarily mean that the phosphorus uptake reaction is progressing.
5) Even if DO is 0 in the anaerobic tank 5 or the anaerobic tank 6, if NOx-N is present, the release of phosphorus in the anaerobic tank 5 is suppressed. Phosphorus release occurs after NOx-N disappears. Therefore, in order to promote or suppress the release of phosphorus, it is necessary to manage not only DO but also NOx-N. This viewpoint is missing from the management of the anaerobic tank 5, the oxygen-free tank (denitrification tank) 6, and the final sedimentation tank 9.

発明者らは、従来のこのようなA2O法の課題を解決するため、今回のような発明に至ったものである。この具体的手段を以下に詳細に述べる。
まず、最初沈殿池2、嫌気槽5、無酸素槽6(脱窒槽)、好気槽7、最終沈澱池8からなり、好気槽7末端部の活性汚泥を無酸素槽6(脱窒槽)に循環させる生物学的窒素およびりん除去プロセス(A2O法)において、好気槽7の後段にさらに第2の無酸素槽8を設けるのである(図2参照)。そして、この第2無酸素槽8末端部の活性汚泥を前段の無酸素槽(脱窒槽)6に循環させる。この第2無酸素槽8および活性汚泥循環液18中のDOは、0.5mg/L以下が望ましく、できれば0mg/Lとすべきである。好気槽7から前段の無酸素槽(脱窒槽)6への汚泥循環は停止させる。好気槽7の後段に設けた第2無酸素槽8の目的は、文字通り、無酸素化、すなわち、DOを0とすることであり、脱窒素ではない。むしろ、NOx−Nは最終沈殿池9でのりんの放出を抑制する観点から削減しないことが重要である。第2無酸素槽8の底部には、水中攪拌機11を設置し、攪拌のみで運転する。曝気による攪拌は行わない。
The inventors have arrived at the present invention in order to solve the problems of the conventional A 2 O method. This specific means will be described in detail below.
First, it consists of first sedimentation basin 2, anaerobic tank 5, anoxic tank 6 (denitrification tank), aerobic tank 7 and final sedimentation tank 8. Activated sludge at the end of aerobic tank 7 is treated with anaerobic tank 6 (denitrification tank). In the biological nitrogen and phosphorus removal process (A 2 O method) to be circulated, a second oxygen-free tank 8 is further provided after the aerobic tank 7 (see FIG. 2). Then, the activated sludge at the end of the second oxygen-free tank 8 is circulated to the preceding oxygen-free tank (denitrification tank) 6. The DO in the second oxygen-free tank 8 and the activated sludge circulating liquid 18 is desirably 0.5 mg / L or less, and should preferably be 0 mg / L. Sludge circulation from the aerobic tank 7 to the preceding anaerobic tank (denitrification tank) 6 is stopped. The purpose of the second oxygen-free tank 8 provided in the rear stage of the aerobic tank 7 is literally oxygen-free, that is, to set DO to 0, and not denitrification. Rather, it is important not to reduce NOx-N from the viewpoint of suppressing the release of phosphorus in the final sedimentation tank 9. An underwater stirrer 11 is installed at the bottom of the second oxygen-free tank 8 and is operated only with stirring. No agitation by aeration.

DOの削減には、活性汚泥の内生呼吸を利用することが望ましい。一般に内生呼吸状態での酸素消費速度は0.12gO2/MLSS・g/日程度である。A2O法においては、反応槽の活性汚泥濃度(MLSS濃度)は、2,000〜3,000mg/L程度で運転される。したがって、第2無酸素槽8のHRTは、1時間もあれば10〜15mg/LのDOを0とすることが可能である。仮に、好気槽7のDOが3mg/L、活性汚泥濃度は3,000mg/L程度に維持されているとすると、HRTが12分程度の条件で、好気槽7の出口水中の3mg/LのDOを0とできる計算となる。なお、繰り返すが、この好気槽7の後段に設けた第2無酸素槽8は、あくまでDOを0とすることが目的である。脱窒素を目的とするものではない。 In order to reduce DO, it is desirable to use the endogenous respiration of activated sludge. Generally, the oxygen consumption rate in the endogenous breathing state is about 0.12 gO 2 / MLSS · g / day. In the A 2 O method, the activated sludge concentration (MLSS concentration) in the reaction tank is operated at about 2,000 to 3,000 mg / L. Therefore, the HRT of the second oxygen-free tank 8 can reduce the DO of 10 to 15 mg / L to 0 in 1 hour. If the DO in the aerobic tank 7 is maintained at 3 mg / L and the activated sludge concentration is maintained at about 3,000 mg / L, 3 mg / L in the outlet water of the aerobic tank 7 under the condition that the HRT is about 12 minutes. The calculation is such that the DO of L can be zero. In addition, although it repeats, the objective of the 2nd anoxic tank 8 provided in the back | latter stage of this aerobic tank 7 is to make DO into 0 to the last. It is not intended for denitrification.

好気槽7の後段に設けた第2無酸素槽8で注意すべきことは、最終沈殿池9でのりんの放出の抑制である。このため、本発明では、第2無酸素槽8の出口水のNOx−N濃度を5.0mg/L以上10mg/L以下残存させる。第2無酸素槽8でNOx−Nを完全に除去することはしない。これは、完全な脱窒の達成、すなわちNOx−Nの完全な消失は、最終沈殿池9でのりんの放出を促進するからである。一方、NOx−N濃度が5.0mg/L以上あれば、最終沈殿池9でのりんの放出を防止できる。このように、最終沈殿池9でのりん放出を防ぐためには、第2無酸素槽8において脱窒素を促進してはならない。また、NOx−N濃度を5.0mg/L以上残留させることにより、最終沈殿池9から嫌気槽5への返送汚泥15中でのりんの放出も防止できる。   What should be noted in the second anoxic tank 8 provided at the rear stage of the aerobic tank 7 is suppression of release of phosphorus in the final sedimentation tank 9. For this reason, in this invention, the NOx-N density | concentration of the outlet water of the 2nd anaerobic tank 8 remains 5.0 mg / L or more and 10 mg / L or less. NOx-N is not completely removed in the second oxygen-free tank 8. This is because the achievement of complete denitrification, that is, complete disappearance of NOx-N, promotes the release of phosphorus in the final sedimentation tank 9. On the other hand, if the NOx-N concentration is 5.0 mg / L or more, release of phosphorus in the final sedimentation tank 9 can be prevented. Thus, in order to prevent the release of phosphorus in the final sedimentation tank 9, denitrification should not be promoted in the second anoxic tank 8. Further, by leaving the NOx-N concentration to be 5.0 mg / L or more, it is possible to prevent the release of phosphorus in the return sludge 15 from the final sedimentation tank 9 to the anaerobic tank 5.

好気槽7の後段に第2無酸素槽8を新たに設置や拡張が困難な場合には、以下のような運転方法(図4参照)で対応させる。すなわち、HRTが10分から30分程度である好気槽7の末端部分のブロアによる曝気を低減もしくは停止させるのである。具体的にはDO17を測定し、DO17の値が0mg/L以上0.5mg/L以下となるように曝気量を削減する。このことにより、汚泥循環水18中のDOも0mg/L以上0.5mg/L以下とすることができる。曝気量を削減した好気槽7の末端部は、活性汚泥が沈降しない程度に攪拌しながら運転する必要があるため、底部に水中攪拌機11を設置し攪拌する必要がある。従来のA2O法では、好気槽7末端部のDOは、通常、1.5〜3.0mg/Lが望ましいとされてきた。しかし、硝化反応が好気槽7で完了していることが確認できれば、必ずしもこれに準ずる必要は全く無い。既に硝化反応が完了していれば、好気槽7末端のDOは0mg/L以上0.5mg/L以下で全くかまわない。DOは先にも述べたが、硝化反応の完了を確認する方法には使えない。好気槽7において、硝化反応の完了を確認する方法としては以下のような方法がある。 When it is difficult to newly install or expand the second oxygen-free tank 8 at the rear stage of the aerobic tank 7, the following operation method (see FIG. 4) is used. That is, aeration by the blower at the end portion of the aerobic tank 7 where the HRT is about 10 to 30 minutes is reduced or stopped. Specifically, DO17 is measured, and the amount of aeration is reduced so that the value of DO17 is 0 mg / L or more and 0.5 mg / L or less. Thereby, DO in the sludge circulating water 18 can also be 0 mg / L or more and 0.5 mg / L or less. Since the end part of the aerobic tank 7 in which the aeration amount is reduced needs to be operated with stirring to such an extent that activated sludge does not settle, it is necessary to install an underwater stirrer 11 at the bottom and stir. In the conventional A 2 O method, the DO at the end portion of the aerobic tank 7 is usually desirably 1.5 to 3.0 mg / L. However, if it can be confirmed that the nitrification reaction is completed in the aerobic tank 7, it is not always necessary to follow this. If the nitrification reaction has already been completed, the DO at the end of the aerobic tank 7 may be 0 mg / L or more and 0.5 mg / L or less at all. As described above, DO cannot be used as a method for confirming completion of the nitrification reaction. As a method for confirming the completion of the nitrification reaction in the aerobic tank 7, there are the following methods.

まず、好気槽7において、NH4−N濃度を連続測定し、NH4−Nの測定値によって好気槽7の曝気量を制御することにより、好気槽7末端において、NH4−N濃度を0.5mg/L以下まで低下させる。NH4−N濃度を0.5mg/L以下まで低下させれば、下水(1)中のNH4−Nが20mg/Lから50mg/L程度の場合、硝化率は97.5から99%となり、硝化反応がほぼ完了していると判断できる。 First, in the aerobic tank 7, the NH 4 -N concentration measured continuously, by controlling the aeration amount of aerobic tank 7 by measurement of NH 4 -N, in the aerobic tank 7 ends, NH 4 -N Reduce the concentration to 0.5 mg / L or less. If the NH 4 -N concentration is reduced to 0.5 mg / L or less, the nitrification rate is 97.5 to 99% when NH 4 -N in the sewage (1) is about 20 mg / L to 50 mg / L. It can be judged that the nitrification reaction is almost completed.

硝化反応の完了を確認するこれ以外の方法としては、好気槽7において、ORPを連続測定し、これらの測定値によって、好気槽7の曝気量を制御する方法がある。ORPは硝化反応の進行と密接に関係しており、ORPが+80mV以上(銀/塩化銀基準)まで上昇すれば硝化反応はほぼ完了していると判断できる。したがって、好気槽7のORPを指標として好気槽7を曝気してもかまわない。なお、ORPが+100mV(銀/塩化銀基準)以上まで曝気する必要はない。   As another method for confirming the completion of the nitrification reaction, there is a method in which ORP is continuously measured in the aerobic tank 7 and the amount of aeration in the aerobic tank 7 is controlled by these measured values. ORP is closely related to the progress of the nitrification reaction, and it can be judged that the nitrification reaction is almost complete if ORP rises to +80 mV or higher (silver / silver chloride standard). Therefore, the aerobic tank 7 may be aerated using the ORP of the aerobic tank 7 as an index. It is not necessary to perform aeration until the ORP is +100 mV (silver / silver chloride standard) or more.

好気槽7でのりんの摂取については、従来、好気槽7でのDO濃度との関連が多く指摘されてきた。すなわち、好気槽7でDOが不足すると、好気槽7でのりんの摂取が阻害される可能性があるため、概ね、好気槽7末端のDO濃度は、1.5〜3.0mg/Lが望ましいとされている(非特許文献1)。しかしながら、発明者らの見解は全く異なる。りんの摂取に酸素は必要であるが、酸素が十分あるからといって、りん蓄積細菌によるりんの摂取が順調とみなすのは疑問である。実際、発明者らの実験では、 活性汚泥中にりん蓄積細菌が十分に存在していれば、好気槽7のDO濃度が0.5mg/Lであっても、2mg/Lであってもりんの摂取に明確な差は全く認められなかった(図5、図6参照)。したがって、好気槽7のDOが低くてもりんの摂取には全く問題はないと思われる。   Regarding the intake of phosphorus in the aerobic tank 7, many relations with the DO concentration in the aerobic tank 7 have been pointed out heretofore. That is, if DO is insufficient in the aerobic tank 7, the intake of phosphorus in the aerobic tank 7 may be hindered. Therefore, the DO concentration at the end of the aerobic tank 7 is generally 1.5 to 3.0 mg. / L is desirable (Non-Patent Document 1). However, the inventors' views are quite different. Oxygen is necessary for the intake of phosphorus, but it is doubtful that the intake of phosphorus by phosphorus-accumulating bacteria is considered good just because there is enough oxygen. In fact, in our experiments, if there are enough phosphorus-accumulating bacteria in the activated sludge, the DO concentration in the aerobic tank 7 is 0.5 mg / L or 2 mg / L. There was no clear difference in phosphorus intake (see FIGS. 5 and 6). Therefore, even if the DO of the aerobic tank 7 is low, it seems that there is no problem with the intake of phosphorus.

脱窒素を行う無酸素槽6(脱窒槽)の運転は以下のように実施する。本発明では、無酸素槽6(脱窒槽)に流入する汚泥循環水18のDO値が0から0.5mg/L以下となるため、DOによる脱窒反応の阻害は極めて軽微となる。したがって、無酸素槽6のNOx−N除去率は、DOの存在が無視できる為、有機物の絶対量によって判断できることになる。無酸素槽(脱窒槽)6を制御する1つの手段としては、無酸素槽6のORPが−150mV〜−200mVとなるように制御する。ORPを−200mV以上とするためには、無酸素槽6をブロア12により曝気し、ORPを上昇させる。また、ORPを−150mV以下とするためには、有機物および/または硫黄化合物を無酸素槽6(脱窒槽)に添加すればよい。有機物としては、メタノール、酢酸、酢酸ナトリウムなどから適宜選べばよい。硫黄化合物としては、チオ硫酸ナトリウム、元素硫黄などの適用が考えられる((7)式参照)。   The operation of the oxygen-free tank 6 (denitrification tank) that performs denitrification is performed as follows. In the present invention, since the DO value of the sludge circulating water 18 flowing into the oxygen-free tank 6 (denitrification tank) is 0 to 0.5 mg / L or less, the inhibition of the denitrification reaction by DO is extremely slight. Therefore, the NOx-N removal rate of the oxygen-free tank 6 can be determined by the absolute amount of organic matter because the presence of DO can be ignored. As one means for controlling the anoxic tank (denitrification tank) 6, the ORP of the anoxic tank 6 is controlled to be −150 mV to −200 mV. In order to set ORP to −200 mV or more, the oxygen-free tank 6 is aerated by the blower 12 to raise the ORP. Moreover, in order to make ORP into -150 mV or less, what is necessary is just to add an organic substance and / or a sulfur compound to the anoxic tank 6 (denitrification tank). What is necessary is just to select suitably from methanol, an acetic acid, sodium acetate, etc. as an organic substance. As the sulfur compound, application of sodium thiosulfate, elemental sulfur, etc. can be considered (see formula (7)).

8NO3 - + 5S23 2- +H2O→ 4N2+10SO4 2-+2H+ −−(7) 8NO 3 + 5S 2 O 3 2− + H 2 O → 4N 2 + 10SO 4 2− + 2H + −− (7)

有機物や硫黄化合物を含む下水(1)を用いてもかまわない。
次に、最終沈殿池9での留意点を述べる。最終沈殿池9でのりんの放出は、NOx−Nの存在と強い関連があり、NOx−Nが存在していればりんの放出は生じない。発明者らの考えでは、A2O法における最終沈殿池9からのりんの放出は、 処理水中のDOの残存量ばかりでなく、NOx−Nの残存量にも影響を受ける。すなわち、最終沈殿池9の底部で汚泥の堆積が生じ、数時間(通常2〜4時間程度)の汚泥堆積時間の影響のため、汚泥内でDO(内生呼吸)、続いて、NOx−Nが消失(内生脱窒)し、嫌気状態が進行した結果、自己分解によるりん放出が生ずるのである。りんの放出はDOがいくら消失しても、NOx−Nさえある程度残存していれば生じない。実際、発明者らは最終沈殿池流入水のNOx−Nが5mg/L以上あれば、最終沈殿池9の滞留時間が4時間の条件で返送汚泥中15にNOx−Nが1mg/L以上残存していた。この結果、最終沈殿池9においても、返送汚泥15ラインにおいてもりんの放出は観測されなかった。
Sewage (1) containing organic matter and sulfur compounds may be used.
Next, points to be noted in the final sedimentation basin 9 will be described. The release of phosphorus in the final sedimentation tank 9 is strongly related to the presence of NOx-N. If NOx-N is present, the release of phosphorus does not occur. The inventors believe that the release of phosphorus from the final sedimentation tank 9 in the A 2 O method is affected not only by the residual amount of DO in the treated water but also by the residual amount of NOx-N. That is, sludge accumulation occurs at the bottom of the final sedimentation basin 9, and due to the influence of sludge accumulation time of several hours (usually about 2 to 4 hours), DO (endogenous respiration) in the sludge, followed by NOx-N Disappears (endogenous denitrification), and as a result of the progress of the anaerobic state, phosphorus is released by autolysis. No matter how much DO is lost, phosphorus release does not occur if only NOx-N remains. In fact, if the NOx-N of the final sedimentation basin inflow water is 5 mg / L or more, the inventors left NOx-N in the return sludge 15 at 1 mg / L or more in the return sludge under the condition that the residence time of the final sedimentation basin 9 is 4 hours. Was. As a result, no release of phosphorus was observed in the final sedimentation basin 9 or in the return sludge 15 line.

しかしながら、一方で、最終沈澱池9から嫌気槽5への返送汚泥15中に含まれるNOx−Nが残存しすぎると、嫌気槽5でのりんの放出に影響する。返送汚泥中15のNOx−Nを削減する簡単な手段としては、返送汚泥15と最初沈殿池流出水3をあらかじめ混合し、返送汚泥15中に含まれるNOx−Nを脱窒反応により削減した後、返送汚泥15と最初沈殿池流出水3を嫌気槽5に流入させればよい。さらに、返送汚泥15と最初沈殿池流出水3を混合し、脱窒を行う第3の無酸素槽20(脱窒槽)を嫌気槽5の前段に設けることは、脱窒反応安定化の観点から望ましいことである(図3参照)。降雨などの影響で最初沈殿池流出水3に含まれる有機物濃度が低下し、DOも存在する場合、最初沈殿池流出水3のみでは、返送汚泥15中のNOx−Nの削減に効果が見られない。このような場合には、有機物および/又は硫黄化合物のを嫌気槽5の前段に設けた第3無酸素槽20(脱窒槽)に添加すればよい。第3無酸素槽20(脱窒槽)における脱窒反応の進行度の判断も、前述したようなORPを用いて判断することができる。有機物または硫黄化合物の添加量は、第3無酸素槽20(脱窒槽)のORPが−150mV(銀/塩化銀電極基準)以下となるように添加すればよい。第3無酸素槽20(脱窒槽)のORPが−150mV以下であればNOx−Nはほぼ除去されていると判断できる。有機物としては、メタノール、酢酸、酢酸ナトリウムなどから適宜選べばよい。硫黄化合物としては、チオ硫酸ナトリウム、元素硫黄などの適用が考えられる。有機物や硫黄化合物を含む下水(1)を用いてもかまわない。   However, on the other hand, if NOx-N contained in the return sludge 15 from the final sedimentation basin 9 to the anaerobic tank 5 remains too much, the release of phosphorus in the anaerobic tank 5 is affected. As a simple means for reducing NOx-N in the return sludge 15, the return sludge 15 and the first settling basin effluent 3 are mixed in advance, and the NOx-N contained in the return sludge 15 is reduced by denitrification reaction. The return sludge 15 and the first settling basin effluent 3 may be flowed into the anaerobic tank 5. Furthermore, providing a third anoxic tank 20 (denitrification tank) that mixes the return sludge 15 and the first settling basin effluent 3 and performs denitrification in front of the anaerobic tank 5 is from the viewpoint of stabilizing the denitrification reaction. This is desirable (see FIG. 3). When the organic matter concentration contained in the first sedimentation basin effluent 3 decreases due to the influence of rainfall or the like and DO exists, the first sedimentation basin effluent 3 alone is effective in reducing NOx-N in the return sludge 15. Absent. In such a case, the organic substance and / or the sulfur compound may be added to the third anoxic tank 20 (denitrification tank) provided in the front stage of the anaerobic tank 5. The degree of progress of the denitrification reaction in the third anoxic tank 20 (denitrification tank) can also be determined using the ORP as described above. What is necessary is just to add the addition amount of an organic substance or a sulfur compound so that ORP of the 3rd oxygen-free tank 20 (denitrification tank) may be set to -150mV (silver / silver chloride electrode reference | standard) or less. If the ORP of the third oxygen-free tank 20 (denitrification tank) is −150 mV or less, it can be determined that NOx—N is almost removed. What is necessary is just to select suitably from methanol, an acetic acid, sodium acetate, etc. as an organic substance. As the sulfur compound, application of sodium thiosulfate, elemental sulfur, etc. can be considered. Sewage (1) containing organic matter and sulfur compounds may be used.

以下、本発明の実施例を説明する。
実施例1:下水からの窒素・りん除去への適用(A 2 OA法)
本発明の方法を都市下水処理へ適用し、今回発案したA2OA法による処理水質の安定化を検討した(図2参照)。
今回発案した装置は、図2に示すように、最初沈殿池2、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2の無酸素槽8、及び最終沈澱池9を順に備え、更に、前記最終沈殿池9の汚泥の一部を前記嫌気槽5に循環する装置と、前記第2の無酸素槽8内の活性汚泥の一部を前記無酸素槽(脱窒槽)6へ循環する装置とを備えることを特徴とする。図1の従来のA2O法と比較すると、第2無酸素槽8が新たに設置されている点、及び前記第2の無酸素槽8内の活性汚泥の一部を前記無酸素槽(脱窒槽)6へ循環する点が大きく異なる。また、従来のA2O法では好気槽7の末端部のDO17が重要視され、通常、1.5〜3.0mg/LのDO管理値で運転されているが、本発明では第2無酸素槽8を新たに設け、DO管理値を0〜0.5mg/Lとしている点が大きく異なっている。
Examples of the present invention will be described below.
Example 1: Application to removal of nitrogen and phosphorus from sewage (A 2 OA method)
The method of the present invention was applied to municipal sewage treatment, and the stabilization of treated water by the A 2 OA method proposed this time was examined (see FIG. 2).
As shown in FIG. 2, the device proposed this time includes an initial sedimentation tank 2, an anaerobic tank 5, an oxygen-free tank (denitrification tank) 6, an aerobic tank 7, a second oxygen-free tank 8, and a final sedimentation tank 9. In addition, an apparatus for circulating a part of the sludge in the final sedimentation basin 9 to the anaerobic tank 5 and a part of the activated sludge in the second anaerobic tank 8 in the anaerobic tank (denitrification tank) And a device that circulates to 6. Compared with the conventional A 2 O method of FIG. 1, the second oxygen-free tank 8 is newly installed, and a part of the activated sludge in the second oxygen-free tank 8 is replaced with the oxygen-free tank ( The point of circulation to the denitrification tank 6 is greatly different. In the conventional A 2 O method, the DO 17 at the end of the aerobic tank 7 is regarded as important, and is normally operated with a DO control value of 1.5 to 3.0 mg / L. An oxygen-free tank 8 is newly provided, and the point that the DO management value is 0 to 0.5 mg / L is greatly different.

本発明による処理は以下のように実施される。まず、下水1の浮遊物を最初沈殿池2で除去した後、最初沈殿池流出水3は、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2無酸素槽8、最終沈殿池9を流下していく。さらに、第2無酸素槽8の活性汚泥の一部を循環ポンプ13を用いて無酸素槽(脱窒槽)6に循環させる。活性汚泥の循環率は最初沈殿池流出水3に対して150V/V%である。また、最終沈殿池9で沈殿した汚泥は、返送汚泥ポンプ14を用いて最初沈殿池流出水3に対して50V/V%、嫌気槽5に返送する。   The processing according to the present invention is performed as follows. First, after the suspended matter of the sewage 1 is removed in the first sedimentation basin 2, the first sedimentation basin effluent 3 includes an anaerobic tank 5, an oxygen-free tank (denitrification tank) 6, an aerobic tank 7, a second oxygen-free tank 8, It flows down the final sedimentation basin 9. Further, a part of the activated sludge in the second oxygen-free tank 8 is circulated to the oxygen-free tank (denitrification tank) 6 using the circulation pump 13. The circulation rate of the activated sludge is 150 V / V% with respect to the settling basin effluent 3 at first. The sludge precipitated in the final sedimentation basin 9 is returned to the anaerobic tank 5 by 50 V / V% with respect to the first sedimentation basin effluent 3 using the return sludge pump 14.

各槽の水理学的滞留時間(HRT)は、嫌気槽5が2時間、無酸素槽(脱窒槽)6が4時間、好気槽7が8時間、第2無酸素槽8が30分間とした。また最終沈殿池9のHRTは4時間とした。   The hydraulic residence time (HRT) of each tank is 2 hours for the anaerobic tank 5, 4 hours for the anaerobic tank (denitrification tank) 6, 8 hours for the aerobic tank 7, and 30 minutes for the second anaerobic tank 8. did. The HRT of the final sedimentation tank 9 was 4 hours.

嫌気槽5、無酸素槽(脱窒槽)6にはそれぞれORP計16を設置し、りんの放出および脱窒反応の進行状況をモニタリングした。また、好気槽7にはORP計16、NH4−N計10を設置し、りんの摂取と硝化反応の進行状況をモニタリングした。さらに、第2無酸素槽8にはDO計17を設置し、DOの削減状況をモニタリングした。 An ORP meter 16 was installed in each of the anaerobic tank 5 and the anaerobic tank (denitrification tank) 6 to monitor the release of phosphorus and the progress of the denitrification reaction. In addition, an ORP meter 16 and an NH 4 -N meter 10 were installed in the aerobic tank 7 to monitor the intake of phosphorus and the progress of nitrification reaction. Furthermore, a DO meter 17 was installed in the second oxygen-free tank 8 to monitor the DO reduction status.

最初沈殿池流出水3の水質は、BODが平均106mg/L、SSが平均67mg/L、T−N(ト−タル窒素)が平均32mg/L(大半がアンモニア性窒素)、T−P(ト−タルりん)が平均4mg/L程度であった。以下、各槽の運転方法を詳細に述べる。   The water quality of the first sedimentation basin effluent 3 is 106 mg / L on average for BOD, 67 mg / L on average for SS, 32 mg / L on average for TN (total nitrogen) (mostly ammonia nitrogen), TP ( Total phosphorus) was about 4 mg / L on average. Hereinafter, the operation method of each tank is described in detail.

嫌気槽5にて、りんの放出を促進するため、嫌気槽5のORP16が−270mVを上回った場合、嫌気槽5のORP16を指標として、有機物添加装置4から有機物(本ケースの場合、酢酸)を嫌気槽5に30mg/L−下水となるように添加し、嫌気槽5のORP16を−270mV以下に低下させる方式とした。この結果、嫌気槽5におけるPO4−P放出濃度は、10mg/L〜20mg/L程度で推移し、安定していた。 In order to promote the release of phosphorus in the anaerobic tank 5, when the ORP 16 in the anaerobic tank 5 exceeds −270 mV, the organic substance is added from the organic substance adding device 4 using the ORP 16 in the anaerobic tank 5 as an index (in this case, acetic acid). Was added to the anaerobic tank 5 so as to be 30 mg / L-sewage, and the ORP16 of the anaerobic tank 5 was reduced to −270 mV or less. As a result, the PO 4 -P release concentration in the anaerobic tank 5 was stable at about 10 mg / L to 20 mg / L.

無酸素槽(脱窒槽)6では、後段の第2無酸素槽8から循環されてくる汚泥循環水18中のNOx−Nを除去する。従来のA2O法では、通常、汚泥循環水18が好気槽7から循環されるため、無酸素槽(脱窒槽)6に1.5〜3.0mg/L以上のDOが連続的に持ち込まれる。このことにより、無酸素槽(脱窒槽)6では、BODで表示される有機物が優先的にDOに消費され、この結果、NOx−Nの除去が悪化する場合がしばしば見られる。しかしながら、本発明では無酸素槽8の活性汚泥を循環ポンプ13により、最初沈殿池流出水3に対して150V/V%、無酸素槽(脱窒槽)6に循環させている。したがって、無酸素槽(脱窒槽)6にDOがもちこまれ、このDOの持込によるNOx−Nの除去が悪化する現象は生じなかった。 In the anoxic tank (denitrification tank) 6, NOx-N in the sludge circulating water 18 circulated from the second anoxic tank 8 at the subsequent stage is removed. In the conventional A 2 O method, since the sludge circulating water 18 is normally circulated from the aerobic tank 7, 1.5 to 3.0 mg / L or more of DO is continuously supplied to the anoxic tank (denitrification tank) 6. Brought in. As a result, in the anoxic tank (denitrification tank) 6, organic substances displayed by BOD are preferentially consumed by DO, and as a result, the removal of NOx—N often deteriorates. However, in the present invention, the activated sludge in the oxygen-free tank 8 is circulated to the oxygen-free tank (denitrification tank) 6 at 150 V / V% with respect to the first settling basin effluent 3 by the circulation pump 13. Therefore, DO was brought into the anaerobic tank (denitrification tank) 6, and the phenomenon in which the removal of NOx-N due to the DO brought in did not deteriorate.

しかしながら、無酸素槽(脱窒槽)6において、有機物不足によるNOx−N除去率の低下や過剰の有機物が残存し、無酸素槽6においてりんの放出現象が確認される場合が認められた。したがって、無酸素槽(脱窒槽)6のORP16を指標として、以下の運転を行なった。すなわち、無酸素槽(脱窒槽)6のORP18が、−100mV以上の場合、換言すれば、有機物不足の場合には、有機物添加装置4から有機物(本ケースの場合、酢酸)を無酸素槽(脱窒槽)6に添加させ、無酸素槽(脱窒槽)6のORP16を−100mV以下に低下させた。また、無酸素槽(脱窒槽)6のORP16が−200mV以下の場合、換言すれば、過剰の有機物が残存する場合には、ブロア12を一時的に稼動させ、無酸素槽(脱窒槽)6のORP18が−200mV以上になるように維持した。 このようにして、無酸素槽(脱窒槽)6のORP16は、−100mVから−200mVに維持した。このことにより、無酸素槽(脱窒槽)6出口のNOx−N濃度は0mg/L〜0.5mg/Lで推移するとともに、りん濃度の上昇も見られなかった。   However, in the anaerobic tank (denitrification tank) 6, there was a case where the NOx-N removal rate was reduced due to a shortage of organic substances or excessive organic substances remained, and the phosphorus release phenomenon was confirmed in the anoxic tank 6. Therefore, the following operation was performed using the ORP 16 of the anoxic tank (denitrification tank) 6 as an index. That is, when the ORP 18 of the anaerobic tank (denitrification tank) 6 is −100 mV or higher, in other words, when there is a shortage of organic substances, the organic substance (acetic acid in this case) is removed from the organic substance addition device 4. (Denitrification tank) 6 was added, and the ORP16 of the anoxic tank (denitrification tank) 6 was lowered to −100 mV or less. In addition, when the ORP 16 of the anaerobic tank (denitrification tank) 6 is −200 mV or less, in other words, when excess organic matter remains, the blower 12 is temporarily operated to remove the oxygen-free tank (denitrification tank) 6. The ORP18 was maintained at −200 mV or more. In this way, the ORP 16 of the oxygen-free tank (denitrification tank) 6 was maintained from −100 mV to −200 mV. As a result, the NOx-N concentration at the outlet of the anaerobic tank (denitrification tank) 6 changed from 0 mg / L to 0.5 mg / L, and no increase in phosphorus concentration was observed.

好気槽7では、NH4−NのNO3−Nまでの酸化とりんの摂取を行なう。好気槽7は複数のブロア12を設置し、以下の運転条件で好気槽7を運転した。好気槽7の前部から中部は、好気槽7のORP16が+50mV以上+70mV以下に維持されるようにブロア12の曝気量を制御した。また、好気槽7の後部はブロア12によって、好気槽7のNH4−Nが0.5mg/L以下に維持されるように運転した。この結果、好気槽7の出口水のPO4−P濃度、NH4−N濃度はそれぞれ0.02mg/Lで0.25mg/Lとなっており、りんの吸収および硝化反応は十分に進行していることが確認できた。 The aerobic tank 7 oxidizes NH 4 —N to NO 3 —N and ingests phosphorus. The aerobic tank 7 was provided with a plurality of blowers 12, and the aerobic tank 7 was operated under the following operating conditions. The aeration amount of the blower 12 was controlled from the front part to the middle part of the aerobic tank 7 so that the ORP 16 of the aerobic tank 7 was maintained at +50 mV or more and +70 mV or less. The rear part of the aerobic tank 7 was operated by the blower 12 so that NH 4 —N in the aerobic tank 7 was maintained at 0.5 mg / L or less. As a result, the PO 4 -P concentration and NH 4 -N concentration in the outlet water of the aerobic tank 7 are 0.02 mg / L and 0.25 mg / L, respectively, and phosphorus absorption and nitrification reaction proceed sufficiently. I was able to confirm.

さらに、第2無酸素槽8には、水中攪拌機11を設置するとともに、第2無酸素槽8のDO17を連続測定しながら、第2無酸素槽8を攪拌のみで運転した。一般に内生呼吸状態での酸素消費速度は0.12gO2/MLSS・g/日程度である。各反応槽の活性汚泥濃度(MLSS濃度)は、2,000〜3,000mg/L程度であるから、HRTが1時間もあれば10〜15mg/LのDOを0とすることが可能である。今回、活性汚泥濃度は3,000mg/L程度に維持されていたため、HRTが30分の条件で、好気槽7出口水中の3mg/LのDOを0とできた。なお、第2無酸素槽8は、あくまでDOを0とすることが目的である。脱窒素を目的とするものではない。むしろ、最終沈殿池9でのりん放出を防ぐためには、脱窒素を促進してはならない。NOx−N濃度を5〜10mg/L残留させることにより、通常の処理時間内であれば、最終沈殿池9および返送汚泥14中でのりんの放出を防止できる。 実際の第2無酸素槽8出口水のDO濃度は0mg/L、NOx−N濃度は5〜10mg/Lで推移した。なお、無酸素槽6や無酸素槽20は、脱窒までを目的としており、同じ無酸素槽でもその目的は大きく異なっている。 Furthermore, while installing the underwater stirrer 11 in the 2nd oxygen-free tank 8, the 2nd oxygen-free tank 8 was drive | operated only by stirring, measuring DO17 of the 2nd oxygen-free tank 8 continuously. Generally, the oxygen consumption rate in the endogenous breathing state is about 0.12 gO 2 / MLSS · g / day. Since the activated sludge concentration (MLSS concentration) in each reaction tank is about 2,000 to 3,000 mg / L, it is possible to set the DO of 10 to 15 mg / L to 0 if the HRT is 1 hour. . Since the activated sludge concentration was maintained at about 3,000 mg / L this time, 3 mg / L DO in the aerobic tank 7 outlet water was reduced to 0 under the condition of HRT of 30 minutes. The purpose of the second anoxic tank 8 is to set DO to 0. It is not intended for denitrification. Rather, denitrification should not be promoted to prevent phosphorus release in the final sedimentation basin 9. By leaving the NOx-N concentration at 5 to 10 mg / L, the release of phosphorus in the final sedimentation basin 9 and the return sludge 14 can be prevented within a normal processing time. The actual DO concentration of the outlet water of the second oxygen-free tank 8 was 0 mg / L, and the NOx-N concentration was 5 to 10 mg / L. Note that the oxygen-free tank 6 and the oxygen-free tank 20 are intended for denitrification, and the purpose of the same oxygen-free tank is greatly different.

第2無酸素槽8の出口水に含まれるPO4−P、NH4−Nは、それぞれ、0.02mg/L、0.25mg/Lと、好気槽7と大きく変わらなかった。このことは第2無酸素槽8においてりんの溶出が生じなかったことを意味している。第2無酸素槽8のDOは0mg/L〜0.5mg/L以下で推移したが、りんの放出は全く見られなかった。これは第2無酸素槽8のDOが0mg/L〜0.5mg/L以下と低くても、NOx−Nが平均8mg/L(5mg/L以上〜10mg/L以下)存在しており、NOx−Nの存在のため、りんの放出を抑制できたためと思われる。 PO 4 —P and NH 4 —N contained in the outlet water of the second anaerobic tank 8 were 0.02 mg / L and 0.25 mg / L, respectively, which were not significantly different from the aerobic tank 7. This means that phosphorus was not eluted in the second oxygen-free tank 8. The DO in the second anoxic tank 8 was maintained at 0 mg / L to 0.5 mg / L or less, but no release of phosphorus was observed. Even if the DO of the second anoxic tank 8 is as low as 0 mg / L to 0.5 mg / L or less, NOx-N is present on average 8 mg / L (5 mg / L to 10 mg / L), It seems that the release of phosphorus could be suppressed due to the presence of NOx-N.

以上述べたようなA2OA法の運転の結果、処理水19のT−N濃度、T−P濃度は、それぞれ平均7.6mg/L、平均0.40mg/Lとなり、本発明によって窒素、りんを安定して除去できた。 As a result of the operation of the A 2 OA method as described above, the TN concentration and the TP concentration of the treated water 19 become 7.6 mg / L and 0.40 mg / L on average, respectively. It was possible to remove phosphorus stably.

Figure 2007136298
Figure 2007136298

実施例2:下水からの窒素・りん除去への適用(発明法と従来法の比較)
本発明の方法を、雨水が混入しやすい都市下水処理へ適用し、今回発案した発明法(A3OA法)と従来法(A2O法)の処理水質を比較検討した(図1、図3参照)。
Example 2: Application to removal of nitrogen and phosphorus from sewage (comparison between inventive method and conventional method)
The method of the present invention was applied to urban sewage treatment, which is likely to be mixed with rainwater, and the treated water quality of the inventive method (A 3 OA method) and the conventional method (A 2 O method) that were proposed this time were compared (Figs. 1 and 2 ). 3).

今回発案した装置は、図3に示すように、最初沈殿池2、第3無酸素槽(脱窒槽)20、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2無酸素槽8、最終沈殿池9からなる。図1の従来のA2O法と比較すると、第2無酸素槽8ばかりでなく、前記最初沈殿池2と前記嫌気槽5との間に、更に第3の無酸素槽を備え、前記最終沈殿池9の汚泥の一部を前記嫌気槽5に循環する装置に替えて、前記最終沈殿池9の汚泥の一部を前記第3の無酸素槽8に循環する装置を備える点が大きく異なっている。また、従来のA2O法では好気槽7の末端部のDO17が重要視され、通常、1.5〜3.0mg/LのDO管理値で運転されているが、本発明では第2無酸素槽8を新たに設け、DO管理値を0〜0.5mg/Lとしている点が大きく異なっている。 As shown in FIG. 3, the device proposed this time includes an initial sedimentation basin 2, a third anaerobic tank (denitrification tank) 20, an anaerobic tank 5, an anaerobic tank (denitrification tank) 6, an aerobic tank 7, and a second no It consists of an oxygen tank 8 and a final sedimentation tank 9. Compared with the conventional A 2 O method of FIG. 1, not only the second oxygen-free tank 8 but also a third oxygen-free tank is provided between the first settling tank 2 and the anaerobic tank 5, and the final It is greatly different in that a device for circulating part of the sludge in the final sedimentation basin 9 to the third oxygen-free tank 8 is provided instead of the device for circulating part of the sludge in the sedimentation basin 9 to the anaerobic tank 5. ing. In the conventional A 2 O method, the DO 17 at the end of the aerobic tank 7 is regarded as important, and is normally operated with a DO control value of 1.5 to 3.0 mg / L. An oxygen-free tank 8 is newly provided, and the point that the DO management value is 0 to 0.5 mg / L is greatly different.

本発明による下水の処理は以下のように実施される。まず、下水1の浮遊物を最初沈殿池2で除去した後、最初沈殿池流出水3を第3無酸素槽(脱窒槽)20で返送汚泥15と混合させる。その後、最初沈殿池流出水3と返送汚泥15の混合水は、嫌気槽5、無酸素槽(脱窒槽)6、好気槽7、第2無酸素槽8、最終沈殿池9を流下していく。さらに、第2無酸素槽8の活性汚泥の一部を循環ポンプ13を用いて無酸素槽(脱窒槽)6に循環させる。活性汚泥の循環率は最初沈殿池流出水3に対して150V/V%である。また、最終沈殿池9で沈殿した汚泥は、返送汚泥ポンプ14を用いて最初沈殿池流出水3に対して50V/V%、嫌気槽5の前段に設置した無酸素槽(脱窒槽)20に返送する。   The treatment of sewage according to the present invention is carried out as follows. First, after the suspended matter in the sewage 1 is first removed in the settling basin 2, the first settling basin effluent 3 is mixed with the return sludge 15 in the third oxygen-free tank (denitrification tank) 20. Thereafter, the mixed water of the first settling basin effluent 3 and the return sludge 15 flows down the anaerobic tank 5, the anaerobic tank (denitrification tank) 6, the aerobic tank 7, the second anoxic tank 8, and the final settling tank 9. Go. Further, a part of the activated sludge in the second oxygen-free tank 8 is circulated to the oxygen-free tank (denitrification tank) 6 using the circulation pump 13. The circulation rate of the activated sludge is 150 V / V% with respect to the settling basin effluent 3 at first. The sludge precipitated in the final sedimentation basin 9 is returned to the anaerobic tank (denitrification tank) 20 at 50 V / V% with respect to the first sedimentation basin effluent 3 using the return sludge pump 14. Return it.

各槽の水理学的滞留時間(HRT)は、第3無酸素槽(脱窒槽)20が1時間、嫌気槽5が2時間、無酸素槽(脱窒槽)6が4時間、好気槽7が8時間、第2無酸素槽8が30分間とした。また最終沈殿池9のHRTは4時間とした。   The hydraulic retention time (HRT) of each tank is 1 hour for the third anaerobic tank (denitrification tank) 20, 2 hours for the anaerobic tank 5, 4 hours for the anaerobic tank (denitrification tank) 6, and the aerobic tank 7. For 8 hours and the second anoxic tank 8 for 30 minutes. The HRT of the final sedimentation tank 9 was 4 hours.

本発明では嫌気槽5、無酸素槽(脱窒槽)6、第3無酸素槽(脱窒槽)20にはそれぞれORP計16を設置し、りんの放出および脱窒反応の進行状況をモニタリングした。また、好気槽7にはORP計16、NH4−N計10を設置し、りんの摂取と硝化反応の進行状況をモニタリングした。さらに、第2無酸素槽8にはDO計17を設置し、DOの削減状況をモニタリングした。一方、図1の従来法では嫌気槽5、無酸素槽(脱窒槽)6にはそれぞれORP計16を設置したが、特に制御は行わなかった。また、好気槽7末端部にはDO計17を設置し、DOが1.5mg/L以上3.0mg/L以下となるようにDOを制御指標としてブロワの送風量を制御する運転をおこなった。 In the present invention, an ORP meter 16 is installed in each of the anaerobic tank 5, the oxygen-free tank (denitrification tank) 6, and the third oxygen-free tank (denitrification tank) 20 to monitor the progress of phosphorus release and the denitrification reaction. In addition, an ORP meter 16 and an NH 4 -N meter 10 were installed in the aerobic tank 7 to monitor the intake of phosphorus and the progress of nitrification reaction. Furthermore, a DO meter 17 was installed in the second oxygen-free tank 8 to monitor the DO reduction status. On the other hand, in the conventional method of FIG. 1, an ORP meter 16 was installed in each of the anaerobic tank 5 and the anaerobic tank (denitrification tank) 6, but no particular control was performed. In addition, a DO meter 17 is installed at the end of the aerobic tank 7, and an operation is performed to control the blower air flow using DO as a control index so that DO is 1.5 mg / L or more and 3.0 mg / L or less. It was.

最初沈殿池流出水3の水質は、BODが平均80mg/L、SSが平均47mg/L、T−N(ト−タル窒素)が平均30mg/L(大半がアンモニア性窒素)、T−P(ト−タルりん)が平均4mg/L程度であった。本下水の場合、平均BOD/T−Pは20以下であり、嫌気槽におけるりんの放出が生じにくいことが推定された。   The water quality of the first sedimentation basin effluent 3 is as follows: BOD average 80 mg / L, SS average 47 mg / L, TN (total nitrogen) average 30 mg / L (mostly ammonia nitrogen), TP ( Total phosphorus) was about 4 mg / L on average. In the case of this sewage, the average BOD / TP was 20 or less, and it was estimated that the release of phosphorus in the anaerobic tank was difficult to occur.

以下、各槽の運転状態を詳細に述べる。
発明法では、返送汚泥15と最初沈殿池流出水3を第3無酸素槽20であらかじめ混合し、DOおよびNOx−Nを検出限界以下まで減少させて嫌気槽5に供給した。第3無酸素槽20ではORPを指標とし、−270mV以上で有機物を添加した。有機物としては酢酸を使用し、添加量は30mg/L−下水とした。第3無酸素槽20のORPは、−250〜−320mVで推移した。
Hereinafter, the operation state of each tank will be described in detail.
In the invention method, the return sludge 15 and the first settling basin effluent 3 were mixed in advance in the third oxygen-free tank 20, and DO and NOx-N were reduced to below the detection limit and supplied to the anaerobic tank 5. In the 3rd anoxic tank 20, ORP was made into the parameter | index, and organic substance was added at -270 mV or more. Acetic acid was used as the organic substance, and the addition amount was 30 mg / L-sewage. The ORP of the third oxygen-free tank 20 changed from −250 to −320 mV.

嫌気槽5のORP16は、年間を通じて、−270mVから−350mVの範囲で推移し、嫌気槽5では、有機物4添加の必要はほとんど生じなかった。又、嫌気槽5におけるPO4−P放出濃度は、10mg/L〜20mg/L程度で推移し、安定していた。 The ORP 16 in the anaerobic tank 5 changed from −270 mV to −350 mV throughout the year, and in the anaerobic tank 5, the necessity for adding the organic substance 4 hardly occurred. In addition, the PO 4 -P release concentration in the anaerobic tank 5 was stable at about 10 mg / L to 20 mg / L.

一方、従来法では、嫌気槽5のORP16は、−180mVから−280mVの範囲で推移し、特に、降雨時に上昇した。この結果、嫌気槽5におけるPO4−P放出濃度は、3mg/L〜15mg/L程度と発明法に比べてかなり低い値で推移した。 On the other hand, in the conventional method, the ORP 16 of the anaerobic tank 5 changed in the range of −180 mV to −280 mV, and particularly increased during rainfall. As a result, the PO 4 -P release concentration in the anaerobic tank 5 was about 3 mg / L to 15 mg / L, which was a considerably low value compared to the inventive method.

Figure 2007136298
Figure 2007136298

無酸素槽(脱窒槽)6では、後段の無酸素槽8から循環されてくる汚泥循環水18中のNOx−Nを除去する。従来のA2O法では、汚泥循環水18が好気槽7から循環されるため、汚泥循環水中に1.5.〜3.0mg/LのDOが通常含まれており、無酸素槽(脱窒槽)6に、このDOが連続的に持ち込まれた。このことにより、無酸素槽(脱窒槽)6では、BODで表示される有機物が優先的にDOに消費され、この結果、ORPがしばしば−100mV以上まで上昇し、NOx−Nの除去が悪化する場合が見られた。 In the anaerobic tank (denitrification tank) 6, NOx-N in the sludge circulating water 18 circulated from the subsequent anaerobic tank 8 is removed. In the conventional A 2 O method, since the sludge circulating water 18 is circulated from the aerobic tank 7, 1.5. ˜3.0 mg / L of DO was usually contained, and this DO was continuously brought into the anoxic tank (denitrification tank) 6. As a result, in the anaerobic tank (denitrification tank) 6, organic substances displayed by BOD are preferentially consumed by DO, and as a result, the ORP often rises to −100 mV or more, and the removal of NOx—N deteriorates. A case was seen.

しかしながら、本発明では第2無酸素槽8を設置しているため、汚泥循環水18のDOが0〜0.5mg/L以下であった。したがって、無酸素槽(脱窒槽)6のORPは、−150mV〜−200mV程度に維持され、DOの持込によるNOx−Nの除去が悪化する現象は生じなかった。   However, since the second oxygen-free tank 8 is installed in the present invention, the DO of the sludge circulating water 18 is 0 to 0.5 mg / L or less. Therefore, the ORP of the anaerobic tank (denitrification tank) 6 was maintained at about -150 mV to -200 mV, and the phenomenon that the removal of NOx-N by bringing DO in did not deteriorate.

Figure 2007136298
Figure 2007136298

好気槽7では、NH4−NのNO3−Nまでの酸化とりんの摂取を行なう。発明法、従来法とも好気槽7は複数のブロア12を設置しており、以下の運転条件でそれぞれ好気槽7を運転した。 The aerobic tank 7 oxidizes NH 4 —N to NO 3 —N and ingests phosphorus. The aerobic tank 7 is provided with a plurality of blowers 12 in both the invention method and the conventional method, and the aerobic tank 7 was operated under the following operating conditions.

発明法では好気槽7の前部から中部は、好気槽7のORP16が+50mV以上+70mV以下に維持されるようにブロア12の曝気量を制御した。また、好気槽7の後部はブロア12によって、好気槽7末端部のORP16が+80mV以上+100mV以下に維持されるようにブロア12の曝気量を制御し、NH4−Nが0.5mg/L以下に維持されるように運転した。この結果、好気槽7の出口水のPO4−P濃度、NH4−N濃度はそれぞれ平均0.05mg/L(0.01〜0.2mg/L)、平均0.20mg/L(0.1〜0.5mg/L)となっており、りんの吸収および硝化反応は十分に進行していることが確認できた。一方、図1の従来法では、好気槽7末端部のDO17が+1.5mg/L〜3.0mg/Lに維持されるよう、好気槽7の前部から後部にかけてのブロア12の曝気量を制御した。しかし、降雨期には曝気量を制御だけでDOを制御するのが困難であち、DO17が上昇しやすく、6mg/Lに達することも見られた。また、好気槽7の出口水のPO4−P濃度は、0.5〜2mg/L(平均0.8mg/L)で推移し、不安定な結果となった。この主要な原因は、嫌気槽5におけるPO4−Pの放出が十分でなかったことに起因していると推定された。さらに、NH4−N濃度は、平均1.20mg/L(0.5〜2mg/L)となっており、DOは高いものの硝化反応が十分に進行していない場も見られた。 In the invention method, the aeration amount of the blower 12 was controlled from the front part to the middle part of the aerobic tank 7 so that the ORP 16 of the aerobic tank 7 was maintained at +50 mV or more and +70 mV or less. Further, the aeration amount of the blower 12 is controlled by the blower 12 at the rear portion of the aerobic tank 7 so that the ORP16 at the end of the aerobic tank 7 is maintained at +80 mV or more and +100 mV or less, and NH 4 -N is 0.5 mg / N. It was operated so as to be maintained below L. As a result, the PO 4 -P concentration and the NH 4 -N concentration in the outlet water of the aerobic tank 7 are 0.05 mg / L (0.01 to 0.2 mg / L) on average and 0.20 mg / L (0 on average), respectively. .1 to 0.5 mg / L), and it was confirmed that phosphorus absorption and nitrification were sufficiently progressing. On the other hand, in the conventional method of FIG. 1, the aeration of the blower 12 from the front part to the rear part of the aerobic tank 7 is performed so that the DO 17 at the end of the aerobic tank 7 is maintained at +1.5 mg / L to 3.0 mg / L. The amount was controlled. However, it was difficult to control DO only by controlling the amount of aeration during the rainy season, and DO17 was likely to rise, reaching 6 mg / L. In addition, the PO 4 -P concentration in the outlet water of the aerobic tank 7 changed from 0.5 to 2 mg / L (average 0.8 mg / L), and an unstable result was obtained. It was estimated that this main cause was due to insufficient release of PO 4 -P in the anaerobic tank 5. Furthermore, the NH 4 —N concentration was 1.20 mg / L (0.5 to 2 mg / L) on average, and although the DO was high, there was a case where the nitrification reaction did not proceed sufficiently.

Figure 2007136298
Figure 2007136298

さらに、発明法では第2無酸素槽8には、水中攪拌機11を設置するとともに、第2無酸素槽8のDO17を連続測定しながら、第2無酸素槽8を攪拌のみで運転した。一般に内生呼吸状態での酸素消費速度は0.12gO2/MLSS・g/日程度である。各反応槽の活性汚泥濃度(MLSS濃度)は、2,000〜3,000mg/L程度であるから、HRTが1時間もあれば10〜15mg/LのDOを0とすることが可能である。今回、活性汚泥濃度は3,000mg/L程度に維持されていたため、HRTが10分の条件で、好気槽7出口水中の1〜2mg/LのDOを0とできた。第2無酸素槽8の出口水に含まれるPO4−P、NH4−Nは、それぞれ、0.05mg/L、0.80mg/Lと、好気槽7と変わらなかった。第2無酸素槽8のDOは0mg/L〜0.2mg/L以下で推移したが、りんの放出は全く見られなかった。これは第2無酸素槽8のDOが0mg/L〜0.2mg/L以下と低くても、NOx−Nが平均7.5mg/L(6mg/L以上〜9mg/L以下)存在しており、NOx−Nの存在のため、りんの放出を抑制できたためと思われる。 Furthermore, in the invention method, the second anaerobic tank 8 was installed in the second anaerobic tank 8 and the second anaerobic tank 8 was operated only with stirring while continuously measuring the DO 17 of the second anaerobic tank 8. Generally, the oxygen consumption rate in the endogenous breathing state is about 0.12 gO 2 / MLSS · g / day. Since the activated sludge concentration (MLSS concentration) in each reaction tank is about 2,000 to 3,000 mg / L, it is possible to set the DO of 10 to 15 mg / L to 0 if the HRT is 1 hour. . Since the activated sludge concentration was maintained at about 3,000 mg / L this time, the DO of 1-2 mg / L in the aerobic tank 7 outlet water was reduced to 0 under the condition of HRT of 10 minutes. PO 4 -P and NH 4 -N contained in the outlet water of the second oxygen-free tank 8 were 0.05 mg / L and 0.80 mg / L, respectively, which were the same as the aerobic tank 7. The DO in the second anoxic tank 8 was maintained at 0 mg / L to 0.2 mg / L or less, but no release of phosphorus was observed. Even if the DO of the second oxygen-free tank 8 is as low as 0 mg / L to 0.2 mg / L or less, NOx-N is present on average 7.5 mg / L (from 6 mg / L to 9 mg / L). This is probably because the release of phosphorus could be suppressed due to the presence of NOx-N.

最終沈殿池9において、第2無酸素槽8から流出した汚泥は沈降し、処理水19と分離される。沈降した汚泥は、返送汚泥15として返送汚泥ポンプ14により、第3無酸素槽(脱窒槽)20に返送される。返送汚泥15中のNOx−N濃度は、最終沈殿池9における内生脱窒反応により減少したが、平均4mg/L(2mg/L以上〜6mg/L以下)まで残留した。NOx−Nが枯渇することはなかったため、PO4−Pの放出は見られなった。さらに、返送汚泥15に含まれるNOx−Nは、第3無酸素槽(脱窒槽)20で完全に除去され、嫌気槽5への流入は無視できた。 In the final sedimentation tank 9, the sludge that has flowed out from the second oxygen-free tank 8 is settled and separated from the treated water 19. The settled sludge is returned to the third oxygen-free tank (denitrification tank) 20 by the return sludge pump 14 as the return sludge 15. The NOx-N concentration in the return sludge 15 decreased due to the endogenous denitrification reaction in the final sedimentation basin 9, but remained up to an average of 4 mg / L (2 mg / L to 6 mg / L). Since NOx-N was never depleted, no release of PO 4 -P was seen. Furthermore, NOx-N contained in the return sludge 15 was completely removed by the third anoxic tank (denitrification tank) 20, and the inflow to the anaerobic tank 5 could be ignored.

以上述べたように、従来法(A2O法)のままでは対応できなかったような地域においても、今回の発明法を適用すれば、表5のように窒素、りんを安定して除去できる。 As described above, nitrogen and phosphorus can be stably removed as shown in Table 5 if the present invention method is applied even in an area where the conventional method (A 2 O method) cannot be applied. .

Figure 2007136298
Figure 2007136298

実施例3:好気槽7におけるDOとりん摂取の関係の検討
図2の嫌気槽5から、活性汚泥60Lを引き抜き、2系列の100Lタンク(図示せず)にそれぞれ投入した。1系列は初期のDOを0.4〜0.5mg/L以下、他の1系列はDOを2.0〜2.5mg/Lに維持する程度に攪拌と曝気を行い、水質の経時変化を追跡した。DOを0.4〜0.5mg/L以下に維持した系列の結果を図5に、また、DOを2.0〜2.5mg/Lに維持した系列の結果を図6に示す。なお、水温は25℃、MLSSは1,500mg/Lであった。この結果から、好気槽におけるPO4−Pの摂取は、 DOが0.4〜0.5mg/Lでも阻害は生じなかった。このため、好気槽のDOをあえて従来基準のように1.5mg/L以上に維持する必要性はないと考えられた。また、りんの摂取には、DOに関わらず、4〜5時間程度必要であった。
Example 3 Examination of Relationship between DO and Phosphorus Intake in Aerobic Tank 7 From the anaerobic tank 5 of FIG. 2, 60 L of activated sludge was extracted and put into two 100 L tanks (not shown). In one series, the initial DO is 0.4 to 0.5 mg / L or less, and in the other one series, stirring and aeration are performed to maintain DO at 2.0 to 2.5 mg / L, and the water quality changes over time. Tracked. FIG. 5 shows the results of the series maintaining DO at 0.4 to 0.5 mg / L or less, and FIG. 6 shows the results of the series maintaining DO at 2.0 to 2.5 mg / L. The water temperature was 25 ° C. and MLSS was 1,500 mg / L. From this result, ingestion of PO 4 -P in the aerobic tank was not inhibited even when DO was 0.4 to 0.5 mg / L. For this reason, it was thought that it was not necessary to dare to maintain DO of an aerobic tank at 1.5 mg / L or more like a conventional standard. Moreover, it took about 4 to 5 hours for the intake of phosphorus irrespective of DO.

従来のA2O法のプロセスフローである。We are a process flow of a conventional A 2 O process. 本発明によるA2O変法 (A2OA法)のプロセスフローである。It is a process flow of the A 2 O variant according to the invention (A 2 OA method). 本発明によるA2O変法 (A3OA法)のプロセスフローである。It is a process flow of the A 2 O variant according to the invention (A 3 OA method). 本発明によるA2O変法のプロセスフローである。 2 is a process flow of an A 2 O modification according to the present invention. 好気槽における水質の経時変化である(初期DO=0.4〜0.5mg/L制御)。It is a time-dependent change of the water quality in an aerobic tank (initial DO = 0.4-0.5 mg / L control). 好気槽における水質の経時変化である(初期DO=2.0〜2.5mg/L制御)。It is a time-dependent change of the water quality in an aerobic tank (initial DO = 2.0-2.5 mg / L control).

符号の説明Explanation of symbols

1 下水
2 最初沈殿池
3 最初沈殿池流出水
4 有機物添加装置
5 嫌気槽
6 無酸素槽(脱窒槽)
7 好気槽
8 第2無酸素槽
9 最終沈殿池
10 NH4−N濃度計
11 水中攪拌機
12 ブロア
13 汚泥循環ポンプ
14 返送汚泥ポンプ
15 返送汚泥
16 ORP計
17 DO計
18 汚泥循環水
19 処理水
20 第3無酸素槽(脱窒槽)
1 Sewage 2 First sedimentation basin 3 First sedimentation basin effluent 4 Organic substance addition device 5 Anaerobic tank 6 Anoxic tank (denitrification tank)
7 Aerobic tank 8 Second oxygen-free tank 9 Final sedimentation tank 10 NH 4 -N concentration meter 11 Submerged agitator 12 Blower 13 Sludge circulation pump 14 Return sludge pump 15 Return sludge 16 ORP meter 17 DO meter 18 Sludge circulation water 19 Treated water 20 Third oxygen-free tank (denitrification tank)

Claims (10)

最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、最終沈澱池からなり、好気槽末端部の活性汚泥を無酸素槽(脱窒槽)に循環させる生物学的窒素およびりん除去プロセス(A2O法)において、好気槽の後段に第2の無酸素槽を設け、当該第2の無酸素槽末端部の活性汚泥を前段の無酸素槽(脱窒槽)に循環させるとともに、前記好気槽末端部から前段の無酸素槽(脱窒槽)への汚泥循環を停止することを特徴とする下水からの窒素及びりんの除去方法。 Biological nitrogen and phosphorus consisting of a first sedimentation tank, anaerobic tank, anaerobic tank (denitrification tank), aerobic tank, and final sedimentation tank that circulates activated sludge at the end of the aerobic tank to the anoxic tank (denitrification tank) In the removal process (A 2 O method), a second oxygen-free tank is provided after the aerobic tank, and the activated sludge at the end of the second oxygen-free tank is circulated to the oxygen-free tank (denitrification tank) in the preceding stage. In addition, a method for removing nitrogen and phosphorus from sewage, wherein the sludge circulation from the end portion of the aerobic tank to the preceding oxygen-free tank (denitrification tank) is stopped. 好気槽後段の第2無酸素槽の底部に水中攪拌機を設置し、活性汚泥を攪拌するとともに活性汚泥中のDOを0.5mg/L以下まで低下させることを特徴とする、請求項1に記載の方法。   An underwater stirrer is installed at the bottom of the second anaerobic tank after the aerobic tank to stir the activated sludge and reduce DO in the activated sludge to 0.5 mg / L or less. The method described. 最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、最終沈澱池からなり、好気槽末端部の活性汚泥を無酸素槽(脱窒槽)に循環させる生物学的窒素およびりん除去プロセス(A2O法)において、活性汚泥を循環させる好気槽末端部分の曝気を削減することにより、汚泥循環水中のDOを0.5mg/L以下とするとともに好気槽末端部の底部に水中攪拌機を設置し、活性汚泥を攪拌することを特徴とする下水からの窒素及びりんの除去方法。 Biological nitrogen and phosphorus consisting of a first sedimentation tank, anaerobic tank, anaerobic tank (denitrification tank), aerobic tank, and final sedimentation tank that circulates activated sludge at the end of the aerobic tank to the anoxic tank (denitrification tank) In the removal process (A 2 O method), by reducing aeration at the end of the aerobic tank through which the activated sludge is circulated, the DO in the sludge circulating water is 0.5 mg / L or less and the bottom of the end of the aerobic tank A method of removing nitrogen and phosphorus from sewage, characterized by installing an underwater stirrer and stirring activated sludge. 好気槽後段の第2無酸素槽または好気槽末端部のDOを0.5mg/L以下まで低下させる手段として、活性汚泥の内生呼吸を利用することを特徴とする、請求項1〜3のいずれか1項に記載の方法。   The endogenous respiration of activated sludge is used as means for lowering DO at the end of the second anaerobic tank or the aerobic tank to 0.5 mg / L or less after the aerobic tank. 4. The method according to any one of items 3. 好気槽において、NH4−N濃度を連続測定し、NH4−Nの測定値によって好気槽の曝気量を制御することにより、汚泥循環水中のNH4−N濃度を0.5mg/L以下まで低下させることを特徴とする、請求項1〜4のいずれか1項に記載の方法。 In aerobic tank, an NH 4 -N concentration measured continuously, by controlling the aeration of the aerobic tank by measurement of NH 4 -N, the NH 4 -N concentration of the sludge circulation water 0.5 mg / L The method according to claim 1, wherein the method is reduced to: 返送汚泥と最初沈殿池流出水を混合し、DOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減した後、この混合水を嫌気槽に流入させることを特徴とする、請求項1〜5のいずれか1項に記載の方法。 After mixing the return sludge and the first settling basin effluent and reducing DO and NOx-N (the sum of NO 2 -N and NO 3 -N) to below the detection limit, let this mixed water flow into the anaerobic tank. A method according to any one of claims 1 to 5, characterized. 返送汚泥と最初沈殿池流出水を混合し、DOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減する手段として、第3の無酸素槽(脱窒槽)を嫌気槽の前段に設けることを特徴とする、請求項6に記載の方法。 The return sludge and primary sedimentation effluent water were mixed, as a means of reducing the DO and NOx-N (sum of NO 2 -N and NO 3 -N) to below the detection limit, the third anoxic tank (denitrification tank) The method according to claim 6, wherein the step is provided in front of the anaerobic tank. 嫌気槽の前段に設けた第3の無酸素槽に有機物、硫黄化合物の少なくともいずれかを添加して、嫌気槽流入水中のDOおよびNOx−N(NO2−NとNO3−Nの和)を検出限界以下まで削減することを特徴とする、請求項6または7に記載の方法。 DO and NOx-N (sum of NO 2 -N and NO 3 -N) in the anaerobic tank inflow water by adding at least one of organic substances and sulfur compounds to the third anaerobic tank provided in the front stage of the anaerobic tank The method according to claim 6 or 7, characterized in that is reduced to below the detection limit. 最初沈殿池、嫌気槽、無酸素槽(脱窒槽)、好気槽、第2の無酸素槽、及び最終沈澱池を順に備え、更に、前記最終沈殿池の活性汚泥の一部を前記嫌気槽に循環する装置と、前記第2の無酸素槽内の活性汚泥の一部を前記無酸素槽(脱窒槽)へ循環する装置とを、備えることを特徴とする下水からの生物学的窒素及びりんの除去装置。   A first sedimentation tank, an anaerobic tank, an oxygen-free tank (denitrification tank), an aerobic tank, a second oxygen-free tank, and a final sedimentation tank are provided in this order, and a part of the activated sludge in the final sedimentation tank is further added to the anaerobic tank. A biological nitrogen from sewage, and a device for circulating a part of the activated sludge in the second oxygen-free tank to the oxygen-free tank (denitrification tank) Phosphorus removal equipment. 前記最初沈殿池と前記嫌気槽との間に、更に第3の無酸素槽を備え、前記最終沈殿池の活性汚泥の一部を前記嫌気槽に循環する装置に替えて、前記最終沈殿池の活性汚泥の一部を前記第3の無酸素槽に循環する装置を、備えることを特徴とする下水からの生物学的窒素及びりんの除去装置。   A third oxygen-free tank is further provided between the first settling basin and the anaerobic tank, and instead of a device that circulates part of the activated sludge in the final settling basin to the anaerobic tank, An apparatus for removing biological nitrogen and phosphorus from sewage, comprising an apparatus for circulating a part of activated sludge to the third oxygen-free tank.
JP2005331462A 2005-11-16 2005-11-16 Removal method of nitrogen and phosphorus from sewage, and removal apparatus Withdrawn JP2007136298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331462A JP2007136298A (en) 2005-11-16 2005-11-16 Removal method of nitrogen and phosphorus from sewage, and removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331462A JP2007136298A (en) 2005-11-16 2005-11-16 Removal method of nitrogen and phosphorus from sewage, and removal apparatus

Publications (1)

Publication Number Publication Date
JP2007136298A true JP2007136298A (en) 2007-06-07

Family

ID=38199793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331462A Withdrawn JP2007136298A (en) 2005-11-16 2005-11-16 Removal method of nitrogen and phosphorus from sewage, and removal apparatus

Country Status (1)

Country Link
JP (1) JP2007136298A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
CN101898831A (en) * 2010-06-03 2010-12-01 北京城市排水集团有限责任公司 Waste water treatment device and process for synchronously removing nitrogen and phosphorus of sludge concentration microenvironment
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
KR101057364B1 (en) 2008-10-28 2011-08-18 코오롱건설주식회사 Sewage Height Treatment Method
CN102311171A (en) * 2011-08-23 2012-01-11 上海复旦水务工程技术有限公司 Horizontal well sewage treatment plant and method thereof
CN102701547A (en) * 2012-07-04 2012-10-03 北京碧水源科技股份有限公司 Advanced municipal sewage treatment method
CN104591387A (en) * 2015-01-08 2015-05-06 宁波市恒洁水务发展有限公司 Automatic treatment system and automatic treatment method for removing nitrogen and phosphorus from wastewater
CN106946355A (en) * 2017-05-23 2017-07-14 上海明奥环保科技有限公司 A kind of jet-flow aeration formula A/O integrated sewage treating apparatus and its sewage treatment process
CN107820484A (en) * 2015-04-27 2018-03-20 K·英格尔 Method for biological wastewater purification
CN107848849A (en) * 2015-04-02 2018-03-27 K·英格尔 The biological wastewater purification method of removal with phosphorus
CN108203203A (en) * 2016-12-16 2018-06-26 新疆泰元水务科技服务有限公司 Anoxic-Oxic-Phostrip techniques
CN108862580A (en) * 2018-07-03 2018-11-23 杨小凤 A kind of board plug type purifying domestic sewage slot ecological treatment apparatus and its technique
CN109574225A (en) * 2018-12-28 2019-04-05 北控水务(中国)投资有限公司 A kind of A2OA-MBR sewage-treatment plant and method
CN109626754A (en) * 2019-01-28 2019-04-16 深圳市水务(集团)有限公司南山水质净化厂 A kind of wastewater efficient denitrification dephosphorization technique (SSCS) and application
CN110054351A (en) * 2019-04-17 2019-07-26 北京工业大学 A kind of purification tank using three-dimensional electrolysis and AAO process decentralized wastewater
CN110386740A (en) * 2019-08-16 2019-10-29 青岛思普润水处理股份有限公司 A kind of sewage second-level processing system and processing method
CN110606629A (en) * 2019-10-15 2019-12-24 北京首创股份有限公司 System and method for treating urban sewage based on denitrification dephosphorization process
CN112607862A (en) * 2020-12-14 2021-04-06 重庆郅治环保科技有限公司 Multistage AO sewage biochemical treatment process
CN112678953A (en) * 2020-11-11 2021-04-20 云南岩语轩环境工程有限公司 Energy-saving nitrogen and phosphorus removal integrated treatment biological purification tank
CN113024013A (en) * 2020-12-30 2021-06-25 深圳悦海环境科技实业有限公司 Mainstream UMIF (unified modeling and derived Fuel injection) process system for low-cost nitrogen and phosphorus removal of low-C/N (carbon/nitrogen) ratio sewage and application method thereof
CN114853172A (en) * 2022-05-30 2022-08-05 山东纯江环境科技有限公司 Continuous flow low-carbon denitrification process for domestic sewage with low carbon-nitrogen ratio
WO2023178968A1 (en) * 2022-06-27 2023-09-28 中建三局绿色产业投资有限公司 Biological treatment and sludge-water separation apparatus suitable for underground sewage plant
WO2024016714A1 (en) * 2022-07-19 2024-01-25 东南大学 Small-size multistage baffling a2/o apparatus and process for treating domestic sewage on plateau

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
KR101057364B1 (en) 2008-10-28 2011-08-18 코오롱건설주식회사 Sewage Height Treatment Method
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
CN101898831A (en) * 2010-06-03 2010-12-01 北京城市排水集团有限责任公司 Waste water treatment device and process for synchronously removing nitrogen and phosphorus of sludge concentration microenvironment
CN102311171A (en) * 2011-08-23 2012-01-11 上海复旦水务工程技术有限公司 Horizontal well sewage treatment plant and method thereof
CN102701547A (en) * 2012-07-04 2012-10-03 北京碧水源科技股份有限公司 Advanced municipal sewage treatment method
CN104591387A (en) * 2015-01-08 2015-05-06 宁波市恒洁水务发展有限公司 Automatic treatment system and automatic treatment method for removing nitrogen and phosphorus from wastewater
CN107848849A (en) * 2015-04-02 2018-03-27 K·英格尔 The biological wastewater purification method of removal with phosphorus
CN107820484A (en) * 2015-04-27 2018-03-20 K·英格尔 Method for biological wastewater purification
CN108203203A (en) * 2016-12-16 2018-06-26 新疆泰元水务科技服务有限公司 Anoxic-Oxic-Phostrip techniques
CN106946355A (en) * 2017-05-23 2017-07-14 上海明奥环保科技有限公司 A kind of jet-flow aeration formula A/O integrated sewage treating apparatus and its sewage treatment process
CN106946355B (en) * 2017-05-23 2023-03-17 上海明奥环保科技有限公司 Jet aeration type A/O integrated sewage treatment device and sewage treatment process thereof
CN108862580A (en) * 2018-07-03 2018-11-23 杨小凤 A kind of board plug type purifying domestic sewage slot ecological treatment apparatus and its technique
CN108862580B (en) * 2018-07-03 2024-04-19 杨小凤 Ecological treatment device and process for plugboard type domestic sewage purification tank
CN109574225A (en) * 2018-12-28 2019-04-05 北控水务(中国)投资有限公司 A kind of A2OA-MBR sewage-treatment plant and method
CN109626754A (en) * 2019-01-28 2019-04-16 深圳市水务(集团)有限公司南山水质净化厂 A kind of wastewater efficient denitrification dephosphorization technique (SSCS) and application
CN110054351B (en) * 2019-04-17 2023-07-28 北京工业大学 Adopt three-dimensional electrolysis and AAO technology to handle purification tank of dispersed sewage
CN110054351A (en) * 2019-04-17 2019-07-26 北京工业大学 A kind of purification tank using three-dimensional electrolysis and AAO process decentralized wastewater
CN110386740A (en) * 2019-08-16 2019-10-29 青岛思普润水处理股份有限公司 A kind of sewage second-level processing system and processing method
CN110386740B (en) * 2019-08-16 2024-02-27 青岛思普润水处理股份有限公司 Sewage secondary treatment system and treatment method
CN110606629A (en) * 2019-10-15 2019-12-24 北京首创股份有限公司 System and method for treating urban sewage based on denitrification dephosphorization process
CN112678953A (en) * 2020-11-11 2021-04-20 云南岩语轩环境工程有限公司 Energy-saving nitrogen and phosphorus removal integrated treatment biological purification tank
CN112607862A (en) * 2020-12-14 2021-04-06 重庆郅治环保科技有限公司 Multistage AO sewage biochemical treatment process
CN113024013A (en) * 2020-12-30 2021-06-25 深圳悦海环境科技实业有限公司 Mainstream UMIF (unified modeling and derived Fuel injection) process system for low-cost nitrogen and phosphorus removal of low-C/N (carbon/nitrogen) ratio sewage and application method thereof
CN114853172A (en) * 2022-05-30 2022-08-05 山东纯江环境科技有限公司 Continuous flow low-carbon denitrification process for domestic sewage with low carbon-nitrogen ratio
CN114853172B (en) * 2022-05-30 2023-09-26 山东纯江环境科技有限公司 Continuous flow low-carbon denitrification process for domestic sewage with low carbon nitrogen ratio
WO2023178968A1 (en) * 2022-06-27 2023-09-28 中建三局绿色产业投资有限公司 Biological treatment and sludge-water separation apparatus suitable for underground sewage plant
WO2024016714A1 (en) * 2022-07-19 2024-01-25 东南大学 Small-size multistage baffling a2/o apparatus and process for treating domestic sewage on plateau

Similar Documents

Publication Publication Date Title
JP2007136298A (en) Removal method of nitrogen and phosphorus from sewage, and removal apparatus
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP5211675B2 (en) Method for removing ammoniacal nitrogen and COD components from ammonia water
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP4995215B2 (en) Sewage treatment equipment
JP4106203B2 (en) How to remove nitrogen from water
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP4298405B2 (en) Wastewater treatment method
JP5981096B2 (en) Wastewater treatment method and apparatus
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
JP6774341B2 (en) Nitrogen removal system and nitrogen removal method
JP6188264B1 (en) Activated sludge process for simultaneous biological removal of nitrogen and phosphorus
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
KR20180130423A (en) Wastewater treatment system based on anaerobic ammonium oxidation in mainstream for improving efficiency of nitrogen treatment
JP3958900B2 (en) How to remove nitrogen from wastewater
JP4104311B2 (en) How to remove nitrogen from wastewater
KR101959145B1 (en) Mainstream anabolic ammonium oxidation in wastewater treatment plant for improving efficiency of removal of nitrogen and phosphorus
JP2011206765A (en) Biological nitrogen treatment method of waste water containing ammonia
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
JP2007319835A (en) Wastewater treatment method
JP5041698B2 (en) Sewage treatment method
JPH03296498A (en) Simultaneous removal of bod, nitrogen compound and phosphorus compound from waste water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203