JP6287594B2 - Aggregation processing method and aggregation processing apparatus - Google Patents

Aggregation processing method and aggregation processing apparatus Download PDF

Info

Publication number
JP6287594B2
JP6287594B2 JP2014114947A JP2014114947A JP6287594B2 JP 6287594 B2 JP6287594 B2 JP 6287594B2 JP 2014114947 A JP2014114947 A JP 2014114947A JP 2014114947 A JP2014114947 A JP 2014114947A JP 6287594 B2 JP6287594 B2 JP 6287594B2
Authority
JP
Japan
Prior art keywords
water
reaction tank
value
naoh
control target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014114947A
Other languages
Japanese (ja)
Other versions
JP2015229121A (en
Inventor
大井 康裕
康裕 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014114947A priority Critical patent/JP6287594B2/en
Publication of JP2015229121A publication Critical patent/JP2015229121A/en
Application granted granted Critical
Publication of JP6287594B2 publication Critical patent/JP6287594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、凝集処理方法および凝集処理装置に係り、特に、2段階に設けた反応槽の前段の第一の反応槽において、排水に3価鉄系無機凝集剤を添加して凝集処理し、後段の第二の反応槽で更に凝集処理を行う方法において、水処理凝集薬剤の必要量を低減した上で高水質の凝集処理水を安定に得る凝集処理方法および装置に関する。本発明はまた、この凝集処理方法および装置により得られた凝集処理水を更に逆浸透分離処理して水回収する水処理方法および装置に関する。   The present invention relates to a coagulation treatment method and a coagulation treatment apparatus, and in particular, in a first reaction tank upstream of a reaction tank provided in two stages, a trivalent iron-based inorganic flocculant is added to the waste water for coagulation treatment, The present invention relates to a coagulation treatment method and apparatus for stably obtaining high-quality coagulation treated water after reducing the required amount of water treatment coagulation chemical in a method of further coagulation treatment in a second reaction tank at the latter stage. The present invention also relates to a water treatment method and apparatus for recovering water by further performing reverse osmosis separation treatment on the flocculated water obtained by the flocculation method and apparatus.

従来、河川水や各種の排水からの水回収には、逆浸透(RO)膜分離処理、或いは被処理水を生物処理した後のRO膜分離処理が広く採用されている。RO膜分離処理を行う際には、RO膜の汚染性を低減するために、被処理水中の濁度成分(微粒子成分)を除去すると共に、水中に溶解している高分子物質(バイオポリマー)を除去するための凝集、固液分離による前処理が行われている。   Conventionally, reverse osmosis (RO) membrane separation treatment or RO membrane separation treatment after biologically treating water to be treated has been widely adopted for water recovery from river water and various wastewaters. When RO membrane separation treatment is performed, in order to reduce the contamination of the RO membrane, the turbidity component (fine particle component) in the water to be treated is removed and the polymer substance (biopolymer) dissolved in the water Pretreatment by agglomeration and solid-liquid separation is performed to remove water.

即ち、各種排水を生物処理して得られる水や、湖水、ダム湖から供給される水中には、生物代謝生産物であるバイオポリマーがミクロゲルを含めて溶存状態で存在する。このバイオポリマーは、水中の全有機炭素としての存在量比率は小さいものの、分子量1万〜1000万に達する高分子物質であり、RO膜で脱塩処理して水回収する際には、RO膜面から拡散し難く、膜面で濃縮・付着して膜の透過流束の低下等の問題を引き起こす。
このため、生物処理水等、バイオポリマーを含有する水をRO膜分離処理する場合は、RO膜汚染原因である微粒子状汚濁物とともにバイオポリマーを凝集させて除去する必要がある。
That is, biopolymers that are biometabolites, including microgels, exist in a dissolved state in water obtained by biological treatment of various wastewaters, water supplied from lake water, and dam lakes. This biopolymer is a high-molecular substance that has a molecular weight of 10,000 to 10,000,000, although the abundance ratio as total organic carbon in water is small. When water is recovered by desalting with an RO membrane, the RO membrane Difficult to diffuse from the surface, it concentrates and adheres on the membrane surface, causing problems such as a decrease in the permeation flux of the membrane.
For this reason, when performing RO membrane separation treatment of water containing biopolymers such as biologically treated water, it is necessary to agglomerate and remove the biopolymer together with particulate contaminants that cause RO membrane contamination.

凝集処理には、一般的に無機凝集剤が用いられるが、バイオポリマー除去を目的とする場合、ポリ塩化アルミニウムや硫酸バンドといったアルミニウム系の無機凝集剤に比べて、3価鉄系無機凝集剤の方が凝集効果の面で優れている。
その主たる理由は、バイオポリマーの主体成分である多糖類は、これが有するカルボキシル基が酸性側で封鎖され易いため、pH6未満の弱酸性域での凝集処理が好ましいが、アルミニウム系無機凝集剤ではpH6未満でAlが処理水に残留するため、pH6未満での凝集処理を行うことができないことにある。
これに対して、3価鉄系無機凝集剤の場合、被処理水の水質にもよるが、pH5程度の低pH条件でも凝集が完結し、処理水へのFeの残留を避けることができる。
In general, an inorganic flocculant is used for the agglomeration treatment. However, in the case of removing a biopolymer, a trivalent iron-based inorganic flocculant is used as compared with an aluminum-based inorganic flocculant such as polyaluminum chloride or a sulfuric acid band. Is superior in terms of the agglomeration effect.
The main reason is that the polysaccharide, which is the main component of the biopolymer, is preferably subjected to an agglomeration treatment in a weakly acidic region of less than pH 6 because the carboxyl group of the polysaccharide is easily blocked on the acidic side. Since Al remains in the treated water at a lower temperature, the aggregation treatment at a pH lower than 6 cannot be performed.
On the other hand, in the case of a trivalent iron-based inorganic flocculant, although depending on the quality of the water to be treated, the aggregation is completed even under a low pH condition of about pH 5, and Fe can be prevented from remaining in the treated water.

ただし、生物処理水中の多糖類中には、カルボキシル基を有しない中性多糖類、およびカルボキシル基をごく僅かしか含まない酸性多糖類が存在する。この種の多糖類には、3価鉄系無機凝集剤に水および水酸基が配位、結合して生成したプラス荷電を有する鉄水酸化物とのイオン結合力が作用しないため、凝集処理することができない。この場合には、フェノール性水酸基を有する水溶性高分子を併用することで、良好な凝集処理を行うことができ、RO膜汚染性の少ない凝集処理水を得ることができる(特許文献1,2)。   However, among the polysaccharides in biologically treated water, there are neutral polysaccharides that do not have carboxyl groups and acidic polysaccharides that contain very little carboxyl groups. Since this type of polysaccharide does not have an ionic bonding force with the positively charged iron hydroxide produced by coordination and bonding of water and hydroxyl groups to the trivalent iron-based inorganic flocculant, it must be agglomerated. I can't. In this case, by using a water-soluble polymer having a phenolic hydroxyl group in combination, good flocculation treatment can be performed, and flocculation treatment water with little RO membrane contamination can be obtained (Patent Documents 1 and 2). ).

3価鉄系無機凝集剤には、凝結(Coagulation)作用と凝集(Flocculation)作用があり、各々の詳細は以下の通りである。   The trivalent iron-based inorganic flocculant has a coagulation action and a flocculation action, and details of each are as follows.

凝集処理分野において、“Coagulation”とは、コロイド粒子が電解質添加によりそのマイナス荷電が封鎖されて粒子が大きくなり、分散状態から沈殿するようになる現象を言う。
3価鉄系無機凝集剤の場合、Fe3+イオンに水および水酸基が配位、結合して生成した全体として大きなプラス荷電を有する鉄水酸化物が大きな凝結作用を有し、RO膜汚染物質である大部分のバイオポリマーを効率良く不溶化することができる。このプラス荷電を有する鉄水酸化物の作用は、技術用語で「凝結」と呼称される。
3価鉄系無機凝集剤の凝結作用が大きく発揮されるpHは、被処理水の水質にもよるが概ねpH3.0〜4.5である。
In the agglomeration treatment field, “Coagulation” refers to a phenomenon in which colloidal particles are blocked from their negative charge by addition of electrolyte, the particles become larger and precipitate from a dispersed state.
In the case of a trivalent iron-based inorganic flocculant, iron hydroxide having a large positive charge as a whole formed by coordination and bonding of water and hydroxyl groups to Fe 3+ ions has a large coagulation action, and is an RO membrane contaminant. Certain most biopolymers can be insolubilized efficiently. The action of this positively charged iron hydroxide is called “condensation” in technical terms.
The pH at which the coagulation action of the trivalent iron-based inorganic flocculant is exerted greatly is generally pH 3.0 to 4.5, although it depends on the quality of the water to be treated.

一方、“Flocculation”とは、ある程度大きくなった粒子同士が結合して塊状になる現象を言う。
3価鉄系無機凝集剤では、Fe3+イオンに3個の水酸イオンが結合したFe(OH)になると、粒子径1mm以上の、目視で明確に確認可能な凝集物(Flock:フロック)を形成する。
「coagulation:凝結」と「flocculation:凝集」の両者を総称して「凝集」とも言うが、本発明においては、作用機構としての「凝結作用」と「凝集作用:目視できる凝集物(フロック)を形成する」は区別される。
On the other hand, “Floculation” refers to a phenomenon in which particles that have increased to some extent are combined to form a lump.
In the case of a trivalent iron-based inorganic flocculant, when it becomes Fe (OH) 3 in which three hydroxide ions are bonded to Fe 3+ ions, the flocculant has a particle diameter of 1 mm or more and can be clearly confirmed visually (Flock). Form.
Although both “coagulation” and “flocculation” are collectively referred to as “aggregation”, in the present invention, “coagulation action” and “aggregation action: visible agglomerates (floc) as action mechanisms are used. “Form” is distinguished.

被処理水中の汚濁物を3価鉄系無機凝集剤で凝結した後、沈殿または浮上分離装置等で固液分離するには、凝集物(フロック)を形成させる必要がある。
凝集にはOHイオンの補給が必要であることから、必然的に、凝集pHは、前記の凝結作用のあるpH3.0〜4.5に対して高いpHになる。
In order to solid-liquid-separate the pollutant in the water to be treated with a trivalent iron-based inorganic flocculant and then perform solid-liquid separation with a sedimentation or flotation separator or the like, it is necessary to form a floc.
Since aggregation requires OH ion supplementation, the aggregation pH is inevitably higher than the pH of 3.0 to 4.5 having the above-mentioned aggregation action.

上記の通り、3価鉄系無機凝集剤が「凝結作用」が発揮されるように添加された被処理水のpHは概ね4.5以下となる。しかし、このままでは、凝集フロックを形成しておらず、沈殿または浮上効率は悪く、また濾過を行っても濾過水に鉄水酸化物コロイドが残留したり、濾布や濾層を目詰まりさせたりする。
従って、適性な凝集pH域までNaOHを添加して中和し、凝集を完了させる必要がある。
この時、凝集を完結させるためのOHイオンは、NaOH添加で供給されるが、被処理水中に重炭酸イオンが存在する場合は、この重炭酸イオンから、次式のように供給される。
HCO →OH+CO
従って、被処理水の重炭酸イオン濃度すなわちアルカリ度が高ければpHが低くともOHが供給されるので、凝集フロックの生成pH域は、原理的にアルカリ度存在の下限pHの4.8に近づく。
As described above, the pH of the water to be treated added so that the trivalent iron-based inorganic flocculant exhibits the “coagulation action” is approximately 4.5 or less. However, in this state, aggregated flocs are not formed, precipitation or flotation efficiency is poor, and even if filtration is performed, iron hydroxide colloid remains in the filtered water, or the filter cloth and filter layer are clogged. To do.
Therefore, it is necessary to neutralize by adding NaOH to an appropriate aggregation pH range to complete the aggregation.
At this time, OH ions for completing aggregation are supplied by adding NaOH, but when bicarbonate ions are present in the water to be treated, they are supplied from the bicarbonate ions as shown in the following formula.
HCO 3 → OH + CO 2
Therefore, if the bicarbonate ion concentration of the water to be treated, that is, the alkalinity is high, OH is supplied even if the pH is low, the generation pH range of the aggregated floc is, in principle, the lower limit pH of 4.8 where alkalinity exists. Get closer.

3価鉄無機凝集剤による凝集フロックが形成されるpH域は、一般論として、pH5〜11と広いが、例えば、公共用水域への放流のための水処理では、排水基準に合致するよう、pH7を中心にpH6〜8になるよう中和処理し、凝集を完結させている。
一方、凝集処理水を濾過し、濾過水をRO膜分離処理して水回収を行う際には、凝結作用重視の観点から、凝集が完結するpH範囲内において、比較的低いpH条件としており、具体的にはpH5〜7の範囲で最終pHが設定されている。
In general, the pH range in which the flocs formed by the trivalent iron inorganic flocculant are formed is as wide as pH 5 to 11, but, for example, in water treatment for discharge to public water areas, the drainage standards are met. Neutralization is performed so that the pH is 6 to 8 centering on pH 7, thereby completing the aggregation.
On the other hand, when the agglomerated water is filtered and the filtered water is subjected to RO membrane separation treatment to recover water, from the viewpoint of aggregating action, the pH is within a pH range where the agglomeration is completed. Specifically, the final pH is set in the range of pH 5-7.

このようなことから、従来、被処理水に、3価鉄系無機凝集剤を添加して凝集処理し、凝集処理水を沈殿または浮上分離した後濾過する場合、実際の凝集設備は、3価鉄系無機凝集剤を添加する槽、NaOHを添加して凝集フロックを形成させる槽、更に高分子凝集剤を添加して凝集フロックを粗大化させる槽の3つの反応槽で構成される。
しかし、凝集・濾過水をRO膜分離処理して水回収を行う場合、高分子凝集剤を適用すると、その残留物がRO膜を汚染するため、基本的には高分子凝集剤不使用とされる。
よって、RO膜分離処理により水回収する場合の前処理凝集設備は、基本的に2つの処理槽で構成される。各槽の呼称は、設備設計、施工者により異なるが、本願明細書では前段の第一の反応槽を「無機凝集剤反応槽」、後段の第二の反応槽を「中和・凝集槽」と呼称する場合がある。
Therefore, conventionally, when a trivalent iron-based inorganic flocculant is added to the water to be treated for agglomeration, and the agglomerated water is filtered after being precipitated or floated, the actual agglomeration equipment is trivalent. The tank is composed of three reaction tanks: a tank for adding an iron-based inorganic flocculant, a tank for adding NaOH to form an aggregate floc, and a tank for adding a polymer flocculant to coarsen the floc floc.
However, when water is recovered by performing RO membrane separation treatment of the flocculated / filtered water, if a polymer flocculant is applied, the residue contaminates the RO membrane, so that the polymer flocculant is basically not used. The
Therefore, the pretreatment agglomeration facility in the case of collecting water by RO membrane separation treatment is basically composed of two treatment tanks. The name of each tank differs depending on the facility design and the installer, but in the present specification, the first reaction tank at the front stage is the “inorganic flocculant reaction tank” and the second reaction tank at the rear stage is the “neutralization / coagulation tank”. May be called.

無機凝集剤反応槽は、3価鉄系無機凝集剤を添加してpH3.0〜4.5の条件でプラス荷電を有する鉄水酸化物での「凝結作用」を発揮させるための反応槽である。
ここでは、3価鉄系無機凝集剤と共にNaOHの添加を行い、上記のpH範囲になるようpH制御しているのが通例である。
予め、無機凝集剤反応槽でNaOHによる一次中和を行うことは、次の中和・凝集槽でのNaOH添加量を少なくし、中和・凝集槽の設定pHの大きな変動(ハンチング)を軽減し、凝集pHを安定に保つ効果がある。
また、設備によっては無機凝集剤反応槽に、pH調整のための硫酸添加ラインが設置されている場合もある
The inorganic flocculant reaction tank is a reaction tank for adding a trivalent iron-based inorganic flocculant and exhibiting a “coagulation action” with iron hydroxide having a positive charge under the condition of pH 3.0 to 4.5. is there.
Here, it is usual that NaOH is added together with the trivalent iron-based inorganic flocculant, and the pH is controlled to be in the above pH range.
Performing primary neutralization with NaOH in advance in the inorganic flocculant reaction tank reduces the amount of NaOH added in the next neutralization / coagulation tank and reduces large fluctuations (hunting) in the pH of the neutralization / coagulation tank. And has the effect of keeping the aggregation pH stable.
Also, depending on the equipment, a sulfuric acid addition line for pH adjustment may be installed in the inorganic flocculant reaction tank.

中和・凝集槽では、適性な凝集フロックを形成させるために、更にNaOHを添加し、pH制御を行っている。制御目標pHは、前記のように、凝集完結pHであるpH5〜7の範囲に設定されている。
また、中和・凝集槽には、多くの場合、pH調整のための硫酸添加ラインが設置されている。
In the neutralization / coagulation tank, in order to form an appropriate coagulation floc, NaOH is further added to control the pH. As described above, the control target pH is set in the range of pH 5 to 7, which is the aggregation completion pH.
Further, in many cases, a sulfuric acid addition line for pH adjustment is installed in the neutralization / coagulation tank.

このように、従来において、RO膜分離処理による水回収での前処理としての凝集処理では、一般的に無機凝集剤反応槽において3価鉄系無機凝集剤とNaOHの添加でpH3.0〜4.5の一次中和を行い、次いで、中和・凝集槽において更にNaOHを添加して最終凝集pH(凝集完結pH)であるpH5〜7に中和することが行われている。   Thus, conventionally, in the agglomeration treatment as a pretreatment in water recovery by RO membrane separation treatment, generally a pH of 3.0 to 4 is obtained by adding a trivalent iron-based inorganic flocculant and NaOH in an inorganic flocculant reaction tank. 1.5, followed by neutralization to pH 5 to 7, which is the final aggregation pH (aggregation completion pH) by further adding NaOH in the neutralization / aggregation tank.

特開2007−7563号公報JP 2007-7563 A 特開2011−56496号公報JP 2011-56496 A

本発明者の検討により、第一の反応槽(無機凝集剤反応槽)で3価鉄系無機凝集剤の反応とNaOHによる一次中和を行い、第二の反応槽(中和・凝集槽)で更にNaOHを添加して最終凝集pHまでの中和反応を行う、即ち、第一の反応槽の制御目標pH値を、第二の反応槽の制御目標pH値より低くして、最終凝集pHの安定化を図る従来法では、凝集処理水の水質が安定せず、この凝集処理水からRO膜を水回収する際に、RO膜供給水として適当な凝集・濾過水を得ることができないという問題が見出された。   According to the study of the present inventors, the reaction of the trivalent iron-based inorganic flocculant and the primary neutralization with NaOH are performed in the first reaction tank (inorganic flocculant reaction tank), and the second reaction tank (neutralization / flocculation tank) Further, NaOH is added to perform a neutralization reaction up to the final aggregation pH, that is, the control target pH value of the first reaction tank is made lower than the control target pH value of the second reaction tank, and the final aggregation pH is reached. In the conventional method for stabilizing the water, the quality of the agglomerated water is not stable, and when recovering the RO membrane from this agglomerated water, it is not possible to obtain suitable agglomerated / filtered water as the RO membrane supply water. A problem was found.

本発明は、この問題を解決し、被処理水を、第一の反応槽(無機凝集剤反応槽)と第二の反応槽(中和・凝集槽)に順次通水して3価鉄系無機凝集剤により凝集処理するにあたり、水処理凝集薬剤の必要量を低減した上で高水質の凝集処理水を安定に得る凝集処理方法および凝集処理装置を提供することを課題とする。
本発明はまた、この凝集処理方法および凝集処理装置により得られた凝集処理水を更に固液分離、RO膜分離処理して水回収を図る水処理方法および水処理装置を提供することを課題とする。
The present invention solves this problem, and water to be treated is sequentially passed through a first reaction tank (inorganic flocculant reaction tank) and a second reaction tank (neutralization / coagulation tank) to form a trivalent iron system. It is an object of the present invention to provide a coagulation treatment method and an aggregation treatment apparatus that stably obtain high-quality coagulation treated water while reducing the necessary amount of water treatment coagulant for coagulation treatment with an inorganic coagulant.
Another object of the present invention is to provide a water treatment method and a water treatment device for recovering water by further subjecting the agglomerated water obtained by the agglomeration treatment method and the agglomeration treatment device to solid-liquid separation and RO membrane separation treatment. To do.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、第一の反応槽の制御目標pH値を、第二の反応槽の制御目標pH値より低く設定している従来法では、第二の反応槽における最終pHは安定であるものの、NaOH添加での局部的高pH領域の形成で、一度凝集した汚濁物がOHにより離脱して処理水に残留することが、凝集処理水の水質が不安定になる原因であることを知見した。この知見をもとに、更に検討を重ねた結果、第一の反応槽の制御目標pH値を、第二の反応槽の制御目標pH値より高く設定することにより、凝集処理水の水質の安定化を図ることができ、また、水質の更なる向上と水処理凝集薬剤の必要量の低減も可能となることを見出した。 As a result of intensive studies to solve the above problems, the inventor of the present invention has set the control target pH value of the first reaction tank lower than the control target pH value of the second reaction tank. Although the final pH in the second reaction tank is stable, the aggregated treated water may be separated by OH and remain in the treated water due to the formation of a local high pH region by adding NaOH. It was found that the water quality of the water is unstable. As a result of further investigations based on this knowledge, by setting the control target pH value of the first reaction tank higher than the control target pH value of the second reaction tank, the water quality of the flocculated water is stabilized. It has been found that the water quality can be further improved and the required amount of the water treatment coagulant can be reduced.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 直列に設けられた、3価鉄系無機凝集剤とNaOHが添加される第一の反応槽と、第二の反応槽に、被処理水を順次通水して凝集処理する方法において、該第二の反応槽は、凝集剤は添加されずに、アルカリ無添加或いは、ごく少量のNaOH添加で凝集処理される槽であり、該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、該第二の反応槽の制御目標pH値Aを、X〜(X+0.3)の範囲に設定し、該第一の反応槽の制御目標pH値A’を、A〜(A+0.7)の範囲に設定して凝集処理を行うことを特徴とする凝集処理方法。 [1] In a method in which water to be treated is sequentially passed through a first reaction tank to which trivalent iron-based inorganic flocculant and NaOH are added, and a second reaction tank, which are provided in series. The second reaction tank is a tank in which no flocculant is added, no alkali is added, or the flocculant is treated with a very small amount of NaOH, and the trivalent iron-based inorganic flocculant is added to the flocculant. When the lower limit pH value of the pH range in which aggregated flocs are formed in the water to be treated is X, the control target pH value A of the second reaction tank is in the range of X to (X + 0.3) And setting the control target pH value A ′ of the first reaction tank in a range of A to (A + 0.7) to perform the agglomeration treatment.

[2] [1]において、前記第一の反応槽におけるpH値が前記制御目標pH値A’となると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、該第一の反応槽にNaOHを添加することを特徴とする凝集処理方法。 [2] In [1], the pH value in the first reaction tank is the control target pH value A ′, and the pH value in the second reaction tank is the control target pH value A. An agglomeration method comprising adding NaOH to the first reaction vessel.

[3] [1]において、前記第一の反応槽におけるpH値が前記制御目標pH値A’となるように、該第一の反応槽にNaOHを添加すると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、該第二の反応槽にNaOHを添加することを特徴とする凝集処理方法。 [3] In [1], NaOH is added to the first reaction tank so that the pH value in the first reaction tank becomes the control target pH value A ′, and in the second reaction tank An agglomeration method, wherein NaOH is added to the second reaction tank so that the pH value becomes the control target pH value A.

[4] [1]ないし[3]のいずれかにおいて、前記被処理水に前記3価鉄系無機凝集剤を添加するに先立ち、フェノール性水酸基を有する水溶性高分子を添加することを特徴とする凝集処理方法。 [4] In any one of [1] to [3], before adding the trivalent iron-based inorganic flocculant to the water to be treated, a water-soluble polymer having a phenolic hydroxyl group is added. Aggregating treatment method.

[5] [1]ないし[4]のいずれかにおいて、前記被処理水が生物処理水であることを特徴とする凝集処理方法。 [5] The aggregation treatment method according to any one of [1] to [4], wherein the water to be treated is biologically treated water.

[6] [1]ないし[5]のいずれか1項に記載の凝集処理方法で得られた凝集処理水を、固液分離した後、逆浸透膜分離処理することを特徴とする水処理方法。 [6] A water treatment method, comprising subjecting the agglomerated water obtained by the agglomeration treatment method according to any one of [1] to [5] to solid-liquid separation and then reverse osmosis membrane separation treatment. .

[7] 直列に設けられた第一の反応槽および第二の反応槽と、該第一の反応槽および第二の反応槽に被処理水を順次通水する手段と、該第一の反応槽に設けられた3価鉄系無機凝集剤添加手段およびNaOH添加手段と、該第一の反応槽のpHを制御目標pH値A’に制御する第一のpH制御手段と、該第二の反応槽のpHを制御目標pH値Aに制御する第二のpH制御手段とを有する凝集処理装置であって、該第二の反応槽は、凝集剤は添加されずに、アルカリ無添加或いは、ごく少量のNaOH添加で凝集処理される槽であり、該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、該第二の反応槽の制御目標pH値Aが、X〜(X+0.3)の範囲に設定され、該第一の反応槽の制御目標pH値A’が、A〜(A+0.7)の範囲に設定されていることを特徴とする凝集処理装置。 [7] A first reaction tank and a second reaction tank provided in series, means for sequentially passing water to be treated through the first reaction tank and the second reaction tank, and the first reaction A trivalent iron-based inorganic flocculant addition means and an NaOH addition means provided in the tank, a first pH control means for controlling the pH of the first reaction tank to a control target pH value A ′, and the second A coagulation treatment apparatus having a second pH control means for controlling the pH of the reaction tank to a control target pH value A, wherein the second reaction tank is not added with an alkali without adding a coagulant, or It is a tank that is agglomerated by adding a very small amount of NaOH, and by adding the trivalent iron-based inorganic aggregating agent and aggregating it, the lower limit pH value of the pH range in which agglomerated flocs are formed in the water to be treated is X When the control target pH value A of the second reaction tank is in the range of X to (X + 0.3) Is constant, the control target pH value A of the first reaction vessel 'is, A to coagulation treatment apparatus characterized by being set in a range of (A + 0.7).

[8] [7]において、前記第一の反応槽のNaOH添加手段は、該第一の反応槽におけるpH値が前記制御目標pH値A’となるように、前記第一のpH制御手段によりNaOH添加量が制御されると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、前記第二のpH制御手段によりNaOH添加量が制御されることを特徴とする凝集処理装置。 [8] In [7], the NaOH addition means of the first reaction tank is controlled by the first pH control means so that the pH value in the first reaction tank becomes the control target pH value A ′. The NaOH addition amount is controlled by the second pH control means so that the NaOH addition amount is controlled and the pH value in the second reaction tank becomes the control target pH value A. Aggregation processing equipment.

[9] [7]において、前記第二の反応槽にNaOH添加手段が設けられており、該第二の反応槽のNaOH添加手段は、該第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、前記第二のpH制御手段によりNaOH添加量が制御され、前記第一の反応槽のNaOH添加手段は、該第一の反応槽におけるpH値が前記制御目標pH値A’となるように、前記第一のpH制御手段によりNaOH添加量が制御されることを特徴とする凝集処理装置。 [9] In [7], NaOH addition means is provided in the second reaction tank, and the NaOH addition means of the second reaction tank has a pH value in the second reaction tank of the control target pH. The amount of NaOH added is controlled by the second pH control means so as to be a value A, and the NaOH addition means of the first reaction tank has a pH value in the first reaction tank of the control target pH value A. The aggregation treatment apparatus is characterized in that the amount of NaOH added is controlled by the first pH control means so as to be '.

[10] [7]ないし[9]のいずれかにおいて、前記第一の反応槽の前段に、前記被処理水に、フェノール性水酸基を有する水溶性高分子を添加する手段を有することを特徴とする凝集処理装置。 [10] The method according to any one of [7] to [9], wherein means for adding a water-soluble polymer having a phenolic hydroxyl group to the water to be treated is provided upstream of the first reaction tank. A coagulation treatment device.

[11] [7]ないし[10]のいずれかにおいて、前記被処理水が生物処理水であることを特徴とする凝集処理装置。 [11] The aggregation treatment apparatus according to any one of [7] to [10], wherein the water to be treated is biologically treated water.

[12] [7]ないし[11]のいずれかに記載の凝集処理装置と、該凝集処理装置で得られた凝集処理水を、固液分離する固液分離手段と、該固液分離手段で得られた分離水を逆浸透膜分離処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。 [12] The aggregation treatment apparatus according to any one of [7] to [11], the solid-liquid separation means for solid-liquid separation of the aggregation treated water obtained by the aggregation treatment apparatus, and the solid-liquid separation means A water treatment device comprising: a reverse osmosis membrane separation device for subjecting the obtained separated water to a reverse osmosis membrane separation treatment.

本発明によれば、3価鉄系無機凝集剤を用いた凝集処理に当たり、水処理凝集薬剤の必要量を低減すると共に、高水質の凝集処理水を安定に得ることができる。
本発明により得られる凝集処理水は、水質が良好であると共に、水質の安定性にも優れ、RO膜汚染性の低いものであるため、これを固液分離してRO膜分離処理することにより、長期に亘り安定かつ効率的な水回収を行える。
ADVANTAGE OF THE INVENTION According to this invention, in the coagulation process using a trivalent iron type inorganic coagulant | flocculant, while reducing the required amount of a water treatment coagulation chemical | medical agent, the high quality coagulation process water can be obtained stably.
The agglomerated treated water obtained by the present invention has good water quality, excellent water quality stability, and low RO membrane contamination, so that it is subjected to RO membrane separation treatment by solid-liquid separation. It is possible to recover water stably and efficiently over a long period of time.

本発明の水処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the water treatment apparatus of this invention. 実験例1におけるNaOH添加量とpH値との関係を示すグラフである。4 is a graph showing the relationship between the amount of NaOH added and the pH value in Experimental Example 1. 実験例2において、FeClとフェノール系樹脂を用いて凝集処理した場合の凝集pHと凝集・濾過水の水質との関係を示すグラフであり、(a)図は凝集・濾過水のSFFおよびMFFを示し、(b)図は同UV260とnetNTUを示す。In Experiment 2, a graph showing the relationship between the quality of the aggregation pH and aggregation and filtered water in the case of flocculation treatment with FeCl 3 and a phenolic resin, (a) drawing SFF and MFF aggregation-filtered water (B) The figure shows the same UV260 and netNTU. 実験例2において、FeClのみを用いて凝集処理した場合の凝集pHと凝集・濾過水の水質との関係を示すグラフであり、(a)図は凝集・濾過水のSFFおよびMFFを示し、(b)図は同UV260とnetNTUを示す。In Experimental Example 2, it is a graph showing the relationship between the aggregation pH and the water quality of the coagulation / filtered water when coagulation treatment is performed using only FeCl 3 , (a) the figure shows the SFF and MFF of the coagulation / filtered water, (B) The figure shows the same UV260 and netNTU. 実験例3におけるpHとフェノール系樹脂のリーク率との関係を示すグラフである。It is a graph which shows the relationship between pH in Experimental example 3, and the leak rate of a phenol-type resin.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[凝集処理方法および凝集処理装置]
本発明の凝集処理方法は、直列に設けられた、3価鉄系無機凝集剤とNaOHが添加される第一の反応槽と、第二の反応槽に、被処理水を順次通水して凝集処理する方法において、該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、該第二の反応槽の制御目標pH値Aを、X〜(X+0.3)の範囲に設定し、該第一の反応槽の制御目標pH値A’を、A〜(A+0.7)の範囲に設定して凝集処理を行うことを特徴とする。
[Aggregating treatment method and aggregating treatment apparatus]
In the flocculation treatment method of the present invention, water to be treated is sequentially passed through a first reaction tank and a second reaction tank to which trivalent iron-based inorganic flocculant and NaOH are added in series. In the flocculation method, when the lower limit pH value of the pH range in which flocculation flocs are formed in the water to be treated by adding the trivalent iron-based inorganic flocculant and performing the flocculation treatment is X, the second The control target pH value A of the reaction tank is set in the range of X to (X + 0.3), and the control target pH value A ′ of the first reaction tank is set in the range of A to (A + 0.7). And aggregating treatment is performed.

本発明の凝集処理装置は、直列に設けられた第一の反応槽および第二の反応槽と、該第一の反応槽および第二の反応槽に被処理水を順次通水する手段と、該第一の反応槽に設けられた3価鉄系無機凝集剤添加手段およびNaOH添加手段と、該第一の反応槽のpHを制御目標pH値A’に制御する第一のpH制御手段と、該第二の反応槽のpHを制御目標pH値Aに制御する第二のpH制御手段とを有する凝集処理装置であって、該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、該第二の反応槽の制御目標pH値Aが、X〜(X+0.3)の範囲に設定され、該第一の反応槽の制御目標pH値A’が、A〜(A+0.7)の範囲に設定されていることを特徴とする。   The coagulation treatment apparatus of the present invention comprises a first reaction tank and a second reaction tank provided in series, means for sequentially passing the water to be treated through the first reaction tank and the second reaction tank, A trivalent iron-based inorganic flocculant addition means and an NaOH addition means provided in the first reaction tank; a first pH control means for controlling the pH of the first reaction tank to a control target pH value A ′; A coagulation treatment apparatus having a second pH control means for controlling the pH of the second reaction tank to a control target pH value A, and adding the trivalent iron-based inorganic coagulant to perform the coagulation treatment. The control target pH value A of the second reaction tank is set in the range of X to (X + 0.3), where X is the lower limit pH value of the pH range in which aggregated flocs are formed in the water to be treated. The control target pH value A ′ of the first reaction tank is set within the range of A to (A + 0.7) And features.

<作用機構>
本発明者は、第一の反応槽(無機凝集剤反応槽)で3価鉄系無機凝集剤による凝結とNaOHによる一次中和を行い、第二の反応槽(中和・凝集槽)で最終凝集pHまで中和する、即ち、第一の反応槽の制御目標pH値を、第二の反応槽の制御目標pH値より低くして、最終凝集pHの安定化を図る従来法において、凝集処理水の水質が安定しない理由について、以下の知見を得た。
<Action mechanism>
The present inventor performs coagulation with a trivalent iron-based inorganic coagulant and primary neutralization with NaOH in the first reaction tank (inorganic flocculant reaction tank), and finally in the second reaction tank (neutralization / coagulation tank). In the conventional method for neutralizing to the flocculation pH, that is, the control target pH value of the first reaction tank is lower than the control target pH value of the second reaction tank to stabilize the final flocculation pH. The following knowledge was obtained about the reason why the water quality is not stable.

従来法では、無機凝集剤反応槽で3価鉄系無機凝集剤による被処理水の汚濁物質を「凝結」させる。ここでは、凝結作用促進のため、さらには、中和・凝集槽でのNaOH添加量を少なくして、制御pHの大きな変動を抑えるためNaOH添加による一次中和を行う。
次いで、中和・凝集槽で、凝集フロックを安定して形成する凝集pHになるようにNaOHを添加する。
しかし、従来法では、中和・凝集槽で、後掲の実験例に示されるように、中和・凝集槽に添加されたNaOHにより局部的に高pHとなる領域が形成され、この領域において、フリーOHによる凝結あるいは凝集された汚濁物の再溶出、再分散が起こる。
しかも、無機凝集剤反応槽が急速攪拌であるのに対し、中和・凝集槽では、凝集フロックを形成させる目的で、一般的に緩速攪拌とされているが、緩い攪拌は、凝集フロック形成に有利である反面、OHの拡散速度低下で、局部的高pHの発生を増長し、その継続時間も長くする。実際、この局部的高pHはpH10に達する場合もあると予測される。
再溶出、再分散した汚濁物は、既に3価鉄系無機凝集剤の凝結作用が減少しているため、再凝結により捕集されることはない。
In the conventional method, the pollutant of the water to be treated by the trivalent iron-based inorganic flocculant is “condensed” in the inorganic flocculant reaction tank. Here, in order to accelerate the coagulation action, primary neutralization is performed by adding NaOH in order to reduce the amount of NaOH added in the neutralization / coagulation tank and suppress a large fluctuation in the control pH.
Next, NaOH is added in a neutralization / coagulation tank so that the coagulation pH can be stably formed.
However, in the conventional method, in the neutralization / coagulation tank, as shown in an experimental example described later, a region having a high pH is formed locally by NaOH added to the neutralization / coagulation tank. In other words, condensation by free OH or re-elution and re-dispersion of agglomerated contaminants occur.
Moreover, while the inorganic flocculant reaction tank is rapid stirring, the neutralization / flocculation tank is generally slow stirring for the purpose of forming agglomerated flocs. On the other hand, lowering the diffusion rate of OH increases the occurrence of local high pH and increases its duration. In fact, this locally high pH is expected to reach pH 10.
The re-eluted and re-dispersed contaminants are not collected by re-coagulation because the coagulation action of the trivalent iron-based inorganic coagulant has already been reduced.

3価鉄系無機凝集剤と共にフェノール性水酸基を有する水溶性高分子を用いた場合においても、水酸化鉄フロックに取り込まれていた、バイオポリマー等の汚濁物とこの水溶性高分子との反応物は局部的高pHをもたらすOHにより引き剥がされ、コロイド状に、またその一部は溶解状態で、液側に分散または溶解する。その後、中和・凝集槽内で局部的高pHが最終的に解消され、pHが6.5以下になっても、鉄の凝結力が既に失われているため、コロイド状物を再凝結することはできず、凝集処理水の水質は3価鉄系無機凝集剤のみを用いた場合よりも更に悪化する。 Even when a water-soluble polymer having a phenolic hydroxyl group is used together with a trivalent iron-based inorganic flocculant, a reaction product of contaminants such as biopolymers and the water-soluble polymer incorporated in the iron hydroxide floc Is peeled off by OH which brings about a high local pH, and is dispersed or dissolved in the liquid side in a colloidal state and partly in a dissolved state. Thereafter, the local high pH is finally eliminated in the neutralization / coagulation tank, and even if the pH falls below 6.5, the iron coagulation force has already been lost, so the colloidal material is recoagulated. The quality of the flocculated water is worse than when only the trivalent iron-based inorganic flocculant is used.

このように、従来法では、中和・凝集槽でのNaOH添加による槽内の局部的高pHの生成、それによる凝結あるいは凝集された汚濁物の再溶出、再分散に起因する水質悪化を避けることができないが、この水質悪化について従来は認識されていないのが現状である。   As described above, in the conventional method, generation of locally high pH in the tank by addition of NaOH in the neutralization / coagulation tank, re-elution of coagulated or coagulated contaminants, and deterioration of water quality due to re-dispersion are avoided. However, the current situation is that this deterioration of water quality has not been recognized.

これに対して、本発明では、無機凝集剤反応槽で、凝結と凝集を一気に完結させ、中和・凝集槽ではNaOH無添加、或いは添加する場合であっても少量添加としてNaOH添加による局部的高pHの生成を抑制するように、無機凝集剤反応槽の制御目標pH値に対し、中和・凝集槽の制御目標pH値を低く設定する。
このように無機凝集剤反応槽の制御目標pH値を中和・凝集槽の制御目標pH値よりも低く設定し、中和・凝集槽に実質NaOHが添加されないように運転することで、一度凝集した汚濁物が中和・凝集槽内のOHにより凝集物から離脱し、処理水に残留することを防止し、凝集処理水の水質を高く、かつ安定させると共に、同等以上の水質を得るための水処理凝集薬剤の必要量を低減することを可能とする。
On the other hand, in the present invention, coagulation and coagulation are completed at once in the inorganic coagulant reaction tank, and NaOH is not added in the neutralization / coagulation tank, or even when added, it is locally added by adding NaOH as a small amount. The control target pH value of the neutralization / flocculation tank is set lower than the control target pH value of the inorganic flocculant reaction tank so as to suppress the generation of high pH.
In this way, the control target pH value of the inorganic flocculant reaction tank is set lower than the control target pH value of the neutralization / coagulation tank, and operation is performed so that no substantial NaOH is added to the neutralization / coagulation tank. In order to obtain a water quality equal to or higher than that of the contaminated treated water by preventing it from leaving and remaining in the treated water due to OH in the neutralization / coagulation tank. This makes it possible to reduce the amount of water treatment coagulant required.

本発明では、中和・凝集槽の制御目標pH値を、以下の通り、適正凝集pH範囲の下限以上の直近値に設定するため、無機凝集剤反応槽でのpHが、何らかの原因で適正凝集pH範囲を下回った場合でも、中和・凝集槽においてpHを戻し、安定した凝集効果を得ることができる。   In the present invention, the control target pH value of the neutralization / coagulation tank is set to the nearest value above the lower limit of the appropriate coagulation pH range as follows. Even when the pH falls below the pH range, the pH can be returned to the neutralization / coagulation tank to obtain a stable coagulation effect.

なお、本発明において、第二の反応槽の中和・凝集槽は、3価鉄系無機凝集剤等の凝集剤は添加されずに、NaOH等のアルカリ無添加或いは、ごく少量のNaOH添加で凝集処理される槽である。   In the present invention, the neutralization / coagulation tank of the second reaction tank is not added with a coagulant such as a trivalent iron-based inorganic coagulant, and is added with no alkali such as NaOH or with a very small amount of NaOH. A tank to be agglomerated.

<制御目標pH値の設定方法>
本発明においては、3価鉄系無機凝集剤を添加して凝集処理することにより被処理水に凝集フロックが形成されるpH範囲(以下、このpH範囲を「適正凝集pH範囲」と称す場合がある。)の下限pH値(以下、この下限pH値を単に「下限pH値X」と称す場合がある。)をXとしたときに、第二の反応槽(中和・凝集槽)の制御目標pH値Aを、X〜(X+0.3)の範囲に設定し、該第一の反応槽(無機凝集剤反応槽)の制御目標pH値A’を、A〜(A+0.7)の範囲に設定して凝集処理を行う。
<Setting method of control target pH value>
In the present invention, a pH range in which aggregated flocs are formed in the water to be treated by adding a trivalent iron-based inorganic flocculant (hereinafter, this pH range may be referred to as “appropriate aggregate pH range”). Control of the second reaction tank (neutralization / coagulation tank) where X is the lower limit pH value (hereinafter, this lower limit pH value may be simply referred to as “lower limit pH value X”). The target pH value A is set in the range of X to (X + 0.3), and the control target pH value A ′ of the first reaction tank (inorganic flocculant reaction tank) is set in the range of A to (A + 0.7). Set to, and perform aggregation processing.

適正凝集pH範囲および下限pH値Xは、凝集処理対象となる被処理水の水質、例えばアルカリ度等により異なり、一概には規定することはできない。このため、適正凝集pH範囲および下限pH値Xは、各被処理水毎に、実験を行って判定することが好ましい。   The proper flocculation pH range and the lower limit pH value X vary depending on the water quality of the water to be treated, for example, the alkalinity, and cannot be generally defined. For this reason, it is preferable to determine the proper coagulation pH range and the lower limit pH value X by conducting an experiment for each water to be treated.

具体的には、下限pH値Xの判定は、後掲の実験例1に示す方法で、十分に希釈したNaOH水溶液を試料水に所定量ずつ複数回に分けて添加して、目視で凝集フロックが形成されたpHを記録することで行うことが出来る。この場合、フロック形成に時間がかかる場合があるので、NaOH水溶液を1回添加した後、少なくとも2分以上の急速攪拌を行い、ここでpHを計測する。次いで緩速攪拌(実験例1では50rpm)を1分以上行ないフロック形成を確認する必要がある。
すでに被処理水中に微生物フロック等が存在し、3価鉄系無機凝集剤による凝集フロックと見分け難い場合があるので、同時にブランク試料と対比することが好ましい。
また、フロックが形成されても鉄による液の黄色着色がある場合は、凝集フロックの形成が完結していないと考えられる。
液側の黄色着色を含めて、凝集完結の判定が付かない場合は、凝集処理水をNo.5A濾紙2枚で濾過し、500mLがスムーズに濾過するかを確認し、特に濾過後半の濾紙上の残液の黄色味で判断する。凝集不完全の場合は、濾過をスムーズに行えず、残液には黄色味を認める。
なお、実施設運転に習熟した運転員であれば、経験値として、凝集を完結するための下限pH値Xを把握することができる。
Specifically, the determination of the lower limit pH value X is carried out by adding a sufficiently diluted NaOH aqueous solution to the sample water in a predetermined amount in a plurality of times by the method shown in Experimental Example 1 described later. This can be done by recording the pH at which was formed. In this case, since it may take time to form flocs, after adding the NaOH aqueous solution once, rapid stirring is performed for at least 2 minutes, and the pH is measured here. Next, it is necessary to carry out slow stirring (50 rpm in Experimental Example 1) for 1 minute or more to confirm floc formation.
Since microbial flocs and the like already exist in the water to be treated and it may be difficult to distinguish them from the flocs formed by the trivalent iron-based inorganic flocculant, it is preferable to simultaneously compare with the blank sample.
In addition, even if flocs are formed, if the liquid is colored yellow by iron, it is considered that the formation of aggregated flocs is not completed.
If the determination of completion of aggregation is not possible, including yellow coloring on the liquid side, No. Filter with 2 sheets of 5A filter paper, check whether 500 mL can be filtered smoothly, and judge especially by the yellowishness of the remaining liquid on the filter paper in the latter half of the filtration. In the case of incomplete aggregation, the filtration cannot be performed smoothly, and a yellowish color is observed in the remaining liquid.
In addition, if it is an operator familiar with implementation operation, the lower limit pH value X for completing aggregation can be grasped | ascertained as an experience value.

一方、適正凝集pH範囲の上限pH値は、後掲の実験例2に示す方法で確認することができ、これらの結果から適正凝集pH範囲を判定することができる。   On the other hand, the upper limit pH value of the proper flocculation pH range can be confirmed by the method shown in Experimental Example 2 below, and the proper flocculation pH range can be determined from these results.

後掲の実験例1,2より、各種液晶工場の生物処理水の適正凝集pH範囲を調べた結果は後掲の通りであり、適正凝集pH範囲の上限pH値は、下限pH値Xに対して+0.8〜1.0の範囲にある。よって、下限pH値X+0.7の範囲を適正凝集pH範囲とし、この範囲に最終凝集pHを調整すれば良好な処理水質が得られると判断できる。   From the experimental examples 1 and 2 described later, the results of examining the proper aggregation pH range of biologically treated water in various liquid crystal factories are as described below, and the upper limit pH value of the appropriate aggregation pH range is relative to the lower limit pH value X. In the range of +0.8 to 1.0. Therefore, it can be determined that good treated water quality can be obtained by setting the range of the lower limit pH value X + 0.7 to the proper flocculation pH range and adjusting the final flocculation pH within this range.

上記のように、予め求めた下限pH値Xに対して、本発明における無機凝集剤反応槽および中和・凝集槽の制御目標pH値は以下のように設定される。
まず、中和・凝集槽の制御目標pH値Aを、下限pH値Xの直近のX〜(X+0.3)の範囲で設定する。
次に、無機凝集剤反応槽の制御目標pH値A’を、A〜(A+0.7)の範囲で設定する。
以上の設定で、中和・凝集槽で実質的にNaOHの添加が不要となり、NaOH添加による局部的高pHの生成およびそれによる凝集破壊を防止することができる。
中和・凝集槽でpH制御値を上記制御目標pH値Aに設定することは、何らかの事由で、無機凝集剤反応槽からの流入水のpHが下限pH値Xを下回る事態において、NaOHを最小限添加して、凝集フロック未形成の事態を回避するためである。中和・凝集槽の制御目標pH値Aは、下限pH値X以上であればよいが、実際のpH変動の影響を考慮して好ましくは(X+0.1)〜(X+0.2)の範囲で設定される。
As described above, the control target pH values of the inorganic flocculant reaction tank and the neutralization / flocculation tank in the present invention are set as follows with respect to the previously obtained lower limit pH value X.
First, the control target pH value A of the neutralization / coagulation tank is set in the range of X to (X + 0.3) closest to the lower limit pH value X.
Next, the control target pH value A ′ of the inorganic flocculant reaction tank is set in the range of A to (A + 0.7).
With the above settings, it is substantially unnecessary to add NaOH in the neutralization / coagulation tank, and generation of local high pH due to the addition of NaOH and cohesive failure caused thereby can be prevented.
Setting the pH control value to the above control target pH value A in the neutralization / coagulation tank is to minimize NaOH in a situation where the pH of the inflow water from the inorganic coagulant reaction tank is below the lower limit pH value X for some reason. This is for the purpose of adding a limited amount to avoid a situation in which aggregated floc is not formed. The control target pH value A of the neutralization / coagulation tank may be not less than the lower limit pH value X, but is preferably in the range of (X + 0.1) to (X + 0.2) in consideration of the effect of actual pH fluctuation. Is set.

一方、無機凝集剤反応槽では、凝結および凝集をなるべく完結するために、中和・凝集槽の制御目標pH値Aに対して、制御目標pH値A’をA〜(A+0.7)の範囲で設定する。この制御目標pH値A’の上限を(A+0.7)とするのは、前述の通り、一般的に、適正凝集pH範囲の幅が+0.8〜1.0であり、凝集下限pH値X+1.0の範囲であれば、ほぼ適正凝集pH範囲内におさまることによる。無機凝集剤反応槽の制御目標pH値A’は、下限pH値Xよりも少し高い値に設定することが好ましく、従って、制御目標pH値A’は好ましくはA〜(A+0.5)、より好ましくは(A+0.1)〜(A+0.3)の範囲である。   On the other hand, in the inorganic flocculant reaction tank, the control target pH value A ′ is within the range of A to (A + 0.7) with respect to the control target pH value A of the neutralization / coagulation tank in order to complete the coagulation and aggregation as much as possible. Set with. The upper limit of the control target pH value A ′ is (A + 0.7), as described above, generally, the range of the proper aggregation pH range is +0.8 to 1.0, and the aggregation lower limit pH value X + 1. If it is in the range of 0.0, it is due to being within the proper coagulation pH range. The control target pH value A ′ of the inorganic flocculant reaction tank is preferably set to a value slightly higher than the lower limit pH value X. Therefore, the control target pH value A ′ is preferably A to (A + 0.5) or more. Preferably, it is in the range of (A + 0.1) to (A + 0.3).

なお、本発明では、無機凝集剤反応槽の制御目標pH値A’と中和・凝集槽の制御目標pH値Aを同一としてもよい。この場合であっても、無機凝集剤反応槽と中和・凝集槽を設け、中和・凝集槽におけるpHを下限pH値X以上に制御することで、凝集不良を防止することができる。   In the present invention, the control target pH value A ′ of the inorganic flocculant reaction tank and the control target pH value A of the neutralization / coagulation tank may be the same. Even in this case, defective aggregation can be prevented by providing an inorganic flocculant reaction tank and a neutralization / coagulation tank and controlling the pH in the neutralization / coagulation tank to the lower limit pH value X or more.

本発明では、このように無機凝集剤反応槽の制御目標pH値A’と中和・凝集槽の制御目標pH値Aを設定することにより、中和・凝集槽ではNaOHを添加することなく凝集処理することも可能となる。即ち、無機凝集剤反応槽におけるNaOH添加で、無機凝集剤反応槽の制御目標pH値A’と中和・凝集槽の制御目標pH値Aの双方が達成されるようにpH調整することも可能となる。ただし、本発明では、中和・凝集槽においてもNaOHを添加して制御目標pH値AにpH調整してもよい。その場合においても、pHの調整は、基本的に無機凝集剤反応槽でのNaOH添加によって行われ、中和・凝集槽でのNaOHの添加は、制御目標pH値Aを下廻る場合のみ行われる。   In the present invention, by setting the control target pH value A ′ of the inorganic flocculant reaction tank and the control target pH value A of the neutralization / coagulation tank in this way, the neutralization / coagulation tank does not add NaOH. Processing is also possible. That is, by adding NaOH in the inorganic flocculant reaction tank, it is possible to adjust the pH so that both the control target pH value A ′ of the inorganic flocculant reaction tank and the control target pH value A of the neutralization / flocculation tank are achieved. It becomes. However, in the present invention, NaOH may be added to the control target pH value A by adding NaOH also in the neutralization / coagulation tank. Even in that case, the pH adjustment is basically performed by adding NaOH in the inorganic flocculant reaction tank, and the addition of NaOH in the neutralization / flocculation tank is performed only when the pH falls below the control target pH value A. .

<3価鉄系無機凝集剤>
本発明において用いる3価鉄系無機凝集剤としては、一般的な凝集処理に用いるものを用いることができ、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)、ポリ硫酸第二鉄([Fe(OH)(SO3−n/2)等を用いることができる。これらの3価鉄系無機凝集剤は1種のみを用いてもよく、2種以上を併用してもよい。
3価鉄系無機凝集剤の添加量は、被処理水の水質(凝集対象物の存在量)や、フェノール系水酸基を有する水溶性高分子の併用の有無によっても異なるが、通常Fe3+換算の添加量として、被処理水に対して5〜30mg/L程度の割合で用いることにより、良好な凝集処理水を得ることができる。
<Trivalent iron-based inorganic flocculant>
As the trivalent iron-based inorganic flocculant used in the present invention, those used for general flocculation treatment can be used, and ferric chloride (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ). Polyferric sulfate ([Fe 2 (OH) n (SO 4 ) 3 -n / 2 ] m ) and the like can be used. These trivalent iron-based inorganic flocculants may be used alone or in combination of two or more.
The amount of the trivalent iron-based inorganic flocculant added varies depending on the quality of the water to be treated (the amount of the agglomeration target) and whether or not a water-soluble polymer having a phenolic hydroxyl group is used, but usually in terms of Fe 3+ By using the additive at a rate of about 5 to 30 mg / L with respect to the water to be treated, good agglomerated treated water can be obtained.

<フェノール性水酸基を有する水溶性高分子>
被処理水中に、3価鉄系無機凝集剤では凝集処理し得ない中性多糖類や、3価鉄系無機凝集剤での凝集処理が困難なバイオポリマーが含有されている場合、被処理水に3価鉄系無機凝集剤を添加するに先立ち、フェノール性水酸基を有する水溶性高分子を添加することが好ましい。
<Water-soluble polymer having phenolic hydroxyl group>
When water to be treated contains neutral polysaccharides that cannot be agglomerated with trivalent iron-based inorganic flocculants or biopolymers that are difficult to agglomerate with trivalent iron-based inorganic flocculants, Prior to adding the trivalent iron-based inorganic flocculant, it is preferable to add a water-soluble polymer having a phenolic hydroxyl group.

この場合に用いるフェノール性水酸基を有する水溶性高分子としては、例えば、下記(1)〜(3)のビニルフェノール系重合体が挙げられる。
(1) ビニルフェノールの単独重合体
(2) 変性ビニルフェノールの単独重合体
(3) ビニルフェノールおよび/または変性ビニルフェノールと疎水性ビニルモノマーとの共重合体
Examples of the water-soluble polymer having a phenolic hydroxyl group used in this case include the following vinylphenol polymers (1) to (3).
(1) Vinylphenol homopolymer
(2) Modified vinylphenol homopolymer
(3) Copolymer of vinylphenol and / or modified vinylphenol and hydrophobic vinyl monomer

上記(2)の変性ビニルフェノールとしては、例えば、アルキル基やアリル基等で置換されたビニルフェノール、ハロゲン化ビニルフェノール等、フェニル基が何らかの化合物で化学修飾されたビニルフェノールが挙げられる。   Examples of the modified vinylphenol of (2) above include vinylphenols in which the phenyl group is chemically modified with some compound, such as vinylphenol substituted with an alkyl group or allyl group, and halogenated vinylphenol.

また、(3)の疎水性ビニルモノマーとしては、例えばエチレン、アクリロニトリル、メタクリル酸メチル等の水不溶性または水難溶性のビニルモノマーが挙げられる。このような疎水性ビニルモノマーと、ビニルフェノールおよび/または変性ビニルフェノールとの共重合体中のビニルフェノールおよび/または変性ビニルフェノールの割合は、モル比で0.5以上、特に0.7以上であることが好ましい。この割合が0.5未満であると、後述のアルカリ水溶液に対しても難溶性ないし不溶性となり好ましくない。   Examples of the hydrophobic vinyl monomer (3) include water-insoluble or poorly water-soluble vinyl monomers such as ethylene, acrylonitrile, and methyl methacrylate. The ratio of vinyl phenol and / or modified vinyl phenol in the copolymer of such a hydrophobic vinyl monomer and vinyl phenol and / or modified vinyl phenol is 0.5 or more, particularly 0.7 or more in molar ratio. Preferably there is. When this ratio is less than 0.5, it is not preferable because it is hardly soluble or insoluble in an aqueous alkali solution described later.

前記(1)〜(3)のビニルフェノール系重合体は、その重量平均分子量が5000以上例えば5000〜100000であることが好ましく、このような分子量の重合体は、通常、粉末で提供される。
なお、本発明において重量平均分子量は、GPC法(ゲルパーミエーションクロマトグラフィー法)で測定し、標準ポリスチレンによる検量線を用いて算出した値である。
The vinylphenol polymers (1) to (3) preferably have a weight average molecular weight of 5,000 or more, for example, 5,000 to 100,000, and the polymer having such a molecular weight is usually provided as a powder.
In the present invention, the weight average molecular weight is a value measured by a GPC method (gel permeation chromatography method) and calculated using a standard polystyrene calibration curve.

前記(1)〜(3)のビニルフェノール系重合体は水には不溶ないし難溶であるが、アルカリ水溶液には溶解する。従って、これらのビニルフェノール系重合体は、アルカリ水溶液として液状で用いることが好ましい。   The vinylphenol polymers (1) to (3) are insoluble or hardly soluble in water, but are soluble in an alkaline aqueous solution. Therefore, these vinylphenol polymers are preferably used in a liquid form as an alkaline aqueous solution.

この場合、アルカリ水溶液のアルカリ性物質としては、各種アルカリ金属またはアルカリ土類金属等の水酸化物やアンモニア、アミン類が挙げられるが、入手のし易さおよび取り扱い性から、苛性ソーダ(NaOH)または苛性カリ(KOH)が好ましい。   In this case, examples of the alkaline substance in the alkaline aqueous solution include hydroxides such as various alkali metals or alkaline earth metals, ammonia, and amines, but caustic soda (NaOH) or caustic potash is easy to obtain and handle. (KOH) is preferred.

上記ビニルフェノール系重合体のアルカリ水溶液の調製には、例えば、前記ビニルフェノール系重合体粉末を水に懸濁させ、この中にアルカリ性物質を添加して、褐色ないし黒褐色の水溶液とする。従って、アルカリ性物質の添加量はビニルフェノール系重合体粉末が溶解する量であれば良く、一般には10〜30重量%のアルカリ水溶液となるように添加される。
このアルカリ水溶液中の前記ビニルフェノール系重合体の濃度は任意であるが、一般には5〜20(w/v)%程度とするのが好ましい。
For the preparation of the alkaline aqueous solution of the vinylphenol polymer, for example, the vinylphenol polymer powder is suspended in water, and an alkaline substance is added thereto to obtain a brown to black brown aqueous solution. Therefore, the addition amount of the alkaline substance may be an amount that dissolves the vinylphenol polymer powder, and is generally added so as to become an alkaline aqueous solution of 10 to 30% by weight.
The concentration of the vinylphenol polymer in the alkaline aqueous solution is arbitrary, but generally it is preferably about 5 to 20 (w / v)%.

本発明で用いるフェノール性水酸基を有する水溶性高分子としては、また、例えば、フェノール類とアルデヒド類とを酸触媒の存在下に反応させてノボラック型フェノール樹脂を得、該ノボラック型フェノール樹脂のアルカリ溶液に、アルデヒド類を添加してアルカリ触媒の存在下にレゾール型の2次反応を行って得られる、低分子量成分の少ないフェノール樹脂(以下「二次反応フェノール樹脂」と称す場合がある。)のアルカリ溶液も、好ましいものとして挙げられる。   As the water-soluble polymer having a phenolic hydroxyl group used in the present invention, for example, a novolac-type phenol resin is obtained by reacting phenols and aldehydes in the presence of an acid catalyst, and the alkali of the novolac-type phenol resin is used. A phenol resin with a low low molecular weight component obtained by adding an aldehyde to the solution and performing a resol type secondary reaction in the presence of an alkali catalyst (hereinafter sometimes referred to as “secondary reaction phenol resin”). An alkaline solution is also preferable.

即ち、ノボラック型フェノール樹脂をアルカリ溶液とし、含有フェノール環1モル当たり0.2〜0.4モルのホルムアルデヒド類を添加し、80〜100℃で1〜12時間反応させる。この反応で、フェノール2核体を含む低分子量成分のフェノール環にホルムアルデヒド類が付加し、反応活性基のメチロール基が生成し、これが既存のフェノール縮合物に反応することで、低分子量成分が、高分子量の凝集有効成分に変換する。
同時に既存の縮合高分子成分のフェノール環でも、ホルムアルデヒド類の付加、メチロール基生成、他の縮合高分子成分への付加反応が起こり、樹脂全体の平均分子量が、元の樹脂の2000〜6000から、数倍程度の5000〜30000に増加する。
That is, a novolak-type phenol resin is used as an alkaline solution, 0.2 to 0.4 mol of formaldehyde is added per mol of the phenol ring, and the reaction is performed at 80 to 100 ° C. for 1 to 12 hours. In this reaction, formaldehydes are added to the phenol ring of the low molecular weight component containing the phenol dinuclear body to generate a methylol group of the reactive group, which reacts with the existing phenol condensate, so that the low molecular weight component is Converts to high molecular weight agglomerated active ingredient.
At the same time, addition of formaldehyde, methylol group generation, addition reaction to other condensation polymer components occurs in the phenol ring of the existing condensation polymer component, and the average molecular weight of the entire resin is from 2000 to 6000 of the original resin, It increases to 5,000 to 30,000, several times.

この反応では、フェノール環は、2つの手で繋がった二次構造(線状)から、3つの手で繋がった三次構造になり、高分子鎖の自由度が減少し、その結果、融点が上昇する。
融点上昇が小さい場合は、低分子量成分の低減が不十分である。逆に、融点が上昇しすぎる、さらには、融点が計測されない(230℃以上では、分解が始まり、融点があるかわからなくなる)程になると、フェノール樹脂の分子量は100万オーダー以上となり、樹脂は溶解できず、析出、固化する。また、液体を保っていても、粘度が上昇し、経時により固化が始まり、凝集剤として実用に供することはできないものとなる。
In this reaction, the phenol ring changes from a secondary structure (linear) connected by two hands to a tertiary structure connected by three hands, which reduces the degree of freedom of the polymer chain, resulting in an increase in melting point. To do.
When the melting point rise is small, the reduction of the low molecular weight component is insufficient. On the other hand, if the melting point increases too much, and further the melting point is not measured (decomposition starts at 230 ° C. or higher and it is not possible to know whether the melting point is present), the molecular weight of the phenol resin becomes 1 million orders or more. It cannot be dissolved and precipitates and solidifies. Further, even if the liquid is kept, the viscosity increases, solidification starts over time, and it cannot be put to practical use as a flocculant.

上記のレゾール型2次反応の原料となるノボラック型フェノール樹脂は、常法に従って、反応釜において、フェノール類およびアルデヒド類を、酸性触媒の存在下で重縮合反応させた後、常圧および減圧下で、脱水と未反応フェノールの除去を行って製造される。   The novolak-type phenol resin used as the raw material for the above-mentioned resol-type secondary reaction is obtained by subjecting phenols and aldehydes to polycondensation reaction in the presence of an acidic catalyst in a reaction vessel according to a conventional method, and then under normal pressure and reduced pressure. Thus, dehydration and removal of unreacted phenol are performed.

ノボラック型フェノール樹脂の製造に用いるフェノール類としては、例えば、フェノール、o,m,pの各クレゾール、o,m,pの各エチルフェノール、キシレノール各異性体などのアルキルフェノール類、α,βの各ナフトールなどの多芳香環フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ピロガロール、レゾルシン、カテコールなどの多価フェノール類、ハイドロキノンなどが挙げられるが、何らこれらに限定されるものではない。これらのフェノール類は1種を単独で用いても良く、2種以上を混合して用いても良い。
これらのうち、実用的な物質は、フェノール、クレゾール類、キシレノール類、カテコールである。
Examples of the phenols used for the production of the novolak-type phenol resin include phenols, alkylphenols such as o, m and p cresols, o, m and p ethylphenols and xylenol isomers, α and β Examples include polyaromatic phenols such as naphthol, polyphenols such as bisphenol A, bisphenol F, bisphenol S, pyrogallol, resorcin, and catechol, and hydroquinone, but are not limited thereto. These phenols may be used individually by 1 type, and may mix and use 2 or more types.
Of these, practical substances are phenol, cresols, xylenols, and catechol.

一方、アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、サリチルアルデヒド、グリオキザールなどが挙げられるが、何らこれらに限定されるものではない。これらのアルデヒド類は1種を単独で用いても良く、2種以上を混合して用いても良い。
これらのうち、実用的な物質は、ホルムアルデヒド、パラホルムアルデヒドである。
On the other hand, examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, benzaldehyde, salicylaldehyde, glyoxal, and the like, but are not limited thereto. These aldehydes may be used individually by 1 type, and may mix and use 2 or more types.
Among these, practical substances are formaldehyde and paraformaldehyde.

レゾール型2次反応の原料となるノボラック型フェノール樹脂の融点は65〜120℃で、重量平均分子量で1000〜6000、特に2000〜6000であることが好ましい。
また、ノボラック型フェノール樹脂のアルカリ溶液のpHは、pH11〜13程度であり、ノボラック型フェノール樹脂のアルカリ溶液中のノボラック型フェノール樹脂濃度は、5〜50重量%、特に10〜30重量%程度であることが好ましい。
The melting point of the novolak type phenol resin used as the raw material for the resol type secondary reaction is 65 to 120 ° C., and the weight average molecular weight is preferably 1000 to 6000, and particularly preferably 2000 to 6000.
Moreover, the pH of the alkali solution of the novolak type phenol resin is about pH 11 to 13, and the concentration of the novolak type phenol resin in the alkali solution of the novolak type phenol resin is about 5 to 50% by weight, particularly about 10 to 30% by weight. Preferably there is.

レゾール型2次反応のために、ノボラック型フェノール樹脂のアルカリ溶液に添加するアルデヒド類としては、前述のノボラック型フェノール樹脂原料としてのアルデヒド類と同様のものを1種を単独でまたは2種以上を混合して用いることができ、これらのうち特にホルムアルデヒド、パラホルムアルデヒドが実用的であるが、これらに限定されるものではない。   As the aldehydes added to the novolac phenol resin alkaline solution for the resol type secondary reaction, the same aldehydes as the above-mentioned novolac phenol resin raw material may be used alone or in combination of two or more. These can be used in combination, and among these, formaldehyde and paraformaldehyde are practical, but are not limited thereto.

ノボラック型フェノール樹脂のアルカリ溶液へのアルデヒド類の添加量は、ノボラック型フェノール樹脂中のフェノール環1モル当たり0.2〜0.4モルとなるが、実際には、事前にアルデヒド類添加量と2次反応フェノール樹脂の融点との関係を確認する予備試験を行い、その結果に基いて、所望の融点の2次反応フェノール樹脂が得られるように、その添加量を決定することが好ましい。   The amount of aldehyde added to the alkali solution of the novolak type phenol resin is 0.2 to 0.4 mol per mol of the phenol ring in the novolak type phenol resin. A preliminary test for confirming the relationship with the melting point of the secondary reaction phenol resin is performed, and it is preferable to determine the amount of addition based on the result so that a secondary reaction phenol resin having a desired melting point can be obtained.

上記のレゾール型の2次反応を行って得られる2次反応フェノール樹脂の融点は好ましくは130〜220℃であり、より好ましくは150〜200℃である。
また、この2次反応フェノール樹脂の重量平均分子量は5000以上が好ましく、さらに好ましくは10000以上である。一方、重量平均分子量が50000を超える場合は、一部分子量100万以上の分子が生成し、粘度が高く、時間経過でさらに架橋し、不溶物が発生する可能性が高いため、2次反応フェノール樹脂の重量平均分子量は50000以下、特に30000以下であることが好ましい。
また、この2次反応フェノール樹脂の重量平均分子量は、反応前、即ち、レゾール型2次反応の原料であるノボラック型フェノール樹脂の重量平均分子量の2〜5倍程度となることが好ましい。
The melting point of the secondary reaction phenol resin obtained by performing the resol type secondary reaction is preferably 130 to 220 ° C, more preferably 150 to 200 ° C.
The weight average molecular weight of the secondary reaction phenol resin is preferably 5000 or more, and more preferably 10,000 or more. On the other hand, when the weight average molecular weight exceeds 50,000, some of the molecules having a molecular weight of 1 million or more are formed, the viscosity is high, and there is a high possibility of further crosslinking and generation of insoluble matter over time. The weight average molecular weight of the resin is preferably 50000 or less, particularly 30000 or less.
Further, the weight average molecular weight of the secondary reaction phenol resin is preferably about 2 to 5 times the weight average molecular weight of the novolac type phenol resin before the reaction, that is, the raw material of the resol type secondary reaction.

また、2次反応フェノール樹脂は、フェノール類2核体含有率が3重量%未満、特に2重量%以下であることが好ましく、また、分子量624以下の低分子量成分の含有率が10重量%以下であることが好ましい。より好ましくは、分子量624以下の低分子量成分の含有率は5重量%以下である。また、分子量624を超え1200以下の低分子量成分の含有率が10重量%以下、特に7重量%以下であることが好ましい。   The secondary reaction phenolic resin has a phenolic dinuclear content of less than 3% by weight, particularly preferably 2% by weight or less, and a content of a low molecular weight component having a molecular weight of 624 or less is 10% by weight or less. It is preferable that More preferably, the content of the low molecular weight component having a molecular weight of 624 or less is 5% by weight or less. Further, the content of the low molecular weight component having a molecular weight exceeding 624 and not more than 1200 is preferably 10% by weight or less, particularly preferably 7% by weight or less.

また、この2次反応フェノール樹脂は、レゾール型2次反応の原料であるノボラック型フェノール樹脂に対して、2核体を含む概ね分子量1000以下の低分子量成分が通常15重量%以下、好ましくは10重量%以下と大きく減少し、凝集処理に用いた場合、凝集処理水側に残留する未凝集物が著しく少なく、TOC、CODMnが著しく低減された、膜分離処理の給水として好ましい凝集処理水が得られる。 In addition, the secondary reaction phenolic resin generally has a low molecular weight component having a molecular weight of 1000 or less and a binuclear content of generally 15% by weight or less, preferably 10% or less, with respect to the novolak type phenol resin that is a raw material for the resol type secondary reaction. When used for agglomeration, the agglomerated water that is preferred as the feed water for the membrane separation process, in which the amount of unagglomerated material remaining on the agglomerated water side is remarkably reduced and TOC and COD Mn are remarkably reduced. can get.

本発明において、上記の2次反応フェノール樹脂や、前述の(1)〜(3)のビニルフェノール系重合体等(以下、これらを「フェノール系樹脂」と総称する場合がある。)をアルカリ溶液として添加する際の被処理水のpHは中性、もしくはアルカリ性が好ましく、特にpH6以上、例えば6〜9が好ましい。このpHが6未満であると添加時にフェノール系樹脂が析出してしまい、凝集性能が低下する。従って、被処理水のpHが7未満である場合には、必要に応じてアルカリを添加してpH調整を行う。   In the present invention, the above-mentioned secondary reaction phenol resin, the above-mentioned vinylphenol polymers (1) to (3) and the like (hereinafter sometimes collectively referred to as “phenol resins”) are alkaline solutions. The pH of the water to be treated when added as is preferably neutral or alkaline, particularly preferably 6 or more, for example, 6 to 9. If this pH is less than 6, the phenolic resin will precipitate during the addition, and the agglomeration performance will deteriorate. Accordingly, when the pH of the water to be treated is less than 7, the pH is adjusted by adding an alkali as necessary.

フェノール系樹脂の添加量は、少な過ぎるとフェノール系樹脂を添加したことによる凝集効果を十分に得ることができず、多過ぎても効果は変わらないが経済的でないことから、被処理水の水質等によっても異なるが、通常、被処理水に対して有効成分量で0.20〜5.0mg/Lとすることが好ましい   If the amount of phenolic resin added is too small, the coagulation effect due to the addition of phenolic resin cannot be obtained sufficiently, and if it is too much, the effect will not change, but it is not economical. Usually, it is preferably 0.20 to 5.0 mg / L in terms of the amount of active ingredient relative to the water to be treated.

<酸添加の影響>
実際の凝集反応設備においては、pH調整のため、硫酸、塩酸などの酸添加設備がNaOH添加設備とともに設けられていることがある。
本発明においては、3価鉄系無機凝集剤の被処理水のアルカリ度による無機凝集剤の消費を軽減するため、予め酸でアルカリ度を減らす場合は、酸添加後の水を被処理水と定義する。即ち、本発明で凝集処理対象とする被処理水は、予め酸が添加されたものであってもよい。ここで、「予め」とは、凝集反応設備、具体的には無機凝集剤反応槽に至る被処理水の配管、被処理水の貯留槽、および前段の生物処理槽等における酸の添加である。
<Influence of acid addition>
In an actual agglomeration reaction facility, an acid addition facility such as sulfuric acid or hydrochloric acid may be provided together with an NaOH addition facility for pH adjustment.
In the present invention, in order to reduce the consumption of the inorganic flocculant due to the alkalinity of the water to be treated of the trivalent iron-based inorganic flocculant, when reducing the alkalinity with an acid in advance, the water after acid addition is treated as the water to be treated. Define. That is, the water to be treated that is subject to agglomeration treatment in the present invention may have been previously added with an acid. Here, “preliminarily” is the addition of acid in the agglomeration reaction facility, specifically, the pipe of the water to be treated leading to the inorganic flocculant reaction tank, the tank for the water to be treated, the biological treatment tank in the previous stage, and the like. .

無機凝集剤反応槽や、中和・凝集槽で、3価鉄系無機凝集剤やNaOHとともに酸を添加すること、特に、NaOHと酸を同じ槽に添加することは、NaOHと酸を無駄に消費するだけであり、凝集効果の面では有効ではなく、逆に凝集効果が低下する傾向にあるため、本発明では、原則として酸の添加は行わず、被処理水の水質変動などで一時的にpHを下げる必要がある場合は、3価鉄系無機凝集剤の添加量を増量することが好ましい。
また、中和・凝集槽の制御目標pH値Aを、前段の無機凝集剤反応槽の制御目標pH値A’より低く設定するために中和・凝集槽に酸を添加することも行わず、pHが下限pH値Xより低くなったときのみNaOHを添加してpH調整するようにすることが好ましい。
Adding acid along with trivalent iron-based inorganic flocculant and NaOH in an inorganic flocculant reaction tank or neutralization / flocculation tank, especially adding NaOH and acid to the same tank wastes NaOH and acid. In the present invention, as a general rule, no acid is added and the treatment water is temporarily changed due to fluctuations in the quality of the treated water. When it is necessary to lower the pH, it is preferable to increase the amount of the trivalent iron-based inorganic flocculant added.
In addition, in order to set the control target pH value A of the neutralization / flocculation tank to be lower than the control target pH value A ′ of the preceding inorganic flocculant reaction tank, acid is not added to the neutralization / coagulation tank, It is preferable to adjust the pH by adding NaOH only when the pH is lower than the lower limit pH value X.

[水処理方法および水処理装置]
本発明の水処理方法は、上記の本発明の凝集処理方法で得られた凝集処理水を、固液分離した後、RO膜分離処理することを特徴とする。
また、本発明の水処理装置は、上記の本発明の凝集処理装置と、該凝集処理装置で得られた凝集処理水を、固液分離する固液分離手段と、該固液分離手段で得られた分離水をRO膜分離処理するRO膜分離装置とを有することを特徴とする。
[Water treatment method and apparatus]
The water treatment method of the present invention is characterized in that the agglomerated water obtained by the above-described agglomeration method of the present invention is subjected to RO membrane separation treatment after solid-liquid separation.
The water treatment apparatus of the present invention is obtained by the above-described flocculation apparatus of the present invention, the solid-liquid separation means for solid-liquid separation of the flocculated water obtained by the flocculation apparatus, and the solid-liquid separation means. And an RO membrane separation device for subjecting the separated water to RO membrane separation treatment.

<RO膜供給水の評価>
まず、RO膜供給水として好適な水質について説明する。
<Evaluation of RO membrane water supply>
First, water quality suitable as RO membrane supply water will be described.

本発明者は、RO膜供給水としての水質の適否を、以下のSFF、MFF、SDI、netNTUで分析・評価し、下記表1に示す評価区分を設定した。
なお、SFFはバイオポリマー汚染の指標であり、MFF、SDI、netNTUは微粒子物質(シルト、金属水酸化物コロイド、凝集不十分のコロイド状物質)汚染の指標である。
The present inventor analyzed and evaluated the suitability of the water quality as RO membrane supply water by the following SFF, MFF, SDI, and netNTU, and set the evaluation categories shown in Table 1 below.
SFF is an indicator of biopolymer contamination, and MFF, SDI, and netNTU are indicators of particulate matter (silt, metal hydroxide colloid, colloidal material with insufficient aggregation) contamination.

(SFF)
SFF(ソリューブルポリマー・ファウリング・ファクター)は、特開2012−213676号公報に提示されている中性多糖類を含むバイオポリマーの存在および膜汚染影響度を評価する水質評価方法である。
SFFは、RO膜汚染物が事実上存在しないRO膜透過水または蒸留水500mLと、試料水を、それぞれ最大孔径0.45μm、47mmφのMF(マイクロフィルター)を用いて500mHgで吸引濾過を行い、それぞれの濾過時間T、Tを計測し、水温補正を行った上でT/Tの比で決定される。
(SFF)
SFF (Soluble Polymer Fouling Factor) is a water quality evaluation method that evaluates the presence of biopolymers containing neutral polysaccharides and the degree of influence of membrane contamination, as disclosed in JP2012-213676A.
SFF performs suction filtration of 500 mL of RO membrane permeate or distilled water with virtually no RO membrane contaminants and sample water at 500 mHg using MF (microfilter) with a maximum pore size of 0.45 μm and 47 mmφ, respectively. The respective filtration times T 0 and T 1 are measured, and the water temperature is corrected and determined by the ratio of T 1 / T 0 .

(MFF)
MFF(ファウリングファクター)は、上記のSFF測定に引き続いて、試料水をさらに500mL吸引濾過して濾過時間Tを測定し、T/Tの比で決定される。
なお、MFFはRO膜供給水の適否を判定する、ASTM D4189に定義されている以下のSDI(シルトデンシティーインデックス)、JIS K3802に定義されているFI(ファウリングインデックス)(SDIとFIは同一の評価方法)を簡素化した手法で、微小濁度の微粒子汚染を判定するものである。
(MFF)
The MFF (fouling factor) is determined by the ratio of T 2 / T 1 after the above SFF measurement, by further filtering 500 mL of sample water and measuring the filtration time T 2 .
MFF determines the suitability of RO membrane supply water. The following SDI (silt density index) defined in ASTM D4189, FI (fouling index) defined in JIS K3802 (SDI and FI are the same) In this method, the contamination with fine turbidity is determined.

(SDI)
SDI(シルトデンシティーインデックス)は、試料水を最大孔径0.45μm、47mmφのMF(マイクロフィルター)を用いて30psiで加圧濾過を15分間行い、最初の透過水量に対して15分後の透過水量が1分当り何%低下したかを示す値(ASTM D4189)であるが、上記MFFとSDIの同時の同時測定値より、以下の評価区分の判定では回帰式でSDIを推算した。
(SDI)
SDI (Silt Density Index) is a 15-minute pressure filtration at 30 psi using sample water with MF (microfilter) with a maximum pore size of 0.45 μm and 47 mmφ. Although it is a value (ASTM D4189) indicating how much the amount of water decreased per minute, SDI was estimated by a regression equation in the determination of the following evaluation categories from the simultaneous measurement values of MFF and SDI.

<netNTU>
netNTUはHACH社製ポータブル濁度計「2100P」で計測したNTU値から超純水(または蒸留水)のブランク値を差し引き、小数点2桁目までの微小濁度を判定した数値である。
<NetNTU>
netNTU is a numerical value obtained by subtracting the blank value of ultrapure water (or distilled water) from the NTU value measured with a portable turbidimeter “2100P” manufactured by HACH, and determining the minute turbidity up to the second digit of the decimal point.

Figure 0006287594
Figure 0006287594

本発明の凝集処理方法および凝集処理装置により得られる凝集処理水は、これを濾過処理することにより、上記のRO膜供給水として好適な水質の濾過水を得ることができる。   The agglomerated water obtained by the agglomeration treatment method and the agglomeration treatment apparatus of the present invention can be filtered to obtain filtered water having water quality suitable as the RO membrane supply water.

<水処理>
以下に、本発明の水処理装置の実施の形態の一例を示す図1を参照して、本発明の水処理方法および水処理装置について説明する。
<Water treatment>
Below, with reference to FIG. 1 which shows an example of embodiment of the water treatment apparatus of this invention, the water treatment method and water treatment apparatus of this invention are demonstrated.

図1において、1は第一の反応槽(無機凝集剤反応槽)であり、攪拌機と、pH計11を有し、3価鉄系無機凝集剤添加手段(3価鉄系無機凝集剤添加ライン)とNaOH添加手段(NaOH添加ライン)が設けられている。2は第二の反応槽(中和・凝集槽)であり、攪拌機と、pH計12を有し、NaOH添加手段(NaOH添加ライン)が設けられているが、中和・凝集槽2において、NaOH添加手段は必ずしも必要としない。中和・凝集槽2には3価鉄系無機凝集剤添加手段は設けられていない。   In FIG. 1, 1 is a first reaction tank (inorganic flocculant reaction tank), which has a stirrer and a pH meter 11, and a trivalent iron-based inorganic flocculant addition means (trivalent iron-based inorganic flocculant addition line). ) And NaOH addition means (NaOH addition line). 2 is a second reaction tank (neutralization / coagulation tank), which has a stirrer and a pH meter 12 and is provided with NaOH addition means (NaOH addition line). A means for adding NaOH is not necessarily required. The neutralization / flocculation tank 2 is not provided with a trivalent iron-based inorganic flocculant addition means.

この無機凝集剤反応槽1と中和・凝集槽2と制御器10とで本発明の凝集処理装置が構成される。
制御器10は、本発明の凝集処理装置における第一のpH制御手段と第二のpH制御手段とを兼ねるものであり、下記(1)または(2)のpH制御を行う。
(1)無機凝集剤反応槽1のpH計11および中和・凝集槽2のpH計12から入力されるそれぞれのpH値に基づいて、NaOH添加手段の薬注ポンプPの作動を制御して、無機凝集剤反応槽1内の反応液のpHを前記制御目標pH値A’に調整すると共に、中和・凝集槽2内の反応液のpHを前記制御目標pH値Aに調整する。この場合、中和・凝集槽2へのNaOHの添加は不要であり、薬注ポンプPおよび薬注ラインを省略することができる。
(2)無機凝集剤反応槽1のpH計11から入力されるpH値に基づいて、NaOH添加手段の薬注ポンプPの作動を制御して、無機凝集剤反応槽1内の反応液のpHを前記制御目標pH値A’に調整すると共に、中和・凝集槽2のpH計12から入力されるpH値に基づいて、必要に応じてNaOH添加手段の薬注ポンプPを制御して、中和・凝集槽2内の反応液のpHを前記制御目標pH値Aに調整する。
被処理水の水質の変動や水量の変動等、何らかの上流側の条件変動のために、無機凝集剤反応槽1のpH計11の測定値が、前記制御目標pH値A’よりも高くなった場合は、3価鉄系無機凝集剤の薬注ポンプPの吐出量を原則手動で増量させて、pHを下げるpH制御が行われる。逆に、NaOH添加手段の薬注ポンプPの吐出量が著しく多くなった場合、3価鉄系無機凝集剤の薬注ポンプPの吐出量を原則手動で減量する。
The inorganic flocculant reaction tank 1, the neutralization / flocculation tank 2, and the controller 10 constitute an aggregating apparatus of the present invention.
The controller 10 serves as both the first pH control means and the second pH control means in the coagulation treatment apparatus of the present invention, and performs the following pH control (1) or (2).
(1) based on the respective pH value input from the pH meter 12 of the inorganic coagulant pH of the reaction vessel 1 meter 11 and neutralization and flocculation tank 2, to control the operation of the chemical feed pump P 2 of NaOH addition means Then, the pH of the reaction liquid in the inorganic flocculant reaction tank 1 is adjusted to the control target pH value A ′, and the pH of the reaction liquid in the neutralization / coagulation tank 2 is adjusted to the control target pH value A. In this case, the addition of NaOH to neutralization and flocculation tank 2 is not required, it is possible to omit the chemical feed pump P 3 and dosing line.
(2) on the basis of the pH value input from the pH meter 11 of the inorganic coagulant reaction tank 1, and controls the operation of the chemical feed pump P 2 of NaOH addition means, the inorganic coagulant reaction solution in the reaction tank 1 The pH is adjusted to the control target pH value A ′, and the chemical injection pump P 3 of the NaOH addition means is controlled as necessary based on the pH value input from the pH meter 12 of the neutralization / flocculation tank 2. Then, the pH of the reaction solution in the neutralization / coagulation tank 2 is adjusted to the control target pH value A.
The measured value of the pH meter 11 of the inorganic flocculant reaction tank 1 is higher than the control target pH value A ′ due to some upstream condition fluctuations such as fluctuations in the quality of the water to be treated and fluctuations in the amount of water. If, by increasing the discharge amount of chemical feed pump P 1 of trivalent iron-based inorganic flocculant principle manually, pH control to lower the pH it is performed. Conversely, if the discharge amount of chemical feed pump P 2 of NaOH added means becomes significantly more, weight loss the discharge amount of the chemical feed pump P 1 of trivalent iron-based inorganic flocculant principle manually.

なお、3価鉄系無機凝集剤の添加に先立ち、前述のフェノール系樹脂による凝集処理を行う場合には、無機凝集剤反応槽1の前段にフェノール系樹脂を添加して凝集処理する凝集処理槽(被処理水の貯槽を兼ねるものであってもよい。)が設けられる。   In addition, prior to the addition of the trivalent iron-based inorganic flocculant, when the agglomeration treatment with the above-described phenolic resin is performed, an agglomeration treatment tank in which the phenolic resin is added to the preceding stage of the inorganic flocculant reaction tank 1 to perform the agglomeration treatment. (It may also serve as a storage tank for water to be treated).

無機凝集剤反応槽1および中和・凝集槽2に順次通水されて、3価鉄系無機凝集剤により所定のpHで凝集処理された凝集処理水は、浮上分離装置3に送給されて浮上分離され、分離水は更に濾過装置4で濾過処理され、濾過水はRO膜分離装置5でRO膜分離処理され、RO透過水が処理水として回収される。   The agglomerated water that has been successively passed through the inorganic flocculant reaction tank 1 and the neutralization / agglomeration tank 2 and agglomerated at a predetermined pH with the trivalent iron-based inorganic aggregating agent is fed to the flotation separator 3. Floated and separated, the separated water is further filtered by the filtration device 4, the filtered water is RO membrane separated by the RO membrane separation device 5, and RO permeated water is recovered as treated water.

このような水処理装置において、本発明の凝集処理装置によれば、前述の通り、RO供給水として好適な膜汚染性の低い凝集・濾過水を得ることができるため、RO膜の透過流束の低下を防止して、長期に亘り、安定かつ効率的に水回収を行うことができる。   In such a water treatment apparatus, according to the agglomeration treatment apparatus of the present invention, as described above, it is possible to obtain the agglomerated / filtered water having low membrane contamination suitable as the RO supply water. The water can be recovered stably and efficiently over a long period of time.

なお、図1は本発明の水処理装置に実施の形態の一例を示すものであって、本発明の水処理装置は何ら図1のものに限定されない。
例えば、固液分離手段は、浮上分離装置に限らず沈殿槽であってもよく、また、NaOH添加ポンプは循環しているNaOH希釈液の電動バルブ開閉による添加であってもよい。即ち、NaOH添加用の薬注ポンプP,PによりNaOH希釈液を循環させておき、各反応槽のpHに応じて反応槽への薬注ラインに設けた電動バルブの開閉及び開放時間の調整、手動によるバルブの開度調整で、NaOHの添加制御を行うようにすることもできる。
FIG. 1 shows an example of an embodiment of the water treatment apparatus of the present invention, and the water treatment apparatus of the present invention is not limited to that of FIG.
For example, the solid-liquid separation means is not limited to a flotation separation device, and may be a sedimentation tank, and the NaOH addition pump may be an addition of circulating NaOH dilution by opening / closing an electric valve. That is, the NaOH dilution liquid is circulated by the chemical injection pumps P 2 and P 3 for adding NaOH, and the opening and closing and opening time of the electric valve provided in the chemical injection line to the reaction tank is determined according to the pH of each reaction tank. It is also possible to control the addition of NaOH by adjustment or manual valve opening adjustment.

以下に実験例、実施例および比較例を挙げる。   Experimental examples, examples and comparative examples are given below.

なお、以下において、3価鉄系無機凝集剤としては、塩化第二鉄液製品(38重量%FeCl水溶液=Fe換算濃度13.1重量%水溶液)(以下単に「FeCl」と記載する。)またはポリ硫酸第二鉄液製品(Fe換算濃度11重量%の[Fe(OH)(SO3−n/2水溶液(以下単に「ポリ硫酸第二鉄」と記載する。)を用いた。また、二次反応フェノール樹脂アルカリ溶液として、栗田工業(株)製「クリバータBP201」(以下「BP201」と記載する。)を用いた。
3価鉄系無機凝集剤、BP201の添加量は、いずれも製品としての添加量を示すものであり、その純分としての添加量は、各々の添加量と有効成分の含有割合から算出される値である。
また、pH調整には、実験例1では1重量%NaOH水溶液を用い、その他の実験例では、48重量%NaOH水溶液を用いた。
Hereinafter, as the trivalent iron-based inorganic flocculant, ferric chloride liquid product (38 wt% FeCl 3 aqueous solution = Fe equivalent concentration 13.1 wt% aqueous solution) (hereinafter simply referred to as “FeCl 3 ”). ) Or polyferric sulfate liquid product ([Fe 2 (OH) n (SO 4 ) 3−n / 2 ] m aqueous solution (hereinafter referred to simply as “polyferric sulfate”) having an Fe equivalent concentration of 11% by weight. In addition, “Kuribata BP201” (hereinafter referred to as “BP201”) manufactured by Kurita Kogyo Co., Ltd. was used as the secondary reaction phenol resin alkali solution.
The addition amount of the trivalent iron-based inorganic flocculant and BP201 indicates the addition amount as a product, and the addition amount as a pure component is calculated from the addition amount and the content ratio of the active ingredient. Value.
Further, for the pH adjustment, 1 wt% NaOH aqueous solution was used in Experimental Example 1, and 48 wt% NaOH aqueous solution was used in the other experimental examples.

また、No.5A濾紙による濾過は、特記しない限り、No.5A濾紙の2枚重ねで行ったが、この濾過は、重力式2層濾過装置による濾過(概ね粒径1μm以上の懸濁物を捕捉する)に相当するものである。   No. Unless otherwise specified, filtration with 5A filter paper is No. The filtration was performed with two sheets of 5A filter paper, and this filtration corresponds to filtration by a gravity type two-layer filtration device (capturing a suspension having a particle diameter of 1 μm or more).

[実験例1:外観観察からの好適凝集pH値の確認]
液晶A工場の排水を生物処理し、生物処理水にFeClを添加して凝集処理し、凝集処理水を加圧浮上処理、次いで重力式2層濾過し、濾過水をRO膜分離処理して回収水を得ているプロセスから、生物処理水を採取し、室内試験により、FeCl添加後、NaOHを添加してpH調整したときの凝集フロックの外観観察から、好適凝集pH値を調べる実験を行った。
実験条件は、以下の通りである。
試料水(生物処理水)500mLを宮本製作所製ジャーテスターに採取して150rpmの攪拌下、FeClを30、45、60、または100mg/L添加した後、1重量%NaOH水溶液を0.1mL(2mg/L)ずつ複数回添加し、1回のNaOH添加毎、添加後2〜4分程度局部的な高pH領域が発生しないように、150rpmで急速撹拌し、pHが安定したらpH値を記録し、その後は50rpmの緩速攪拌として凝集フロック形成の有無を確認した。
なお、試料水である生物処理水のアルカリ度は20mg/Lであり、国内水道水水準(30〜60mg/L)よりアルカリ度は低い。
[Experimental Example 1: Confirmation of preferred aggregation pH value from appearance observation]
The wastewater of the liquid crystal A factory is biologically treated, and FeCl 3 is added to the biologically treated water for agglomeration treatment. The agglomerated treated water is subjected to pressure levitation treatment, followed by gravity-type two-layer filtration, and the filtered water is subjected to RO membrane separation treatment. From the process of obtaining recovered water, biologically treated water was collected, and laboratory tests were conducted to investigate the preferred aggregation pH value from the observation of the appearance of aggregate flocs when pH was adjusted by adding NaOH after adding FeCl 3. went.
The experimental conditions are as follows.
500 mL of sample water (biologically treated water) was collected in a jar tester manufactured by Miyamoto Seisakusho, and FeCl 3 was added at 30 , 45, 60, or 100 mg / L with stirring at 150 rpm, and then 0.1 mL of 1 wt% NaOH aqueous solution ( 2 mg / L) multiple times, and after each addition of NaOH, rapidly stir at 150 rpm so that a local high pH region does not occur for about 2 to 4 minutes after the addition, and record the pH value when the pH is stable Thereafter, the presence or absence of aggregated floc formation was confirmed by slow stirring at 50 rpm.
In addition, the alkalinity of the biological treatment water which is sample water is 20 mg / L, and an alkalinity is lower than a domestic tap water level (30-60 mg / L).

この実験における各FeCl添加量でのNaOH添加量とpH値との関係を図2に示す。
また、目視にて凝集フロックが確認できるpH値を調べ、図2に破線で示した。図2中、実線は、遊離のOHイオン(フリーOH)が生成するpH7の値を示す。
この実験により以下のことが確認された。
FIG. 2 shows the relationship between the NaOH addition amount and the pH value at each FeCl 3 addition amount in this experiment.
Further, the pH value at which agglomeration floc can be confirmed visually was examined, and is shown by a broken line in FIG. In Figure 2, solid lines, the free OH - indicating the value of the generated pH 7 - ion (free OH).
This experiment confirmed the following.

(1) 図2より明らかなように、凝集フロックの形成が目視にて確認されるpH値は、FeCl添加量30、45、60、100mg/Lのいずれの場合も、pH5.7であ
った。
一般に、凝集フロック形成pHとされているpH5〜5.5で凝集フロックが形成されないのは、試料水のpH緩衝性のある重炭酸イオン(アルカリ度)濃度が低く、凝集に必要なOHの多くをNaOHで供給しなければならないためである。
(2) いずれのFeCl添加量の場合も、OHが鉄水酸化物に吸着されずに余り始め、pH7以上となった後、pHは急激に上昇するが、このように、フリーOHが存在すれば、一度、凝結・凝集した汚濁物の一部の再溶解が起こると推察される。
(3) 凝集フロック形成状況のみの目視判定では、pHが7.0を超えても凝集フロックの大きさは確保されているが、pH8.0を超えるとフロックは小さくなり、pH9.0を超えるとさらにフロックは小さくなり、液側に着色が観察されるようになった。
すなわち、目視による外観観察では、良好な凝集pHは5.7〜8.0と言える。
ただし、RO膜供給水としての水質面からは、適正凝集pH範囲は、次の実験例2の結果のようにpH5.7〜6.5であるため、液晶A工場の排水の生物処理水の適正凝集pH範囲は5.7〜6.5、下限pH値Xは5.7と判定することができる。
(1) As is clear from FIG. 2, the pH value at which the formation of aggregated flocs was visually confirmed was pH 5.7 in any of the FeCl 3 addition amounts 30, 45, 60, and 100 mg / L. It was.
In general, aggregation flocs are not formed at pH 5 to 5.5, which is considered to be aggregation floc formation pH, because the concentration of bicarbonate ions (alkalinity) having pH buffering property of sample water is low, and OH necessary for aggregation This is because much of it must be supplied with NaOH.
(2) In any amount of FeCl 3 added, OH begins to be excessive without being adsorbed on the iron hydroxide, and after reaching pH 7 or higher, the pH rises rapidly. Thus, free OH If there is, it is presumed that a part of the condensed and agglomerated contaminants is once again dissolved.
(3) According to the visual judgment only of the state of formation of the aggregated floc, the size of the aggregated floc is secured even when the pH exceeds 7.0, but when the pH exceeds 8.0, the floc becomes small and exceeds pH 9.0. Furthermore, the flocs became smaller and coloring was observed on the liquid side.
That is, in visual appearance observation, it can be said that a good aggregation pH is 5.7 to 8.0.
However, from the viewpoint of the water quality as the RO membrane supply water, the appropriate coagulation pH range is pH 5.7 to 6.5 as the result of the following Experimental Example 2. The proper aggregation pH range can be determined to be 5.7 to 6.5, and the lower limit pH value X can be determined to be 5.7.

[実験例2:凝集pHと凝集・濾過水の水質との関係]
実験例1と同様の試料水(生物処理水)を用い、BP201を2mg/L添加して十分反応させた後、FeCl60mg/Lを添加し、その3〜5秒後の間に所定pHに調整するためのNaOHの理論量を添加し、150rpmで6分間急速攪拌した後、50rpmで6分間緩速攪拌して凝集フロックを形成させた。凝集処理水をNo.5A濾紙で濾過し、濾過水を得た。
[Experimental Example 2: Relationship between aggregation pH and aggregation / filtered water quality]
Using the same sample water (biologically treated water) as in Experimental Example 1, 2 mg / L of BP201 was added and allowed to react sufficiently, then 60 mg / L of FeCl 3 was added, and a predetermined pH was reached after 3 to 5 seconds. After adding a theoretical amount of NaOH for adjustment to 6 minutes and rapidly stirring at 150 rpm for 6 minutes, the mixture was gently stirred at 50 rpm for 6 minutes to form aggregated flocs. The agglomerated water is No. Filtration with 5A filter paper gave filtered water.

この濾過水について、前述の方法でSFF、MFF、netNTUを測定すると共に、以下の方法で溶解性有機物の存在指標としてUV260を測定し、凝集pH値との関係を図3(a)、(b)に示した。   About this filtered water, while measuring SFF, MFF, and netNTU by the above-mentioned method, UV260 is measured as a presence indicator of a soluble organic substance by the following method, and the relationship with the aggregation pH value is shown in FIG. )Pointing out toungue.

<UV260>
試料水について、分光光度計により、波長260nm、50mmセルの吸光度値を測定した。
<UV260>
About the sample water, the light absorbency value of a wavelength 260nm and 50mm cell was measured with the spectrophotometer.

また、BP201を添加せず、FeClのみで凝集処理を行ったこと以外は上記と同様に凝集、濾過と濾過水の評価を行い、結果を図4(a)、(b)に示した。 Moreover, except that BP201 was not added and the aggregation treatment was performed only with FeCl 3 , the aggregation, filtration and filtered water were evaluated in the same manner as described above, and the results are shown in FIGS. 4 (a) and 4 (b).

前掲の表1のRO膜供給水の水質の適否の評価区分と、図3,4の結果より、以下のことが分かる。
凝集pHとSFFおよびMFFとの関係を示す図3(a)より、最適結果の得られる適正凝集pH範囲は5.7〜6.5と判定される。
pH6.5以上の場合は、pH上昇に伴い、バイオポリマー存在指標であるSFFが上昇し、微粒子存在指標であるMFFは著しく増加する。
SFFの上昇はNaOHによって一度捕捉されたバイオポリマーの再溶出が生じたと解釈される。
また、MFFの大きな上昇は、バイオポリマーを含む凝集フロックの一部が鉄水酸化物とともにNaOHにより離脱して、コロイド状に分散したためと解釈される。
コロイド状物質の増加は、図3(b)の微小濁度の指標であるnetNTUの増加と対応する。
UV260の増加は、UV260では検出されないバイオポリマー以外の凝集・固定された有機物が離脱したことと、コロイド状物質の増加が相加された結果と判断される。
The following can be understood from the evaluation classification of the suitability of the water quality of the RO membrane feed water in Table 1 and the results shown in FIGS.
From FIG. 3A showing the relationship between the aggregation pH and SFF and MFF, the proper aggregation pH range in which the optimum result is obtained is determined to be 5.7 to 6.5.
When the pH is 6.5 or more, the biopolymer presence index SFF increases with an increase in pH, and the fine particle presence index MFF increases remarkably.
An increase in SFF is interpreted as a re-elution of the biopolymer once captured by NaOH.
Further, the large increase in MFF is interpreted as a part of the aggregated floc containing the biopolymer is separated together with iron hydroxide by NaOH and dispersed in a colloidal form.
The increase in colloidal material corresponds to the increase in netNTU, which is an indicator of microturbidity in FIG.
The increase in UV 260 is considered to be the result of the addition of an increase in colloidal substances and the agglomeration / fixed organic substances other than biopolymers that are not detected by UV 260 are released.

また、図4(a)のSFF、MFFより、FeCl単独の場合も、最適結果の得られる適正凝集pH範囲は5.7〜6.5と判定される。
pH6.5以上の場合は、pH上昇に伴い、バイオポリマー存在指標であるSFFが上昇し、微粒子存在指標であるMFFが大きく増加する。
SFFの上昇はNaOHによって一度捕捉されたバイオポリマーの再溶出が生じたと解釈される。
MFFの大きな上昇は、バイオポリマーを含む凝集フロックの一部が鉄水酸化物とともにNaOHにより離脱して、コロイド状に分散したためと解釈される
Further, from the SFF and MFF in FIG. 4A, the proper aggregation pH range in which the optimum result is obtained is determined to be 5.7 to 6.5 even when FeCl 3 is used alone.
When the pH is 6.5 or more, the biopolymer presence index SFF increases and the fine particle presence index MFF greatly increases as the pH increases.
An increase in SFF is interpreted as a re-elution of the biopolymer once captured by NaOH.
The large increase in MFF is interpreted as a part of the aggregated floc containing biopolymer was separated by iron hydroxide together with NaOH and dispersed colloidally.

図4に示されるFeCl単独の場合も、図3に示されるBP201併用の場合も、概ね同様の傾向が示されているが、両者の差異は、以下の点である。
(1) 図4(a)のFeCl単独の場合のpH5.7〜6.5での達成SFF1.05は、図3(a)のBP201併用の場合の達成SFF1.00より1ランク下の評価である。即ち、BP201併用の場合の方が良好な結果が得られる。
(2) pH7以上でのMFFの悪化の程度は、図3(a)のBP201併用の場合の方が大きい。これは、2次反応フェノール樹脂自体がNaOHで溶解するため、取り込んだ汚濁物質を放出する程度が2次反応フェノール樹脂を添加しない場合より大きいためと考えられる。
In the case of FeCl 3 alone shown in FIG. 4 and in the case of combined use of BP 201 shown in FIG. 3, the same tendency is shown, but the difference between the two is as follows.
(1) Achieved SFF1.05 at pH 5.7 to 6.5 in the case of FeCl 3 alone in FIG. 4 (a) is one rank lower than achieved SFF1.00 in the case of combined use with BP201 in FIG. 3 (a). It is evaluation. That is, a better result can be obtained when BP201 is used together.
(2) The degree of deterioration of MFF at pH 7 or higher is larger in the case of using BP201 in FIG. This is presumably because the secondary reaction phenol resin itself dissolves in NaOH, so that the degree to which the incorporated pollutant is released is greater than when the secondary reaction phenol resin is not added.

凝集pH6.5以上での水質悪化は、フリーのOHが比較的長い時間残留し、3価鉄無機凝集剤の凝結作用で一度捕捉した汚濁物を再び引き剥がすことにより生ずると判断できる。
引き剥がされた汚濁物は、一部は元の溶解性汚濁物、過半は元の溶解性汚濁物を含めて、コロイド状、あるいはミクロゲルとなって水中に分散する。この微粒子成分の粒子径は1μm程度未満と推察され、沈殿、浮上での固液分離は不可能である。また重力式2層濾過装置での捕捉も困難である。
凝集pH6.5未満でも同じ現象が起こるが、pHが低い分、3価鉄無機凝集剤の凝結作用がより多く残るため再凝結が可能であり、その間フリーOHの減少速度も大きいため、水質悪化が起こり難いと考えられる。
It can be judged that the deterioration of water quality at a coagulation pH of 6.5 or more occurs when free OH remains for a relatively long time and the contaminant once trapped by the coagulation action of the trivalent iron inorganic coagulant is peeled off again.
The peeled off contaminants are partially dispersed in the water in the form of a colloidal or microgel containing the original soluble contaminants and the majority including the original soluble contaminants. The particle diameter of the fine particle component is presumed to be less than about 1 μm, and solid-liquid separation by precipitation and levitation is impossible. In addition, it is difficult to capture with a gravity type two-layer filtration device.
Is also the same phenomenon occurs in less than aggregation pH 6.5, min pH is low, but may be re-condensed to remain more is condensation action of trivalent iron inorganic coagulant, free OH meantime - decreasing the velocity is large, the water Deterioration is unlikely to occur.

上記の実験例1および実験例2と同様にして、各液晶工場の生物処理水について、適正凝集pH範囲を調べたところ、以下の結果が得られた。これらの結果より、凝集下限pHと凝集物のNaOH破壊の生じるpHとの差、すなわち適正pH範囲幅は0.8〜1.0pHである。
A工場:pH5.7〜6.5
B工場:pH5.8〜6.6
C工場:pH4.9〜5.8
D工場:pH4.8〜5.8※
D工場:pH4.7〜5.5※
E工場:pH4.5〜5.5
(※液晶D工場では、異なる2系統の生物処理水についてそれぞれ評価した。)
When the proper coagulation pH range was examined for the biologically treated water in each liquid crystal factory in the same manner as in Experimental Examples 1 and 2, the following results were obtained. From these results, the difference between the aggregation lower limit pH and the pH at which NaOH destruction of the aggregate occurs, that is, the proper pH range width is 0.8 to 1.0 pH.
Factory A: pH 5.7-6.5
Factory B: pH 5.8 to 6.6
Factory C: pH 4.9 to 5.8
Factory D: pH 4.8-5.8 *
Factory D: pH 4.7-5.5 *
Factory E: pH 4.5-5.5
(* Liquid crystal D factory evaluated each of two different types of biologically treated water.)

[実験例3:NaOHによる凝集物からのフェノール系樹脂の離脱の確認]
フェノール系樹脂アルカリ溶液は、中性程度以下の被処理水中で、その樹脂成分が不溶化し、その不溶化物がバイオポリマーと結びつき、バイオポリマー共ども不溶化して、水を浄化する。
よって、NaOHで局部的高pHが発生すれば、フェノール系樹脂とバイオポリマー等の汚濁物との反応が弱まり、またフェノール系樹脂成分自体が溶解する方向になる。
[Experimental example 3: Confirmation of detachment of phenolic resin from aggregates by NaOH]
The phenol-based resin alkaline solution purifies water in the water to be treated having a neutral level or less by insolubilizing the resin component, combining the insolubilized product with the biopolymer, and insolubilizing the biopolymer together.
Therefore, if a local high pH is generated with NaOH, the reaction between the phenolic resin and contaminants such as biopolymers is weakened, and the phenolic resin component itself is dissolved.

以下に、これを示す実験結果を示す。
予め所定のpHに調整した栃木県野木町水道水にBP201を10mg/L添加して反応させた反応液を、No.5A濾紙(ただし、濾紙は1枚とした)で濾過した濾過水について、BP201の紫外領域の吸収ピーク波長である280nmと270nmの吸光度増加から、濾過水からリークしたBP201濃度を検定し、リーク率を百分率で算出した。結果を図5に示す。
図5より明らかなように、pH6以下では90%が濾過処理できる不溶物を生成しているのに対して、pH6.5から濾別できない樹脂成分が増加し始め、pH7〜7.5で濾紙を透過する成分が90%まで急増する。
この濾紙を透過する成分は、微小濁度(netNTU)として検出されることから、完全溶解状態ではなく、部分的にはコロイド状と考えられる。
前掲の図3との関係で考察すると、水酸化鉄フロックに取り込まれていた、バイオポリマー等の汚濁物とフェノール系樹脂の反応物は局部的高pHをもたらすOHにより引き剥がされ、コロイド状、またその一部は溶解状態で、液側に分散、または溶解する。
局部的高pHが最終的に解消され、pHが6.5以下になっても鉄の凝結力が既に失われているため、コロイド状物を再凝結できず、濾過処理水の微細粒子が、FeClのみの場合に比べてより多く残留すると推察される。
The experimental results showing this will be shown below.
A reaction solution prepared by adding 10 mg / L of BP201 to Nogi-cho tap water in Tochigi Prefecture, which was adjusted to a predetermined pH in advance, was reacted. For filtered water filtered with 5A filter paper (however, only one filter paper was used), the BP201 concentration leaked from the filtered water was tested from the absorbance increases at 280 nm and 270 nm, which are absorption peak wavelengths in the ultraviolet region of BP201, and the leak rate Was calculated as a percentage. The results are shown in FIG.
As is apparent from FIG. 5, 90% of the insoluble matter that can be filtered is generated at pH 6 or lower, whereas resin components that cannot be filtered out from pH 6.5 start to increase, and filter paper at pH 7 to 7.5. The component that permeates through increases rapidly to 90%.
Since the component which permeate | transmits this filter paper is detected as micro turbidity (netNTU), it is thought that it is not completely dissolved but partially colloidal.
Considering the relationship with FIG. 3 above, the reaction product of the pollutant such as biopolymer and the phenolic resin, which has been incorporated into the iron hydroxide floc, is peeled off by OH which brings about a high local pH, and colloidal. In addition, a part thereof is in a dissolved state and is dispersed or dissolved on the liquid side.
Since the local high pH was finally eliminated and the iron coagulation force was already lost even when the pH was 6.5 or lower, the colloidal material could not be recondensed, and the fine particles of filtered water were It is presumed that more remains than in the case of FeCl 3 alone.

[比較例1、実施例1]
液晶B工場の排水の生物処理水(適正凝集pH範囲=5.8〜6.6)の凝集設備で本発明の検証を行った。
処理工程は以下の通りであり、評価は、RO膜供給水(濾過水)のMFFを1日1回測定し、その平均値を求めることにより行った。
排水→生物処理→被処理水槽(BP201を6.0mg/L添加)→無機凝集剤反応槽(3価鉄無機凝集剤、NaOH添加設備付き)→中和・凝集槽(NaOH添加設備付き)→浮上分離装置→重力式2層濾過装置→RO膜分離装置による回収設備
3価鉄系無機凝集剤としてはFeClを用い、その平均添加量は90mg/Lとした。また、無機凝集剤反応槽の制御目標pH値は6.0、中和・凝集槽の制御目標pH値は6.4で設定した。7日間のRO膜供給水のMFFの平均値は1.086であった(比較例1)。
その後、FeCl平均添加量85ppm、無機凝集剤反応槽pH制御目標pH値6.2、中和・凝集槽制御目標pH値6.0として、中和・凝集槽制御目標pH値を無機凝集剤反応槽よりも0.2低く設定したところ、以降の7日間のRO膜供給水のMFFの平均値は1.050で、FeCl添加量を少なくしても、膜濾過性指標MFFは改善された(実施例1)。
[Comparative Example 1, Example 1]
The present invention was verified using a coagulation facility for biologically treated water (appropriate coagulation pH range = 5.8 to 6.6) of the waste water of the liquid crystal B factory.
The treatment process is as follows, and the evaluation was performed by measuring the MFF of the RO membrane supply water (filtered water) once a day and obtaining the average value.
Wastewater → Biological treatment → Water tank to be treated (BP201 added 6.0 mg / L) → Inorganic flocculant reaction tank (with trivalent iron inorganic flocculant and NaOH addition equipment) → Neutralization / coagulation tank (with NaOH addition equipment) → Flotation separation device → gravity type two-layer filtration device → recovery facility by RO membrane separation device As the trivalent iron-based inorganic flocculant, FeCl 3 was used, and the average addition amount was 90 mg / L. Moreover, the control target pH value of the inorganic flocculant reaction tank was set to 6.0, and the control target pH value of the neutralization / coagulation tank was set to 6.4. The average value of MFF of RO membrane feed water for 7 days was 1.086 (Comparative Example 1).
Thereafter, the FeCl 3 average addition amount 85 ppm, the inorganic flocculant reaction tank pH control target pH value 6.2, the neutralization / coagulation tank control target pH value 6.0, and the neutralization / coagulation tank control target pH value is set to the inorganic flocculant When set to 0.2 lower than the reaction tank, the average value of MFF of RO membrane feed water for the subsequent 7 days is 1.050, and even if the amount of FeCl 3 added is reduced, the membrane filterability index MFF is improved. (Example 1).

[比較例2、実施例2]
液晶C工場の排水の生物処理水(適正凝集pH範囲=4.9〜5.8)の凝集設備で、本発明の検証を行った。
処理系列は3系列あり、そのうちの1系列を対照系(比較例2)、別の1系列を本発明実施系(実施例2)とした。
処理工程は以下の通りであり、評価は、浮上分離装置の処理水を採取し、重力式2層濾過相当のNo.5A濾紙による濾過を行って得られた濾過水について、SFF、MFF測定を3回行ってその平均値を求めることにより行った。
排水→生物処理→被処理水槽→無機凝集剤反応槽(3価鉄無機凝集剤、NaOH添加設備付き)→中和・凝集槽(NaOH添加設備付き)→浮上分離装置→重力式2層濾過装置→RO膜分離装置による回収設備
3価鉄系無機凝集剤としてはポリ硫酸第二鉄を用い、平均添加量は120ppmとした。
対照系列の無機凝集剤反応槽の制御目標pH値は4.0、中和・凝集槽の制御目標pH値は5.2で設定したところ、SFF=1.093、MFF=1.113で、浮上処理水の平均pHは5.2であった(比較例2)。
一方、本発明実施系は、無機凝集剤反応槽制御目標pH値5.2、中和・凝集槽制御目標pH値5.0に設定したところ、SFF=1.082、MFF=1.089で、浮上処理水平均pH5.1であった(実施例2)。
[Comparative Example 2, Example 2]
The present invention was verified in a coagulation facility for biologically treated water (appropriate coagulation pH range = 4.9 to 5.8) of the wastewater of the liquid crystal C factory.
There were three treatment series, one of which was the control system (Comparative Example 2), and another series was the implementation system of the present invention (Example 2).
The treatment process is as follows, and the evaluation is carried out by collecting the treated water of the flotation separation device and performing No. About filtered water obtained by filtering with 5A filter paper, it performed by measuring SFF and MFF 3 times and calculating | requiring the average value.
Wastewater → Biological treatment → Water tank to be treated → Inorganic flocculant reaction tank (with trivalent iron inorganic flocculant and NaOH addition equipment) → Neutralization / coagulation tank (with NaOH addition equipment) → Floating separator → Gravity type two-layer filtration equipment → Recovery facility by RO membrane separator Polyferric sulfate was used as the trivalent iron-based inorganic flocculant, and the average addition amount was 120 ppm.
When the control target pH value of the inorganic flocculant reaction tank of the control series was set to 4.0 and the control target pH value of the neutralization / flocculation tank was set to 5.2, SFF = 1.093, MFF = 1.113, The average pH of the levitated water was 5.2 (Comparative Example 2).
On the other hand, when the present invention implementation system was set to the inorganic flocculant reaction tank control target pH value of 5.2 and the neutralization / coagulation tank control target pH value of 5.0, SFF = 1.082 and MFF = 1.089. The average levitation treatment water pH was 5.1 (Example 2).

[比較例3、実施例3]
上記比較例2、実施例2における液晶C工場の排水の生物処理水(適正凝集pH範囲=4.9〜5.8)の凝集設備で、被処理水槽にBP201を5mg/Lを添加したこと以外は同様に、各槽の制御目標pH値も同じとしてそれぞれ検証を行った。
なお、実施例3では、上記と同様にSFFおよびMFFの測定を行うと共に、実施例1と同様にRO膜供給水のMFFの測定も行った。
その結果、無機凝集剤反応槽制御目標pH値4.0、中和・凝集槽制御目標pH値5.2に設定した比較例3では、SFF=1.053、MFF=1.088で、浮上処理水の平均pHは5.3であった。
一方、無機凝集剤反応槽制御目標pH値5.2、中和・凝集槽制御目標pH値5.0に設定した実施例2では、SFF=1.014、MFF=1.038で、浮上処理水の平均pHは5.1であり、7日間のRO膜供給水のMFFの平均値は1.086であった。
[Comparative Example 3, Example 3]
5 mg / L of BP201 was added to the water tank to be treated in the agglomeration facility for biologically treated water (appropriate agglomeration pH range = 4.9 to 5.8) of the liquid crystal C factory waste water in Comparative Example 2 and Example 2 above. In the same manner, the control target pH values of the respective tanks were similarly verified.
In Example 3, the SFF and MFF were measured in the same manner as described above, and the MFF of RO membrane feed water was also measured in the same manner as in Example 1.
As a result, in Comparative Example 3 in which the inorganic flocculant reaction tank control target pH value was set to 4.0 and the neutralization / coagulation tank control target pH value was set to 5.2, the surface floated at SFF = 1.053 and MFF = 1.088. The average pH of the treated water was 5.3.
On the other hand, in Example 2 in which the inorganic flocculant reaction tank control target pH value was set to 5.2 and the neutralization / coagulation tank control target pH value was set to 5.0, the levitation treatment was performed with SFF = 1.014 and MFF = 1.038. The average pH of water was 5.1, and the average value of MFF of RO membrane feed water for 7 days was 1.086.

以上の通り、フェノール系樹脂アルカリ溶液を使用しない実施例2においても、またフェノール系樹脂アルカリ溶液を併用した実施例3においても、各槽の制御目標pH値を本発明の通り設定にすることにより、従来法の比較例に対して、凝集・濾過水のRO膜汚染指標が低減し、特に、フェノール系樹脂アルカリ溶液を併用した場合には、本発明の効果が顕著であった。   As described above, in Example 2 in which the phenolic resin alkaline solution is not used and also in Example 3 in which the phenolic resin alkaline solution is used in combination, the control target pH value of each tank is set according to the present invention. Compared with the comparative example of the conventional method, the RO membrane contamination index of the agglomerated / filtered water is reduced, and particularly when the phenolic resin alkaline solution is used in combination, the effect of the present invention is remarkable.

1 第一の反応槽(無機凝集剤反応槽)
2 第二の反応槽(中和・凝集槽)
3 浮上分離装置
4 濾過装置
5 RO膜分離装置
10 制御器
1 First reactor (inorganic flocculant reactor)
2 Second reaction tank (neutralization / coagulation tank)
3 Floating separation device 4 Filtration device 5 RO membrane separation device 10 Controller

Claims (12)

直列に設けられた、3価鉄系無機凝集剤とNaOHが添加される第一の反応槽と、第二の反応槽に、被処理水を順次通水して凝集処理する方法において、
該第二の反応槽は、凝集剤は添加されずに、アルカリ無添加或いは、ごく少量のNaOH添加で凝集処理される槽であり、
該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、
該第二の反応槽の制御目標pH値Aを、X〜(X+0.3)の範囲に設定し、
該第一の反応槽の制御目標pH値A’を、A〜(A+0.7)の範囲に設定して凝集処理を行うことを特徴とする凝集処理方法。
In the first reaction tank provided with the trivalent iron-based inorganic flocculant and NaOH added in series, and the second reaction tank, the water to be treated is sequentially passed to the flocculant,
The second reaction tank is a tank that is not added with an aggregating agent and is agglomerated without addition of alkali or with a very small amount of NaOH.
When the lower limit pH value of the pH range in which aggregated flocs are formed in the water to be treated by adding the trivalent iron-based inorganic flocculant and performing the aggregation treatment is X,
The control target pH value A of the second reaction tank is set in the range of X to (X + 0.3),
A coagulation treatment method characterized in that the coagulation treatment is performed by setting the control target pH value A ′ of the first reaction tank to a range of A to (A + 0.7).
請求項1において、前記第一の反応槽におけるpH値が前記制御目標pH値A’となると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、該第一の反応槽にNaOHを添加することを特徴とする凝集処理方法。   In claim 1, the first reaction tank is adjusted so that the pH value in the first reaction tank is the control target pH value A 'and the pH value in the second reaction tank is the control target pH value A. An agglomeration method comprising adding NaOH to the reaction vessel. 請求項1において、前記第一の反応槽におけるpH値が前記制御目標pH値A’となるように、該第一の反応槽にNaOHを添加すると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、該第二の反応槽にNaOHを添加することを特徴とする凝集処理方法。   In Claim 1, NaOH is added to the first reaction tank so that the pH value in the first reaction tank becomes the control target pH value A ', and the pH value in the second reaction tank is An agglomeration method, wherein NaOH is added to the second reaction tank so as to achieve the control target pH value A. 請求項1ないし3のいずれか1項において、前記被処理水に前記3価鉄系無機凝集剤を添加するに先立ち、フェノール性水酸基を有する水溶性高分子を添加することを特徴とする凝集処理方法。   The flocculation process according to any one of claims 1 to 3, wherein a water-soluble polymer having a phenolic hydroxyl group is added prior to adding the trivalent iron-based inorganic flocculant to the water to be treated. Method. 請求項1ないし4のいずれか1項において、前記被処理水が生物処理水であることを特徴とする凝集処理方法。   The aggregation treatment method according to claim 1, wherein the water to be treated is biologically treated water. 請求項1ないし5のいずれか1項に記載の凝集処理方法で得られた凝集処理水を、固液分離した後、逆浸透膜分離処理することを特徴とする水処理方法。   A water treatment method, comprising subjecting the agglomerated water obtained by the agglomeration treatment method according to any one of claims 1 to 5 to solid-liquid separation and then a reverse osmosis membrane separation treatment. 直列に設けられた第一の反応槽および第二の反応槽と、
該第一の反応槽および第二の反応槽に被処理水を順次通水する手段と、
該第一の反応槽に設けられた3価鉄系無機凝集剤添加手段およびNaOH添加手段と、
該第一の反応槽のpHを制御目標pH値A’に制御する第一のpH制御手段と、
該第二の反応槽のpHを制御目標pH値Aに制御する第二のpH制御手段とを有する凝集処理装置であって、
該第二の反応槽は、凝集剤は添加されずに、アルカリ無添加或いは、ごく少量のNaOH添加で凝集処理される槽であり、
該3価鉄系無機凝集剤を添加して凝集処理することにより該被処理水に凝集フロックが形成されるpH範囲の下限pH値をXとしたときに、
該第二の反応槽の制御目標pH値Aが、X〜(X+0.3)の範囲に設定され、
該第一の反応槽の制御目標pH値A’が、A〜(A+0.7)の範囲に設定されていることを特徴とする凝集処理装置。
A first reaction tank and a second reaction tank provided in series;
Means for sequentially passing water to be treated into the first reaction tank and the second reaction tank;
A trivalent iron-based inorganic flocculant addition means and NaOH addition means provided in the first reaction tank;
First pH control means for controlling the pH of the first reaction tank to a control target pH value A ′;
A coagulation treatment apparatus having a second pH control means for controlling the pH of the second reaction tank to a control target pH value A,
The second reaction tank is a tank that is not added with an aggregating agent and is agglomerated without addition of alkali or with a very small amount of NaOH.
When the lower limit pH value of the pH range in which aggregated flocs are formed in the water to be treated by adding the trivalent iron-based inorganic flocculant and performing the aggregation treatment is X,
The control target pH value A of the second reaction tank is set in the range of X to (X + 0.3),
The control target pH value A ′ of the first reaction tank is set in a range of A to (A + 0.7).
請求項7において、前記第一の反応槽のNaOH添加手段は、該第一の反応槽におけるpH値が前記制御目標pH値A’となるように、前記第一のpH制御手段によりNaOH添加量が制御されると共に、前記第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、前記第二のpH制御手段によりNaOH添加量が制御されることを特徴とする凝集処理装置。   In Claim 7, NaOH addition means of said 1st reaction tank is NaOH addition amount by said 1st pH control means so that pH value in this 1st reaction tank may become said control target pH value A '. And the addition amount of NaOH is controlled by the second pH control means so that the pH value in the second reaction tank becomes the control target pH value A. . 請求項7において、前記第二の反応槽にNaOH添加手段が設けられており、該第二の反応槽のNaOH添加手段は、該第二の反応槽におけるpH値が前記制御目標pH値Aとなるように、前記第二のpH制御手段によりNaOH添加量が制御され、前記第一の反応槽のNaOH添加手段は、該第一の反応槽におけるpH値が前記制御目標pH値A’となるように、前記第一のpH制御手段によりNaOH添加量が制御されることを特徴とする凝集処理装置。   In Claim 7, NaOH addition means is provided in the second reaction tank, and the NaOH addition means of the second reaction tank is such that the pH value in the second reaction tank is equal to the control target pH value A. The NaOH addition amount is controlled by the second pH control means, and the pH value in the first reaction tank is the control target pH value A ′ in the NaOH addition means of the first reaction tank. Thus, the amount of NaOH added is controlled by the first pH control means. 請求項7ないし9のいずれか1項において、前記第一の反応槽の前段に、前記被処理水に、フェノール性水酸基を有する水溶性高分子を添加する手段を有することを特徴とする凝集処理装置。   The agglomeration treatment according to any one of claims 7 to 9, further comprising means for adding a water-soluble polymer having a phenolic hydroxyl group to the water to be treated in the previous stage of the first reaction tank. apparatus. 請求項7ないし10のいずれか1項において、前記被処理水が生物処理水であることを特徴とする凝集処理装置。   The aggregation treatment apparatus according to claim 7, wherein the water to be treated is biologically treated water. 請求項7ないし11のいずれか1項に記載の凝集処理装置と、該凝集処理装置で得られた凝集処理水を、固液分離する固液分離手段と、該固液分離手段で得られた分離水を逆浸透膜分離処理する逆浸透膜分離装置とを有することを特徴とする水処理装置。   The coagulation treatment apparatus according to any one of claims 7 to 11, solid-liquid separation means for solid-liquid separation of the coagulation treatment water obtained by the coagulation treatment apparatus, and obtained by the solid-liquid separation means A water treatment apparatus, comprising: a reverse osmosis membrane separation device for subjecting separated water to a reverse osmosis membrane separation treatment.
JP2014114947A 2014-06-03 2014-06-03 Aggregation processing method and aggregation processing apparatus Expired - Fee Related JP6287594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114947A JP6287594B2 (en) 2014-06-03 2014-06-03 Aggregation processing method and aggregation processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114947A JP6287594B2 (en) 2014-06-03 2014-06-03 Aggregation processing method and aggregation processing apparatus

Publications (2)

Publication Number Publication Date
JP2015229121A JP2015229121A (en) 2015-12-21
JP6287594B2 true JP6287594B2 (en) 2018-03-07

Family

ID=54886215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114947A Expired - Fee Related JP6287594B2 (en) 2014-06-03 2014-06-03 Aggregation processing method and aggregation processing apparatus

Country Status (1)

Country Link
JP (1) JP6287594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179759B2 (en) 2013-01-09 2019-01-15 Basf Pharma (Callanish) Limited Multi-step separation process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797718B2 (en) * 2017-03-02 2020-12-09 株式会社東芝 Aggregation control device, aggregation control method and aggregation control system
JP6644014B2 (en) * 2017-03-23 2020-02-12 栗田工業株式会社 Water treatment method
JP6881515B2 (en) * 2019-07-26 2021-06-02 栗田工業株式会社 Coagulation processing equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927702B2 (en) * 1995-04-25 1999-07-28 住友重機械工業株式会社 Wastewater treatment method
JP4577122B2 (en) * 2005-06-30 2010-11-10 栗田工業株式会社 Advanced treatment method for biologically treated water and coagulation accelerator for biologically treated water
JP4985088B2 (en) * 2007-05-14 2012-07-25 栗田工業株式会社 Chemical injection control method
JP2010017688A (en) * 2008-07-14 2010-01-28 Kurita Water Ind Ltd Advanced treatment method of biologically-treated water
JP5218082B2 (en) * 2009-01-16 2013-06-26 栗田工業株式会社 Method and apparatus for coagulating sedimentation of low organic matter concentration wastewater
JP2013255923A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
CN102510840B (en) * 2009-09-29 2013-11-13 栗田工业株式会社 Organic wastewater treatment method and treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179759B2 (en) 2013-01-09 2019-01-15 Basf Pharma (Callanish) Limited Multi-step separation process
US10214475B2 (en) 2013-01-09 2019-02-26 Basf Pharma (Callanish) Limited Multi-step separation process
US10723973B2 (en) 2013-01-09 2020-07-28 Basf Pharma (Callanish) Limited Multi-step separation process

Also Published As

Publication number Publication date
JP2015229121A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
KR101726010B1 (en) Water treatment method and water treatment flocculant
JP5218731B2 (en) Water treatment method and water treatment apparatus
JP4577122B2 (en) Advanced treatment method for biologically treated water and coagulation accelerator for biologically treated water
Farahani et al. Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis
JP6287594B2 (en) Aggregation processing method and aggregation processing apparatus
KR20100054126A (en) Membrane separation method and membrane separation device
Wang et al. Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling
JP2006272311A (en) Apparatus and method for coagulation
WO2010050325A1 (en) Membrane separation process
WO2013099857A1 (en) Seawater treatment method
JP2010017688A (en) Advanced treatment method of biologically-treated water
TWI732943B (en) Water treatment method
JP2013255923A (en) Water treatment method and water treatment flocculant
JP2012166118A (en) Water treating flocculant and water treating method
JP5949206B2 (en) Cooling water blow water treatment method and treatment apparatus
JP6848615B2 (en) How to clarify industrial water
JP6202115B2 (en) Industrial water clarification method and clarification device
JP2016215113A (en) Water treatment method and water treatment device
JP2015157265A (en) Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus
JP6287402B2 (en) Aggregated solid-liquid separation method and agglomerated solid-liquid separation apparatus
JP6648579B2 (en) How to remove calcium from highly alkaline water
Tran et al. Decentralised, small-scale coagulation-membrane treatment of wastewater from metal recycling villages–a case study from Vietnam
JP2014046235A (en) Fresh water generating method
JP2022165279A (en) Coagulation membrane filtration treatment method
JP6340813B2 (en) Water treatment membrane cleaning agent and cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees