JP2012166118A - Water treating flocculant and water treating method - Google Patents

Water treating flocculant and water treating method Download PDF

Info

Publication number
JP2012166118A
JP2012166118A JP2011026947A JP2011026947A JP2012166118A JP 2012166118 A JP2012166118 A JP 2012166118A JP 2011026947 A JP2011026947 A JP 2011026947A JP 2011026947 A JP2011026947 A JP 2011026947A JP 2012166118 A JP2012166118 A JP 2012166118A
Authority
JP
Japan
Prior art keywords
water
resin
flocculant
molecular weight
secondary reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011026947A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oi
康裕 大井
Yukio Abe
幸雄 阿部
Takeshi Iizuka
毅 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Kurita Water Industries Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd, Kurita Water Industries Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2011026947A priority Critical patent/JP2012166118A/en
Publication of JP2012166118A publication Critical patent/JP2012166118A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a water treating flocculant having excellent flocculation and insolubilization performance of contaminant and to provide a water treating method using the water treating flocculant.SOLUTION: The water treating flocculant is composed of an alkali solution of a phenol resin obtained by adding aldehydes to the alkali solution of a novolak type phenol resin, which is obtained by reaction of phenols and aldehydes in the presence of an acid catalyst, to perform a resol type secondary reaction. The water treating flocculant is characterized in that the phenols include methyl phenols such as cresol. The water treating method has a flocculation treatment step of adding the water treating flocculant to water to be treated and then adding an inorganic flocculant thereto and a membrane separation treatment step of carrying out membrane separation treatment of flocculation-treated water obtained at the flocculation treatment step.

Description

本発明は、フェノール系樹脂のアルカリ溶液よりなる水処理凝集剤とこの水処理凝集剤を用いる水処理方法に関する。詳しくは、フェノール系樹脂の原料フェノール類としてクレゾール等のメチルフェノール類を必須成分として用い、アルデヒド類と酸触媒下で縮合させて得られたフェノール系樹脂をアルカリ溶液とし、さらにアルデヒド類を添加してレゾール型2次反応を行ったフェノール系樹脂のアルカリ溶液よりなる水処理凝集剤と、被処理水にこの水処理凝集剤と無機凝集剤を添加して凝集処理した後、膜分離処理する水処理方法であって、特に逆浸透(RO)膜分離処理を用いた水処理に有効な水処理方法に関する。   The present invention relates to a water treatment flocculant comprising an alkaline solution of a phenolic resin and a water treatment method using the water treatment flocculant. Specifically, methylphenols such as cresol are used as essential components as phenolic raw material phenols, and phenolic resins obtained by condensation with aldehydes in the presence of an acid catalyst are used as an alkaline solution, and aldehydes are added. A water treatment flocculant comprising an alkaline solution of a phenolic resin that has undergone a resol type secondary reaction, and water to be subjected to membrane separation treatment after adding the water treatment flocculant and the inorganic flocculant to the water to be treated. The present invention relates to a water treatment method that is particularly effective for water treatment using reverse osmosis (RO) membrane separation treatment.

なお、本明細書において、「フェノール類」とは、フェノール、クレゾール及びナフトール、その他の芳香族環上にヒドロキシ基を持つ有機化合物全般をさし、「フェノール系樹脂」とは各種のフェノール類とアルデヒド類との付加縮合反応により得られる樹脂をさし、「フェノール樹脂」とは、このようなフェノール系樹脂において、原料フェノール類としてフェノールを用い、フェノールとアルデヒド類との付加縮合反応により得られる樹脂をさし、「メチルフェノール系樹脂」とは、このようなフェノール系樹脂において、原料フェノール類としてクレゾール、キシレノール及びトリメチルフェノール等のメチルフェノール類を必須成分とするフェノール類を用い、メチルフェノール類を含むフェノール類とアルデヒド類との付加縮合反応により得られる樹脂をさし、更に「クレゾール樹脂」とは、このようなフェノール系樹脂において、原料フェノール類としてクレゾールを用い、クレゾールとアルデヒド類との付加縮合反応により得られる樹脂をさす。
従って、「フェノール系樹脂」には「フェノール樹脂」、「メチルフェノール系樹脂」も「クレゾール樹脂」も包含される。
In this specification, “phenols” refers to phenol, cresol, naphthol, and other organic compounds having a hydroxy group on an aromatic ring, and “phenolic resin” refers to various phenols. This refers to a resin obtained by addition condensation reaction with aldehydes. “Phenol resin” is obtained by addition condensation reaction between phenol and aldehydes using phenol as a raw material phenol in such a phenolic resin. The term “methylphenol resin” refers to a phenolic resin in which phenols containing methylphenols such as cresol, xylenol and trimethylphenol as essential components are used as raw phenols. Addition condensation of phenols containing aldehydes with aldehydes Refers to resins obtained by response, further as "cresol resin", in such a phenolic resin, using a cresol as a raw material phenol, it refers to a resin obtained by addition condensation reaction of a cresol with an aldehyde.
Accordingly, “phenolic resin” includes “phenolic resin”, “methylphenolic resin” and “cresol resin”.

ノボラック型フェノール樹脂は、その発明者にちなんでベークライト樹脂と称され、古くはプラスチック製食器として、その後、その耐熱性、絶縁性、機械的強度に優れている特性を活かして、鋳型などの耐火、耐熱材料として、最近では電子材料の原料樹脂として広く普及している。   The novolac type phenolic resin is called a bakelite resin after the inventor, and was used as a plastic tableware in the old days, and then made use of its excellent heat resistance, insulation and mechanical strength, and fire resistance of molds, etc. As a heat-resistant material, recently, it has been widely used as a raw material resin for electronic materials.

ノボラック型フェノール樹脂は、フェノール1モルに対して、ホルムアルデヒドを1モルより僅かに少なくし、酸性触媒下で付加縮合反応させて得られる。その構造はフェノール環1つに対して、ホルムアルデヒドが付加縮合反応して生成したメチレン結合により、反応原理的には二次元的に繋がった構造である。   The novolak-type phenol resin is obtained by adding less than 1 mol of formaldehyde to 1 mol of phenol and subjecting it to an addition condensation reaction in the presence of an acidic catalyst. The structure is a structure in which one phenol ring is two-dimensionally connected in terms of reaction principle by a methylene bond formed by addition condensation reaction of formaldehyde.

ノボラック型フェノール樹脂は、反応活性のメチロール基を含まないため、ヘキサメチレンテトラミン等の硬化剤と、用途に応じた副原料を混合して、樹脂融点以上に加熱して軟化させ、所定の成形を行うと同時に、熱硬化反応を行って樹脂製品とされる。この硬化反応後の樹脂は熱耐性(加熱した時の変形耐性、熱分解耐性)が高く、これが当該樹脂の多様な用途を支えている。   Since the novolak type phenolic resin does not contain a reactive methylol group, a curing agent such as hexamethylenetetramine and an auxiliary material suitable for the application are mixed and heated to a temperature higher than the melting point of the resin to be softened and subjected to predetermined molding. At the same time, a thermosetting reaction is performed to obtain a resin product. The resin after the curing reaction has high heat resistance (deformation resistance when heated, resistance to thermal decomposition), and this supports various uses of the resin.

一方、水処理剤としては、ノボラック型フェノール樹脂をアルカリ溶液に溶解したものが、自動車塗装ブースの余剰塗料を洗い流すための循環水中の塗料回収除去剤(栗田工業(株)商品名「クリスタックB310」)として市販されている。
しかし、このものは、塗装ブース循環水に適用できる程度の水準の処理剤であり、公共用水域に放流できる清澄度を満たすような水処理凝集剤としては使用できず、実際の使用事例も見当たらない。
On the other hand, as a water treatment agent, a solution obtained by dissolving a novolak type phenol resin in an alkaline solution is a paint recovery / removal agent in circulating water for washing away excess paint in an automobile painting booth (Kurita Kogyo Co., Ltd., trade name “Kuristack B310”). ]).
However, this is a treatment agent at a level that can be applied to circulating water at the painting booth, and cannot be used as a water treatment flocculant that satisfies the clarity that can be discharged into public water areas. Absent.

この理由は、ノボラック型フェノール樹脂アルカリ溶液を排水の凝集処理に用いると、凝集せずに、水中に溶解したままの成分が多く含まれるため、これが処理水中に残留し、場合によっては、被処理水より、処理水の方が全有機炭素(TOC)が増加し、これに伴ってCODMnが増加する結果になってしまうことにある。 The reason for this is that when a novolac-type phenol resin alkaline solution is used for wastewater flocculation treatment, it contains a large amount of components that remain dissolved in water without flocculation, and this remains in the treated water. Treated water has a higher total organic carbon (TOC) than water, resulting in an increase in COD Mn .

この凝集せずに、処理水中に残留する成分は、分子量1000以下、特にフェノール骨格2つがメチレン結合でつながった分子量200強のフェノール類2核体である。
なお、ノボラック型フェノール樹脂本来の用途である、熱硬化性樹脂、及びその硬化工程で、これらの成分は硬化樹脂の成分として反応し、特段の支障もない。
The component remaining in the treated water without agglomeration is a phenol dinuclear having a molecular weight of 1000 or less, in particular, having a molecular weight of slightly over 200 in which two phenol skeletons are connected by a methylene bond.
In addition, in the thermosetting resin which is the original use of the novolak type phenol resin, and its curing step, these components react as components of the cured resin, and there is no particular trouble.

しかし、このような低分子量成分は、凝集処理時に、凝集に関与しないと同時に、処理水中に残留して、新たな汚濁成分となり、また、RO膜等の膜分離処理では、新たな膜汚染物質になるため、水処理凝集剤としての用途においては、このような低分子量成分を十分に低減する必要がある。   However, such a low molecular weight component does not participate in the aggregation during the aggregation process, and at the same time, remains in the treated water to become a new pollutant component. In the membrane separation process such as RO membrane, a new membrane contaminant Therefore, in use as a water treatment flocculant, it is necessary to sufficiently reduce such low molecular weight components.

本願出願人は、この課題に対して、フェノール系樹脂中の低分子量成分の低減と重量平均分子量の増大を図るべく検討を行って、改善された水処理凝集剤を先に特許出願した(特願2010−81078。以下「先願」という。)。   In order to solve this problem, the present applicant has studied to reduce the low molecular weight component and increase the weight average molecular weight in the phenolic resin, and has previously filed a patent application for an improved water treatment flocculant (special feature). Application 2010-81078, hereinafter referred to as “prior application”).

先願の水処理凝集剤に含まれるフェノール系樹脂は、フェノール類とアルデヒド類を酸触媒下で反応させて得られたノボラック型フェノール系樹脂をアルカリ溶液とし、次いで、不都合な低分子量成分の低減、及び重量平均分子量の増大のため、さらに適量のアルデヒド類を添加し、アルカリ触媒の存在下でレゾール型2次反応を施したものであり、特に、RO膜等の膜分離処理時の原水の前処理用凝集剤として有用である。   The phenolic resin contained in the water treatment flocculant of the prior application is a novolac type phenolic resin obtained by reacting phenols and aldehydes in the presence of an acid catalyst, and then reducing inconvenient low molecular weight components. In order to increase the weight average molecular weight, an appropriate amount of aldehydes are added, and a resol type secondary reaction is performed in the presence of an alkali catalyst. In particular, raw water during membrane separation processing such as RO membranes is performed. It is useful as a pretreatment flocculant.

一方、本発明者らは、従前より、RO膜等の膜分離処理で、原水より持ち込まれる膜汚染物質の除去法の研究を続ける中で、ノボラック型フェノール系樹脂のアルカリ溶液が、特定の膜汚染物質の凝集除去に有効で、処理水のRO膜汚染度の指標であるMFFを改善することを見出した。   On the other hand, the inventors of the present invention have been researching methods for removing membrane contaminants brought in from raw water by membrane separation treatment such as RO membranes. The present inventors have found that it is effective in coagulating and removing pollutants and improves MFF, which is an indicator of the degree of RO membrane contamination in treated water.

前記膜汚染物質は中性多糖類で、微生物一般、藻類等が代謝生産する、多糖類の一部である。多糖類は、排水の生物処理水に多量に存在し、環境水でも、特に湖沼や池など藻類発生のある水にかなり存在する。多糖類は、100万から1000万前後の非常に大きな分子量を持つ高分子物質であり、RO膜等の膜分離処理において、膜供給水(本明細書において、「膜供給水」とは膜分離装置に導入する水をさす。)に微量でも存在すると、拡散せずに膜面に濃縮、滞留し、さらに膜に付着してこれを汚染し、膜濾過機能を阻害する。
多糖類の大部分を占めるカルボキシル基を有する酸性多糖類は、そのカルボキシル基が無機凝集剤の金属カチオンと反応するため、凝集、除去が容易であるが、中性多糖類は、金属カチオンとの反応部位がなく、凝集処理水中に残留する。
The membrane contaminant is a neutral polysaccharide, which is a part of the polysaccharide that is generally metabolized by microorganisms and algae. Polysaccharides are present in large amounts in wastewater biologically treated water, and even in environmental water, particularly in water with algae, such as lakes and ponds. A polysaccharide is a polymer substance having a very large molecular weight of about 1 million to 10 million. In membrane separation treatment such as RO membrane, membrane feed water (in this specification, “membrane feed water” is membrane separation). If it is present even in a trace amount, it concentrates and stays on the membrane surface without spreading, adheres to the membrane, contaminates it, and inhibits the membrane filtration function.
An acidic polysaccharide having a carboxyl group that occupies most of the polysaccharide is easy to aggregate and remove because the carboxyl group reacts with the metal cation of the inorganic flocculant. There are no reaction sites and it remains in the flocculated water.

凝集処理水中に残留した中性多糖類は、0.1mg/L程度以下の微量であっても、前記のごとく、分子量が非常に大きいことから、膜濾過機能を阻害するため、その凝集除去剤が求められていた。   Neutral polysaccharides remaining in the agglomerated treated water have a very high molecular weight as described above, even as a trace amount of about 0.1 mg / L or less. Was demanded.

なお、前記MFF(MFファクター又はMFファウリングファクター)は、JIS K3802に定義されているFI(ファウリングインデックス)やASTM D4189に定義されるSDI(シルトデンシティーインデックス)と同様にRO膜供給水の清澄度(汚染度)を表す指標として提案されたものである。
これらは、いずれも、細孔径0.45μmの精密濾過(MF)膜を用いて測定される。
The MFF (MF factor or MF fouling factor) is the RO membrane feed water as in the FI (fouling index) defined in JIS K3802 and the SDI (silt density index) defined in ASTM D4189. It has been proposed as an index representing the degree of clarity (contamination level).
These are all measured using a microfiltration (MF) membrane having a pore diameter of 0.45 μm.

MFFは、具体的には次のようにして測定される。
試料水500mlをミリポア社製の、細孔径0.45μm、47mmφのニトロセルロース製フィルターを用い、66kPa(500mmHg)の減圧下で濾過し、濾過時間T1を計測する。さらに500mlの試料水を同様に濾過し、濾過時間T2を測定する。
MFFはT2/T1で示され、膜汚濁物質のない、例えば蒸留水や、RO膜透過水ではT1とT2はほぼ等しく、MFFは1.00となる。
RO膜供給水としてのMFFの適正値は1.10以下、好ましくは1.05以下とされる。
中性多糖類が微量でも存在すると、高分子であることによる粘性、及び一部は膜付着するため、MF膜の透過抵抗、濾過阻害となる結果、MFFは大きく、RO膜供給水としての評価は悪いものとなる。
Specifically, MFF is measured as follows.
500 ml of sample water is filtered under a reduced pressure of 66 kPa (500 mmHg) using a filter made of nitrocellulose having a pore diameter of 0.45 μm and 47 mmφ manufactured by Millipore, and the filtration time T1 is measured. Further, 500 ml of sample water is similarly filtered, and the filtration time T2 is measured.
MFF is indicated by T2 / T1, and for example, distilled water or RO membrane permeate without membrane contaminants, T1 and T2 are almost equal, and MFF is 1.00.
The appropriate value of MFF as RO membrane supply water is 1.10 or less, preferably 1.05 or less.
If even a small amount of neutral polysaccharide is present, the viscosity due to being a polymer, and part of it adheres to the membrane, resulting in permeation resistance and filtration inhibition of the MF membrane, resulting in a large MFF and evaluation as RO membrane supply water Will be bad.

特願2010−081078Japanese Patent Application No. 2010-081078

先願に示されるノボラック型フェノール系樹脂の製造に用いられる原料フェノール類としては、フェノール及び、他のフェノール類が挙げられているが、その実施例ではフェノールを用いたもののみが挙げられている。
本発明は先願に開示されるフェノール系樹脂のアルカリ溶液よりなる水処理凝集剤よりも更に汚濁物質の凝集、不溶化性能に優れた水処理凝集剤と、この水処理凝集剤を用いた水処理方法を提供することを課題とする。
Examples of the raw material phenols used in the production of the novolak type phenolic resin shown in the prior application include phenol and other phenols, but in the examples, only those using phenol are listed. .
The present invention relates to a water treatment flocculant that is superior in water flocculation and insolubilization performance of pollutants than a water treatment flocculant comprising an alkaline solution of a phenolic resin disclosed in the prior application, and a water treatment using this water treatment flocculant. It is an object to provide a method.

本発明者らは、上記課題を解決すべく、先願の水処理凝集剤について、更に以下のような考察、検討を行った。   In order to solve the above-mentioned problems, the present inventors have further considered and studied the following water treatment flocculant.

即ち、先願の水処理凝集剤は、無機凝集剤で凝集不能な汚濁物質である中性多糖類や非イオン性界面活性剤を特異的に凝集、不溶化する特性を有する。この特性は、第一にフェノール樹脂が前記汚濁物質と水素結合と推測される結合力を持ち、第二に、アルカリによって解離していたフェノール性水酸基が、中性下で非解離となり、フェノール樹脂自体が水不溶性となる性質が合わさって発揮されると考えられた。   That is, the water treatment flocculant of the prior application has the characteristic of specifically aggregating and insolubilizing neutral polysaccharides and nonionic surfactants, which are pollutants that cannot be aggregated with inorganic flocculants. This characteristic is that, firstly, the phenolic resin has a binding force presumed to be a hydrogen bond with the pollutant, and secondly, the phenolic hydroxyl group dissociated by the alkali becomes non-dissociated under neutrality. It was thought that the property of becoming water-insoluble itself was exhibited.

本発明者らは、ここで、フェノール系樹脂の原料フェノール類を、フェノールに1個以上のメチル基が導入されたクレゾール、キシレノール、トリメチルフェノール等のメチルフェノール類とすれば、樹脂の疎水性が増し、水不溶性がより増加し、前記汚濁物質の凝集、不溶化能力が高まると考え、クレゾール及びキシレノールを原料として用いた検証を行った。
この結果、後掲の実施例及び比較例に示されるように、重量平均分子量13000のレゾール型2次反応を施したフェノール樹脂(原料フェノール類としてフェノールを用いたフェノール系樹脂)のアルカリ溶液と、これとほぼ同等の分子量である重量平均分子量16000及び14000のレゾール型2次反応を行ったメチルフェノール系樹脂(原料フェノール類としてクレゾールを用いたフェノール系樹脂及び原料フェノール類としてクレゾールとキシレノールを67/33(モル比)で用いたフェノール系樹脂)のアルカリ溶液とでは、同一のフェノール系樹脂換算の添加量で、メチルフェノール系樹脂がフェノール樹脂の約1.4倍のMFF改善効果があることを確証した。
また、レゾール型2次反応を施さない、重量平均分子量が4900のクレゾール樹脂のアルカリ溶液でも、重量平均分子量13000のレゾール型2次反応フェノール樹脂と同等以上のMFF改善効果があり、メチル基が導入されたクレゾール骨格が、フェノール骨格より優れることを確証した。
Here, if the phenols of the phenolic resin are methylphenols such as cresol, xylenol, and trimethylphenol in which one or more methyl groups are introduced into the phenol, the hydrophobicity of the resin can be improved. It was considered that water insolubility increased further and the ability of the pollutant to agglomerate and insolubilize was increased, and verification using cresol and xylenol as raw materials was conducted.
As a result, as shown in Examples and Comparative Examples described later, an alkaline solution of a phenol resin (phenolic resin using phenol as a raw material phenol) subjected to a resol type secondary reaction having a weight average molecular weight of 13,000, Methylphenol resin having undergone a resol type secondary reaction having a weight average molecular weight of 16000 and 14000, which is approximately the same molecular weight (phenol resin using cresol as raw phenol and cresol and xylenol as raw phenols) 33 (phenolic resin used at a molar ratio) with an alkaline solution of methylphenolic resin having an MFF improvement effect about 1.4 times that of phenolic resin with the same amount of phenolic resin conversion. Confirmed.
In addition, even an alkaline solution of a cresol resin having a weight average molecular weight of 4900, which is not subjected to a resol type secondary reaction, has an MFF improving effect equal to or higher than that of a resol type secondary reaction phenol resin having a weight average molecular weight of 13,000, and a methyl group is introduced. The cresol skeleton was confirmed to be superior to the phenol skeleton.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] フェノール類とアルデヒド類とを酸触媒の存在下に反応させて得られたノボラック型フェノール系樹脂のアルカリ溶液に、アルデヒド類を添加してレゾール型の2次反応を行って得られるフェノール系樹脂のアルカリ溶液よりなる水処理凝集剤であって、該フェノール類がメチルフェノール類を含むことを特徴とする水処理凝集剤。 [1] Phenol obtained by adding an aldehyde to an alkaline solution of a novolak-type phenolic resin obtained by reacting a phenol with an aldehyde in the presence of an acid catalyst and performing a resol-type secondary reaction. A water treatment flocculant comprising an alkaline solution of a resin, wherein the phenols contain methylphenols.

[2] [1]において、前記メチルフェノール類がクレゾールであることを特徴とする水処理凝集剤。 [2] The water treatment flocculant according to [1], wherein the methylphenol is cresol.

[3] [1]又は[2]において、前記レゾール型の2次反応を行って得られるフェノール系樹脂の重量平均分子量が10000以上であり、分子量1000以下の低分子量成分の含有率が20重量%以下であることを特徴とする水処理凝集剤。 [3] In [1] or [2], the phenolic resin obtained by performing the resol-type secondary reaction has a weight average molecular weight of 10,000 or more and a content of low molecular weight components having a molecular weight of 1,000 or less of 20%. % Water treatment flocculant characterized by being less than or equal to%.

[4] 被処理水に凝集剤を添加する凝集処理工程と、該凝集処理工程の凝集処理水を膜分離処理する膜分離処理工程とを有する水処理方法において、該凝集処理工程は、被処理水に[1]ないし[3]のいずれかに記載の水処理凝集剤を添加した後、無機凝集剤を添加する工程であることを特徴とする水処理方法。 [4] In a water treatment method comprising a flocculation treatment step of adding a flocculant to the water to be treated and a membrane separation treatment step of membrane separation treatment of the flocculation water in the flocculation treatment step, the flocculation treatment step comprises: A water treatment method comprising adding an inorganic flocculant after adding the water treatment flocculant according to any one of [1] to [3] to water.

ノボラック型フェノール系樹脂に対してレゾール型の2次反応を行って得られるフェノール系樹脂のアルカリ溶液は、非イオン界面活性剤や、荷電を有しない中性多糖類等の、一般に、水の凝集処理で使用される無機凝集剤単独では処理不可能な汚濁物質を、効率的に凝集、除去することができ、処理水への汚濁成分混入の問題も低減される。
特に、このようなフェノール系樹脂のうち、原料フェノール類としてメチルフェノール類を用い、アルデヒド類と酸触媒下で縮合させたメチルフェノール系樹脂をアルカリ溶液とし、さらにアルデヒド類を添加してレゾール型2次反応を行ったメチルフェノール系樹脂のアルカリ溶液からなる本発明の水処理凝集剤は、フェノール系樹脂の原料フェノール類としてフェノールを用いて、同様に調製した水処理凝集剤に比較して、膜汚染指標MFFの改善効果が約1.4倍である。しかも、二次汚染となる残留樹脂の残留率は、原料フェノール類としてフェノールを用いたフェノール樹脂のアルカリ溶液よりなる水処理凝集剤と同様に小さく、RO膜等の膜供給水の前処理凝集剤として優れた機能を期待できる。
An alkaline solution of a phenolic resin obtained by performing a resol type secondary reaction on a novolak-type phenolic resin is generally an agglomeration of water, such as a nonionic surfactant or an uncharged neutral polysaccharide. It is possible to efficiently agglomerate and remove pollutants that cannot be treated with the inorganic flocculant alone used in the treatment, and the problem of contamination of the contaminated components in the treated water is also reduced.
In particular, among these phenolic resins, methylphenols are used as raw material phenols, methylphenolic resins condensed with aldehydes under an acid catalyst are made into an alkaline solution, and aldehydes are added to add resole type 2 The water treatment flocculant of the present invention consisting of an alkaline solution of methylphenol resin subjected to the next reaction uses a phenol as a raw material phenol of a phenolic resin, and is compared with a water treatment flocculant prepared in the same manner. The improvement effect of the pollution index MFF is about 1.4 times. Moreover, the residual rate of the residual resin that becomes secondary contamination is as small as the water treatment flocculant made of an alkaline solution of phenol resin using phenol as the raw material phenols, and the pretreatment flocculant of the membrane supply water such as RO membrane As such, you can expect excellent functionality.

本発明の水処理凝集剤は、特に、RO膜分離処理等の膜分離処理工程の前処理工程として凝集処理に有効であり、膜分離処理に供される水の膜汚染指標MFFを改善し、RO膜等の膜の透過流束の低下を防止して長期に亘り安定かつ効率的な膜分離処理を可能とする。   The water treatment flocculant of the present invention is particularly effective for the aggregation treatment as a pretreatment step of the membrane separation treatment step such as RO membrane separation treatment, and improves the water membrane contamination index MFF used for the membrane separation treatment, A decrease in permeation flux of a membrane such as an RO membrane can be prevented, and a stable and efficient membrane separation process can be performed over a long period of time.

従って、このような本発明の水処理凝集剤を用いた凝集処理水を膜分離処理する本発明の水処理方法によれば、長期に亘り安定かつ効率的な処理を継続して行うことができる。   Therefore, according to the water treatment method of the present invention for membrane separation treatment of the flocculated water using the water treatment flocculant of the present invention, stable and efficient treatment can be continuously performed over a long period of time. .

MFF指数とMFFとの関係を示すグラフである。It is a graph which shows the relationship between a MFF index | exponent and MFF. 実施例II−1,2及び比較例II−1,2のフェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を示すグラフである。It is a graph which shows the relationship between the water processing flocculant addition amount of the phenol resin conversion of Example II-1,2 and Comparative Example II-1,2 and a MFF index | exponent. 実施例III−1及び比較例III−1のフェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を示すグラフである。It is a graph which shows the relationship between the amount of water treatment flocculant addition of the phenol-type resin conversion of Example III-1 and Comparative Example III-1, and an MFF index. 実施例IV−1,2及び比較例IV−1,2のフェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を示すグラフである。It is a graph which shows the relationship between the amount of water treatment flocculant addition of the phenol-type resin conversion of Example IV-1 and Comparative Example IV-1 and 2, and an MFF index.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

なお、本発明において分子量又は重量平均分子量は、GPC法(ゲルパーミエーションクロマトグラフィー法)で測定し、標準ポリスチレンによる検量線を用いて算出した値である。   In the present invention, the molecular weight or the weight average molecular weight is a value measured by a GPC method (gel permeation chromatography method) and calculated using a standard polystyrene calibration curve.

[水処理凝集剤]
本発明の水処理凝集剤は、フェノール類とアルデヒド類とを酸触媒の存在下に反応させて得られたノボラック型フェノール系樹脂のアルカリ溶液に、アルデヒド類を添加してレゾール型の2次反応を行って得られるフェノール系樹脂のアルカリ溶液よりなる水処理凝集剤であって、該フェノール類がメチルフェノール類を含むことを特徴とする。
[Water treatment flocculant]
The water treatment flocculant of the present invention is a resol type secondary reaction in which an aldehyde is added to an alkali solution of a novolak type phenol resin obtained by reacting a phenol with an aldehyde in the presence of an acid catalyst. Is a water treatment flocculant made of an alkaline solution of a phenolic resin obtained by performing the step, wherein the phenols contain methylphenols.

本発明において、レゾール型2次反応の原料となるノボラック型フェノール系樹脂は、常法に従って、反応釜において、フェノール類及びアルデヒド類を、酸性触媒の存在下で付加縮合反応させた後、常圧及び減圧下で、脱水と未反応フェノール類の除去を行って製造される。   In the present invention, the novolac-type phenolic resin used as a raw material for the resol-type secondary reaction is subjected to an addition condensation reaction of phenols and aldehydes in the presence of an acidic catalyst in a reaction kettle according to a conventional method. In addition, it is produced by dehydration and removal of unreacted phenols under reduced pressure.

本発明においては、ノボラック型フェノール系樹脂の製造に用いる原料フェノール類として、クレゾール、キシレノール、トリメチルフェノール等のメチルフェノール類を必須成分とする。   In the present invention, methylphenols such as cresol, xylenol, and trimethylphenol are essential components as raw material phenols used in the production of the novolak-type phenolic resin.

クレゾールとしては、o,m,pのいずれも利用可能であり、これらの2種以上の混合物であってもよい。またキシレノールの各異性体、及び2,3,5−トリメチルフェノールを用いることができる。さらに原料フェノール類として、クレゾール等のメチルフェノール類を主体に、他のフェノール類を混合して用いてもよい。この場合、他のフェノール類としては、例えば、フェノール、o,m,pの各エチルフェノール、ジエチルフェノールの各異性体、2,3,5−トリエチルフェノールなどのアルキルフェノール類、α,βの各ナフトールなどの多芳香環フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ピロガロール、レゾルシン、カテコールなどの多価フェノール類、ハイドロキノンなどが挙げられるが、何らこれらに限定されるものではない。これらの他のフェノール類は1種を単独で用いても良く、2種以上を混合して用いても良い。
なお、これらの他のフェノール類をメチルフェノール類と共に併用する場合、原料フェノール類としてメチルフェノール類を用いることによる本発明の効果を有効に得るために、原料フェノール類中の50重量%以上、特に70〜100重量%がクレゾール、キシレノール、トリメチルフェノール等のメチルフェノール類であることが好ましい。
As cresol, any of o, m, and p can be used, and a mixture of two or more of these may be used. Further, each isomer of xylenol and 2,3,5-trimethylphenol can be used. Further, as the raw material phenols, methylphenols such as cresol may be mainly used and other phenols may be mixed and used. In this case, as other phenols, for example, phenol, ethylphenols of o, m, and p, isomers of diethylphenol, alkylphenols such as 2,3,5-triethylphenol, and naphthols of α and β And polyaromatic phenols such as bisphenol A, bisphenol F, bisphenol S, pyrogallol, resorcin, catechol, and the like, and hydroquinone, but are not limited thereto. These other phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
In addition, when these other phenols are used together with methylphenols, in order to effectively obtain the effects of the present invention by using methylphenols as raw material phenols, 50% by weight or more in raw material phenols, particularly 70 to 100% by weight is preferably methylphenols such as cresol, xylenol and trimethylphenol.

一方、アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、サリチルアルデヒド、グリオキザールなどが挙げられるが、何らこれらに限定されるものではない。これらのアルデヒド類は1種を単独で用いても良く、2種以上を混合して用いても良い。
これらのうち、実用的な物質は、ホルムアルデヒド、パラホルムアルデヒドである。
On the other hand, examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, benzaldehyde, salicylaldehyde, glyoxal, and the like, but are not limited thereto. These aldehydes may be used individually by 1 type, and may mix and use 2 or more types.
Among these, practical substances are formaldehyde and paraformaldehyde.

ノボラック型メチルフェノール系樹脂を製造する際の酸触媒としては、塩酸、硫酸、リン酸などの無機酸類、蓚酸、酢酸、クエン酸、酒石酸、安息香酸、パラトルエンスルホン酸等の有機酸類、酢酸亜鉛、ホウ酸亜鉛等の有機酸塩類が挙げられるが、何らこれらに限定されるものではない。これらの酸触媒は1種を単独で用いても良く、2種以上を混合して用いても良い。   Acid catalysts for producing novolak-type methylphenol resins include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as oxalic acid, acetic acid, citric acid, tartaric acid, benzoic acid, and paratoluenesulfonic acid, zinc acetate And organic acid salts such as zinc borate, but are not limited thereto. These acid catalysts may be used alone or in combination of two or more.

本発明において、レゾール型2次反応の原料となるノボラック型メチルフェノール系樹脂の融点に制限はないが通常、原料フェノール類としてクレゾール等のメチルフェノール類を主体とするものは60〜135℃である。
同組成のノボラック型メチルフェノール系樹脂では、融点が高い程、この原料ノボラック型メチルフェノール系樹脂の分子量が大きく、レゾール型2次反応後の樹脂の分子量もこれに応じて高くなり、凝集剤としての凝集効果も向上する。
本発明において、原料ノボラック型メチルフェノール系樹脂の融点の上限に制限はないが、融点130℃を超えると、軟化・流動温度は概ね160℃以上となり、ノボラック型メチルフェノール系樹脂の反応釜中の局部温度は200℃を大きく超える。そのため、樹脂の分解や焦げ付きが発生し、安定した品質のものが得られない。また、溶融粘度が高くなりすぎるためにその取り出しが工業的には困難になる問題が生じる。従って、レゾール型2次反応の原料ノボラック型メチルフェノール系樹脂の融点は100〜130℃程度であることが好ましい。
In the present invention, there is no limitation on the melting point of the novolac-type methylphenol resin used as the raw material for the resol-type secondary reaction, but usually the raw material phenols mainly composed of methylphenols such as cresol is 60 to 135 ° C. .
In the novolak-type methylphenol resin having the same composition, the higher the melting point, the higher the molecular weight of the raw novolak-type methylphenol resin, and the higher the molecular weight of the resin after the resol-type secondary reaction. The agglomeration effect is also improved.
In the present invention, the upper limit of the melting point of the raw novolak type methylphenol resin is not limited, but when the melting point exceeds 130 ° C., the softening / flowing temperature becomes approximately 160 ° C. or higher, and the novolac type methyl phenol resin in the reaction kettle Local temperature greatly exceeds 200 ° C. For this reason, the resin is decomposed or burnt, and a stable quality product cannot be obtained. Further, since the melt viscosity becomes too high, there arises a problem that the removal becomes industrially difficult. Therefore, it is preferable that the melting point of the raw novolak-type methylphenol resin for the resol-type secondary reaction is about 100 to 130 ° C.

また、本発明において、レゾール型2次反応の原料となるノボラック型メチルフェノール系樹脂の分子量に制限はないが、分子量のより高い樹脂の方が、2次反応終了後に、凝集に関与しないだけでなく凝集処理水中に残留して処理水を汚染する低分子量成分含有率が少なくなるため、好ましい。このため、用いるノボラック型メチルフェノール系樹脂は、重量平均分子量で1000以上であることが好ましく、特に2000以上であることが好ましい。ノボラック型メチルフェノール系樹脂の分子量の上限に制限はないが、通常、重量平均分子量で8000程度である。   In the present invention, the molecular weight of the novolac-type methylphenol resin used as a raw material for the resol-type secondary reaction is not limited, but the resin having a higher molecular weight is not involved in aggregation after the completion of the secondary reaction. This is preferable because the content of low molecular weight components that remain in the agglomerated treated water and contaminate the treated water is reduced. For this reason, it is preferable that the novolak-type methylphenol-type resin to be used is 1000 or more in weight average molecular weight, and it is especially preferable that it is 2000 or more. Although there is no restriction | limiting in the upper limit of the molecular weight of a novolak-type methylphenol-type resin, Usually, it is about 8000 in a weight average molecular weight.

このようなノボラック型メチルフェノール系樹脂には、重量平均分子量が2000程度以上の樹脂であっても、処理水中に残留する分子量200強のフェノール類2核体が5重量%以上、さらに、分子量624以下の、凝集に関与せず、凝集処理水中に残留する可能性がある低分子量成分が合計で15重量%以上含まれる。そして、例えば原料にクレゾールとホルムアルデヒドを使用したノボラック型クレゾール樹脂の場合には、分子量200強のクレゾール2核体が一般的には5〜10重量%程度含まれ、分子量624以下の低分子量成分が合計で一般的には15〜30重量%程度含まれ、分子量1000以下の低分子量成分が合計で20〜40重量%程度含まれる。   In such a novolak type methylphenol resin, even if the resin has a weight average molecular weight of about 2000 or more, the phenolic binuclear having a molecular weight of over 200 remaining in the treated water is 5% by weight or more, and the molecular weight is 624. The total of 15% by weight or more of the following low molecular weight components that are not involved in aggregation and may remain in the agglomerated treated water. For example, in the case of a novolac cresol resin using cresol and formaldehyde as raw materials, a cresol dinuclear body having a molecular weight of slightly over 200 is generally contained in an amount of about 5 to 10% by weight, and a low molecular weight component having a molecular weight of 624 or less. In general, it is generally contained in an amount of about 15 to 30% by weight, and low molecular weight components having a molecular weight of 1000 or less are contained in a total of about 20 to 40% by weight.

本発明においては、このようなノボラック型メチルフェノール系樹脂をまずアルカリ溶液とする。
ノボラック型メチルフェノール系樹脂を溶解する溶剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムなどのアルカリ金属やアルカリ土類金属の水酸化物の1種又は2種以上を含む水溶液が挙げられ、これが、同時に次工程のレゾール型2次反応のアルカリ触媒となる。
In the present invention, such a novolac type methylphenol resin is first made into an alkaline solution.
Solvents that dissolve the novolac-type methylphenol resin include one or more of alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide. An aqueous solution is mentioned, and this simultaneously serves as an alkali catalyst for the resol type secondary reaction in the next step.

また、その他、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールなどのアルコール類、アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトンなどのケトン類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブなどのセルソルブ類及びセルソルブ類のエステル、メチルカルビトール、エチルカルビトール、エチルカルビトールアセテートなどのカルビトール類及びカルビトール類のエステル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、酢酸ブチルなどのエステル類などに、トリエチルアミン、トリメチルアミン、DBU(1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン)、DBN(1,5−ジアザビシクロ[4.3.0]ノナ−5−エン)などの有機塩基を溶解した塩基性溶剤も、レゾール型2次反応のアルカリ触媒を兼ねるアルカリ溶液として用いることができる。   In addition, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, and methyl isobutyl ketone, cell solves such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve And sorbitol esters, methyl carbitol, ethyl carbitol, ethyl carbitol acetate and other carbitols and carbitol esters, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl acetate and the like Such as triethylamine, trimethylamine, DBU (1,8-diazabicyclo [5.4.0] undec-7-ene), DBN (1,5-diaza). Basic solvents to dissolve the organic base cyclo [4.3.0] non-5-ene), etc. may also be used as an alkaline solution which also serves as an alkaline catalyst resole secondary reaction.

ノボラック型メチルフェノール系樹脂のアルカリ溶液のpHには特に制限はないが、pHが低過ぎるとノボラック型メチルフェノール系樹脂の溶解性が悪く、高過ぎると添加するアルカリ物質が無駄になることから、pH11〜13程度であることが好ましい。
また、ノボラック型メチルフェノール系樹脂のアルカリ溶液中の樹脂濃度には特に制限はないが、濃度が高過ぎると溶液粘性が上昇し、アルデヒド類を添加する2次反応の均一性の保持、更には、最終製品のポンプ薬注などの取り扱いに不都合であり、低過ぎると生産効率の低下や最終製品の梱包、輸送費用の増加があることから、5〜50重量%、特に10〜25重量%程度であることが好ましい。
There is no particular restriction on the pH of the alkali solution of the novolak-type methylphenol resin, but if the pH is too low, the solubility of the novolak-type methylphenol resin is poor, and if it is too high, the added alkaline substance is wasted. It is preferably about pH 11-13.
The resin concentration in the alkali solution of the novolak-type methylphenol resin is not particularly limited, but if the concentration is too high, the solution viscosity increases, and the uniformity of the secondary reaction in which aldehydes are added is maintained. , It is inconvenient to handle the pump injection of the final product, etc. If it is too low, there will be a decrease in production efficiency, packing of the final product, and an increase in transportation costs, so 5 to 50% by weight, especially about 10 to 25% by weight It is preferable that

レゾール型2次反応のために、ノボラック型メチルフェノール系樹脂のアルカリ溶液に添加するアルデヒド類としては、前述のノボラック型メチルフェノール系樹脂原料としてのアルデヒド類と同様のものを1種を単独で又は2種以上を混合して用いることができ、これらのうち特にホルムアルデヒド、パラホルムアルデヒドが実用的であるが、これらに限定されるものではない。   As the aldehyde to be added to the alkali solution of the novolak-type methylphenol resin for the resol-type secondary reaction, the same aldehydes as the above-mentioned novolak-type methylphenol-based resin raw material may be used alone or in combination. Two or more kinds can be mixed and used. Among these, formaldehyde and paraformaldehyde are particularly practical, but are not limited thereto.

ノボラック型メチルフェノール系樹脂のアルカリ溶液へのアルデヒド類の添加量は、特に限定されるものではないが、添加量が少な過ぎると2核体をはじめとする低分子量成分の低下が不十分であり、レゾール型2次反応により得られるフェノール系樹脂(以下、「2次反応フェノール系樹脂」と称し、原料フェノール類としてフェノールを用いたものを「2次反応フェノール樹脂」、原料フェノール類としてメチルフェノール類を必須成分としたものを「2次反応メチルフェノール系樹脂」と称す場合がある。)の融点上昇も少ない。逆に、多過ぎると得られる2次反応メチルフェノール系樹脂の架橋が進み、不溶化、固化してしまう。適正なアルデヒド類の添加量は、原料ノボラック型メチルフェノール系樹脂中の2核体を含む分子量1000以下の低分子量成分の含有率や、構成するフェノール類の種類により異なるが、概ね、ノボラック型メチルフェノール系樹脂中のフェノール類骨格1モル当たり0.1〜0.4モルとなる。ただし、実際には、事前にアルデヒド類添加量と2次反応メチルフェノール系樹脂の融点との関係を確認する予備試験を行い、その結果に基いて、所望の融点の2次反応メチルフェノール系樹脂が得られるように、その添加量を決定することが好ましい。   The amount of aldehyde added to the alkali solution of the novolak-type methylphenol resin is not particularly limited. However, if the amount added is too small, the decrease in low molecular weight components including binuclear compounds is insufficient. , Phenolic resin obtained by resol type secondary reaction (hereinafter referred to as “secondary reaction phenolic resin”, the one using phenol as raw material phenol is “secondary reaction phenol resin”, and methylphenol as raw material phenols (In some cases, a secondary reaction methylphenol resin is sometimes used as an essential component). On the other hand, if the amount is too large, crosslinking of the resulting secondary reaction methylphenol resin proceeds, resulting in insolubilization and solidification. The appropriate amount of aldehydes varies depending on the content of low molecular weight components having a molecular weight of 1000 or less including dinuclear compounds in the raw novolac type methylphenol resin and the kind of phenols to be composed. It becomes 0.1-0.4 mol per mol of phenol skeletons in the phenolic resin. However, in practice, a preliminary test is performed in advance to confirm the relationship between the amount of aldehyde added and the melting point of the secondary reaction methylphenol resin, and based on the results, the secondary reaction methylphenol resin having a desired melting point is obtained. It is preferable to determine the addition amount so that is obtained.

レゾール型の2次反応の方法には特に制限はないが、例えば、攪拌機、蒸気吹き込み設備、還流器、及び温度制御機構を有する反応設備で、所定の樹脂濃度及びpHのノボラック型メチルフェノール系樹脂のアルカリ溶液を、蒸気吹き込み等で所定温度、例えば40〜70℃程度に上昇させた後、アルデヒド類を添加し、80〜100℃で1〜12時間、この温度を保ちながら、アルカリ触媒下のレゾール型反応を行う。   The resol type secondary reaction method is not particularly limited. For example, a novolak type methylphenol resin having a predetermined resin concentration and pH in a reaction facility having a stirrer, a steam blowing facility, a refluxing device, and a temperature control mechanism. The alkali solution is heated to a predetermined temperature, for example, about 40 to 70 ° C. by steam blowing, and then aldehydes are added, and the temperature is maintained at 80 to 100 ° C. for 1 to 12 hours while maintaining the temperature. Perform a resol-type reaction.

反応終了後は反応液を冷却して、2次反応メチルフェノール系樹脂のアルカリ溶液を得る。この2次反応メチルフェノール系樹脂は、原料ノボラック型メチルフェノール系樹脂に比べて、フェノール類2核体をはじめとする分子量1000以下の低分子量成分含有量の少ない、また重量平均分子量が高められた2次反応メチルフェノール系樹脂である。   After completion of the reaction, the reaction solution is cooled to obtain an alkaline solution of the secondary reaction methylphenol resin. This secondary reaction methylphenol-based resin has a low content of low-molecular-weight components having a molecular weight of 1000 or less including a phenolic binuclear compound and a weight average molecular weight higher than that of the raw material novolac-type methylphenol-based resin. Secondary reaction methylphenol resin.

なお、上記2次反応における樹脂濃度、pH、アルデヒド類添加量、反応温度や反応時間は何ら制約されるものではなく、所望とする融点の2次反応メチルフェノール系樹脂が得られるように適宜設定される。   The resin concentration, pH, aldehyde addition amount, reaction temperature and reaction time in the secondary reaction are not limited at all, and are appropriately set so as to obtain a secondary reaction methylphenol resin having a desired melting point. Is done.

本発明において、このようにして得られる2次反応メチルフェノール系樹脂の融点は130〜220℃であり、好ましくは150〜205℃である。   In the present invention, the melting point of the secondary reaction methylphenol resin thus obtained is 130 to 220 ° C, preferably 150 to 205 ° C.

また、本発明において、この2次反応メチルフェノール系樹脂の重量平均分子量は5,000以上が好ましく、さらに好ましくは10000以上である。一方、重量平均分子量が50000を超える場合は、一部分子量100万以上の分子が生成し、粘度が高く、時間経過でさらに架橋し、不溶物が発生する可能性が高いため、2次反応メチルフェノール系樹脂の重量平均分子量は50000以下、特に30000以下であることが好ましい。
また、この2次反応メチルフェノール系樹脂の重量平均分子量は、反応前、即ち、レゾール型2次反応の原料であるノボラック型メチルフェノール系樹脂の重量平均分子量の2〜7倍程度となることが好ましい。
In the present invention, the weight average molecular weight of the secondary reaction methylphenol resin is preferably 5,000 or more, and more preferably 10,000 or more. On the other hand, when the weight average molecular weight exceeds 50,000, some molecules having a molecular weight of 1 million or more are formed, the viscosity is high, and further crosslinking occurs over time, so that insoluble matter is likely to be generated. The weight average molecular weight of the phenolic resin is preferably 50000 or less, particularly preferably 30000 or less.
The weight average molecular weight of the secondary reaction methylphenol resin may be about 2 to 7 times the weight average molecular weight of the novolac type methylphenol resin before the reaction, that is, the raw material of the resol type secondary reaction. preferable.

また、この2次反応メチルフェノール系樹脂は、レゾール型2次反応の原料であるノボラック型メチルフェノール系樹脂に対して、2核体を含む概ね分子量1000以下の低分子量成分の含有量が減少し、水の凝集処理に用いた場合、凝集処理水側に残留する未凝集物が著しく少なく、TOC、CODMnが著しく低減された、膜分離処理の給水として好ましい凝集処理水が得られる。 In addition, the content of low molecular weight components having a molecular weight of about 1000 or less, including binuclear compounds, is reduced in this secondary reaction methylphenol resin relative to the novolak type methylphenol resin that is a raw material for the resol type secondary reaction. When used in the water agglomeration treatment, the agglomerated water that is preferable as the feed water for the membrane separation treatment can be obtained in which the amount of unaggregated matter remaining on the agglomeration water side is remarkably reduced and TOC and COD Mn are remarkably reduced.

原料フェノール類としてメチルフェノール類を用いて得られる本発明に係る2次反応フェノール系樹脂(2次反応メチルフェノール系樹脂)では、原料フェノール類としてメチルフェノール類を用いたことによる疎水性の上昇により、原料フェノール類としてフェノールを用いて得られる2次反応フェノール樹脂に比較して、凝集せずに凝集処理水中に残留する樹脂の分子量域が低分子量側にシフトする。このため、原料フェノール類としてメチルフェノール類を用いて得られる本発明に係る2次反応メチルフェノール系樹脂は、原料フェノール類としてフェノールを用いて得られる2次反応フェノール樹脂に比較して、分子量1000以下の低分子量成分の含有量の許容値が高く、この値は20重量%以下程度でよく、好ましくは15重量%以下である。   In the secondary reaction phenolic resin (secondary reaction methylphenolic resin) according to the present invention obtained using methylphenols as raw material phenols, due to the increase in hydrophobicity due to the use of methylphenols as raw material phenols Compared with the secondary reaction phenol resin obtained by using phenol as the raw material phenols, the molecular weight region of the resin remaining in the agglomerated treated water without agglomeration shifts to the low molecular weight side. For this reason, the secondary reaction methylphenol resin according to the present invention obtained using methylphenols as the raw material phenols has a molecular weight of 1000 compared with the secondary reaction phenolic resin obtained using phenol as the raw material phenols. The allowable value of the content of the following low molecular weight components is high, and this value may be about 20% by weight or less, preferably 15% by weight or less.

このレゾール型2次反応で得られるメチルフェノール系樹脂のアルカリ溶液は、ポンプ薬注可能な液体であり、製造品をそのまま水処理凝集剤として使用することができる。   The alkaline solution of methylphenol resin obtained by this resol type secondary reaction is a liquid that can be pumped, and the manufactured product can be used as it is as a water treatment flocculant.

なお、本発明における2次反応フェノール系樹脂、又はレゾール型2次反応の原料であるノボラック型フェノール系樹脂の融点測定試料調製法、融点測定法、分子量等測定試料調製法、分子量等測定法は次の通りである。   In addition, the melting point measurement sample preparation method, the melting point measurement method, the molecular weight measurement sample preparation method, the molecular weight measurement method and the like of the secondary reaction phenolic resin or the novolak type phenolic resin which is a raw material of the resol type secondary reaction in the present invention are as follows. It is as follows.

<融点測定試料調製法>
2次反応フェノール系樹脂のアルカリ溶液を樹脂濃度として1重量%以下になるようにイオン交換水で希釈し、スターラー等で十分撹拌した状態にして、約1N程度の塩酸を滴下し、pHを5未満に調整する。この操作で析出した樹脂をNo.5A濾紙で濾過した後、イオン交換水で2回洗浄し、この析出樹脂を別の濾紙に移し、水分をよく切る。
水分をよく切った樹脂を、常温にて一晩、真空乾燥するか、或いはデシケーターで重量減少がなくなるまで、数日乾燥させる。
なお、2次反応を行わない、レゾール型2次反応の原料であるノボラック型フェノール系樹脂については、アルカリ溶液としてから、再度、前記の方法で試料を調製する。
<Method for preparing melting point measurement sample>
The alkaline solution of the secondary reaction phenolic resin is diluted with ion-exchanged water so that the resin concentration is 1% by weight or less, and is sufficiently stirred with a stirrer or the like, and about 1N hydrochloric acid is added dropwise to adjust the pH to 5 Adjust to less than. The resin precipitated by this operation was No. After filtering with 5A filter paper, it is washed twice with ion-exchanged water, and this precipitated resin is transferred to another filter paper to thoroughly remove moisture.
The resin from which moisture has been cut is vacuum dried overnight at room temperature, or dried for several days until weight loss is eliminated by a desiccator.
In addition, about the novolak-type phenol-type resin which is a raw material of a resol type | mold secondary reaction which does not perform a secondary reaction, after making it an alkaline solution, a sample is prepared again by the said method.

<融点測定法>
エスアイアイ・ナノテクノロジー製の示差走査熱量計(Differential Scanning Calorimetry:DSC)を用いて測定する。
試料2mgをDSC測定器にかけ、10℃/分で昇温を行い、横軸の温度上昇に対して、熱流(Heat Flow/mW)のラインを求め、吸熱ピークのトップ温度を融点とする。
本発明において、ノボラック型フェノール系樹脂及び2次反応フェノール系樹脂の融点は、前記の試料調整法と融点測定法によって測定した値である。
<Measuring method of melting point>
Measurement is performed using a differential scanning calorimeter (DSC) manufactured by SII Nanotechnology.
2 mg of a sample is put on a DSC measuring device, the temperature is raised at 10 ° C./min, a line of heat flow (Heat Flow / mW) is obtained with respect to the temperature rise on the horizontal axis, and the top temperature of the endothermic peak is taken as the melting point.
In the present invention, the melting points of the novolac type phenolic resin and the secondary reaction phenolic resin are values measured by the sample preparation method and the melting point measurement method described above.

<分子量等測定試料調製法>
分画を含む分子量測定を行うには、2次反応フェノール系樹脂のアルカリ溶液のアルカリ金属イオンの除去と水分除去を、該樹脂中のフェノール類2核体を含む低分子量成分を流出させずに行う必要がある。
そのため、まず、2次反応フェノール系樹脂のアルカリ溶液を樹脂濃度0.1重量%(1000mg/L)程度に希釈し、透析膜装置に入れ、次いで予め解離しているフェノール水酸基の非解離化のために必要な中和用塩酸の量を決めておき、これを透析膜装置内の溶液に添加してから、透析を行う。透析完了後の内容物を、付着物を含めその全量を減圧フラスコで40℃程度の低温で濃縮、乾固させる。
これを、常温で真空乾燥し、前記のテトラヒドロフランで溶解し、分画を含む分子量測定試料を得る。
なお、レゾール型2次反応を行う前の原料のノボラック型フェノール系樹脂も、同様の操作を行い、前処理で生じる可能性のある、測定値のシフト等、誤差要因を共通化する。
<Molecular weight measurement sample preparation method>
In order to perform molecular weight measurement including fractionation, the removal of alkali metal ions and the removal of water from the alkaline solution of the secondary reaction phenolic resin can be carried out without causing the low molecular weight component containing the phenol dinuclear in the resin to flow out. There is a need to do.
Therefore, first, the alkaline solution of the secondary reaction phenolic resin is diluted to a resin concentration of about 0.1% by weight (1000 mg / L), put into a dialysis membrane apparatus, and then the phenol group that has been dissociated in advance is not dissociated. The amount of hydrochloric acid for neutralization necessary for this is determined, and this is added to the solution in the dialysis membrane device before dialysis. The contents after completion of dialysis are concentrated and dried at a low temperature of about 40 ° C. in a vacuum flask with the entire amount including the deposits.
This is vacuum-dried at room temperature and dissolved in the above-mentioned tetrahydrofuran to obtain a molecular weight measurement sample containing a fraction.
Note that the novolac phenolic resin, which is a raw material prior to the resol type secondary reaction, is also subjected to the same operation to share error factors such as a shift in measured values that may occur in the pretreatment.

<分子量分画・分子量測定方法>
分子量はゲルパーミネーションクロマトグラフィー(以下GPCと記す)で測定する。
上述の2次反応フェノール系樹脂のテトラヒドロフラン溶液を、クロマトカラムとしてTOSOH製HLC8022、溶媒としてテトラヒドロフランを用い、流量0.8mL/分、温度40℃で展開し、溶出を行う。樹脂検出は、屈折率及び紫外吸光で行い、最大吸収のある波長254nmとし、検出器はTOSOH製RI−8020及びUV−8020を使用する。
この結果を、分子量の明らかなポリスチレン標準物質を用いた検量線に当てはめ、分子量分画と分画された樹脂成分の分子量及びその含有量を検定する。
低分子量成分の含有量は、GPCの分子量分布曲線により、樹脂全体に対する面積比率(%)から算出する。
本発明におけるフェノール系樹脂の重量平均分子量及び低分子量成分の分子量並びにその含有量は、前記の試料調整法と分子量分画・分子量測定法により求めた値である。
<Molecular weight fractionation / molecular weight measurement method>
The molecular weight is measured by gel permeation chromatography (hereinafter referred to as GPC).
Elution is performed by developing the tetrahydrofuran solution of the secondary reaction phenolic resin described above at a flow rate of 0.8 mL / min and a temperature of 40 ° C. using HLC8022 made by TOSOH as a chromatography column and tetrahydrofuran as a solvent. Resin detection is performed by refractive index and ultraviolet absorption, and the wavelength having a maximum absorption is 254 nm. The detector uses RI-8020 and UV-8020 manufactured by TOSOH.
This result is applied to a calibration curve using a polystyrene standard substance with a clear molecular weight, and the molecular weight fraction and the molecular weight of the fractionated resin component and its content are tested.
The content of the low molecular weight component is calculated from the area ratio (%) with respect to the whole resin by the GPC molecular weight distribution curve.
In the present invention, the weight average molecular weight of the phenolic resin, the molecular weight of the low molecular weight component, and the content thereof are values obtained by the above-described sample preparation method and molecular weight fractionation / molecular weight measurement method.

本発明の水処理凝集剤は、上述のようにして、原料フェノール類としてメチルフェノール類を必須成分としたノボラック型メチルフェノール系樹脂のレゾール型2次反応を行って得られた2次反応メチルフェノール系樹脂のアルカリ溶液よりなるものであり、その樹脂濃度としては10〜25重量%、pHは11〜13程度であることが好ましい。
この水処理凝集剤は、凝集に関わらず処理水側に残留する低分子量成分量が少ないため、用水、排水の凝集処理、特に膜分離処理、とりわけRO膜分離処理の前処理工程としての凝集処理に用いる水処理凝集剤として有効である。
The water treatment flocculant of the present invention is a secondary reaction methylphenol obtained by carrying out a resol type secondary reaction of a novolak type methylphenol resin containing methylphenol as an essential component as a raw material phenol as described above. The resin concentration is preferably 10 to 25% by weight and the pH is preferably about 11 to 13.
Since this water treatment flocculant has a small amount of low molecular weight components remaining on the treated water side regardless of aggregation, the water treatment and waste water coagulation treatment, particularly membrane separation treatment, especially as a pretreatment step of RO membrane separation treatment. It is effective as a water treatment flocculant used in

[水処理方法]
本発明の水処理方法は、被処理水を凝集処理し、この凝集処理水を膜分離処理するものであり、被処理水の凝集処理に当たり、上述の本発明の水処理凝集剤を添加した後、無機凝集剤を添加することを特徴とするものである。
[Water treatment method]
In the water treatment method of the present invention, the water to be treated is agglomerated, and this agglomerated water is subjected to membrane separation treatment. After the water treatment flocculant of the present invention is added in the agglomeration treatment of the water to be treated, In addition, an inorganic flocculant is added.

本発明の水処理凝集剤が特にその凝集効果を発揮する対象物質は、通常のポリ塩化アルミニウム(PAC)等のアルミニウム塩、塩化第二鉄等の鉄塩で代表される無機凝集剤で処理不能な、非イオン性界面活性剤、アニオン性を持たない、或いは極少ないアニオン性である中性多糖類である。   The target substance for which the water treatment flocculant of the present invention exerts its flocculating effect is incapable of being treated with inorganic flocculants represented by ordinary aluminum salts such as polyaluminum chloride (PAC) and iron salts such as ferric chloride. It is a non-ionic surfactant, a neutral polysaccharide that has no or very little anionic property.

RO膜分離処理においては、通常の無機凝集剤による前処理凝集で除去できない中性多糖類が残存し、RO膜を汚染し、その透過流束を減少させることが問題となるため、特に、この分野において、本発明の水処理凝集剤及び水処理方法は有効に適用される。   In the RO membrane separation treatment, neutral polysaccharides that cannot be removed by pretreatment aggregation with a normal inorganic flocculant remain, contaminating the RO membrane and reducing its permeation flux. In the field, the water treatment flocculant and the water treatment method of the present invention are effectively applied.

本発明の水処理凝集剤をこのような凝集処理に用いる場合、被処理水への水処理凝集剤添加量は、被処理水の水質や目的とする凝集処理効果により適宜決定され、また、無機凝集剤の併用の有無によっても異なるが、概ね、本発明の水処理凝集剤の凝集対象である非イオン性界面活性剤、中性多糖類と同量程度とされ、例えば、RO膜分離処理等の膜分離処理工程の前処理工程で用いる場合、フェノール系樹脂換算の添加量として0.1〜5.0mg/L、特に0.3〜2.0mg/L程度とすることが好ましい。   When the water treatment flocculant of the present invention is used for such a flocculation treatment, the amount of the water treatment flocculant added to the water to be treated is appropriately determined depending on the quality of the water to be treated and the intended flocculation effect, and is inorganic. Although it depends on whether the coagulant is used or not, it is generally the same amount as the nonionic surfactant or neutral polysaccharide that is the target of aggregation of the water treatment coagulant of the present invention. For example, RO membrane separation treatment, etc. When used in the pretreatment step of the membrane separation treatment step, the addition amount in terms of phenolic resin is preferably 0.1 to 5.0 mg / L, particularly about 0.3 to 2.0 mg / L.

また、本発明の水処理凝集剤を、特にRO膜、限外濾過膜、精密濾過膜等を用いる膜分離処理の前処理工程としての凝集処理に用いる場合、本発明の水処理凝集剤と共に無機凝集剤を併用することが好ましい。   In addition, when the water treatment flocculant of the present invention is used for agglomeration treatment as a pretreatment step of membrane separation treatment using an RO membrane, an ultrafiltration membrane, a microfiltration membrane or the like, it is inorganic together with the water treatment flocculant of the present invention It is preferable to use a coagulant together.

併用する無機凝集剤としては、特に制限はないが、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、塩化アルミニウム等のアルミニウム系凝集剤や、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄等の鉄系凝集剤が挙げられ、これらは1種を単独で用いても良く、2種以上を併用しても良い。   The inorganic flocculant used in combination is not particularly limited, but aluminum-based flocculants such as polyaluminum chloride (PAC), aluminum sulfate, aluminum chloride, ferric chloride, ferric sulfate, polyferric sulfate, etc. These iron-based flocculants may be used, and these may be used alone or in combination of two or more.

無機凝集剤の添加量は、被処理水の水質や目的とする処理水質等によっても異なるが、被処理水が工業用水で、膜分離工程の前処理工程に用いる場合には通常20〜100mg/L程度であり、被処理水が生物処理水等の排水の一次処理水で膜分離工程の前処理工程に用いる場合には通常100〜700mg/L程度である。   The amount of the inorganic flocculant added varies depending on the quality of the water to be treated and the intended quality of the treated water, but when the water to be treated is industrial water and is used in the pretreatment step of the membrane separation step, it is usually 20 to 100 mg / When the water to be treated is primary treated water of wastewater such as biologically treated water and used for the pretreatment step of the membrane separation step, it is usually about 100 to 700 mg / L.

本発明の水処理凝集剤と無機凝集剤を併用して膜分離処理の前処理としての凝集処理を行う場合、最初に被処理水に本発明の水処理凝集剤を添加した後無機凝集剤を添加する。具体的には、被処理水に本発明の水処理凝集剤を添加して1分以上反応せしめ、その後、無機凝集剤を添加して急速攪拌で3〜10分程度、更に緩速攪拌で3〜10分程度反応せしめ、得られた凝集処理液を沈殿槽、加圧浮上装置等により一次固液分離し、更に重力濾過装置で二次の固液分離を行い、分離水を膜分離処理の供給水とすることが好ましい。   When the water treatment flocculant of the present invention is used in combination with an inorganic flocculant to perform a flocculant treatment as a pretreatment of the membrane separation treatment, the water flocculant of the present invention is first added to the water to be treated, and then the inorganic flocculant is added. Added. Specifically, the water treatment flocculant of the present invention is added to the water to be treated and allowed to react for 1 minute or longer, and then the inorganic flocculant is added and about 3 to 10 minutes with rapid stirring, and further 3 with slow stirring. React for about 10 minutes, and the resulting flocculation treatment liquid is subjected to primary solid-liquid separation with a precipitation tank, a pressure levitation device, etc., and further subjected to secondary solid-liquid separation with a gravity filtration device, and the separated water is subjected to membrane separation treatment. It is preferable to use feed water.

被処理水に対して本発明の水処理凝集剤と無機凝集剤とを同時に添加したり、無機凝集剤を本発明の水処理凝集剤の添加箇所に近接した箇所に添加すると、フェノール系樹脂と無機凝集剤とが直接反応する結果、フェノール系樹脂の添加効果が得られず、反応により消費された分を補うために薬剤の必要添加量が増大する。
なお、本発明の水処理凝集剤を無機凝集剤よりも後に添加すると被処理水が、海水等の電気伝導率が1000mS/m以上の高塩類含有水である場合を除いては、フェノール系樹脂が未凝集の状態で残留し、膜分離阻害物となり、MFFを悪化させる。
When the water treatment flocculant of the present invention and the inorganic flocculant are added to the water to be treated at the same time, or when the inorganic flocculant is added at a location close to the addition position of the water treatment flocculant of the present invention, As a result of the direct reaction with the inorganic flocculant, the effect of adding the phenolic resin cannot be obtained, and the required amount of the drug added to compensate for the amount consumed by the reaction increases.
In addition, when the water treatment flocculant of the present invention is added after the inorganic flocculant, the water to be treated is a phenolic resin except when the water is high salt-containing water having an electric conductivity of 1000 mS / m or more such as seawater. Remains in an unaggregated state, becomes a membrane separation inhibitor, and deteriorates MFF.

以下に実施例を挙げて本発明をより具体的に説明する。
なお、以下において「%」は「重量%」を表す。
Hereinafter, the present invention will be described more specifically with reference to examples.
In the following, “%” represents “% by weight”.

また、以下において、前述の<融点測定試料調製法>に従って、調製した試料について、前述の<融点測定法>に従って測定した融点を単に「融点」と称し、樹脂のカタログ値、或いは、試料樹脂についてアルカリ溶液に溶解させることなく測定した融点を「原体樹脂融点」と称す。   In the following, the melting point measured in accordance with the above-mentioned <Melting point measurement method> for the sample prepared in accordance with the above-mentioned <Melting point measurement sample preparation method> is simply referred to as “melting point”, and the resin catalog value or the sample resin The melting point measured without being dissolved in the alkaline solution is referred to as “original resin melting point”.

[2次反応フェノール系樹脂アルカリ溶液の製造]
実施例用の原料樹脂として群栄化学工業(株)製のレヂトップPS−6945及びPS−4991を使用した。PS−6945はクレゾールとホルムアルデヒドを酸触媒の存在下に付加縮合を行って得られたノボラック型クレゾール樹脂であり、PS−4991はクレゾールとキシレノールをモル比で67/33として、同様に付加縮合を行って得られたノボラック型クレゾール/キシレノール樹脂であり、その融点、重量平均分子量、低分子量成分含有率等は以下の通りである。
[Production of secondary reaction phenolic resin alkaline solution]
Resietop PS-6945 and PS-4991 manufactured by Gunei Chemical Industry Co., Ltd. were used as raw material resins for the examples. PS-6945 is a novolak cresol resin obtained by addition condensation of cresol and formaldehyde in the presence of an acid catalyst, and PS-4991 is similarly subjected to addition condensation with a molar ratio of cresol and xylenol of 67/33. The novolac-type cresol / xylenol resin thus obtained has the following melting point, weight average molecular weight, low molecular weight component content, and the like.

また、比較例用の原料樹脂として群栄化学工業(株)製のレヂトップPSM−6358を使用した。本品はフェノールとホルムアルデヒドを酸触媒の存在下に付加縮合を行って得られたノボラック型フェノール樹脂であり、その融点、重量平均分子量、低分子量成分含有率等は以下の通りである。   Moreover, Gunei Chemical Industry Co., Ltd. resin top PSM-6358 was used as raw material resin for a comparative example. This product is a novolac type phenol resin obtained by addition condensation of phenol and formaldehyde in the presence of an acid catalyst, and its melting point, weight average molecular weight, low molecular weight component content, etc. are as follows.

Figure 2012166118
Figure 2012166118

これらPS−6945、PS−4991及びPSM−6358の主用途は電子材料用であり、水処理凝集剤としては使用されていない。   The main uses of these PS-6945, PS-4991 and PSM-6358 are for electronic materials and are not used as water treatment flocculants.

<実施例I−1>
ビーカーにPS−6945 41gと、樹脂量に対して18%に当たる苛性ソーダ7.4gとイオン交換水150gを加え入れ、マグネチックスターラーにて攪拌溶解し、最終的にイオン交換水を加えて、PS−6945を20.5%含有するアルカリ溶液200gを得た。
200mlの共栓付三角フラスコに前記PS−6945アルカリ溶液100gを入れ、約60℃に加温してから37%のホルムアルデヒド溶液2.4gを適量のイオン交換水で希釈して加え、コンデンサー、攪拌用窒素ガス吹き込み管、及び温度計を共栓に取り付け、オイルバスで、液温度85℃で8時間、レゾール型のホルムアルデヒド付加縮合反応を進行させた(レゾール型2次反応)。
その後、これを冷却し、イオン交換水(濃度調整用イオン交換水)を加えて全量を132gとし、クレゾール2核体を含む低分子量成分含有率を低減し、重量平均分子量を増加させた高融点の2次反応クレゾール樹脂アルカリ溶液(クレゾール樹脂含有量:16%、以下「本発明合成品A」と称す。)を得た。
<Example I-1>
In a beaker, 41 g of PS-6945, 7.4 g of caustic soda corresponding to 18% of the amount of resin and 150 g of ion-exchanged water were added and dissolved by stirring with a magnetic stirrer. Finally, ion-exchanged water was added, and PS- 200 g of an alkaline solution containing 20.5% of 6945 was obtained.
Add 100 g of PS-6945 alkaline solution to a 200 ml Erlenmeyer flask with a stopper, warm to about 60 ° C., and then add 2.4 g of 37% formaldehyde solution diluted with an appropriate amount of ion-exchanged water. A nitrogen gas blowing tube and a thermometer were attached to the stopper, and a resol-type formaldehyde addition condensation reaction was allowed to proceed for 8 hours at a liquid temperature of 85 ° C. with an oil bath (resol-type secondary reaction).
Thereafter, this was cooled, ion exchange water (ion exchange water for concentration adjustment) was added to make the total amount 132 g, the low molecular weight component content including cresol dinuclear body was reduced, and the high melting point with increased weight average molecular weight Secondary reaction cresol resin alkali solution (cresol resin content: 16%, hereinafter referred to as “the present invention synthetic product A”) was obtained.

<実施例I−2>
ビーカーにPS−4991 41gと、樹脂量に対して18%に当たる苛性ソーダ7.4gとイオン交換水150gを加え入れ、マグネチックスターラーにて攪拌溶解し、最終的にイオン交換水を加えて、PS−4991を20.5%含有するアルカリ溶液200gを得た。
200mlの共栓付三角フラスコに前記PS−4991アルカリ溶液100gを入れ、約60℃に加温してから37%のホルムアルデヒド溶液3.4gを適量のイオン交換水で希釈して加え、コンデンサー、攪拌用窒素ガス吹き込み管、及び温度計を共栓に取り付け、オイルバスで、液温度85℃で8時間、レゾール型のホルムアルデヒド付加縮合反応を進行させた(レゾール型2次反応)。
その後、これを冷却し、イオン交換水(濃度調整用イオン交換水)を加えて全量を132gとし、メチルフェノール2核体を含む低分子量成分含有率を低減し、重量平均分子量を増加させた高融点の2次反応メチルフェノール系樹脂アルカリ溶液(メチルフェノール系樹脂含有量:16%、以下「本発明合成品B」と称す。)を得た。
<Example I-2>
In a beaker, 41 g of PS-4991, 7.4 g of caustic soda corresponding to 18% of the resin amount and 150 g of ion-exchanged water were added and dissolved by stirring with a magnetic stirrer. Finally, ion-exchanged water was added, and PS- 200 g of an alkaline solution containing 20.5% of 4991 was obtained.
Add 100 g of the PS-4991 alkaline solution to a 200 ml Erlenmeyer flask with a stopper, heat to about 60 ° C., and then add 3.4 g of 37% formaldehyde solution diluted with an appropriate amount of ion-exchanged water. A nitrogen gas blowing tube and a thermometer were attached to the stopper, and a resol-type formaldehyde addition condensation reaction was allowed to proceed for 8 hours at a liquid temperature of 85 ° C. with an oil bath (resol-type secondary reaction).
Then, this was cooled, ion exchange water (ion exchange water for concentration adjustment) was added to make the total amount 132 g, the content of low molecular weight components including methylphenol dinuclear was reduced, and the weight average molecular weight was increased. A secondary reaction methylphenol resin alkali solution having a melting point (methylphenol resin content: 16%, hereinafter referred to as “the synthetic product B of the present invention”) was obtained.

<比較例I−1>
ビーカーにPSM−6358 41gと、樹脂量に対して20%に当たる苛性ソーダ8.2gとイオン交換水150gを加え入れマグネチックスターラーにて攪拌溶解し、最終的にイオン交換水を加えて、PSM−6358を20.5%含有するアルカリ溶液200gを得た。
200mlの共栓付三角フラスコに前記PSM−6358アルカリ溶液100gを入れ、約60℃に加温してから37%のホルムアルデヒド溶液4.4gを適量のイオン交換水で希釈して加え、コンデンサー、攪拌用窒素ガス吹き込み管、及び温度計を共栓に取り付け、オイルバスで、液温度85℃で8時間、レゾール型のホルムアルデヒド付加縮合反応を進行させた(レゾール型2次反応)。
これを冷却し、濃度調整用イオン交換水を加えて全量を132gとし、フェノール2核体を含む低分子量含有率を低減し、重量平均分子量を増加させた2次反応フェノール樹脂アルカリ溶液(フェノール樹脂含有量:16%、以下「比較合成品C」と称す。)を得た。
<Comparative Example I-1>
In a beaker, 41 g of PSM-6358, 8.2 g of caustic soda corresponding to 20% of the amount of resin and 150 g of ion-exchanged water were added, and stirred and dissolved with a magnetic stirrer. Finally, ion-exchanged water was added, and PSM-6358 was added. 200 g of an alkaline solution containing 20.5% was obtained.
Add 100 g of the PSM-6358 alkaline solution to a 200 ml Erlenmeyer flask with a stopper, heat to about 60 ° C., and then add 4.4 g of 37% formaldehyde solution diluted with an appropriate amount of ion-exchanged water. A nitrogen gas blowing tube and a thermometer were attached to the stopper, and a resol-type formaldehyde addition condensation reaction was allowed to proceed for 8 hours at a liquid temperature of 85 ° C. with an oil bath (resol-type secondary reaction).
This was cooled, and ion-exchanged water for concentration adjustment was added to make the total amount 132 g, and the secondary reaction phenol resin alkaline solution (phenol resin) in which the low molecular weight content including the phenol dinuclear substance was reduced and the weight average molecular weight was increased. Content: 16%, hereinafter referred to as “Comparative Synthetic Product C”).

<比較例I−2>
実施例I−1において、レゾール型2次反応を行わず、樹脂原料PS−6945のアルカリ溶液に、イオン交換水を加えて樹脂濃度16%に希釈調製したものを比較調整品Dとした。
<Comparative Example I-2>
In Example I-1, a resol-type secondary reaction was not carried out, and a comparative preparation D was prepared by adding ion-exchanged water to an alkaline solution of resin raw material PS-6945 and diluting to a resin concentration of 16%.

[融点、分子量及び低分子量成分含有率の測定]
本発明合成品A、B、比較合成品C及び比較調整品Dについて、前述の方法でそれぞれ分子量分画を行い、2核体、及び低分子量成分含有量の検定を行い、結果を表2に示した。
また、前述の方法で融点を測定し、結果を表2に示した。
なお、モノマー(フェノール類)については、JIS K−6910−7.22により別途分析した。
[Measurement of melting point, molecular weight and low molecular weight component content]
For the synthetic products A and B of the present invention, the comparative synthetic product C and the comparative preparation product D, molecular weight fractionation was carried out by the above-described method, respectively, and binuclear and low molecular weight component contents were tested. The results are shown in Table 2. Indicated.
The melting point was measured by the method described above, and the results are shown in Table 2.
In addition, about the monomer (phenols), it analyzed separately by JISK-6910-7.22.

Figure 2012166118
Figure 2012166118

実施例I−1(本発明合成品A)の重量平均分子量は16000、実施例I−2(本発明合成品B)は14000で、比較例I−1(比較合成品C)の重量平均分子量は13000に対し、ほぼ同レベルの水準である。
また、実施例I−1(本発明合成品A)では、レゾール型2次反応を施さない比較例I−2(比較調整品D)と比較すると、重量平均分子量は4900から16000と3.3倍に増加している。また、実施例I−2(本発明合成品B)では、レゾール型2次反応を施さないPS−4991と比較すると、重量平均分子量は2500から14000と5.6倍に増加している。
低分子量成分含有率は、ポリスチレン換算分子量1000以下の合計で本発明合成品Aは9.7%、本発明合成品Bは12.6%で、比較合成品Cの6.9%より多く、特に分子量280以下の成分が比較合成品Cよりかなり多く残っているが、レゾール型2次反応を施さない比較調整品D及びPS−4991と比較すると、ポリスチレン換算分子量1000以下の合計が本発明合成品Aで26.8%から9.7%、本発明合成品Bで40.6%から12.6%と大きく減少している。
また、実施例I−1の本発明合成品Aの融点は205℃で比較例I−1の比較合成品Cの融点180℃より高い。また、レゾール型2次反応を施さない比較例I−2の比較調整品Dの110〜135℃より上昇している。また、実施例I−2の本発明合成品Bも、同様にレゾール型2次反応で融点が100〜120℃から195℃に上昇している。
なお、PS−6945(比較調整品D)及びPS−4991の融点に範囲があるのは、チャートの熱吸収温度帯がブロードになっていることを示す。
The weight average molecular weight of Example I-1 (Inventive Synthetic Product A) is 16000, Example I-2 (Inventive Synthetic Product B) is 14,000, and the Weight Average Molecular Weight of Comparative Example I-1 (Comparative Synthetic Product C) Is almost the same level as 13,000.
In addition, in Example I-1 (the present synthetic product A), the weight average molecular weight is 4900 to 16000 and 3.3 as compared with Comparative Example I-2 (Comparative Adjustment Product D) that does not undergo the resol type secondary reaction. Has doubled. Further, in Example I-2 (the present invention synthetic product B), the weight average molecular weight is increased from 2500 to 14000, which is 5.6 times as compared with PS-4911, which is not subjected to the resol type secondary reaction.
The low molecular weight component content is 9.7% for the synthetic product A of the present invention and 12.6% for the synthetic product B of the present invention, with a total molecular weight of 1000 or less in terms of polystyrene, more than 6.9% of the comparative synthetic product C, In particular, the component having a molecular weight of 280 or less remains much more than that of the comparative synthetic product C. However, when compared with the comparative preparation D and PS-4991 that do not perform the resol type secondary reaction, the total of the polystyrene equivalent molecular weight of 1000 or less is synthesized according to the present invention. It is greatly reduced from 26.8% to 9.7% in the product A and from 40.6% to 12.6% in the synthetic product B of the present invention.
In addition, the melting point of the synthetic product A of Example I-1 at 205 ° C. is higher than the melting point of the comparative synthetic product C of Comparative Example I-1 at 180 ° C. Moreover, it has risen from 110 to 135 ° C. of Comparative Adjustment Product D of Comparative Example I-2 in which no resol type secondary reaction is performed. Similarly, the synthetic product B of Example I-2 also has a melting point rising from 100 to 120 ° C. to 195 ° C. in the resol type secondary reaction.
Note that the range of the melting points of PS-6945 (Comparison adjustment product D) and PS-4991 indicates that the heat absorption temperature range of the chart is broad.

[MFF評価]
上記の本発明合成品A、B、比較合成品C及び比較調整品Dを用いて、膜汚染物質である中性多糖類を多く含有する生物処理水である後掲の[1]高汚濁生物処理水及び[2]中汚濁生物処理水と、同じく、藻類代謝生産による中性多糖類が存在する、湖沼を水源とする工業用水である後掲の[3]湖沼系工業用水に対して、室内で、凝集処理、濾過処理を行った処理水のMFFを測定し、膜供給水としての適正化効果を評価した。
[MFF evaluation]
[1] Highly polluted organisms described later, which are biologically treated water containing a large amount of neutral polysaccharides that are membrane pollutants, using the above-described synthetic products A and B of the present invention, comparative synthetic product C, and comparative preparation D Similarly to treated water and [2] medium-polluted biological treated water, as well as [3] lake-based industrial water described below, which is industrial water with water source from lakes and marshes, where neutral polysaccharides from algal metabolic production exist. The MFF of the treated water that had been subjected to agglomeration treatment and filtration treatment was measured indoors, and the optimization effect as membrane supply water was evaluated.

凝集試験、濾過処理、及びMFF測定、評価の方法は以下の通りである。   The methods for the aggregation test, filtration treatment, MFF measurement, and evaluation are as follows.

{凝集試験:ジャーテスト}
ジャーテストは宮本製作所製のジャーテスターを使用し、試料原水1100mlを以下の手順で凝集処理した。
(1) 150rpmの急速攪拌下で、本発明合成品A、B、比較合成品C、及び比較調整品Dのフェノール系樹脂アルカリ溶液を所定量添加し、5分反応させた。
(2) 次いで、無機凝集剤添加反応後、所定のpHになるように酸を添加し、続いて無機凝集剤の所定添加量を添加し、150rpm急速攪拌7分、50rpm緩速攪拌8分を行った。
{Aggregation test: Jar test}
For the jar test, a jar tester manufactured by Miyamoto Seisakusho was used, and 1100 ml of sample raw water was subjected to agglomeration treatment according to the following procedure.
(1) Under rapid stirring at 150 rpm, a predetermined amount of the phenolic resin alkaline solutions of the synthetic products A and B of the present invention, the comparative synthetic product C, and the comparative preparation product D were added and reacted for 5 minutes.
(2) Next, after the inorganic flocculant addition reaction, acid is added so as to have a predetermined pH, followed by addition of a predetermined amount of the inorganic flocculant, followed by 150 rpm rapid stirring for 7 minutes and 50 rpm slow stirring for 8 minutes. went.

{濾過処理}
上記処理凝集水を15〜30分程度静置し、凝集物を沈殿させた後、上澄液をNo.5A濾紙でその全量を濾過し、濾過水1000ml以上を得た。
{Filtration treatment}
The treated agglomerated water is allowed to stand for about 15 to 30 minutes to precipitate the aggregate, and The whole amount was filtered with 5A filter paper to obtain 1000 ml or more of filtered water.

{MFF測定}
(1) 上記濾過水500mlをミリポア社製の、細孔径0.45μm、47mmφのニトロセルロース製フィルターを用い、66kPa(500mmHg)の減圧下で濾過し、濾過時間T1を計測した。
(2) 別の500mg/Lの濾過水を同様に濾過し、濾過時間T2を測定した。
(3) MFFはT2/T1で示され、膜汚濁物質のない、例えば蒸留水や、RO膜透過水ではT1とT2はほぼ等しく、MFFは1.00となる。
逆浸透(RO)膜供給水としてのMFFの適正値は1.10以下、好ましくは1.05以下とされる。
一方、逆浸透(RO)膜供給水として不適当なMFFは1.2又は1.3以上とされる。
{MFF measurement}
(1) 500 ml of the filtered water was filtered under a reduced pressure of 66 kPa (500 mmHg) using a nitrocellulose filter having a pore diameter of 0.45 μm and 47 mmφ manufactured by Millipore, and the filtration time T1 was measured.
(2) Another 500 mg / L filtered water was filtered in the same manner, and the filtration time T2 was measured.
(3) MFF is indicated by T2 / T1, and for example, distilled water or RO membrane permeate without membrane contaminants, T1 and T2 are almost equal, and MFF is 1.00.
The appropriate value of MFF as reverse osmosis (RO) membrane feed water is 1.10 or less, preferably 1.05 or less.
On the other hand, MFF inappropriate as reverse osmosis (RO) membrane feed water is 1.2 or 1.3 or more.

{MFFの評価}
MFFから計算されるMFF指数で評価した。
MFF指数は、log(1/(MFF−1.00)で算出され、MFFとの関係は図1の通りである。
{Evaluation of MFF}
The MFF index calculated from MFF was used for evaluation.
The MFF index is calculated by log (1 / (MFF-1.00), and the relationship with MFF is as shown in FIG.

MFF指数で評価した理由は、以下の(1)〜(3)の通りである。
(1) 本発明及び比較例の水処理凝集剤の添加量とMFF改善機能が線形回帰式で相関係数0.9以上と統計的に有意であり、明確な数値比較ができる。
(2) MFF1.01〜1.10の範囲は、実際には効果差が大きいにもかかわらず、表示数値差が小さいため、ここを拡大して評価できる。
(3) 効果を視覚的に理解するには、数値が大きいほど良い形式がふさわしい。
The reasons for evaluation with the MFF index are as follows (1) to (3).
(1) The addition amount of the water treatment flocculant and the MFF improving function of the present invention and the comparative example are statistically significant with a linear regression equation and a correlation coefficient of 0.9 or more, and a clear numerical comparison can be made.
(2) The range of MFF 1.01 to 1.10 can be evaluated by enlarging the display numerical value difference because the difference in display numerical values is small although the effect difference is actually large.
(3) In order to understand the effect visually, a larger number is better.

[凝集残留樹脂濃度評価]
フェノール系樹脂中の低分子量成分は、汚濁物の凝集に寄与しないだけでなく、処理水中に残留し、新たな膜汚染物質となるため、より少ないことが望ましい。
また、排水の有機物及びこれに伴うCODMn低減で用いる場合も当然のことながら処理水中に残留する部分が少ないことが望ましい。
水中に溶解しているノボラック型フェノール系樹脂は、ヒドロキシベンゼン環に伴う、C=C二重結合によって、紫外線(UV)吸収を示し、その最大吸収波長が280nmにある。
一方、ノボラック型フェノール系樹脂が、凝集処理対象とする多糖類は、二重結合がなく、その除去の有無にかかわらず、UV吸収には関与せず、同時に、対象原水に存在するUV吸収関与有機物(分子量5000程度以下のフミン系物質等と推定される。)の除去にはほとんど寄与しないことから、以下のようにして波長280nmのUV吸光度の増加から、樹脂残留量を推定した。
[Evaluation of aggregated residual resin concentration]
The low molecular weight component in the phenolic resin not only does not contribute to the aggregation of the pollutant, but also remains in the treated water and becomes a new film contaminant, so it is desirable that the amount is smaller.
Moreover, when using it for the organic matter of a waste_water | drain, and COD Mn reduction accompanying this, it is naturally desirable that there are few parts which remain | survive in treated water.
The novolak-type phenolic resin dissolved in water exhibits ultraviolet (UV) absorption due to the C═C double bond accompanying the hydroxybenzene ring, and its maximum absorption wavelength is 280 nm.
On the other hand, the novolak-type phenolic resin, which is the target of aggregation treatment, has no double bond and does not participate in UV absorption regardless of whether or not it is removed. At the same time, it participates in UV absorption present in the target raw water. Since it hardly contributes to the removal of organic substances (presumed to be humic substances having a molecular weight of about 5000 or less), the resin residual amount was estimated from the increase in UV absorbance at a wavelength of 280 nm as follows.

<樹脂残留量の推定方法>
(1) 各凝集処理水について、無機凝集剤のみの処理時(後掲の参考例)の波長280nmの光の50mmセルの吸光度(UV280)と、実施例及び比較例のUV280の差を求める(ΔUV280:参考例より低ければマイナス)。
(2) ΔUV280を、本発明合成品A、比較合成品C、比較調整品Dのそれぞれがフェノール系樹脂換算で1mg/L存在するときのUV280(B)で割り、残留濃度を求める。この時、全データのΔUV280のマイナス最大値の絶対値(例えば表3では0.002)をΔUV280に加算する。
残留樹脂換算濃度=(ΔUV280+0.002)/B
B値は本発明合成品A:0.085、本発明合成品B:0.085、比較合成品C:0.098、比較調整品D:0.083である。
(3) 次いで、残留樹脂換算濃度を添加樹脂濃度で割り、添加樹脂濃度(フェノール系樹脂換算の水処理凝集剤添加濃度)に対する残留率を求めた。
(2)で0.002をプラスする理由は、微量であるが、前記フェノール系樹脂が原水に存在するUV280構成物質を除去するためΔUV280がマイナスとなる。そこでマイナス絶対値の最大値をプラスして、原理的にありえないマイナスを相殺する。
このようなことから、以下の表3〜5の残留樹脂換算濃度は正確なものとは言えない。また、フェノール系樹脂換算の水処理凝集剤添加量が少ないほど誤差が多いため、低添加量条件では樹脂残留率の数値記載を避けた。
<Method for estimating residual resin amount>
(1) For each flocculated water, the difference between the absorbance (UV 280 ) of a 50 mm cell of light having a wavelength of 280 nm when treated with an inorganic flocculant only (reference example below) and the UV 280 of the examples and comparative examples Obtain (ΔUV 280 : minus if lower than the reference example).
(2) ΔUV 280 is divided by UV 280 (B) when 1 mg / L of the present synthetic product A, comparative synthetic product C, and comparative adjustment product D is present in terms of phenolic resin, and the residual concentration is determined. At this time, the absolute value of the minus maximum value of ΔUV 280 of all data (for example, 0.002 in Table 3) is added to ΔUV 280 .
Residual resin equivalent concentration = (ΔUV 280 +0.002) / B
B values are the present synthetic product A: 0.085, the present synthetic product B: 0.085, the comparative synthetic product C: 0.098, and the comparative adjustment product D: 0.083.
(3) Next, the residual resin equivalent concentration was divided by the added resin concentration, and the residual ratio with respect to the additive resin concentration (water treatment flocculant additive concentration in terms of phenolic resin) was determined.
Why plus 0.002 in (2) is a small amount, the DerutaUV 280 for removing UV 280 construction material phenolic resin is present in the raw water is negative. Therefore, the maximum value of the negative absolute value is added to cancel out the negative that is impossible in principle.
For these reasons, the residual resin equivalent concentrations in Tables 3 to 5 below cannot be said to be accurate. Moreover, since there are so many errors that there are few addition amounts of the water treatment flocculant of phenol type resin conversion, numerical description of the resin residual rate was avoided under the low addition amount conditions.

[1]高汚濁生物処理水
液晶製造工程排水について脱窒素までを含む生物処理を行った処理水を、さらにポリ硫酸鉄による凝集処理を行い、次いでRO膜分離処理を行って排水回収を行っているF工場の生物処理水を原水として評価を行った。
F工場では、この生物処理水にポリ硫酸第二鉄(PFS)440mg/Lを添加し、pH4.8で凝集処理を行い、加圧浮上での一次固液分離を経て、2層式重力濾過を行い、得られた濾過水をRO膜供給水としているが、膜供給水のMFFは1.3以上で不良であり、PFSを増量しても、評価に供した原水に関してMFF1.3を切ることはできなかった。
この原水に対して、前述の<凝集試験:ジャーテスト>の方法に従って、本発明合成品A、比較合成品C及び比較調整品Dをそれぞれフェノール系樹脂換算の添加量として表3に示す量添加した後、PFSを440mg/L添加して凝集処理を行った。凝集pHは4.8であった。
得られた凝集処理水を前述の<濾過処理>に従って濾過した後、<MFF測定>及び<MFFの評価>に従ってMFFの測定及び評価を行った。
また、前述の[凝集残留樹脂濃度評価]に従って、残留樹脂換算濃度と樹脂残留率を求めた。
これらの結果を表3に示す。
また、フェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を図2に示す。
なお、実施例II−1、実施例II−2は、それぞれ本発明合成品A、本発明合成品Bを用いた本発明例であり、比較例II−1及び比較例II−2は、それぞれ比較合成品Cと、比較調整品Dを用いた比較例であり、参考例IIはこれらを用いずPFSのみを添加したものである。
[1] Highly polluted biological treated water Treated water that has been subjected to biological treatment, including up to denitrification, for liquid crystal manufacturing process wastewater is further subjected to coagulation treatment with polyiron sulfate, followed by RO membrane separation treatment and wastewater recovery. Biologically treated water from factory F was evaluated as raw water.
At the F factory, 440 mg / L of polyferric sulfate (PFS) is added to this biologically treated water, agglomeration treatment is performed at pH 4.8, and primary solid-liquid separation is performed by pressurized flotation. However, the MFF of the membrane feed water is 1.3 or more, which is poor. Even if the amount of PFS is increased, the MFF 1.3 is cut for the raw water used for the evaluation. I couldn't.
According to the above-mentioned method of <flocculation test: jar test>, the synthetic water product A, the comparative synthetic product C, and the comparative preparation product D are added to the raw water in amounts shown in Table 3 as addition amounts in terms of phenolic resin. After that, 440 mg / L of PFS was added to perform aggregation treatment. The aggregation pH was 4.8.
The obtained flocculated water was filtered according to the above-mentioned <filtration treatment>, and then MFF was measured and evaluated according to <MFF measurement> and <MFF evaluation>.
Further, according to the above [Evaluation of Aggregated Residual Resin Concentration], the residual resin equivalent concentration and the resin residual ratio were obtained.
These results are shown in Table 3.
Moreover, the relationship between the amount of water treatment flocculant added in terms of phenolic resin and the MFF index is shown in FIG.
In addition, Example II-1 and Example II-2 are examples of the present invention using the synthetic product A and the synthetic product B of the present invention, respectively. Comparative Examples II-1 and II-2 are respectively It is a comparative example using comparative synthetic product C and comparative adjustment product D, and Reference Example II does not use these but adds only PFS.

Figure 2012166118
Figure 2012166118

各水処理凝集剤のMFF改善効果は、図2における直線回帰式の傾きから判定できる。実施例II−1(本発明合成品A)の傾きは0.649、実施例II−2(本発明合成品B)の傾きは0.633、比較例II−1(比較合成品C)の傾きは0.447、比較例II−2(比較調整品D)の傾きは0.525である。
フェノール樹脂の比較例II−1(比較合成品C)を基準とすると、クレゾール樹脂の実施例のII−1(本発明合成品A)は1.45倍、また、クレゾール/キシレノール樹脂の実施例II−2(本発明合成品B)では1.42倍であり、明確にメチルフェノール系樹脂の優位性が示される。また、フェノール樹脂の比較合成品Cは、低添加量側の数値が回帰線の下にあることから、低添加量での膜濾過性改善効果が弱いことが示される。
樹脂残留率については、実施例II−1(本発明合成品A)、実施例II−2(本発明合成品B)は、比較例II−1(比較合成品C)と同様に、2%以下で樹脂の残留が少ない。
一方、レゾール型2次反応を施さないクレゾール樹脂の比較調整品Dでは、MFF指数評価でレゾール型2次反応を施したフェノール樹脂の比較合成品Cの1.17倍の効果であるが、樹脂残留率は9%程度と明らかに悪い。
The MFF improvement effect of each water treatment flocculant can be determined from the slope of the linear regression equation in FIG. The slope of Example II-1 (invented product A) was 0.649, the slope of Example II-2 (invented product B) was 0.633, and that of Comparative Example II-1 (compared product C). The slope is 0.447, and the slope of Comparative Example II-2 (Comparison Adjustment Product D) is 0.525.
Based on phenol resin comparative example II-1 (comparative synthetic product C), the cresol resin example II-1 (present synthetic product A) was 1.45 times, and the cresol / xylenol resin example. In II-2 (present synthetic product B), it is 1.42 times, clearly showing the superiority of methylphenol-based resin. Moreover, since the numerical value on the low addition amount side of the comparative synthetic product C of the phenol resin is below the regression line, it is shown that the effect of improving the membrane filterability at the low addition amount is weak.
Regarding the resin residual ratio, Example II-1 (present synthetic product A) and Example II-2 (present synthetic product B) were 2% in the same manner as Comparative Example II-1 (comparative synthetic product C). Less residual resin below.
On the other hand, the comparative preparation D of the cresol resin not subjected to the resol type secondary reaction is 1.17 times as effective as the comparative synthetic product C of the phenol resin subjected to the resol type secondary reaction in the MFF index evaluation. The residual rate is clearly about 9%.

[2]中汚濁生物処理水
液晶製造工程排水について生物処理を行った処理水を、さらにポリ硫酸鉄による凝集処理を行い、次いでRO膜分離処理を行って排水回収を行っているG工場の生物処理水を原水として評価を行った。
G工場では、生物処理水にポリ硫酸第二鉄(PFS)600mg/Lを添加し、pH5.0で凝集処理を行い、加圧浮上での一次固液分離を経て、2層式重力濾過を行い、得られた濾過水をRO膜供給水としているが、膜供給水のMFFは1.15前後で、RO膜供給水としての良好水準の1.10を少し上回っていた。
この原水に対して、前述の<凝集試験:ジャーテスト>の方法に従って、本発明合成品A及び比較合成品Cをそれぞれフェノール系樹脂換算の添加量として表4に示す量添加した後、PFSを600mg/L添加して凝集処理を行った。凝集pHは5.0であった。
得られた凝集処理水を前述の<濾過処理>に従って濾過した後、<MFF測定>及び<MFFの評価>に従ってMFFの測定及び評価を行った。
また、前述の[凝集残留樹脂濃度評価]に従って、残留樹脂換算濃度と樹脂残留率を求めた。
これらの結果を表4に示す。
また、フェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を図3に示す。
なお、実施例III−1は、本発明合成品Aを用いた本発明例であり、比較例III−1は、
比較合成品Cを用いた比較例であり、参考例IIIはこれらを用いずPFSのみを添加したものである。
[2] Medium-polluted biological treated water The treated water that has undergone biological treatment for liquid crystal production process wastewater is further agglomerated with polyiron sulfate, and then RO membrane separation treatment for wastewater recovery. Evaluation was made using treated water as raw water.
At factory G, 600 mg / L of polyferric sulfate (PFS) is added to biologically treated water, and coagulation treatment is performed at pH 5.0, followed by primary solid-liquid separation by pressurized flotation and two-layer gravity filtration. The filtrated water obtained was used as RO membrane feed water, and the MFF of the membrane feed water was around 1.15, which was a little higher than 1.10, which is a good level as RO membrane feed water.
To this raw water, according to the method of <Coagulation test: Jar test> described above, the synthetic product A of the present invention and the comparative synthetic product C were added in the amounts shown in Table 4 as addition amounts in terms of phenolic resin, and then PFS was added. Aggregation was performed by adding 600 mg / L. The aggregation pH was 5.0.
The obtained flocculated water was filtered according to the above-mentioned <filtration treatment>, and then MFF was measured and evaluated according to <MFF measurement> and <MFF evaluation>.
Further, according to the above [Evaluation of Aggregated Residual Resin Concentration], the residual resin equivalent concentration and the resin residual ratio were obtained.
These results are shown in Table 4.
Moreover, the relationship between the amount of water treatment flocculant added in terms of phenolic resin and the MFF index is shown in FIG.
In addition, Example III-1 is an example of the present invention using the synthetic product A of the present invention, and Comparative Example III-1 is
It is a comparative example using the comparative synthetic product C, and Reference Example III does not use these but adds only PFS.

Figure 2012166118
Figure 2012166118

図3より明らかなように、本発明合成品Aを用いた実施例III−1の傾きは0.431で、比較合成品Cを用いた比較例III−1の傾き0.294に対し1.46倍の効果を示す。   As is clear from FIG. 3, the slope of Example III-1 using the synthetic product A of the present invention is 0.431, which is 1.31 compared to 0.294 of Comparative Example III-1 using the comparative synthetic product C. 46 times more effective.

[3]湖沼系工業用水
河川系工業用水では、藻類等の微生物繁殖が少ないが、湖沼では栄養塩類と太陽光、および水の滞留時間増加から、藻類が相当に繁殖し、その代謝生産物である多糖類も多く、無機凝集剤で凝集除去不能な中性多糖類も必然的に多くなる。このような条件下の茨城県北浦を取水源とする工業用水を原水として、無機凝集剤としてポリ塩化アルミニウム(PAC)60mg/Lを使用し、PACと反応する酸性多糖類を含む有機物の処理効果が高いpH6.2での凝集試験により評価を行った。
なお、PACのみを用いた凝集処理では、MFFは1.15で、RO膜供給水としての良好水準の1.10を少し上回っていた。
この原水に対して、前述の<凝集試験:ジャーテスト>の方法に従って、本発明合成品A、本発明合成品B、比較合成品C及び比較調整品Dをそれぞれフェノール系樹脂換算の添加量として表5に示す量添加した後、PAC添加後のpHが6.2となるように硫酸を添加し、次いでPACを60mg/L添加して凝集処理を行った。
得られた凝集処理水を前述の<濾過処理>に従って濾過した後、<MFF測定>及び<MFFの評価>に従ってMFFの測定及び評価を行った。
また、前述の[凝集残留樹脂濃度評価]に従って、残留樹脂換算濃度と樹脂残留率を求めた。
これらの結果を表5に示す。
また、フェノール系樹脂換算の水処理凝集剤添加量とMFF指数との関係を図4に示す。
なお、実施例IV−1は、本発明合成品Aを用いた本発明例で、実施例VI−2は本発明合成品Bを用いた本発明例であり、比較例IV−1及び比較例IV−2は、それぞれ比較合成品Cと、比較調整品Dを用いた比較例であり、参考例IVはこれらを用いずPACのみを添加したものである。
[3] Lake-based industrial water In river-based industrial water, there is little growth of microorganisms such as algae. There are many polysaccharides, and there are inevitably many neutral polysaccharides that cannot be removed by aggregation with an inorganic flocculant. Treatment of organic substances containing acidic polysaccharides that react with PAC using 60 mg / L of polyaluminum chloride (PAC) as an inorganic flocculant using industrial water from Kitaura, Ibaraki Prefecture as the source water under such conditions Was evaluated by an agglutination test at a high pH of 6.2.
In the flocculation treatment using only PAC, the MFF was 1.15, which was a little higher than 1.10 which is a good level as RO membrane supply water.
For this raw water, according to the method of <Coagulation test: Jar test> described above, the present synthetic product A, the present synthetic product B, the comparative synthetic product C, and the comparative adjustment product D are respectively added as phenolic resin equivalents. After adding the amount shown in Table 5, sulfuric acid was added so that the pH after PAC addition was 6.2, and then 60 mg / L of PAC was added for aggregation treatment.
The obtained flocculated water was filtered according to the above-mentioned <filtration treatment>, and then MFF was measured and evaluated according to <MFF measurement> and <MFF evaluation>.
Further, according to the above [Evaluation of Aggregated Residual Resin Concentration], the residual resin equivalent concentration and the resin residual ratio were obtained.
These results are shown in Table 5.
Moreover, the relationship between the amount of water treatment flocculant added in terms of phenolic resin and the MFF index is shown in FIG.
In addition, Example IV-1 is an example of the present invention using the synthetic product A of the present invention, Example VI-2 is an example of the present invention using the synthetic product B of the present invention, Comparative Example IV-1 and Comparative Example IV-2 is a comparative example using comparative synthetic product C and comparative adjustment product D, respectively, and Reference Example IV does not use these but only PAC is added.

Figure 2012166118
Figure 2012166118

図4より明らかなように、本発明合成品Aを用いた実施例IV−1の傾きは1.185、本発明合成品Bを用いた実施例IV−2の傾きは1.178で、比較合成品Cを用いた比較例IV−1の傾き0.858に対し、それぞれ1.38倍、1.37倍の効果を示す。
レゾール型2次反応を施さない比較調整品Dを用いた比較例IV−2では、比較合成品Cを用いた比較例IV−1と同程度の0.881の傾きであり、MFF改善効果はあるが、樹脂残留率が約10%と悪い。
As is clear from FIG. 4, the slope of Example IV-1 using the synthetic product A of the present invention is 1.185, and the slope of Example IV-2 using the synthetic product B of the present invention is 1.178. The effect of 1.38 times and 1.37 times is shown with respect to the inclination 0.858 of Comparative Example IV-1 using the synthetic product C, respectively.
In Comparative Example IV-2 using Comparative Adjustment Product D not subjected to the resol type secondary reaction, the slope of 0.881 is similar to that of Comparative Example IV-1 using Comparative Synthetic Product C, and the MFF improvement effect is Although there is a resin residual ratio of about 10%.

Claims (4)

フェノール類とアルデヒド類とを酸触媒の存在下に反応させて得られたノボラック型フェノール系樹脂のアルカリ溶液に、アルデヒド類を添加してレゾール型の2次反応を行って得られるフェノール系樹脂のアルカリ溶液よりなる水処理凝集剤であって、該フェノール類がメチルフェノール類を含むことを特徴とする水処理凝集剤。   A phenolic resin obtained by adding an aldehyde to an alkaline solution of a novolak-type phenolic resin obtained by reacting a phenol with an aldehyde in the presence of an acid catalyst and performing a resol-type secondary reaction. A water treatment flocculant comprising an alkaline solution, wherein the phenols contain methylphenols. 請求項1において、前記メチルフェノール類がクレゾールであることを特徴とする水処理凝集剤。   The water treatment flocculant according to claim 1, wherein the methylphenol is cresol. 請求項1又は2において、前記レゾール型の2次反応を行って得られるフェノール系樹脂の重量平均分子量が10000以上であり、分子量1000以下の低分子量成分の含有率が20重量%以下であることを特徴とする水処理凝集剤。   In Claim 1 or 2, the weight average molecular weight of the phenol resin obtained by performing the resol-type secondary reaction is 10,000 or more, and the content of low molecular weight components having a molecular weight of 1,000 or less is 20% by weight or less. Water treatment flocculant characterized by 被処理水に凝集剤を添加する凝集処理工程と、該凝集処理工程の凝集処理水を膜分離処理する膜分離処理工程とを有する水処理方法において、該凝集処理工程は、被処理水に請求項1ないし3のいずれか1項に記載の水処理凝集剤を添加した後、無機凝集剤を添加する工程であることを特徴とする水処理方法。   In a water treatment method comprising a flocculation treatment step of adding a flocculant to the water to be treated and a membrane separation treatment step of membrane separation treatment of the flocculation water in the flocculation treatment step, the flocculation treatment step charges the water to be treated. A water treatment method, which is a step of adding an inorganic flocculant after adding the water treatment flocculant according to any one of Items 1 to 3.
JP2011026947A 2011-02-10 2011-02-10 Water treating flocculant and water treating method Withdrawn JP2012166118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026947A JP2012166118A (en) 2011-02-10 2011-02-10 Water treating flocculant and water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026947A JP2012166118A (en) 2011-02-10 2011-02-10 Water treating flocculant and water treating method

Publications (1)

Publication Number Publication Date
JP2012166118A true JP2012166118A (en) 2012-09-06

Family

ID=46970827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026947A Withdrawn JP2012166118A (en) 2011-02-10 2011-02-10 Water treating flocculant and water treating method

Country Status (1)

Country Link
JP (1) JP2012166118A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200250A (en) * 2011-03-28 2012-10-22 Tokyo Electric Power Co Inc:The Method for recovering floating microalgae, and culture system for floating microalgae
JP2014124611A (en) * 2012-12-27 2014-07-07 Kurita Water Ind Ltd Scale adhesion preventing method and scale adhesion preventing agent
JP2015174080A (en) * 2014-03-18 2015-10-05 栗田工業株式会社 Flocculation and solid-liquid separation method, and flocculation and solid-liquid separation apparatus
KR20190127654A (en) 2017-03-23 2019-11-13 쿠리타 고교 가부시키가이샤 Water treatment method
CN113860386A (en) * 2021-10-28 2021-12-31 广州市芦苇环保科技有限责任公司 Production method of liquid polymeric ferric sulfate water purifying agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200250A (en) * 2011-03-28 2012-10-22 Tokyo Electric Power Co Inc:The Method for recovering floating microalgae, and culture system for floating microalgae
JP2014124611A (en) * 2012-12-27 2014-07-07 Kurita Water Ind Ltd Scale adhesion preventing method and scale adhesion preventing agent
JP2015174080A (en) * 2014-03-18 2015-10-05 栗田工業株式会社 Flocculation and solid-liquid separation method, and flocculation and solid-liquid separation apparatus
KR20190127654A (en) 2017-03-23 2019-11-13 쿠리타 고교 가부시키가이샤 Water treatment method
TWI732943B (en) * 2017-03-23 2021-07-11 日商栗田工業股份有限公司 Water treatment method
US11077403B2 (en) 2017-03-23 2021-08-03 Kurita Water Industries Ltd. Water treatment method
CN113860386A (en) * 2021-10-28 2021-12-31 广州市芦苇环保科技有限责任公司 Production method of liquid polymeric ferric sulfate water purifying agent

Similar Documents

Publication Publication Date Title
JP5407994B2 (en) Water treatment method and water treatment flocculant
JP2012166118A (en) Water treating flocculant and water treating method
JP5673761B2 (en) Water treatment method and water treatment flocculant
US20160347631A1 (en) Tannin-based polymer as filter aid for reducing fouling in filtration of high tds water
WO2010050325A1 (en) Membrane separation process
JP6287594B2 (en) Aggregation processing method and aggregation processing apparatus
JP2010017688A (en) Advanced treatment method of biologically-treated water
US20140346111A1 (en) Seawater treatment method
TWI732943B (en) Water treatment method
JP6340813B2 (en) Water treatment membrane cleaning agent and cleaning method
JP2015157265A (en) Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus
JP6287402B2 (en) Aggregated solid-liquid separation method and agglomerated solid-liquid separation apparatus
JP2014124612A (en) Method for treating photolithography waste water
CN103443032B (en) The treatment process of development of photoresist waste water
Kim et al. Effect of membranes on refractory dissolved organic nitrogen
JP2006233197A (en) Manufacturing method of novolac type phenol resin, novolac type phenol resin, and phenol resin composition for photoresist

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513