JP2021007913A - Control device and solid-liquid separation system - Google Patents

Control device and solid-liquid separation system Download PDF

Info

Publication number
JP2021007913A
JP2021007913A JP2019122886A JP2019122886A JP2021007913A JP 2021007913 A JP2021007913 A JP 2021007913A JP 2019122886 A JP2019122886 A JP 2019122886A JP 2019122886 A JP2019122886 A JP 2019122886A JP 2021007913 A JP2021007913 A JP 2021007913A
Authority
JP
Japan
Prior art keywords
water
solid
dilution
liquid separation
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019122886A
Other languages
Japanese (ja)
Inventor
永森 泰彦
Yasuhiko Nagamori
泰彦 永森
忍 茂庭
Shinobu Shigeniwa
忍 茂庭
英武 仕入
Hidetake Shiire
英武 仕入
徳介 早見
Tokusuke Hayami
徳介 早見
智明 木内
Tomoaki Kiuchi
智明 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019122886A priority Critical patent/JP2021007913A/en
Publication of JP2021007913A publication Critical patent/JP2021007913A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

To provide a control device and a solid-liquid separation system capable of achieving high solid-liquid separation performance regardless of a quality of water used for dilution.SOLUTION: A control device for a solid-liquid separation system includes a reforming device, a dissolution tank, a flocculation tank, and a solid-liquid separation device, and has a measurement unit and a control unit. The reforming device modifies the dilution water. The dissolution tank mixes the dilution water modified by the reforming device with a polymer flocculant to prepare a polymer solution. The flocculation tank injects the polymer solution into the treated water to coagulate the solids in the treated water. The solid-liquid separation device separates the treated water in which the solids have been flocculated into solids and water. The measurement unit is located between the reforming device and the dissolution tank, and measures any one or more of the amount of calcium, magnesium, or hardness of the diluted water after reforming. The control unit stops the supply of dilution water from the reforming device to the dissolution tank when the measurement result of the dilution water by the measurement unit exceeds a threshold value.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、制御装置及び固液分離システムに関する。 Embodiments of the present invention relate to control devices and solid-liquid separation systems.

排水や汚泥の処理方法の一つに固液分離がある。排水処理における固液分離は、排水処理の前処理として行う。固液分離によって排水中の固形物を分離し、その後、固形物と排水とをそれぞれに適した方法で処理することで、排水を低コストかつ容易に処理できる。また、排水処理の場合、固液分離された排水は、そのまま処理水として下水道等に排出することもある。 Solid-liquid separation is one of the treatment methods for wastewater and sludge. Solid-liquid separation in wastewater treatment is performed as a pretreatment for wastewater treatment. By separating the solid matter in the wastewater by solid-liquid separation and then treating the solid matter and the wastewater by a method suitable for each, the wastewater can be treated easily at low cost. Further, in the case of wastewater treatment, the solid-liquid separated wastewater may be discharged as treated water to the sewer or the like.

汚泥の場合の固液分離は、汚泥中の含水率を低減するための処理であり、具体的には汚泥を脱水処理する。脱水処理によって汚泥中の含水率を低減することで、汚泥を減容して脱水汚泥とし、脱水汚泥の輸送費や処分費を低減できる。 The solid-liquid separation in the case of sludge is a treatment for reducing the water content in the sludge, and specifically, the sludge is dehydrated. By reducing the water content in the sludge by the dehydration treatment, the volume of the sludge can be reduced to the dehydrated sludge, and the transportation cost and the disposal cost of the dehydrated sludge can be reduced.

固液分離では固液分離性能を高めるために高分子凝集剤が用いられる場合がある。高分子凝集剤を排水や汚泥に添加することで、排水や汚泥中の固形物を凝集させ、粗大なフロックが形成される。これにより、固液分離性が向上する。 In solid-liquid separation, a polymer flocculant may be used to enhance solid-liquid separation performance. By adding the polymer flocculant to the wastewater or sludge, the solid matter in the wastewater or sludge is aggregated to form coarse flocs. This improves solid-liquid separability.

より具体的には、例えば、顆粒状の高分子凝集剤を、溶媒である水(以下、希釈用水という)に加え、攪拌溶解させて高分子凝集剤溶液(以下、高分子溶液という)を得る。この高分子溶液を、排水または汚泥に注入して攪拌することで、排水または汚泥中の固形物を凝集させる。次いで、固形物が凝集した排水または汚泥を固液分離し、固形物が除去された処理水と、固形物が濃縮された固形分とに分離される。 More specifically, for example, a granular polymer flocculant is added to water as a solvent (hereinafter referred to as dilution water) and dissolved by stirring to obtain a polymer flocculant solution (hereinafter referred to as a polymer solution). .. By injecting this polymer solution into wastewater or sludge and stirring it, solid matter in the wastewater or sludge is agglomerated. Next, the wastewater or sludge in which the solid matter is aggregated is separated into solid and liquid, and the treated water from which the solid matter has been removed and the solid content in which the solid matter is concentrated are separated.

高分子凝集剤は、排水や汚泥に含まれる固形物に作用する。そのため、固液分離処理では、排水または汚泥の固形物濃度に対する高分子溶液の注入率を、固液分離性能が良好となる最適注入率に調整する必要がある。高分子溶液の注入率が、最適注入率より少ないと、固液分離性能が低下して望ましい性状の処理水及び固形分が得られない。一方、注入率が最適注入率より多い場合、やはり固液分離性能は低下するとともに、高分子凝集剤の使用量が増大して処理コストが過大となる。また、水分中に残余の高分子凝集剤が残留し、水分の水質が悪化し、水分の排出先の環境も悪化する懸念がある。そこで、従来の固液分離処理では、固液分離を模擬する試験を予め行い、固液分離性能が良好となる最適注入率を選定し、高分子溶液の注入率を手動で設定することが一般的に行われている。 The polymer flocculant acts on solid matter contained in wastewater and sludge. Therefore, in the solid-liquid separation treatment, it is necessary to adjust the injection rate of the polymer solution with respect to the solid matter concentration of wastewater or sludge to the optimum injection rate at which the solid-liquid separation performance is good. If the injection rate of the polymer solution is less than the optimum injection rate, the solid-liquid separation performance deteriorates and the treated water and solid content having desirable properties cannot be obtained. On the other hand, when the injection rate is higher than the optimum injection rate, the solid-liquid separation performance is also lowered, and the amount of the polymer flocculant used is increased, resulting in an excessive treatment cost. In addition, there is a concern that the residual polymer flocculant remains in the water, the water quality of the water deteriorates, and the environment of the water discharge destination also deteriorates. Therefore, in the conventional solid-liquid separation process, it is common to perform a test to simulate solid-liquid separation in advance, select the optimum injection rate that improves the solid-liquid separation performance, and manually set the injection rate of the polymer solution. It is done in the same way.

しかし、高分子溶液を調製する際に、水質が低下した希釈用水を使用すると、高分子溶液の凝集性能が低下する場合がある。また、一般的な固液分離処理では、あらかじめ調製した高分子溶液を凝集剤タンクに保管しておき、固液分離を行う都度、凝集剤タンクから高分子溶液を抜き出して排水等に添加している。そのため、高分子溶液は、調製後から長期間に渡って保管される場合がある。このとき、水質が低下した希釈用水から調製された高分子溶液は、凝集性能が径時劣化する場合がある。 However, when preparing a polymer solution, if dilution water having deteriorated water quality is used, the agglutination performance of the polymer solution may be deteriorated. In general solid-liquid separation treatment, a polymer solution prepared in advance is stored in a coagulant tank, and each time solid-liquid separation is performed, the polymer solution is extracted from the coagulant tank and added to wastewater or the like. There is. Therefore, the polymer solution may be stored for a long period of time after preparation. At this time, the cohesive performance of the polymer solution prepared from the water for dilution whose water quality has deteriorated may deteriorate over time.

このように、凝集性能が低下した高分子溶液や、凝集性能が径時劣化した高分子溶液を用いて固液分離処理を行うと、最適注入率で注入したにも関わらず、十分な固液分離性能が得られない場合があった。 In this way, when the solid-liquid separation treatment is performed using a polymer solution with reduced aggregation performance or a polymer solution with deteriorated aggregation performance over time, sufficient solid-liquid liquid is injected even though the injection rate is optimal. Separation performance may not be obtained in some cases.

Gehr, Ronald & Kalluri, Ramesh. (1983). EFFECTS OF SHORT-TERM STORAGE AND ELEVATED TEMPERATURES ON THE FLOCCULATION ACTIVITY OF AQUEOUS POLYMER SOLUTIONS.. Water pollution research journal of Canada. 18. 23-43.Gehr, Ronald & Kalluri, Ramesh. (1983). EFFECTS OF SHORT-TERM STORAGE AND ELEVATED TEMPERATURES ON THE FLOCCULATION ACTIVITY OF AQUEOUS POLYMER SOLUTIONS .. Water pollution research journal of Canada. 18. 23-43.

本発明が解決しようとする課題は、希釈用水の水質によらず、高い固液分離性能を発揮する制御装置及び固液分離システムを提供することである。
を課題とする。
An object to be solved by the present invention is to provide a control device and a solid-liquid separation system that exhibit high solid-liquid separation performance regardless of the water quality of the water for dilution.
Is an issue.

実施形態の制御装置は、改質装置と、溶解槽と、凝集槽と、固液分離装置と、を備える固液分離システムの制御装置であり、測定部と制御部とを持つ。
改質装置は、希釈用水を改質する。溶解槽は、改質装置によって改質された希釈用水と高分子凝集剤とを混合して高分子溶液を調製する。凝集槽は、高分子溶液を被処理水に注入して被処理水中の固形物を凝集させる。固液分離装置は、固形物が凝集した被処理水を固形物と水分とに分離する。
測定部は、改質装置と溶解槽との間にあって、改質後の希釈用水のカルシウム量、マグネシウム量または硬度の何れか1種以上を測定する。制御部は、測定部による希釈用水の測定結果が閾値を超える場合に、改質装置から溶解槽への希釈用水の供給を停止させる。
The control device of the embodiment is a control device of a solid-liquid separation system including a reformer, a dissolution tank, a coagulation tank, and a solid-liquid separation device, and has a measurement unit and a control unit.
The reformer reforms the water for dilution. The dissolution tank prepares a polymer solution by mixing the dilution water modified by the reformer and the polymer flocculant. In the coagulation tank, the polymer solution is injected into the water to be treated to coagulate the solid matter in the water to be treated. The solid-liquid separation device separates the water to be treated, in which solids are aggregated, into solids and water.
The measuring unit is located between the reformer and the dissolution tank, and measures one or more of the amount of calcium, the amount of magnesium, and the hardness of the diluted water after reforming. The control unit stops the supply of the dilution water from the reformer to the dissolution tank when the measurement result of the dilution water by the measurement unit exceeds the threshold value.

従来の固液分離システムの構成例を示す図。The figure which shows the structural example of the conventional solid-liquid separation system. 第1の実施形態の固液分離システムの構成例を示す図。The figure which shows the structural example of the solid-liquid separation system of 1st Embodiment. 第1の実施形態における制御装置の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the control device in 1st Embodiment. 実施例の結果を示す図。The figure which shows the result of an Example. 実施例の結果を示す図。The figure which shows the result of an Example. 実施例の結果を示す図。The figure which shows the result of an Example.

以下、実施形態の制御装置及び固液分離システムを、図面を参照して説明する。 Hereinafter, the control device and the solid-liquid separation system of the embodiment will be described with reference to the drawings.

図1は、従来の固液分離システムの構成例を示す図である。図1に示す固液分離システム90は、溶解槽91、第1攪拌機92、高分子溶液注入ポンプ93、凝集槽94、第2攪拌機95及び固液分離装置96を備える。溶解槽91は、顆粒状の高分子凝集剤を溶媒である水(以下「希釈用水」という。)に溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。第1攪拌機92は、溶解槽91に投入された高分子凝集剤及び希釈用水を攪拌する装置である。高分子溶液注入ポンプ93は、溶解槽91において調製された高分子溶液を凝集槽94に注入する装置である。凝集槽94は、高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。第2攪拌機95は、高分子溶液と被処理水とを混和させるために攪拌する装置である。固液分離装置96は、固形物が凝集した被処理水を固形物と水分とに分離する装置である。 FIG. 1 is a diagram showing a configuration example of a conventional solid-liquid separation system. The solid-liquid separation system 90 shown in FIG. 1 includes a dissolution tank 91, a first stirrer 92, a polymer solution injection pump 93, a coagulation tank 94, a second stirrer 95, and a solid-liquid separation device 96. The dissolution tank 91 dissolves a granular polymer flocculant in water as a solvent (hereinafter referred to as "dilution water") to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). It is a water tank of. The first stirrer 92 is a device that stirs the polymer flocculant and the water for dilution charged into the dissolution tank 91. The polymer solution injection pump 93 is a device for injecting the polymer solution prepared in the dissolution tank 91 into the coagulation tank 94. The coagulation tank 94 is a water tank for mixing the polymer solution and the water to be treated to coagulate the solid matter in the water to be treated. The second stirrer 95 is a device that stirs the polymer solution and the water to be treated in order to mix them. The solid-liquid separation device 96 is a device that separates the water to be treated, in which solids are aggregated, into solids and water.

ここで、高分子溶液注入ポンプ93は、実験室Lで行われた固液分離の模擬試験の結果に基づいて決定された注入率(以下「設定注入率」という。)で動作するように構成される。基本的に、設定注入率は、良好な固液分離性能が得られた試験結果に基づいて決定された注入率であり、最適注入率とも言う。 Here, the polymer solution injection pump 93 is configured to operate at an injection rate (hereinafter referred to as “set injection rate”) determined based on the result of a mock test of solid-liquid separation conducted in the laboratory L. Will be done. Basically, the set injection rate is an injection rate determined based on the test results in which good solid-liquid separation performance is obtained, and is also called an optimum injection rate.

しかし、高分子溶液を調製する際に、水質が低下した希釈用水を使用すると、高分子溶液の凝集性能が低下する場合がある。また、一般的な固液分離処理では、あらかじめ調製した高分子溶液を凝集剤タンクに保管しておき、固液分離を行う都度、凝集剤タンクから高分子溶液を抜き出して排水等に添加している。そのため、高分子溶液は、調製後から長期間に渡って保管される場合がある。このとき、水質が低下した希釈用水から調製された高分子溶液は、凝集性能が径時劣化する場合がある。 However, when preparing a polymer solution, if dilution water having deteriorated water quality is used, the agglutination performance of the polymer solution may be deteriorated. In general solid-liquid separation treatment, a polymer solution prepared in advance is stored in a coagulant tank, and each time solid-liquid separation is performed, the polymer solution is extracted from the coagulant tank and added to wastewater or the like. There is. Therefore, the polymer solution may be stored for a long period of time after preparation. At this time, the cohesive performance of the polymer solution prepared from the water for dilution whose water quality has deteriorated may deteriorate over time.

このように、凝集性能が低下した高分子溶液や、凝集性能が径時劣化した高分子溶液を用いて固液分離処理を行うと、最適注入率で注入したにも関わらず、十分な固液分離性能が得られない場合があった。 In this way, when the solid-liquid separation treatment is performed using a polymer solution with reduced aggregation performance or a polymer solution with deteriorated aggregation performance over time, sufficient solid-liquid liquid is injected even though the injection rate is optimal. Separation performance may not be obtained in some cases.

図2は、本実施形態の固液分離システムの構成例を示す図である。本実施形態の固液分離システム100は、改質装置10、溶解槽1、高分子溶液注入ポンプ2、凝集槽3、固液分離装置4及び制御装置5を備える。制御装置5は、測定部12と、制御部15とを備える。 FIG. 2 is a diagram showing a configuration example of the solid-liquid separation system of the present embodiment. The solid-liquid separation system 100 of the present embodiment includes a reformer 10, a dissolution tank 1, a polymer solution injection pump 2, a coagulation tank 3, a solid-liquid separation device 4, and a control device 5. The control device 5 includes a measurement unit 12 and a control unit 15.

改質装置10は、希釈用水を改質する装置である。希釈用水は、溶解槽1において高分子凝集剤を溶解させる溶媒として用いられる水である。改質装置10には、陽イオン交換樹脂が備えられている。希釈用水は、例えば、井戸水や工業用水が用いられる。陽イオン交換樹脂に希釈用水を接触させることによって、希釈用水中に含まれるカルシウム及びマグネシウムが除去される。また、図示を省略するが、改質装置10は、制御装置5と通信可能に接続される。改質装置10は、制御装置5から通知される制御信号に基づいて動作が制御される。 The reformer 10 is a device that reforms the water for dilution. The diluting water is water used as a solvent for dissolving the polymer flocculant in the dissolution tank 1. The reformer 10 is provided with a cation exchange resin. As the dilution water, for example, well water or industrial water is used. By bringing the diluting water into contact with the cation exchange resin, calcium and magnesium contained in the diluting water are removed. Further, although not shown, the reformer 10 is communicably connected to the control device 5. The operation of the reformer 10 is controlled based on the control signal notified from the control device 5.

改質装置10と溶解槽1との間には、希釈用水供給ポンプ13が備えられている。希釈用水供給ポンプ13は、制御装置5と通信可能に接続される。希釈用水供給ポンプ13は、制御装置5から通知される制御信号に基づいて希釈用水を溶解槽1に供給する。 A dilution water supply pump 13 is provided between the reformer 10 and the dissolution tank 1. The dilution water supply pump 13 is communicably connected to the control device 5. The dilution water supply pump 13 supplies the dilution water to the dissolution tank 1 based on the control signal notified from the control device 5.

溶解槽1は、改質装置10によって改質された希釈用水に、顆粒状の高分子凝集剤を溶解させ、高分子凝集剤の水溶液(以下「高分子溶液」という。)を調製するための水槽である。溶解槽1には、高分子溶液を攪拌する第1攪拌機11が備えられる。 The dissolution tank 1 is for dissolving a granular polymer flocculant in water for dilution modified by the reformer 10 to prepare an aqueous solution of the polymer flocculant (hereinafter referred to as "polymer solution"). It is a water tank. The dissolution tank 1 is provided with a first stirrer 11 for stirring the polymer solution.

高分子溶液注入ポンプ2は、溶解槽1において調製された高分子溶液を凝集槽3に注入する装置である。高分子溶液注入ポンプ2は制御装置5と通信可能に接続される。高分子溶液注入ポンプ2は、制御装置5の指令に基づいて高分子溶液の注入動作を行う。 The polymer solution injection pump 2 is a device for injecting the polymer solution prepared in the dissolution tank 1 into the coagulation tank 3. The polymer solution injection pump 2 is communicably connected to the control device 5. The polymer solution injection pump 2 performs a polymer solution injection operation based on a command from the control device 5.

凝集槽3は、高分子溶液注入ポンプ2によって注入された高分子溶液と被処理水とを混和させて被処理水中の固形物を凝集させるための水槽である。凝集槽3には、高分子溶液と被処理水との混和水を攪拌する第2攪拌機31が備えられる。 The coagulation tank 3 is a water tank for mixing the polymer solution injected by the polymer solution injection pump 2 with the water to be treated to coagulate the solid matter in the water to be treated. The coagulation tank 3 is provided with a second stirrer 31 that stirs the mixed water of the polymer solution and the water to be treated.

固液分離装置4は、高分子溶液の注入により固形物が凝集した被処理水(混和水)を固形分と水分とに分離する装置である。 The solid-liquid separation device 4 is a device that separates the water to be treated (mixed water) in which solids are aggregated by injecting a polymer solution into solids and water.

制御装置5は、改質装置10によって改質された希釈用水の水質を監視し、希釈用水の水質が低下した場合は、改質装置10から溶解槽1への希釈用水の供給を停止させる。 The control device 5 monitors the water quality of the dilution water reformed by the reformer 10, and if the water quality of the dilution water deteriorates, the supply of the dilution water from the reformer 10 to the dissolution tank 1 is stopped.

制御装置5は、測定部12と制御部15とを備えている。
測定部12は、改質装置10と溶解槽1との間にあって、改質後の希釈用水のカルシウム量、マグネシウム量または硬度の何れか1種以上を測定する測定装置である。より具体的には、測定部12には、希釈用水のカルシウム量を測定するカルシウム濃度計、希釈用水のマグネシウム量を測定するマグネシウム濃度計、希釈用水の硬度を測定する硬度計の何れか1種または2種以上が備えられている。特に測定部12は、希釈用水の2価のカルシウムイオン量を測定するカルシウムイオン濃度計、希釈用水の2価のマグネシウムイオン量を測定するマグネシウムイオン濃度計、希釈用水の硬度を測定する硬度計の何れか1種または2種以上が備えられていることが好ましい。
The control device 5 includes a measurement unit 12 and a control unit 15.
The measuring unit 12 is located between the reforming device 10 and the dissolution tank 1 and is a measuring device that measures one or more of the amount of calcium, the amount of magnesium, and the hardness of the diluted water after reforming. More specifically, the measuring unit 12 includes any one of a calcium concentration meter for measuring the amount of calcium in the water for dilution, a magnesium concentration meter for measuring the amount of magnesium in the water for dilution, and a hardness meter for measuring the hardness of the water for dilution. Or two or more types are provided. In particular, the measuring unit 12 is a calcium ion densitometer for measuring the divalent calcium ion amount of the diluting water, a magnesium ion densitometer for measuring the divalent magnesium ion amount of the diluting water, and a hardness meter for measuring the hardness of the diluting water. It is preferable that any one or two or more of them are provided.

制御部15は、測定部12による希釈用水の測定結果が閾値を超える場合に、改質装置10から溶解槽1への希釈用水の供給を停止させる。 The control unit 15 stops the supply of the dilution water from the reforming device 10 to the dissolution tank 1 when the measurement result of the dilution water by the measurement unit 12 exceeds the threshold value.

図3は、本実施形態における制御部15の機能構成の具体例を示す図である。本実施形態における制御部15は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御部15は、プログラムの実行によって通信部51、記憶部52、測定データ取得部53及び改質制御部54を備える装置として機能する。なお、制御部15の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 FIG. 3 is a diagram showing a specific example of the functional configuration of the control unit 15 in the present embodiment. The control unit 15 in the present embodiment includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a program. The control unit 15 functions as a device including a communication unit 51, a storage unit 52, a measurement data acquisition unit 53, and a modification control unit 54 by executing a program. All or part of each function of the control unit 15 may be realized by using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a storage device such as a hard disk built in a computer system. The program may be transmitted over a telecommunication line.

通信部51は通信インタフェースである。通信部51は、有線通信インタフェースであってもよいし、無線通信インタフェースであってもよい。通信部51は、改質装置10、測定部12、希釈用水供給ポンプ13、高分子溶液注入ポンプ2と通信可能に接続される。 The communication unit 51 is a communication interface. The communication unit 51 may be a wired communication interface or a wireless communication interface. The communication unit 51 is communicably connected to the reformer 10, the measurement unit 12, the dilution water supply pump 13, and the polymer solution injection pump 2.

記憶部52は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部52は、測定部12の測定データを記憶する。また、記憶部52には、希釈用水のカルシウム量、マグネシウム量、硬度の閾値が予め記憶されている。 The storage unit 52 is configured by using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 52 stores the measurement data of the measurement unit 12. Further, the storage unit 52 stores in advance the calcium amount, magnesium amount, and hardness thresholds of the water for dilution.

測定データ取得部53は、通信部51を介して測定部12から測定データを取得する。測定データ取得部53は取得した測定データを記憶部52に保存する。 The measurement data acquisition unit 53 acquires measurement data from the measurement unit 12 via the communication unit 51. The measurement data acquisition unit 53 stores the acquired measurement data in the storage unit 52.

改質制御部54は、改質装置10または希釈用水供給ポンプ13を制御する機能を有する。具体的には、改質制御部54は、測定部12による希釈用水の測定結果が閾値を超えた場合は、通信部51を介して、改質装置10の機能を停止させるか、あるいは、希釈用水供給ポンプ13を停止させる。これにより、溶解槽1への希釈用水の供給が停止される。 The reforming control unit 54 has a function of controlling the reforming device 10 or the water supply pump 13 for dilution. Specifically, when the measurement result of the water for dilution by the measuring unit 12 exceeds the threshold value, the reforming control unit 54 stops the function of the reforming device 10 or dilutes via the communication unit 51. The water supply pump 13 is stopped. As a result, the supply of dilution water to the dissolution tank 1 is stopped.

次に、本実施形態の固液分離システム100及び制御装置5の動作について説明する。 Next, the operations of the solid-liquid separation system 100 and the control device 5 of the present embodiment will be described.

まず、希釈用水を改質装置10に供給し、希釈用水を改質する。ここで、希釈用水の改質とは、希釈用水中のカルシウム量やマグネシウム量を低減することを意味する。また、希釈用水の改質には、希釈用水の硬度を低減することも含まれる。具体的には、希釈用水としては、井戸水または工業用水等が用いられる。また、改質装置10には、陽イオン交換樹脂が備えられている。改質装置10に供給された希釈用水は、陽イオン交換樹脂に接触させられる。このとき、希釈用水中のカルシウムやマグネシウムが陽イオン交換樹脂に吸着され、希釈用水中のカルシウム量やマグネシウム量が低減され、また、硬度も低減する。 First, the water for dilution is supplied to the reformer 10 to reform the water for dilution. Here, reforming the diluting water means reducing the amount of calcium and magnesium in the diluting water. Modification of the water for dilution also includes reducing the hardness of the water for dilution. Specifically, as the dilution water, well water, industrial water, or the like is used. Further, the reformer 10 is provided with a cation exchange resin. The diluting water supplied to the reformer 10 is brought into contact with the cation exchange resin. At this time, calcium and magnesium in the dilution water are adsorbed on the cation exchange resin, the amount of calcium and magnesium in the dilution water is reduced, and the hardness is also reduced.

次に、改質された希釈用水は、希釈用水供給ポンプ13によって溶解槽1に送られる。また、改質装置10から溶解槽1に供給される間で、希釈用水の水質が測定部12によって測定される。測定項目は、希釈用水中のカルシウム量、マグネシウム量または硬度のいずれか1種または2種以上である。希釈用水の測定結果は、制御装置5の制御部15に送られる。 Next, the modified water for dilution is sent to the dissolution tank 1 by the water supply pump 13 for dilution. Further, the water quality of the dilution water is measured by the measuring unit 12 while being supplied from the reformer 10 to the dissolution tank 1. The measurement item is any one or more of calcium amount, magnesium amount and hardness in the water for dilution. The measurement result of the water for dilution is sent to the control unit 15 of the control device 5.

溶解槽1に供給された改質後の希釈用水には、同じく溶解槽1に供給された高分子凝集剤が添加され、そして、第1攪拌機11によって希釈用水と高分子凝集剤とが攪拌混合される。高分子凝集剤は次第に希釈用水に溶解し、高分子溶液が形成される。 The polymer flocculant also supplied to the dissolution tank 1 is added to the reformed water for dilution supplied to the dissolution tank 1, and the water for dilution and the polymer flocculant are stirred and mixed by the first stirrer 11. Will be done. The polymer flocculant gradually dissolves in water for dilution to form a polymer solution.

調製された高分子溶液は、高分子溶液注入ポンプ2によって凝集槽3に供給される。
凝集槽3では、被処理水に高分子溶液が注入され、被処理水中の固形物が高分子溶液の凝集作用によって塊状に凝集される。そして、固形物が凝集された被処理水は固液分離装置4に送られる。
The prepared polymer solution is supplied to the coagulation tank 3 by the polymer solution injection pump 2.
In the coagulation tank 3, the polymer solution is injected into the water to be treated, and the solid matter in the water to be treated is agglomerated into a lump by the agglutination action of the polymer solution. Then, the water to be treated in which the solid matter is aggregated is sent to the solid-liquid separation device 4.

固液分離装置4では、凝集した固形物を有する被処理水が、水分と固形分とに分離される。 In the solid-liquid separation device 4, the water to be treated having the agglomerated solid matter is separated into water and solid content.

改質装置10における改質処理が良好に機能している場合は、希釈用水のカルシウム濃度、マグネシウム濃度、硬度は低い値に維持される。改質装置10において希釈用水が改質されることによって、希釈用水中のカルシウム量、マグネシウム量または硬度が低減される。これによりカルシウム濃度とマグネシウム濃度、硬度が閾値よりも低い希釈用水が、高分子凝集剤の溶解に用いられる。改質後の希釈用水に高分子凝集剤が溶解された高分子溶液は、その凝集性能が向上し、また、凝集性能の経時劣化も少なくなる。なお、高分子溶液の凝集性能とは、被処理水中の固形分の凝集能力を指す。凝集性能に優れた高分子溶液は、凝集性能が低い高分子溶液に比べて、少量を被処理水に添加することにより固形分を十分に凝集でき、かつ、固液分離後の水分中の固形分濃度が少なくなる。 When the reforming treatment in the reformer 10 is functioning well, the calcium concentration, magnesium concentration, and hardness of the diluting water are maintained at low values. By reforming the diluting water in the reformer 10, the amount of calcium, the amount of magnesium, or the hardness of the diluting water is reduced. As a result, diluting water whose calcium concentration, magnesium concentration, and hardness are lower than the threshold value is used for dissolving the polymer flocculant. A polymer solution in which a polymer flocculant is dissolved in water for dilution after modification has improved cohesive performance and less deterioration of coagulation performance over time. The agglutination performance of the polymer solution refers to the agglutination ability of solids in the water to be treated. Compared to polymer solutions with low aggregation performance, polymer solutions with excellent aggregation performance can sufficiently aggregate solids by adding a small amount to the water to be treated, and solids in water after solid-liquid separation. The component concentration decreases.

一方、改質装置10によって改質されたにもかかわらず、測定部12による測定結果が閾値を超えるまで水質が低下した希釈用水は、高分子溶液の凝集性能を低下させるとともに、高分子溶液の凝集性能の経時劣化が大きくなる。これは、希釈用水中に含まれていたカルシウムまたはマグネシウムが、高分子溶液の凝集性能に悪影響を及ぼすためと考えられる。 On the other hand, the water for dilution, which has been reformed by the reformer 10 but whose water quality has deteriorated until the measurement result by the measuring unit 12 exceeds the threshold value, lowers the aggregation performance of the polymer solution and of the polymer solution. The deterioration of the aggregation performance over time becomes large. It is considered that this is because calcium or magnesium contained in the water for dilution adversely affects the agglutination performance of the polymer solution.

水質が低下した希釈用水を溶解槽1に供給し続けた場合、凝集性能が低下し、かつ、凝集性能が経時劣化する高分子溶液が調製される。このような高分子溶液が固液分離処理に供されると、固液分離装置4から流出される水分中の固形分濃度が上昇して水質が悪化する。このような場合に制御部15は、測定部12から送信された希釈用水の測定結果を通信部51が取得する。取得された測定結果は、測定データ取得部53を経て記憶部52に送られる。そして、改質制御部54において、測定部12による希釈用水の測定結果が閾値を超えるかどうかを判断する。希釈用水の測定結果が閾値を超える場合は、改質制御部54は、通信部51を介して、改質装置10または希釈用水供給ポンプ13の作動を停止させる。これにより、高分子溶液の調製が中断され、高分子溶液の凝集性能の低下及び凝集性能の経時劣化が未然に防止される。 When the dilution water having deteriorated water quality is continuously supplied to the dissolution tank 1, a polymer solution in which the agglomeration performance is deteriorated and the agglomeration performance is deteriorated with time is prepared. When such a polymer solution is subjected to a solid-liquid separation treatment, the solid content concentration in the water flowing out from the solid-liquid separation device 4 increases and the water quality deteriorates. In such a case, the control unit 15 acquires the measurement result of the dilution water transmitted from the measurement unit 12 by the communication unit 51. The acquired measurement result is sent to the storage unit 52 via the measurement data acquisition unit 53. Then, the reforming control unit 54 determines whether or not the measurement result of the dilution water by the measuring unit 12 exceeds the threshold value. When the measurement result of the dilution water exceeds the threshold value, the reforming control unit 54 stops the operation of the reforming device 10 or the dilution water supply pump 13 via the communication unit 51. As a result, the preparation of the polymer solution is interrupted, and the deterioration of the aggregation performance of the polymer solution and the deterioration of the aggregation performance with time are prevented.

希釈用水の水質の悪化原因は、改質装置10に備えられた陽イオ交換樹脂の破過に伴うイオン交換能力の低下が主な原因と考えられるので、このような場合は陽イオン交換樹脂を再生すればよい。 It is considered that the main cause of the deterioration of the water quality of the dilution water is the decrease in the ion exchange capacity due to the breakage of the cation exchange resin provided in the reformer 10, so in such a case, the cation exchange resin is used. Just play it.

本実施形態の固液分離システム100及び制御装置5によれば、高分子溶液の凝集性能の低下を防止し、また、凝集性能の経時劣化を防止できるので、被処理水の固液分離性能の低下を抑制できる。 According to the solid-liquid separation system 100 and the control device 5 of the present embodiment, deterioration of the agglutination performance of the polymer solution can be prevented, and deterioration of the agglutination performance over time can be prevented, so that the solid-liquid separation performance of the water to be treated can be prevented. The decrease can be suppressed.

以上説明した少なくともひとつの実施形態によれば、希釈用水を改質する改質装置と、改質後の希釈用水のカルシウム量、マグネシウム量または硬度の何れか1種以上を測定する測定部と、測定部による希釈用水の測定結果が閾値を超える場合に、改質装置から溶解槽への希釈用水の供給を停止させる制御部とを持つことにより、希釈用水の水質によらず、高い固液分離性能を発揮する制御装置及び固液分離システムを提供できる。 According to at least one embodiment described above, a reformer for reforming the water for dilution, a measuring unit for measuring one or more of the amount of calcium, the amount of magnesium, and the hardness of the water for dilution after reforming. High solid-liquid separation regardless of the quality of the water for dilution by having a control unit that stops the supply of water for dilution from the reformer to the dissolution tank when the measurement result of the water for dilution by the measuring unit exceeds the threshold value. It is possible to provide a control device and a solid-liquid separation system that exhibit high performance.

希釈用水の水質として、カルシウム濃度、マグネシウム濃度、硬度が高分子溶液の凝集性能に及ぼす影響を評価した。使用した希釈用水を図4に示す。カルシウムとマグネシウムを高濃度で含み硬度が高い硬水として硬度281の地下水と、この地下水をイオン交換樹脂で処理したイオン交換水を対象とした。 The effects of calcium concentration, magnesium concentration, and hardness on the agglutination performance of the polymer solution were evaluated as the water quality of the water for dilution. The dilution water used is shown in FIG. Groundwater having a hardness of 281 as hard water containing a high concentration of calcium and magnesium and having a high hardness, and ion-exchanged water obtained by treating the groundwater with an ion-exchange resin were targeted.

高分子凝集剤(強カチオン性、分子量850万)をこれら2種類の希釈用水で溶解して濃度0.2%の高分子溶液をそれぞれ調製した。調製直後の高分子溶液を用いて以下の手順で凝集試験を行った。その後、常温での貯留を想定して28℃で1週間保管した後凝集試験を行った。さらに28℃で1週間(計2週間)保管した後凝集試験を行った。 A polymer flocculant (strongly cationic, molecular weight 8.5 million) was dissolved in these two types of water for dilution to prepare a polymer solution having a concentration of 0.2%. The agglutination test was carried out by the following procedure using the polymer solution immediately after preparation. Then, assuming storage at room temperature, storage at 28 ° C. for 1 week was followed by an agglutination test. After further storing at 28 ° C. for 1 week (2 weeks in total), an agglutination test was performed.

凝集試験は、下水処理場から採取した消化汚泥(濃度1.50%)に対して、高分子溶液を注入率1〜4%の範囲で120rpmで1分間撹拌した後、遠心分離機で1500Gで2分間遠心分離して得られた分離液の浮遊性物質濃度を測定した。 In the coagulation test, the polymer solution was stirred at 120 rpm for 1 minute at an injection rate of 1 to 4% with respect to the digested sludge (concentration 1.50%) collected from the sewage treatment plant, and then at 1500 G with a centrifuge. The concentration of suspended substances in the separation solution obtained by centrifugation for 2 minutes was measured.

浮遊性物質濃度が最も低くなる注入率をその高分子溶液の最適注入率として、比較評価した。結果を図5に示す。イオン交換水の最適注入率は貯留時間によらず2.0%で変わらなかったが、地下水は高分子溶液調製直後(貯留時間0週間)でも最適注入率が2.5%と0.5%高くなり、貯留時間1週間以上では3.0%の注入率が必要であった。 The injection rate at which the concentration of the floating substance was the lowest was compared and evaluated as the optimum injection rate of the polymer solution. The results are shown in FIG. The optimum injection rate of ion-exchanged water did not change at 2.0% regardless of the storage time, but the optimum injection rate of groundwater was 2.5% and 0.5% even immediately after the preparation of the polymer solution (storage time 0 weeks). It became high, and an injection rate of 3.0% was required for a storage time of 1 week or more.

このことから、地下水では、高分子溶液の凝集性に劣化が生じて、より多くの高分子凝集剤が必要となること、地下水を改質してカルシウムイオン、マグネシウムイオン、硬度を除去することでそれが防止できることが示唆された。すなわち地下水の改質によって高分子注入率を最大1.0%削減できる可能性が示唆された。 From this, in groundwater, the cohesiveness of the polymer solution deteriorates and more polymer coagulant is required. By modifying the groundwater to remove calcium ions, magnesium ions, and hardness, It was suggested that it could be prevented. That is, it was suggested that the polymer injection rate could be reduced by up to 1.0% by modifying the groundwater.

希釈用水の改質コストが高分子注入率の削減コストに見合うものかをシミュレータで評価した。DOW WATER & PROCESS SOLUTION製のWAVE(Water Appliarion Value)を使用してイオン交換法での改質コストを試算した。条件および結果を図6に示す。イオン交換法では1530円/日となり、高分子使用量削減効果の20400円/日の1/10以下であった。希釈用水の改質は低コストで高分子注入率を削減可能とわかった。 The simulator was used to evaluate whether the reforming cost of the dilution water was commensurate with the reduction cost of the polymer injection rate. The modification cost by the ion exchange method was estimated using WAVE (Water Appliation Value) manufactured by DOWN WATER & PROCESS SOLUTION. The conditions and results are shown in FIG. In the ion exchange method, it was 1530 yen / day, which was less than 1/10 of the polymer usage reduction effect of 20400 yen / day. It was found that the modification of the water for dilution can reduce the polymer injection rate at low cost.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

1…溶解槽、3…凝集槽、4…固液分離装置、5…制御装置、10…改質装置、12…測定部、15…制御部、100…固液分離システム。 1 ... dissolution tank, 3 ... coagulation tank, 4 ... solid-liquid separation device, 5 ... control device, 10 ... reformer, 12 ... measurement unit, 15 ... control unit, 100 ... solid-liquid separation system.

Claims (6)

希釈用水を改質する改質装置と、前記改質装置によって改質された前記希釈用水と高分子凝集剤とを混合して高分子溶液を調製する溶解槽と、前記高分子溶液を被処理水に注入して前記被処理水中の固形物を凝集させる凝集槽と、前記固形物が凝集した前記被処理水を前記固形物と水分とに分離する固液分離装置と、を備える固液分離システムの制御装置であって、
改質後の前記希釈用水のカルシウム量、マグネシウム量または硬度の何れか1種以上を測定する測定部と、
前記測定部による前記希釈用水の測定結果が閾値を超える場合に、前記改質装置から前記溶解槽への前記希釈用水の供給を停止させる制御部と、を備える、
制御装置。
A reforming device for reforming water for dilution, a dissolution tank for preparing a polymer solution by mixing the water for dilution modified by the reformer and a polymer flocculant, and the polymer solution to be treated Solid-liquid separation including a coagulation tank that is injected into water to aggregate the solid matter in the water to be treated, and a solid-liquid separation device that separates the solid matter to be treated, in which the solid matter is aggregated, into the solid matter and water. It is the control device of the system
A measuring unit that measures any one or more of the amount of calcium, magnesium, or hardness of the diluted water after modification, and
It is provided with a control unit for stopping the supply of the dilution water from the reformer to the dissolution tank when the measurement result of the dilution water by the measurement unit exceeds the threshold value.
Control device.
前記制御部は、前記希釈用水の測定結果が閾値を超える場合に、前記改質装置が希釈用水を改質する動作、又は改質後の希釈用水を前記溶解槽に供給する動作を抑止する、
請求項1に記載の制御装置。
When the measurement result of the dilution water exceeds the threshold value, the control unit suppresses the operation of the reformer to reform the dilution water or the operation of supplying the reformed dilution water to the dissolution tank.
The control device according to claim 1.
前記固液分離システムの前記改質装置に、前記希釈用水中のカルシウム又はマグネシウムを除去する陽イオン交換樹脂が備えられている、請求項1または請求項2に記載の制御装置。 The control device according to claim 1 or 2, wherein the reformer of the solid-liquid separation system is provided with a cation exchange resin that removes calcium or magnesium in the dilution water. 希釈用水を改質する改質装置と、
前記改質装置によって改質された前記希釈用水と高分子凝集剤とを混合して高分子溶液を調製する溶解槽と、
前記高分子溶液を被処理水に注入して前記被処理水中の固形物を凝集させる凝集槽と、
前記固形物が凝集した前記被処理水を前記固形物と水分とに分離する固液分離装置と、
改質後の前記希釈用水のカルシウム量、マグネシウム量または硬度の何れか1種以上を測定する測定部と、
前記測定部による前記希釈用水の測定結果が閾値を超える場合に、前記改質装置から前記溶解槽への前記希釈用水の供給を停止させる制御部と、
を備える、固液分離システム。
A reformer that reforms the water for dilution and
A dissolution tank that prepares a polymer solution by mixing the dilution water modified by the reformer and a polymer flocculant.
A coagulation tank in which the polymer solution is injected into water to be treated to agglomerate solid substances in the water to be treated,
A solid-liquid separator that separates the water to be treated, in which the solid matter is aggregated, into the solid matter and water.
A measuring unit that measures one or more of the amount of calcium, magnesium, or hardness of the diluted water after modification.
When the measurement result of the diluting water by the measuring unit exceeds the threshold value, the control unit for stopping the supply of the diluting water from the reformer to the dissolution tank.
A solid-liquid separation system.
前記制御部は、前記希釈用水の測定結果が閾値を超える場合に、前記改質装置が希釈用水を改質する動作、又は改質後の希釈用水を前記溶解槽に供給する動作を抑止する、
請求項4に記載の固液分離システム。
When the measurement result of the dilution water exceeds the threshold value, the control unit suppresses the operation of the reformer to reform the dilution water or the operation of supplying the reformed dilution water to the dissolution tank.
The solid-liquid separation system according to claim 4.
前記固液分離システムの前記改質装置に、前記希釈用水中のカルシウム又はマグネシウムを除去する陽イオン交換樹脂が備えられている、請求項4または請求項5に記載の固液分離システム。 The solid-liquid separation system according to claim 4 or 5, wherein the reformer of the solid-liquid separation system is provided with a cation exchange resin that removes calcium or magnesium in the dilution water.
JP2019122886A 2019-07-01 2019-07-01 Control device and solid-liquid separation system Pending JP2021007913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019122886A JP2021007913A (en) 2019-07-01 2019-07-01 Control device and solid-liquid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122886A JP2021007913A (en) 2019-07-01 2019-07-01 Control device and solid-liquid separation system

Publications (1)

Publication Number Publication Date
JP2021007913A true JP2021007913A (en) 2021-01-28

Family

ID=74199007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122886A Pending JP2021007913A (en) 2019-07-01 2019-07-01 Control device and solid-liquid separation system

Country Status (1)

Country Link
JP (1) JP2021007913A (en)

Similar Documents

Publication Publication Date Title
Chang et al. Precipitation removal of fluoride from semiconductor wastewater
JP5878619B2 (en) Sludge aggregation method and apparatus
JP5837694B2 (en) Sludge treatment method and treatment apparatus
CN108473346B (en) Wastewater treatment method and wastewater treatment system
JP4875128B2 (en) Solid matter separation system
JP2012045441A (en) Method and apparatus for dewatering organic sludge
JP4823552B2 (en) Livestock wastewater treatment method
JP6271462B2 (en) Waste water treatment apparatus and waste water treatment method
JP2021007913A (en) Control device and solid-liquid separation system
JP2006035166A (en) Sludge treatment method and sludge treatment apparatus
JP2013013851A5 (en)
JP7195809B2 (en) Controller and solid-liquid separation system
JP2007275790A (en) Sludge dewatering apparatus and sludge dewatering method
JP2015054284A (en) Water treatment system
JP2018001137A (en) Treatment method and treatment device of organic sludge
JP4079807B2 (en) Coagulation sedimentation equipment
JP6158048B2 (en) Water treatment system, water treatment method, water treatment control device, and water treatment control program
KR101031191B1 (en) Sludge cohesion apparatus
JP2005021742A (en) Flocculation and sedimentation apparatus and controlling method therefor
JP6632485B2 (en) Phosphorus recovery method and phosphorus recovery device
JP6813277B2 (en) Sludge dewatering equipment
JP4828378B2 (en) Powdered muddy water treatment agent, muddy water dewatering method, and muddy water volume reducing treatment device
JP2014121690A (en) Flocculated and precipitated activated sludge treatment system and method for operating the same
Brian et al. Enhanced dewatering with struvite recovery: pilot testing of AirPrex® technology at Miami’s South District WWTP
JP2016165719A (en) Sludge treatment system and sludge treatment method