JP2007275790A - Sludge dewatering apparatus and sludge dewatering method - Google Patents

Sludge dewatering apparatus and sludge dewatering method Download PDF

Info

Publication number
JP2007275790A
JP2007275790A JP2006106121A JP2006106121A JP2007275790A JP 2007275790 A JP2007275790 A JP 2007275790A JP 2006106121 A JP2006106121 A JP 2006106121A JP 2006106121 A JP2006106121 A JP 2006106121A JP 2007275790 A JP2007275790 A JP 2007275790A
Authority
JP
Japan
Prior art keywords
flocculant
sludge
separation liquid
concentration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006106121A
Other languages
Japanese (ja)
Other versions
JP4173899B2 (en
Inventor
Hisato Takeda
久人 竹田
Akihito Ibata
昭仁 井端
Akifumi Mitsui
昌文 三井
Toshihiko Ito
俊彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006106121A priority Critical patent/JP4173899B2/en
Priority to KR1020060071843A priority patent/KR20070100619A/en
Publication of JP2007275790A publication Critical patent/JP2007275790A/en
Application granted granted Critical
Publication of JP4173899B2 publication Critical patent/JP4173899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge dewatering apparatus and a sludge dewatering method which can sufficiently reduce the exhaust amount of dewatered/separated liquid produced in dewatering treatment of sludge. <P>SOLUTION: The sludge dewatering apparatus 10 is provided with: a flocculant solution preparing tank 2 where a flocculant and water are mixed to prepare a flocculant aqueous solution; an admixing part 3 where the flocculant aqueous solution from the flocculant solution preparing tank 2 and the sludge to be subjected to dewatering treatment are admixed; a dewatering means 4 where the admixture from the admixing part 3 is subjected to dewatering treatment; and a returning means L11 for returning at least a part of the dewatered-separated liquid separated from the admixture by the dewatering treatment in the dewatering means 4 to the flocculant solution preparing tank 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は汚泥脱水装置及び汚泥脱水方法に関する。   The present invention relates to a sludge dewatering device and a sludge dewatering method.

汚泥の脱水処理は、通常、汚泥に脱水助剤を添加して行う。脱水助剤としては高分子凝集剤及び無機凝集剤が挙げられ、これらのうち一方又は両方が汚泥に対して添加される。例えば、特許文献1には高分子凝集剤を用いて汚泥を脱水処理する方法が記載されている。   Sludge is usually dehydrated by adding a dehydrating aid to the sludge. Examples of the dehydration aid include a polymer flocculant and an inorganic flocculant, and one or both of these are added to the sludge. For example, Patent Document 1 describes a method of dewatering sludge using a polymer flocculant.

脱水助剤として使用される高分子凝集剤は、粉体又は質量濃度150〜400g/l程度のディスパージョン型もしくはエマルジョン型の液体である。汚泥中に高分子凝集剤を十分に分散させるため、高分子凝集剤は適当な濃度の水溶液として汚泥に添加される。高分子凝集剤の水溶液の質量濃度はアニオン系で1〜2g/l、カチオン系2〜3g/lとすることが一般的である。このように、高分子凝集剤を水で溶解又は希釈することにより高分子凝集剤の水溶液が調製される。
特公平7−51240号公報
The polymer flocculant used as the dehydrating aid is a powder or a dispersion type or emulsion type liquid having a mass concentration of about 150 to 400 g / l. In order to sufficiently disperse the polymer flocculant in the sludge, the polymer flocculant is added to the sludge as an aqueous solution having an appropriate concentration. The mass concentration of the aqueous solution of the polymer flocculant is generally 1 to 2 g / l for the anionic system and 2 to 3 g / l for the cationic system. In this way, an aqueous solution of the polymer flocculant is prepared by dissolving or diluting the polymer flocculant with water.
Japanese Patent Publication No. 7-51240

ところで、従来、所定濃度の高分子凝集剤の水溶液を調製するための水として、上水や井戸水などの清浄水が使用されており、これらの清浄水は汚泥の脱水処理プロセスの系外から導入されるものである。高分子凝集剤の水溶液を上述のような質量濃度とするためには、系外から清浄水を相当量導入する必要がある。   By the way, conventionally, clean water such as clean water and well water has been used as water for preparing an aqueous solution of a polymer flocculant having a predetermined concentration. These clean water is introduced from outside the sludge dewatering process. It is what is done. In order to obtain the above-described mass concentration of the polymer flocculant aqueous solution, it is necessary to introduce a considerable amount of clean water from outside the system.

また、汚泥に対する高分子凝集剤の添加量は、汚泥の固形物の全質量を基準として、1〜2質量%とすることが一般的である。このため、例えば、メタン発酵汚泥のように固形物の含有量が多い汚泥を脱水処理する場合、固形物の含有量に応じた所定量の高分子凝集剤が水溶液の状態で添加される。従って、高分子凝集剤の水溶液の使用量が増大するに伴い、当該水溶液を調製するために系外から導入される清浄水の量が増大してしまう。   Moreover, it is common that the addition amount of the polymer flocculent with respect to sludge shall be 1-2 mass% on the basis of the total mass of the solid substance of sludge. For this reason, for example, when dewatering sludge having a high solid content such as methane fermentation sludge, a predetermined amount of the polymer flocculant corresponding to the solid content is added in the form of an aqueous solution. Therefore, as the amount of the polymer flocculant aqueous solution used increases, the amount of clean water introduced from outside the system in order to prepare the aqueous solution increases.

例えば、固形物の質量濃度が50g/lである汚泥100mに対し、当該固形物の質量を基準として、高分子凝集剤の添加量が2質量%となるように高分子凝集剤を添加する場合において、汚泥に添加する高分子凝集剤水溶液の量について検討する。粉末の高分子凝集剤を水に溶解し、質量濃度2g/lの高分子凝集剤水溶液を調製すると仮定すると、高分子凝集剤水溶液の量は、
[100(m)×50(g/l)×2(質量%)]/2(g/l)=50(m
と算出される。このように、汚水100mに対して高分子凝集剤水溶液50mを添加する必要がある。従って、高分子凝集剤添加後の汚泥量は添加前の1.5倍となってしまう。
For example, a polymer flocculant is added to 100 m 3 of sludge having a solid matter mass concentration of 50 g / l so that the addition amount of the polymer flocculant is 2% by mass based on the mass of the solid matter. In this case, the amount of the polymer flocculant aqueous solution added to the sludge is examined. Assuming that the powdered polymer flocculant is dissolved in water to prepare a polymer flocculant aqueous solution having a mass concentration of 2 g / l, the amount of the polymer flocculant aqueous solution is
[100 (m 3 ) × 50 (g / l) × 2 (mass%)] / 2 (g / l) = 50 (m 3 )
Is calculated. Thus, it is necessary to add the polymeric flocculant solution 50 m 3 with respect to wastewater 100 m 3. Therefore, the amount of sludge after the addition of the polymer flocculant is 1.5 times that before the addition.

上記のように系外からの清浄水の導入量が増大すると汚泥脱水機に対する負荷が高くなるのみならず、汚泥脱水機の後段に設けられる排水処理設備の流量負荷も高くなってしまうという問題が生じる。   As described above, when the amount of clean water introduced from outside the system increases, not only the load on the sludge dewatering machine increases, but also the flow load of the wastewater treatment facility provided at the subsequent stage of the sludge dewatering machine increases. Arise.

本発明は、このような実情に鑑みてなされたものであり、汚泥の脱水処理で生じる脱水分離液の排出量を十分に低減することができる汚泥脱水装置及び汚泥脱水方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sludge dewatering apparatus and a sludge dewatering method that can sufficiently reduce the discharge amount of the dewatered separation liquid generated in the sludge dewatering process. And

本発明の汚泥脱水装置は、凝集剤と水とを混合して凝集剤水溶液を調製する凝集剤溶液調製槽と、凝集剤溶液調製槽からの凝集剤水溶液と脱水処理すべき汚泥とを混和する混和部と、混和部からの混和物を脱水処理する脱水手段と、脱水手段での脱水処理によって混和物から分離された脱水分離液の少なくとも一部を、凝集剤溶液調製槽に返送する返送手段とを備えることを特徴とする。   The sludge dewatering device of the present invention mixes a flocculant solution preparation tank for mixing a flocculant and water to prepare an aqueous flocculant solution, and the flocculant aqueous solution from the flocculant solution preparation tank and the sludge to be dehydrated. A mixing unit, a dehydrating unit for dehydrating the admixture from the mixing unit, and a returning unit for returning at least part of the dehydrated separation liquid separated from the admixture by the dehydrating process in the dehydrating unit to the flocculant solution preparation tank It is characterized by providing.

本発明の汚泥脱水装置によれば、脱水分離液の少なくとも一部が凝集剤溶液調製槽に返送され、凝集剤水溶液の調製に使用される。このため、本発明に係る汚泥脱水装置で生じる排水量につき、脱水分離液の返送量に相当する量を削減可能である。これにより、汚泥脱水装置の後段に設けられる排水処理設備の流量負荷を低減することができる。   According to the sludge dewatering apparatus of the present invention, at least a part of the dewatered separation liquid is returned to the flocculant solution preparation tank and used for the preparation of the flocculant aqueous solution. For this reason, the amount corresponding to the return amount of the dehydrated separation liquid can be reduced with respect to the amount of drainage generated in the sludge dewatering apparatus according to the present invention. Thereby, the flow load of the waste water treatment facility provided in the subsequent stage of the sludge dewatering device can be reduced.

本発明の汚泥脱水装置は、脱水分離液に含まれる浮遊物質を除去する除去手段を更に備えることが好ましい。浮遊物質の濃度が十分に低減された脱水分離液は、当該濃度が高い脱水分離液と比較して凝集剤水溶液の調製に使用する水として好適なためである。浮遊物質の濃度が十分に低減された脱水分離液を用いて調製された高分子凝集剤水溶液を使用すると、脱水汚泥の含水率を十分に低下させることができると共に浮遊物質(以下、「SS」という。)の回収率を十分に高くすることができる。   The sludge dewatering device of the present invention preferably further comprises a removing means for removing suspended solids contained in the dehydrated separation liquid. This is because the dehydrated separation liquid in which the concentration of suspended solids is sufficiently reduced is more suitable as water used for the preparation of the flocculant aqueous solution than the dehydrated separation liquid having a high concentration. Using an aqueous polymer flocculant solution prepared using a dehydrated separation liquid in which the concentration of suspended solids is sufficiently reduced, the water content of the dehydrated sludge can be sufficiently reduced and suspended solids (hereinafter “SS”). The recovery rate can be sufficiently increased.

また、本発明の汚泥脱水装置は、返送手段で返送される脱水分離液よりも浮遊物質の濃度が低い清浄水を凝集剤溶液調製槽に供給する清浄水供給手段と、凝集剤水溶液の調製に使用する清浄水供給手段からの清浄水と返送手段で返送される脱水分離液との混合比率を変化自在な混合比率可変手段とを更に備えることが好ましい。   Further, the sludge dewatering apparatus of the present invention is for preparing a clean water supply means for supplying clean water having a suspended solid concentration lower than the dehydrated separation liquid returned by the return means to the coagulant solution preparation tank, and for preparing the coagulant aqueous solution. It is preferable to further include a mixing ratio variable means capable of changing the mixing ratio of the clean water from the clean water supply means to be used and the dehydrated separation liquid returned by the return means.

このような清浄水供給手段及び混合比率可変手段を備える汚泥脱水装置によれば、返送される脱水分離液のSS濃度に応じて脱水分離液と清浄水とを混合することができる。これにより、凝集剤水溶液の調製に使用する水のSS濃度を所定値以下となるように混合比率を変更することが可能となる。   According to the sludge dewatering device provided with such clean water supply means and mixing ratio variable means, the dehydrated separation liquid and clean water can be mixed according to the SS concentration of the dehydrated separation liquid to be returned. This makes it possible to change the mixing ratio so that the SS concentration of water used for the preparation of the flocculant aqueous solution is a predetermined value or less.

また、本発明では、上記の混合比率可変手段を制御する混合比率制御手段を更に備えることが好ましい。これにより、凝集剤水溶液の調製に使用する水のSS濃度を所定値以下に制御することが容易となる。SS濃度が所定値以下である水を用いて調製された凝集剤水溶液を使用することで脱水汚泥の含水率を十分に低下させることができると共にSS物質の回収率を十分に高くすることができる。   In the present invention, it is preferable to further include a mixing ratio control means for controlling the mixing ratio variable means. Thereby, it becomes easy to control the SS concentration of water used for the preparation of the flocculant aqueous solution to a predetermined value or less. The water content of the dewatered sludge can be sufficiently reduced and the recovery rate of the SS substance can be sufficiently increased by using an aqueous flocculant solution prepared using water having an SS concentration of a predetermined value or less. .

本発明では、凝集剤溶液調製槽に返送される脱水分離液のSS濃度を測定する濃度測定手段を備えることが好ましい。このような濃度測定手段を備える汚泥脱水装置によれば、返送される脱水分離液のSS濃度を測定することが可能である。この測定結果に基づき、上記の混合比率可変手段及び混合比率制御手段を連動させることで、脱水分離液と清浄水との混合比率を自動的に制御することが容易となる。   In this invention, it is preferable to provide the density | concentration measurement means which measures SS density | concentration of the spin-drying | dehydration separation liquid returned to a flocculant solution preparation tank. According to the sludge dewatering device provided with such a concentration measuring means, it is possible to measure the SS concentration of the dehydrated separation liquid to be returned. Based on this measurement result, it becomes easy to automatically control the mixing ratio of the dehydrated separation liquid and the clean water by linking the mixing ratio variable means and the mixing ratio control means.

また、凝集剤溶液調製槽内において凝集剤水溶液の調製に使用される水のSS濃度は3000mg/l以下であることが好ましい。SS濃度が3000mg/l以下である水を用いて調製された凝集剤水溶液を使用することで脱水汚泥の含水率を十分に低下させることができると共にSS物質の回収率を十分に高くすることができる。   Further, the SS concentration of water used for the preparation of the aqueous flocculant solution in the flocculant solution preparation tank is preferably 3000 mg / l or less. By using an aqueous flocculant solution prepared using water having an SS concentration of 3000 mg / l or less, the moisture content of the dewatered sludge can be sufficiently lowered and the recovery rate of the SS substance can be sufficiently increased. it can.

本発明の汚泥脱水方法は、凝集剤と水とを混合して凝集剤水溶液を凝集剤溶液調製槽にて調製する凝集剤溶液調製工程と、凝集剤水溶液と脱水処理すべき汚泥とを混和して混和物を得る混和工程と、混和物を脱水処理する脱水工程と、脱水工程によって分離された脱水分離液の少なくとも一部を、凝集剤溶液調製槽に返送する返送工程とを備えることを特徴とする。   In the sludge dewatering method of the present invention, a flocculant and water are mixed to prepare a flocculant aqueous solution in a flocculant solution preparation tank, and the flocculant aqueous solution and the sludge to be dehydrated are mixed. A dehydrating process for dehydrating the admixture, and a returning process for returning at least a part of the dehydrated separation liquid separated by the dehydrating process to the flocculant solution preparation tank. And

本発明の汚泥脱水方法によれば、脱水分離液の少なくとも一部が凝集剤溶液調製槽に返送され、凝集剤水溶液の調製に使用される。このため、本発明に係る汚泥脱水方法で生じる脱水分離液の排水量につき、脱水分離液の返送量に相当する量を削減可能である。これにより、汚泥脱水装置の後段に設けられる排水処理設備の流量負荷を低減することができる。   According to the sludge dewatering method of the present invention, at least a part of the dewatered separation liquid is returned to the flocculant solution preparation tank and used for the preparation of the flocculant aqueous solution. For this reason, it is possible to reduce the amount corresponding to the return amount of the dehydrated separation liquid with respect to the amount of drainage of the dehydrated separation liquid generated by the sludge dewatering method according to the present invention. Thereby, the flow load of the waste water treatment facility provided in the subsequent stage of the sludge dewatering device can be reduced.

本発明によれば、汚泥の脱水処理で生じる脱水分離液の排出量を十分に低減することができる。このため、汚泥の脱水処理で生じる排水の浄化を行う排水処理設備の水量負荷を十分に軽減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the discharge | emission amount of the dehydration separation liquid produced by the dehydration process of sludge can fully be reduced. For this reason, it is possible to sufficiently reduce the water load of the wastewater treatment facility that purifies the wastewater generated by the sludge dewatering treatment.

以下、本発明の実施の形態について説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。   Embodiments of the present invention will be described below. In addition, the same code | symbol is used for the same element and the overlapping description is abbreviate | omitted.

<第1実施形態>
まず、図1を参照し、本発明に係る汚泥脱水装置の第1実施形態について説明する。図1に示す汚泥脱水装置10は、汚泥貯槽1、凝集剤溶液調製槽2、混和槽(混和部)3、脱水機(脱水手段)4、脱水分離液槽5、ポンプ、流量計などの測定器及びこれらの構成を連結するライン並びに運転条件を自動制御するための自動制御手段15を備えている。
<First Embodiment>
First, with reference to FIG. 1, 1st Embodiment of the sludge dehydration apparatus which concerns on this invention is described. A sludge dewatering device 10 shown in FIG. 1 is configured to measure a sludge storage tank 1, a flocculant solution preparation tank 2, a mixing tank (mixing section) 3, a dehydrator (dehydrating means) 4, a dehydrated separation liquid tank 5, a pump, a flow meter, and the like. And automatic control means 15 for automatically controlling the operating conditions.

汚泥貯槽1は、脱水処理すべき汚泥(以下、場合により「被処理汚泥」という。)を貯留するための槽である。凝集剤溶液調製槽2は被処理汚泥に添加する高分子凝集剤水溶液を調製するための槽である。混和槽3は被処理汚泥と高分子凝集剤水溶液とを混和するための槽である。脱水機4は混和槽3で得られた混和物を脱水処理して脱水分離液と脱水汚泥とに分離するための装置である。脱水分離液槽5は脱水機4で分離された脱水分離液を貯留するための槽である。   The sludge storage tank 1 is a tank for storing sludge to be dehydrated (hereinafter, sometimes referred to as “treated sludge”). The flocculant solution preparation tank 2 is a tank for preparing an aqueous polymer flocculant solution to be added to the treated sludge. The mixing tank 3 is a tank for mixing the treated sludge and the polymer flocculant aqueous solution. The dehydrator 4 is an apparatus for dehydrating the mixture obtained in the mixing tank 3 and separating it into a dehydrated separation liquid and dehydrated sludge. The dehydration / separation liquid tank 5 is a tank for storing the dehydration / separation liquid separated by the dehydrator 4.

汚泥貯槽1は、汚泥を汚泥貯槽1に供給するラインL1と、貯留されている被処理汚泥を混和槽3に移送するラインL2とを備えている。ラインL2は、被処理汚泥を混和槽3に供給するポンプP1及びラインL2内を流れる被処理汚泥の流量を測定する流量計F1を備えている。汚泥供給手段は、汚泥貯槽1、ラインL2並びにラインL2に設けられたポンプP1及び流量計F1により構成されている。   The sludge storage tank 1 includes a line L1 for supplying sludge to the sludge storage tank 1 and a line L2 for transferring stored sludge to the mixing tank 3. The line L2 includes a pump P1 that supplies the treated sludge to the mixing tank 3 and a flow meter F1 that measures the flow rate of the treated sludge that flows in the line L2. The sludge supply means includes a sludge storage tank 1, a line L2, and a pump P1 and a flow meter F1 provided in the line L2.

凝集剤溶液調製槽2は、攪拌機を備えており、高分子凝集剤と水とを混合攪拌できる構成となっている。また、凝集剤溶液調製槽2は、高分子凝集剤及び清浄水をそれぞれ汚泥脱水装置10に供給するラインL3及びラインL4と、調製された高分子凝集剤水溶液を混和槽3に供給するラインL5とを備えている。ラインL3は凝集剤溶液調製槽2に所定量の高分子凝集剤を供給する凝集剤供給器W1、ラインL4は供給する清浄水の流量を測定する流量計F3及び当該流量を調整する自動弁V2、ラインL5は高分子凝集剤水溶液を混和槽3に移送するポンプP4及びラインL5内を流れる当該水溶液の流量を測定する流量計F2をそれぞれ備えている。清浄水供給手段は、ラインL4並びにこれに設けられた自動弁V2及び流量計F3により構成されている。   The flocculant solution preparation tank 2 includes a stirrer and is configured to be able to mix and stir the polymer flocculant and water. The flocculant solution preparation tank 2 includes a line L3 and a line L4 for supplying the polymer flocculant and clean water to the sludge dewatering device 10, respectively, and a line L5 for supplying the prepared polymer flocculant aqueous solution to the mixing tank 3. And. Line L3 is a flocculant supplier W1 that supplies a predetermined amount of polymer flocculant to the flocculant solution preparation tank 2, line L4 is a flow meter F3 that measures the flow rate of the supplied clean water, and an automatic valve V2 that adjusts the flow rate. Line L5 includes a pump P4 for transferring the polymer flocculant aqueous solution to the mixing tank 3, and a flow meter F2 for measuring the flow rate of the aqueous solution flowing in the line L5. The clean water supply means is constituted by a line L4 and an automatic valve V2 and a flow meter F3 provided thereto.

凝集剤供給器W1は、ラインL3により供給される高分子凝集剤が粉体又は液体であるかに応じて好適な構成のものを用いればよい。高分子凝集剤が、粉体である場合は定量フィーダ及び重量計などを、液体である場合はレベル計、重量計及び流量計などを用いることができる。   The flocculant supply device W1 may have a suitable configuration depending on whether the polymer flocculant supplied through the line L3 is powder or liquid. When the polymer flocculant is a powder, a quantitative feeder and a weight meter can be used. When the polymer flocculant is a liquid, a level meter, a weight meter, a flow meter, and the like can be used.

混和槽3は、攪拌機を備えており、被処理汚泥と高分子凝集剤水溶液とを混合攪拌できる構成となっている。また、混和槽3は、被処理汚泥と高分子凝集剤水溶液との混和物を脱水機4に供給するラインL6を備えている。なお、被処理汚泥と高分子凝集剤水溶液とを混和できるものであれば、混和部としては槽に限定されず、例えば、ラインL2で移送される被処理汚泥に対して高分子凝集剤水溶液をラインL2中に直接添加してもよい。   The mixing tank 3 includes a stirrer and is configured to be able to mix and stir the sludge to be treated and the polymer flocculant aqueous solution. In addition, the mixing tank 3 includes a line L6 for supplying a mixture of the treated sludge and the polymer flocculant aqueous solution to the dehydrator 4. As long as the sludge to be treated and the polymer flocculant aqueous solution can be mixed, the mixing part is not limited to the tank, and for example, the polymer flocculant aqueous solution is added to the sludge to be treated transferred in the line L2. You may add directly in the line L2.

脱水機4は、混和物から分離された脱水分離液及び脱水汚泥をそれぞれ、脱水分離液槽5に移送するラインL7及び汚泥処理設備に移送するラインL8を備えている。脱水機4としては、あらゆる脱水機が適用可能であり、例えば、スクリュープレス脱水機、遠心脱水機、多重円板型脱水機、ベルトプレス脱水機、フィルタープレス脱水機、ロータリープレス脱水機などが挙げられる。これらの脱水機は1種を単独もしくは複数で又は2種以上を組み合わせて用いてもよい。   The dehydrator 4 includes a line L7 for transferring the dehydrated separated liquid and the dehydrated sludge separated from the admixture to the dehydrated separated liquid tank 5 and a line L8 for transferring them to the sludge treatment facility, respectively. As the dehydrator 4, any dehydrator can be applied, and examples thereof include a screw press dehydrator, a centrifugal dehydrator, a multiple disk dehydrator, a belt press dehydrator, a filter press dehydrator, a rotary press dehydrator, and the like. It is done. These dehydrators may be used alone or in combination of two or more.

脱水分離液槽5は、貯留されている脱水分離液を移送するラインL9と、脱水分離液を脱水分離液槽5に返送する循環ラインL10を備えている。ラインL9及び循環ラインL10にはそれぞれ、ポンプP2及びポンプP3が設けられている。   The dehydration / separation liquid tank 5 includes a line L <b> 9 for transferring the stored dehydration / separation liquid and a circulation line L <b> 10 for returning the dehydration / separation liquid to the dehydration / separation liquid tank 5. A pump P2 and a pump P3 are provided in the line L9 and the circulation line L10, respectively.

循環ラインL10は、脱水分離液のSS濃度を測定する濃度測定器(濃度測定手段)X1を備えている。濃度測定器X1としては、超音波、赤外線、マイクロ波及びレーザー光から選ばれる1つ又は2つ以上を組み合わせて利用した構成の濃度測定器を採用することができる。なお、濃度測定器X1の設置位置は、凝集剤溶液調製槽2に返送される脱水分離液のSS濃度を測定できる位置であれば、循環ラインL10に限定されない。濃度測定器X1は、例えば、脱水分離液槽5に直接設置してもよく、後述する返送ラインL11に設置してもよい。   The circulation line L10 includes a concentration measuring device (concentration measuring means) X1 that measures the SS concentration of the dehydrated separation liquid. As the concentration measuring device X1, a concentration measuring device having a configuration in which one or two or more selected from ultrasonic waves, infrared rays, microwaves, and laser beams are used in combination can be employed. The installation position of the concentration measuring device X1 is not limited to the circulation line L10 as long as the SS concentration of the dehydrated separation liquid returned to the flocculant solution preparation tank 2 can be measured. For example, the concentration measuring device X1 may be installed directly in the dehydrated separation liquid tank 5 or may be installed in a return line L11 described later.

ポンプP2によって脱水分離液槽5に貯留されている脱水分離液が排出される。ポンプP2から吐出される脱水分離液の一部又は全量が凝集剤溶液調製槽2に移送され、凝集剤溶液調製槽2に移送されない脱水分離液は排水処理設備へと移送される。   The dehydrated separation liquid stored in the dehydrated separation liquid tank 5 is discharged by the pump P2. Part or all of the dehydrated separation liquid discharged from the pump P2 is transferred to the flocculant solution preparation tank 2, and the dehydration separation liquid that is not transferred to the flocculant solution preparation tank 2 is transferred to a wastewater treatment facility.

返送ラインL11は、ポンプP2から吐出される脱水分離液の少なくとも一部を凝集剤溶液調製槽2に返送するラインである。本実施形態において返送手段は、返送ラインL11及びポンプP2によって構成されている。   The return line L11 is a line that returns at least a part of the dehydrated separation liquid discharged from the pump P2 to the flocculant solution preparation tank 2. In this embodiment, the return means is constituted by a return line L11 and a pump P2.

返送ラインL11の一端はラインL9のポンプP2の吐出側と接続されており、他の一端は凝集剤溶液調製槽2に接続されている。返送ラインL11は返送する脱水分離液の流量を測定する流量計F4及び当該流量を調整する自動弁V1を備えている。   One end of the return line L11 is connected to the discharge side of the pump P2 of the line L9, and the other end is connected to the flocculant solution preparation tank 2. The return line L11 includes a flow meter F4 for measuring the flow rate of the dehydrated separation liquid to be returned and an automatic valve V1 for adjusting the flow rate.

自動制御手段(混合比率制御手段)15は、凝集剤溶液調製槽2への清浄水の供給量と脱水分離液の返送量とを自動的に調整するためのものである。自動制御手段15によって凝集剤溶液調製槽2内の高分子凝集剤水溶液の調製に使用する水のSS濃度が好適な範囲内となるように調整される。   The automatic control means (mixing ratio control means) 15 is for automatically adjusting the supply amount of clean water to the flocculant solution preparation tank 2 and the return amount of the dehydrated separation liquid. The SS concentration of water used for preparing the polymer flocculant aqueous solution in the flocculant solution preparation tank 2 is adjusted by the automatic control means 15 to be within a suitable range.

自動制御手段15は、流量計F3、流量計F4及び濃度測定器X1で測定されるそれぞれの測定値を受信するデータ受信部16と、データ受信部16で受信された各測定値に基づき、自動弁V2及び自動弁V1の開度をそれぞれ調節する指示を出力する指示出力部17とを有する。自動制御手段15は、例えば、ECU(Electric Control Unit)等のマイクロコンピュータのハードウェア及びソフトウェアを利用して構成されている。混合比率可変手段は、自動弁V1及び自動弁V2により構成されている。   The automatic control means 15 is based on the data receiving unit 16 that receives the measurement values measured by the flow meter F3, the flow meter F4, and the concentration measuring device X1, and based on each measurement value received by the data receiving unit 16, And an instruction output unit 17 that outputs instructions for adjusting the opening degrees of the valve V2 and the automatic valve V1, respectively. The automatic control means 15 is configured using, for example, microcomputer hardware and software such as an ECU (Electric Control Unit). The mixing ratio variable means includes an automatic valve V1 and an automatic valve V2.

以下、汚泥脱水装置10で行われる脱水処理の方法について説明するが、その説明に先立ち、汚泥脱水装置10に供給される汚泥、高分子凝集剤及び清浄水について説明する。   Hereinafter, although the method of the dehydration process performed with the sludge dewatering apparatus 10 is demonstrated, the sludge, polymer flocculant, and clean water supplied to the sludge dewatering apparatus 10 are demonstrated prior to the description.

ラインL1を通じて汚泥貯槽1に供給される汚泥としては、有機汚泥及び無機汚泥が挙げられ、例えば、有機汚泥としてはし尿、下水汚泥、食品・化学・紙パルプ工場等から排出される汚泥などが挙げられる。   Examples of the sludge supplied to the sludge storage tank 1 through the line L1 include organic sludge and inorganic sludge. Examples of the organic sludge include human waste, sewage sludge, sludge discharged from food / chemical / paper pulp mills, and the like. It is done.

汚泥脱水装置10によって脱水処理をする汚泥としては、固形物の質量濃度が20〜300g/l(より好ましくは50〜100g/l)のものが好適である。   As the sludge to be dehydrated by the sludge dewatering apparatus 10, a solid material having a mass concentration of 20 to 300 g / l (more preferably 50 to 100 g / l) is suitable.

ラインL3を通じて凝集剤溶液調製槽2に供給する高分子凝集剤の種類としては、アニオン系及びカチオン系が挙げられる。アニオン系高分子凝集剤として、例えば、アクリルアミド、アクリル酸ソーダ共重合物などが挙げられる。カチオン系高分子凝集剤として、例えば、ポリジシアンジアミド系、ポリジアリルアミン系、ポリアミン系等の共重合物及びジシアンジアミドとホルムアルデヒドとの重縮合物などが挙げられる。これらの高分子凝集剤は、粉体又は液体のいずれであってもよい。液体の高分子凝集剤としては、質量濃度150〜400g/l程度のディスパージョン型もしくはエマルジョン型のものが挙げられる。   Examples of the type of polymer flocculant supplied to the flocculant solution preparation tank 2 through the line L3 include anionic and cationic systems. Examples of the anionic polymer flocculant include acrylamide and sodium acrylate copolymer. Examples of cationic polymer flocculants include polydicyandiamide-based, polydiallylamine-based, polyamine-based copolymers, and polycondensates of dicyandiamide and formaldehyde. These polymer flocculants may be either powder or liquid. Examples of the liquid polymer flocculant include a dispersion type or emulsion type having a mass concentration of about 150 to 400 g / l.

ラインL4を通じて凝集剤溶液調製槽2に供給する清浄水は、脱水分離液を希釈してこれを高分子凝集剤水溶液の調製に使用し得る程度にSS濃度を低減するために使用される。従って、清浄水のSS濃度は、返送ラインL11で返送される脱水分離液のそれよりも低い必要がある。上記の用途で用いられるため、清浄水としてはSS濃度及び蒸発残留物濃度(以下、「TS濃度」という。)がより低く且つ一定に保たれているものが好ましく、例えば、上水、井戸水及び工水などが好適である。   The clean water supplied to the flocculant solution preparation tank 2 through the line L4 is used to dilute the dehydrated separation liquid and reduce the SS concentration to the extent that it can be used for the preparation of the polymer flocculant aqueous solution. Therefore, the SS concentration of clean water needs to be lower than that of the dehydrated separation liquid returned by the return line L11. Since it is used in the above-mentioned applications, it is preferable that clean water has a lower SS concentration and evaporation residue concentration (hereinafter referred to as “TS concentration”) and is kept constant. For example, clean water, well water, Industrial water is suitable.

次に、汚泥の脱水処理の方法について詳細に説明する。   Next, the method of sludge dehydration will be described in detail.

汚泥貯槽1に貯留された汚泥は、ポンプP1によってラインL2を通じて被処理汚泥として混和槽3に移送される。ポンプP1の吐出量は流量計F1により測定し、設定した値となるようにポンプP1のインバータにより制御される。   The sludge stored in the sludge storage tank 1 is transferred to the mixing tank 3 as a treated sludge through the line L2 by the pump P1. The discharge amount of the pump P1 is measured by the flow meter F1, and is controlled by the inverter of the pump P1 so as to become a set value.

ラインL3及びラインL4を通じ、それぞれ高分子凝集剤及び清浄水が凝集剤溶液調製槽2に供給される。また、凝集剤溶液調製槽2には返送ラインL11を通じて脱水分離液槽5から脱水分離液が供給される。凝集剤溶液調製槽2において高分子凝集剤と、清浄水及び脱水分離液とが混合され、高分子凝集剤水溶液が調製される(凝集剤溶液調製工程)。   The polymer flocculant and clean water are supplied to the flocculant solution preparation tank 2 through the line L3 and the line L4, respectively. Further, the dehydrating / separating liquid is supplied from the dehydrating / separating liquid tank 5 through the return line L11 to the flocculant solution preparation tank 2. In the flocculant solution preparation tank 2, the polymer flocculant, clean water, and dehydrated separation liquid are mixed to prepare an aqueous polymer flocculant solution (flocculant solution preparation step).

高分子凝集剤水溶液の質量濃度は、アニオン系で1〜2g/l、カチオン系で2〜3g/lとなるように調整することが好ましい。   The mass concentration of the aqueous polymer flocculant solution is preferably adjusted to be 1 to 2 g / l for the anionic system and 2 to 3 g / l for the cationic system.

凝集剤溶液調製槽2で調整された高分子凝集剤水溶液は、ポンプP4によってラインL5を通じて混和槽3に移送される。ポンプP4の吐出量は流量計F2により測定し、設定した値となるようにポンプP4のインバータにより制御される。なお、ポンプP4の吐出量は、高分子凝集剤水溶液に含まれる高分子凝集剤(乾燥状態)の質量が被処理汚泥の固形物の質量を基準として、1〜2質量%となるように設定することが好ましい。混和槽3において、被処理汚泥の固形物に対する高分子凝集剤の質量が1質量%未満であると脱水汚泥の含水率を十分に低くすることが困難となる傾向がある。他方、2質量%を越えて高分子凝集剤を添加することもできるが経済性の観点から上限を2質量%とすることが好ましい。   The polymer flocculant aqueous solution adjusted in the flocculant solution preparation tank 2 is transferred to the mixing tank 3 through the line L5 by the pump P4. The discharge amount of the pump P4 is measured by the flow meter F2, and is controlled by the inverter of the pump P4 so as to become a set value. The discharge amount of the pump P4 is set so that the mass of the polymer flocculant (dried state) contained in the polymer flocculant aqueous solution is 1 to 2% by mass based on the mass of the solid matter to be treated. It is preferable to do. In the mixing tank 3, when the mass of the polymer flocculant with respect to the solid matter of the sludge to be treated is less than 1% by mass, it tends to be difficult to sufficiently reduce the water content of the dewatered sludge. On the other hand, the polymer flocculant can be added in excess of 2% by mass, but the upper limit is preferably 2% by mass from the viewpoint of economy.

混和槽3において被処理汚泥と高分子凝集剤水溶液とが混和される(混和工程)。混和工程においては、脱水汚泥の含水率をより低減する観点から、無機凝集剤を添加して混和物を調製してもよい。無機凝集剤として、例えば、鉄系及びアルミ系などのものが挙げられる。無機凝集剤を添加する場合は水酸化ナトリウム等のpH調整剤を更に添加して混和物のpHを好適な値に調整することが好ましい。   In the mixing tank 3, the treated sludge and the polymer flocculant aqueous solution are mixed (mixing step). In the mixing step, from the viewpoint of further reducing the water content of the dewatered sludge, an inorganic flocculant may be added to prepare a mixture. Examples of the inorganic flocculant include iron-based and aluminum-based ones. When adding an inorganic flocculant, it is preferable to adjust the pH of the mixture to a suitable value by further adding a pH adjusting agent such as sodium hydroxide.

なお、無機凝集剤の添加は、混和工程で行う場合に限られるものではなく、混和される以前の被処理汚泥又は混和後の被処理汚泥に対して無機凝集剤を添加してもよい。また、無機凝集剤を添加して脱水処理を行う場合の脱水機4としては、例えば、フィルタープレス、スクリュープレス又はベルトプレス等が好ましい。   The addition of the inorganic flocculant is not limited to the case of being performed in the mixing step, and the inorganic flocculant may be added to the treated sludge before being mixed or the treated sludge after being mixed. In addition, as the dehydrator 4 when the inorganic flocculant is added to perform the dehydration treatment, for example, a filter press, a screw press, a belt press, or the like is preferable.

混和工程で得られた混和物は、ラインL6を介して脱水機4に移送される。混和物は脱水機4による脱水処理によって脱水分離液と脱水汚泥とに分離される(脱水工程)。脱水処理によって分離された脱水分離液はラインL7を介して脱水分離液槽5に移送される。他方、混和物から分離された脱水汚泥はラインL8を介して汚泥処理設備に移送される。汚泥処理設備において脱水汚泥の堆肥化や炭化又は焼却といった処理が行われる。   The admixture obtained in the mixing step is transferred to the dehydrator 4 via the line L6. The admixture is separated into a dehydrated separation liquid and dehydrated sludge by a dehydration process by the dehydrator 4 (dehydration process). The dehydrated separation liquid separated by the dehydration treatment is transferred to the dehydrated separation liquid tank 5 via the line L7. On the other hand, the dewatered sludge separated from the admixture is transferred to the sludge treatment facility via the line L8. Processing such as composting, carbonization or incineration of dewatered sludge is performed in the sludge treatment facility.

脱水分離液槽5に貯留された脱水分離液は、返送ラインL11を介して凝集剤溶液調製槽2に返送される(返送工程)。凝集剤溶液調製槽2に返送する脱水分離液の量は、流量計F4により測定され、自動弁V1により設定された量に調整される。   The dehydrated separation liquid stored in the dehydrated separation liquid tank 5 is returned to the flocculant solution preparation tank 2 via the return line L11 (returning step). The amount of the dehydrated separation liquid to be returned to the flocculant solution preparation tank 2 is measured by the flow meter F4 and adjusted to the amount set by the automatic valve V1.

凝集剤溶液調製槽2に導入される脱水分離液及び清浄水の量の比率は、脱水分離液のSS濃度に基づき設定することができる。具体的には、脱水分離液のSS濃度が所定値以下の場合は、高分子凝集剤水溶液の調製に必要な水の全量を脱水分離液で賄うことが可能である。他方、脱水分離液のSS濃度が所定値を超える場合は、高分子凝集剤水溶液の調製に使用する水(以下、「高分子凝集剤溶解水」)のSS濃度が所定値以下となるように、ラインL4を通じて凝集剤溶液調製槽2に清浄水を供給する。凝集剤溶液調製槽2に供給する清浄水の量は、流量計F3により測定され、自動弁V2により設定された量に調整される。   The ratio of the amount of dehydrated separation liquid and clean water introduced into the flocculant solution preparation tank 2 can be set based on the SS concentration of the dehydrated separation liquid. Specifically, when the SS concentration of the dehydrated separation liquid is equal to or lower than a predetermined value, it is possible to cover the entire amount of water necessary for preparing the polymer flocculant aqueous solution with the dehydrated separation liquid. On the other hand, when the SS concentration of the dehydrated separation liquid exceeds a predetermined value, the SS concentration of water used for preparing the polymer flocculant aqueous solution (hereinafter referred to as “polymer flocculant-dissolved water”) is less than the predetermined value. Then, clean water is supplied to the flocculant solution preparation tank 2 through the line L4. The amount of clean water supplied to the flocculant solution preparation tank 2 is measured by the flow meter F3 and adjusted to the amount set by the automatic valve V2.

高分子凝集剤溶解水のSS濃度の上記所定値は、脱水処理する汚泥の特性に応じて決定することが好ましいが、例えば、汚泥がメタン発酵汚泥の場合、経験的に3000mg/lとすることができる。また、高分子凝集剤溶解水は、TS濃度9000mg/l以下、塩素イオン濃度10000mg/l以下、アンモニアイオン濃度4000mg/l以下、鉄イオン濃度(Fe2+及びFe3+の総量)100mg/l以下、pH6〜8であることが好ましい。 The predetermined value of the SS concentration of the polymer flocculant-dissolved water is preferably determined according to the characteristics of the sludge to be dehydrated. For example, when the sludge is methane fermentation sludge, it is empirically set to 3000 mg / l. Can do. The polymer flocculant-dissolved water has a TS concentration of 9000 mg / l or less, a chlorine ion concentration of 10,000 mg / l or less, an ammonia ion concentration of 4000 mg / l or less, an iron ion concentration (total amount of Fe 2+ and Fe 3+ ) of 100 mg / l or less, The pH is preferably 6-8.

高分子凝集剤溶解水に含まれる浮遊物質や塩素イオン、アンモニアイオン及び鉄イオンなどの溶解物並びに高分子凝集剤溶解水のpHは、汚泥の脱水処理において脱水汚泥の含水率及びSSの回収率に影響を与えるものである。このため、各濃度又はpHが上記範囲外である高分子凝集剤溶解水を用いた場合、脱水性が悪化する傾向がある。   The suspended solids contained in the polymer flocculant-dissolved water, the dissolved matter such as chlorine ions, ammonia ions and iron ions, and the pH of the polymer flocculant-dissolved water are the water content of the dewatered sludge and the SS recovery rate in the sludge dewatering treatment. It will affect. For this reason, when the polymer flocculant-dissolved water having each concentration or pH outside the above range is used, the dewaterability tends to deteriorate.

汚泥脱水装置10で汚泥の脱水処理を開始するにあたり、予め脱水処理対象の汚泥の脱水処理を行って脱水分離液の特性を測定する工程(脱水分離液測定工程)を行うことが好ましい。この結果に基づき、汚泥脱水装置10に供する汚泥の性質に合わせて高分子凝集剤溶解水のSS濃度の所定値を決定することができる。測定すべき脱水分離液の特性として、SS濃度、TS濃度、塩素イオン濃度、アンモニアイオン濃度、鉄イオン濃度及びpHなどが挙げられる。例えば、脱水分離液測定工程において、種々の運転条件のメタン発酵槽から生じる汚泥の脱水処理を行い、脱水分離液のSS濃度とTS濃度との関係及び脱水処理された脱水汚泥の含水率を測定する。この結果に基づき、SS濃度の所定値を決定すればよい。   When the sludge dewatering apparatus 10 starts the sludge dewatering process, it is preferable to perform a process of dewatering the sludge to be dehydrated in advance and measuring the characteristics of the dewatered separation liquid (dehydrated separation liquid measuring process). Based on this result, the predetermined value of the SS concentration of the polymer flocculant-dissolved water can be determined in accordance with the property of the sludge provided to the sludge dewatering device 10. The characteristics of the dehydrated separation liquid to be measured include SS concentration, TS concentration, chlorine ion concentration, ammonia ion concentration, iron ion concentration and pH. For example, in the dehydration separation liquid measurement process, the sludge generated from the methane fermentation tank under various operating conditions is dehydrated, and the relationship between the SS concentration and TS concentration of the dehydration separation liquid and the moisture content of the dewatered dewatered sludge are measured. To do. Based on this result, a predetermined value of the SS concentration may be determined.

図2にメタン発酵汚泥を脱水処理して得た脱水分離液のSS濃度とTS濃度との関係を例示する。これらの値はほぼ比例関係にあり、このメタン発酵汚泥の場合、SS濃度の値に5000〜6000を加えた値がTS濃度の値となることがわかる。このように、脱水分離液測定工程を行って予め脱水分離液のTS濃度とSS濃度との関係を調べることで、濃度測定器X1によりSS濃度を監視すればTS濃度を推定することができる。   FIG. 2 illustrates the relationship between the SS concentration and the TS concentration of the dehydrated separation liquid obtained by dehydrating methane fermentation sludge. These values are in a substantially proportional relationship, and in the case of this methane fermentation sludge, it can be seen that a value obtained by adding 5000 to 6000 to the SS concentration value becomes the TS concentration value. In this way, the TS concentration can be estimated by monitoring the SS concentration with the concentration measuring device X1 by conducting the dehydration separation liquid measurement step and examining the relationship between the TS concentration and the SS concentration of the dehydration separation liquid in advance.

なお、SS濃度及びTS濃度はいずれも汚泥の脱水性などに影響を与えるものであるが、SS濃度の測定結果からTS濃度の値を推定する理由は、TS濃度の自動、連続測定が困難なためである。   The SS concentration and TS concentration both affect the dewaterability of sludge. The reason for estimating the TS concentration value from the SS concentration measurement result is that automatic and continuous measurement of the TS concentration is difficult. Because.

更に、汚泥脱水装置10に供される汚泥の性質が経時的に変化し、例えば、脱水分離液のTS濃度のみが上昇した場合、SS濃度を監視する濃度測定器X1ではその経時的な変化を捉えることができない。脱水分離液のTS濃度の上昇に伴い、高分子凝集剤溶解水のTS濃度も上昇するため、汚泥の脱水性などが低下してしまう。   Furthermore, when the property of the sludge provided to the sludge dewatering device 10 changes over time, for example, when only the TS concentration of the dewatered separation liquid rises, the concentration measuring device X1 that monitors the SS concentration shows the change over time. I can't catch it. As the TS concentration of the dewatered separation liquid increases, the TS concentration of the polymer flocculant-dissolved water also increases, so that the dewaterability of sludge decreases.

上記のような事態を防止するため、脱水分離液のTS濃度を測定する工程(TS濃度測定工程)を適宜行うことが好ましい。このTS濃度測定工程で測定されるTS濃度と濃度測定器X1によるSS濃度に基づき、SS濃度の所定値を再設定することで、好適な条件で脱水処理を行うことができる。   In order to prevent the above situation, it is preferable to appropriately perform a step of measuring the TS concentration of the dehydrated separation liquid (TS concentration measuring step). By resetting a predetermined value of the SS concentration based on the TS concentration measured in the TS concentration measurement step and the SS concentration by the concentration measuring device X1, dehydration can be performed under suitable conditions.

以上、第1実施形態に係る汚泥脱水装置ついて説明したが、汚泥脱水装置10としては以下のような形態であってもよい。例えば、自動制御手段15につき、流量計F3、流量計F4及び濃度測定器X1からの測定値に加え、凝集剤供給器W1、流量計F1及び流量計F2からの測定値がデータ受信部16で受信される構成としてもよい。そして、データ受信部16で受信された各測定値に基づき、指示出力部17から自動弁V2及び自動弁V1の開度、並びに、凝集剤供給器W1、ポンプP1、ポンプP2、ポンプP3及びポンプ4の吐出量を設定する構成としてもよい。   Although the sludge dewatering apparatus according to the first embodiment has been described above, the sludge dewatering apparatus 10 may have the following form. For example, for the automatic control means 15, in addition to the measured values from the flow meter F3, the flow meter F4 and the concentration measuring device X1, the measured values from the coagulant supply device W1, the flow meter F1 and the flow meter F2 are received by the data receiving unit 16. It is good also as a structure received. And based on each measured value received by the data receiving unit 16, the opening degree of the automatic valve V2 and the automatic valve V1 from the instruction output unit 17, the flocculant supply device W1, the pump P1, the pump P2, the pump P3, and the pump A configuration may be adopted in which a discharge amount of 4 is set.

また、上記実施形態は自動弁V1,V2により構成される混合比率可変手段を自動制御する構成であるが、自動弁の代わりに手動弁を用い、これらを手動制御することで脱水分離液と清浄水との混合比率を制御する構成としてもよい。   Moreover, although the said embodiment is a structure which controls automatically the mixing ratio variable means comprised by the automatic valves V1 and V2, it uses a manual valve instead of an automatic valve, and these are manually controlled, and it is clean with a dehydration separation liquid. It is good also as a structure which controls the mixing ratio with water.

<第2実施形態>
図3を参照し、本発明に係る汚泥脱水装置の第2実施形態について説明する。図3に示す汚泥脱水装置20は、脱水分離液に含まれる浮遊物質を除去するための除去手段として沈殿槽7を備え、更にこれの後段に沈殿分離液槽9を備える点において第1実施形態に係る汚泥脱水装置10と相違する。汚泥脱水装置20は、汚泥脱水装置10のラインL9のポンプP2の後に沈殿槽7及び沈殿分離液槽9が設置された構成となっている。沈殿槽7及び沈殿分離液槽9を備えることに伴い、ポンプの設置位置及び各構成を連結するラインについても汚泥脱水装置10と相違する。以下、これらの相違点及びこれに由来する本実施形態の作用について説明する。
Second Embodiment
With reference to FIG. 3, 2nd Embodiment of the sludge dehydration apparatus which concerns on this invention is described. The sludge dewatering device 20 shown in FIG. 3 includes a precipitation tank 7 as a removing means for removing floating substances contained in the dewatered separation liquid, and further includes a precipitation separation liquid tank 9 in the subsequent stage. It differs from the sludge dewatering apparatus 10 which concerns on this. The sludge dewatering device 20 has a configuration in which the sedimentation tank 7 and the sediment separation liquid tank 9 are installed after the pump P2 of the line L9 of the sludge dewatering apparatus 10. Along with the provision of the sedimentation tank 7 and the sediment separation liquid tank 9, the installation position of the pump and the line connecting the components are also different from the sludge dewatering device 10. Hereinafter, these differences and the operation of the present embodiment derived therefrom will be described.

沈殿槽7は、脱水分離液槽5の後段に設けられている。ポンプP2から吐出される脱水分離液がラインL9aを通じて沈殿槽7に供給される。沈殿槽7は、底部に沈殿した汚泥を掻き寄せるための汚泥掻寄機18と、掻き寄せられた汚泥を汚泥貯槽1に返送するラインL12と、沈殿槽7で処理された脱水分離液を沈殿分離液槽9に移送するラインL9bとを備えている。沈殿槽7において脱水分離液に含まれる浮遊物質を沈降及び濃縮させ、これをポンプP5により引抜き、汚泥貯槽1に返送する。このように脱水分離液のSS濃度を低減することができる。汚泥貯槽1に返送された汚泥は、再度脱水処理に供される。   The settling tank 7 is provided in the subsequent stage of the dehydrated separation liquid tank 5. The dehydrated separation liquid discharged from the pump P2 is supplied to the precipitation tank 7 through the line L9a. The sedimentation tank 7 precipitates the sludge scraper 18 for scraping the sludge settled on the bottom, the line L12 for returning the scraped sludge to the sludge storage tank 1, and the dehydrated separation liquid treated in the sedimentation tank 7. And a line L9b to be transferred to the separation liquid tank 9. The suspended matter contained in the dehydrated separation liquid is settled and concentrated in the sedimentation tank 7, and this is drawn out by the pump P <b> 5 and returned to the sludge storage tank 1. In this way, the SS concentration of the dehydrated separation liquid can be reduced. The sludge returned to the sludge storage tank 1 is again subjected to dehydration.

なお、脱水分離液に含まれる浮遊物質を分離できるものであれば、特に沈殿槽に限定されず、加圧浮上槽、回転式のスクリーンなどを用いてもよい。   In addition, as long as it can isolate | separate the suspended | floating substance contained in a spin-drying | dehydration separation liquid, it will not specifically limit to a precipitation tank, You may use a pressurized floating tank, a rotary screen, etc.

沈殿分離液槽9は、沈殿槽7からの脱水分離液を貯留するための槽であり、沈殿槽7の後段に設けられている。沈殿分離液槽9は、貯留されている脱水分離液を移送するラインL9cと、脱水分離液を沈殿分離液槽9に返送する循環ラインL13を備えている。ラインL9c及び循環ラインL13にはそれぞれ、ポンプP6及びポンプP7が設けられている。   The precipitation separation liquid tank 9 is a tank for storing the dehydrated separation liquid from the precipitation tank 7, and is provided in the subsequent stage of the precipitation tank 7. The precipitation separation liquid tank 9 includes a line L9c for transferring the stored dehydrated separation liquid and a circulation line L13 for returning the dehydration separation liquid to the precipitation separation liquid tank 9. A pump P6 and a pump P7 are provided in the line L9c and the circulation line L13, respectively.

循環ラインL13は、脱水分離液のSS濃度を測定する濃度測定器X2を備えている。濃度測定器X2としては、濃度測定器X1と同様の構成のものを使用することができる。また、濃度測定器X2の設置位置は、凝集剤溶液調製槽2に返送される脱水分離液のSS濃度を測定できる位置であれば、循環ラインL13に限定されない。濃度測定器X2は、例えば、沈殿分離液槽9に直接設置してもよく、返送ラインL11に設置してもよい。   The circulation line L13 includes a concentration measuring device X2 that measures the SS concentration of the dehydrated separation liquid. As the concentration measuring device X2, one having the same configuration as that of the concentration measuring device X1 can be used. Further, the position of the concentration measuring device X2 is not limited to the circulation line L13 as long as the SS concentration of the dehydrated separation liquid returned to the flocculant solution preparation tank 2 can be measured. For example, the concentration measuring device X2 may be installed directly in the precipitation separation liquid tank 9, or may be installed in the return line L11.

ポンプP6によって沈殿分離液槽9に貯留されている脱水分離液が排出される。ポンプP6から吐出される脱水分離液の一部又は全量が凝集剤溶液調製槽2に移送され、凝集剤溶液調製槽2に移送されない脱水分離液は排水処理設備へと移送される。   The dehydrated separation liquid stored in the precipitation separation liquid tank 9 is discharged by the pump P6. Part or all of the dehydrated separation liquid discharged from the pump P6 is transferred to the flocculant solution preparation tank 2, and the dehydration separation liquid that is not transferred to the flocculant solution preparation tank 2 is transferred to a wastewater treatment facility.

本実施形態においては、ポンプP6から吐出される脱水分離液の少なくとも一部が返送ラインL11を通じて凝集剤溶液調製槽2に返送される。本実施形態において返送手段は、返送ラインL11及びポンプP6によって構成されている。なお、返送ラインL11の一端はラインL9のポンプP6の吐出側と接続されており、他の一端は凝集剤溶液調製槽2に接続されている。   In the present embodiment, at least a part of the dehydrated separation liquid discharged from the pump P6 is returned to the flocculant solution preparation tank 2 through the return line L11. In this embodiment, the return means is constituted by a return line L11 and a pump P6. One end of the return line L11 is connected to the discharge side of the pump P6 of the line L9, and the other end is connected to the flocculant solution preparation tank 2.

本実施形態においては、自動制御手段15のデータ受信部16は、流量計F3、流量計F4及び濃度測定器X2で測定されるそれぞれの測定値を受信する構成となっている。そして、指示出力部17はデータ受信部16で受信された各測定値に基づき、自動弁V2及び自動弁V1の開度をそれぞれ調節する指示を出力する。   In the present embodiment, the data receiving unit 16 of the automatic control means 15 is configured to receive respective measurement values measured by the flow meter F3, the flow meter F4, and the concentration measuring device X2. And the instruction | indication output part 17 outputs the instruction | indication which each adjusts the opening degree of the automatic valve V2 and the automatic valve V1 based on each measured value received by the data receiving part 16. FIG.

本実施形態に係る汚泥脱水装置20によれば、沈殿槽7において脱水分離液に含まれる浮遊物質が除去される。このため、脱水機4で分離された脱水分離液のSS濃度が比較的高い場合であっても、これを十分に低減することができる。脱水分離液のSS濃度が十分に低下しているため、これを希釈するための清浄水の量をより低減することができる。   According to the sludge dewatering device 20 according to the present embodiment, suspended substances contained in the dewatered separation liquid are removed in the settling tank 7. For this reason, even when the SS concentration of the dehydrated separation liquid separated by the dehydrator 4 is relatively high, this can be sufficiently reduced. Since the SS concentration of the dehydrated separation liquid is sufficiently reduced, the amount of clean water for diluting it can be further reduced.

以下に実施例に基づき、本発明を具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the following examples.

図1に示す汚泥脱水装置と同様の構成からなる装置を用いてメタン発酵汚泥に対してカチオン系高分子凝集剤を添加して脱水処理を行った。脱水処理に供したメタン発酵汚泥に含まれる固形物の質量濃度は平均30g/lであった。高分子凝集剤は汚泥の固形物の全質量に対して1.5質量%となるように添加した。   Using a device having the same configuration as the sludge dewatering device shown in FIG. 1, a cationic polymer flocculant was added to the methane fermentation sludge to perform dewatering treatment. The mass concentration of the solid contained in the methane fermentation sludge subjected to the dehydration treatment was 30 g / l on average. The polymer flocculant was added so that it might become 1.5 mass% with respect to the total mass of the sludge solid substance.

また、凝集剤溶液調製槽にSS濃度が3000mg/lを超える脱水分離液が返送されると、凝集剤溶液調製槽に清浄水が供給されるように自動制御装置を設定した。   Moreover, the automatic control apparatus was set so that when the dehydrated separation liquid with an SS concentration exceeding 3000 mg / l was returned to the flocculant solution preparation tank, clean water was supplied to the flocculant solution preparation tank.

図4は脱水処理期間中の各種パラメータの変動を示すグラフである。図4に示すように、脱水分離液のSS濃度は、脱水処理を行っている全期間(100日)にわたって2000mg/l以下に保たれていたため、高分子凝集剤溶解水はすべて脱水分離液で賄うことができた。なお、脱水処理期間中、脱水汚泥の含水率は60〜70質量%(脱水汚泥の全質量基準)、脱水分離液のTS濃度は8000mg/l以下で安定した運転が可能であった。また、脱水分離液の塩素イオン濃度、アンモニアイオン濃度及pHはそれぞれ、1700mg/l以下、1600mg/l以下及び7.9〜8.6であった。   FIG. 4 is a graph showing changes in various parameters during the dehydration process. As shown in FIG. 4, the SS concentration of the dehydrated separation liquid was maintained at 2000 mg / l or less over the entire period (100 days) during the dehydration treatment. I was able to cover it. During the dehydration period, the water content of the dehydrated sludge was 60 to 70% by mass (based on the total mass of the dehydrated sludge), and the TS concentration of the dehydrated separation liquid was 8000 mg / l or less, and stable operation was possible. Further, the chlorine ion concentration, ammonia ion concentration, and pH of the dehydrated separation liquid were 1700 mg / l or less, 1600 mg / l or less, and 7.9 to 8.6, respectively.

本発明に係る汚泥脱水装置の第1実施形態の構成を示す図である。It is a figure which shows the structure of 1st Embodiment of the sludge dehydration apparatus which concerns on this invention. 消化汚泥のSS濃度とTS濃度の関係を例示するグラフである。It is a graph which illustrates the relationship between SS density | concentration of digested sludge, and TS density | concentration. 本発明に係る汚泥脱水装置の第2実施形態の構成を示す図である。It is a figure which shows the structure of 2nd Embodiment of the sludge dehydration apparatus which concerns on this invention. 脱水処理期間中の各種パラメータの変動を示すグラフである。It is a graph which shows the fluctuation | variation of the various parameters during a dehydration process period.

符号の説明Explanation of symbols

10,20…汚泥脱水装置、1…汚泥貯槽(汚泥供給手段)、2…凝集剤溶液調製槽、3…混和槽(混和部)、4…脱水機(脱水手段)、5…脱水分離液槽、7…沈殿槽(除去手段)、9…沈殿分離液槽、15…自動制御手段(混合比率制御手段)、L4…ライン(清浄水供給手段)、L11…返送ライン(返送手段)、V1,V2…自動弁(混合比率可変手段)、X1,X2…濃度測定器(濃度測定手段) DESCRIPTION OF SYMBOLS 10,20 ... Sludge dehydration apparatus, 1 ... Sludge storage tank (sludge supply means), 2 ... Coagulant solution preparation tank, 3 ... Mixing tank (mixing part), 4 ... Dehydrator (dehydration means), 5 ... Dehydration separation liquid tank , 7 ... Precipitation tank (removing means), 9 ... Precipitation separation liquid tank, 15 ... Automatic control means (mixing ratio control means), L4 ... Line (clean water supply means), L11 ... Return line (return means), V1, V2 ... Automatic valve (mixing ratio variable means), X1, X2 ... Concentration measuring device (concentration measuring means)

Claims (7)

凝集剤と水とを混合して凝集剤水溶液を調製する凝集剤溶液調製槽と、
前記凝集剤溶液調製槽からの前記凝集剤水溶液と脱水処理すべき汚泥とを混和する混和部と、
前記混和部からの混和物を脱水処理する脱水手段と、
前記脱水手段での脱水処理によって前記混和物から分離された脱水分離液の少なくとも一部を、前記凝集剤溶液調製槽に返送する返送手段と、
を備えることを特徴とする汚泥脱水装置。
A flocculant solution preparation tank for preparing an aqueous flocculant solution by mixing flocculant and water;
A mixing section for mixing the flocculant aqueous solution from the flocculant solution preparation tank and the sludge to be dewatered,
Dehydrating means for dehydrating the admixture from the mixing section;
A returning means for returning at least a part of the dehydrated separation liquid separated from the admixture by the dehydrating treatment in the dehydrating means to the flocculant solution preparation tank;
A sludge dewatering device comprising:
前記脱水分離液に含まれる浮遊物質を除去する除去手段を更に備えることを特徴とする請求項1記載の汚泥脱水装置。   The sludge dewatering apparatus according to claim 1, further comprising a removing unit that removes suspended substances contained in the dehydrated separation liquid. 前記返送手段で返送される脱水分離液よりも浮遊物質の濃度が低い清浄水を前記凝集剤溶液調製槽に供給する清浄水供給手段と、前記凝集剤水溶液の調製に使用する前記清浄水供給手段からの前記清浄水と前記返送手段で返送される脱水分離液との混合比率を変化自在な混合比率可変手段とを更に備えることを特徴とする請求項1又は2記載の汚泥脱水装置。   Clean water supply means for supplying clean water having a concentration of suspended solids lower than the dehydrated separation liquid returned by the return means to the flocculant solution preparation tank, and the clean water supply means used for preparing the flocculant aqueous solution The sludge dewatering apparatus according to claim 1 or 2, further comprising a mixing ratio variable means capable of changing a mixing ratio of the clean water from the dewatering liquid and the dehydrated separation liquid returned by the returning means. 前記混合比率可変手段を制御する混合比率制御手段を更に備えることを特徴とする請求項3記載の汚泥脱水装置。   The sludge dewatering apparatus according to claim 3, further comprising a mixing ratio control means for controlling the mixing ratio variable means. 前記凝集剤溶液調製槽に返送される前記脱水分離液の浮遊物質濃度を測定する濃度測定手段を備えることを特徴とする請求項1〜4のいずれか一項に記載の汚泥脱水装置。   The sludge dewatering device according to any one of claims 1 to 4, further comprising concentration measuring means for measuring a suspended solid concentration of the dehydrated separation liquid returned to the flocculant solution preparation tank. 前記凝集剤溶液調製槽内において前記凝集剤水溶液の調製に使用される水の浮遊物質濃度が3000mg/l以下であることを特徴とする請求項1〜5のいずれか一項に記載の汚泥脱水装置。   The sludge dewatering according to any one of claims 1 to 5, wherein the suspended solid concentration of water used for the preparation of the flocculant aqueous solution in the flocculant solution preparation tank is 3000 mg / l or less. apparatus. 凝集剤と水とを混合して凝集剤水溶液を凝集剤溶液調製槽にて調製する凝集剤溶液調製工程と、
前記凝集剤水溶液と脱水処理すべき汚泥とを混和して混和物を得る混和工程と、
前記混和物を脱水処理する脱水工程と、
前記脱水工程によって分離された脱水分離液の少なくとも一部を、前記凝集剤溶液調製槽に返送する返送工程と、
を備えることを特徴とする汚泥脱水方法。
A flocculant solution preparation step of mixing the flocculant and water and preparing an aqueous flocculant solution in the flocculant solution preparation tank;
A mixing step of mixing the flocculant aqueous solution with sludge to be dehydrated to obtain a mixture;
A dehydration step of dehydrating the admixture;
A return step of returning at least a part of the dehydrated separation liquid separated by the dehydration step to the flocculant solution preparation tank;
A sludge dewatering method comprising:
JP2006106121A 2006-04-07 2006-04-07 Sludge dewatering device and sludge dewatering method Expired - Fee Related JP4173899B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006106121A JP4173899B2 (en) 2006-04-07 2006-04-07 Sludge dewatering device and sludge dewatering method
KR1020060071843A KR20070100619A (en) 2006-04-07 2006-07-31 Sludge dehydration device and sludge dehydration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106121A JP4173899B2 (en) 2006-04-07 2006-04-07 Sludge dewatering device and sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2007275790A true JP2007275790A (en) 2007-10-25
JP4173899B2 JP4173899B2 (en) 2008-10-29

Family

ID=38677846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106121A Expired - Fee Related JP4173899B2 (en) 2006-04-07 2006-04-07 Sludge dewatering device and sludge dewatering method

Country Status (2)

Country Link
JP (1) JP4173899B2 (en)
KR (1) KR20070100619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196641A (en) * 2011-03-23 2012-10-18 Kubota Corp Dehydration method for sludge
CN106242243A (en) * 2016-10-11 2016-12-21 景津环保股份有限公司 A kind of vehicular combination sludge stirring device
JP7167506B2 (en) 2017-06-30 2022-11-09 住友金属鉱山株式会社 Filtration device, filtration method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115230A1 (en) * 2010-03-18 2011-09-22 栗田工業株式会社 Method for starting high-density-sludge generating water treatment device
US8498864B1 (en) * 2012-09-27 2013-07-30 Google Inc. Methods and systems for predicting a text
IT201900013506A1 (en) * 2019-07-31 2021-01-31 I L P A V S P A ECO-SUSTAINABLE SYSTEM AND METHOD FOR THE RECOVERY OF PLASTIC MATERIALS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196641A (en) * 2011-03-23 2012-10-18 Kubota Corp Dehydration method for sludge
CN106242243A (en) * 2016-10-11 2016-12-21 景津环保股份有限公司 A kind of vehicular combination sludge stirring device
CN106242243B (en) * 2016-10-11 2023-05-30 景津装备股份有限公司 Vehicle-mounted combined sludge stirring device
JP7167506B2 (en) 2017-06-30 2022-11-09 住友金属鉱山株式会社 Filtration device, filtration method

Also Published As

Publication number Publication date
KR20070100619A (en) 2007-10-11
JP4173899B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
Vanotti et al. Solid–liquid separation of flushed swine manure with PAM: effect of wastewater strength
JP4173899B2 (en) Sludge dewatering device and sludge dewatering method
JP2010000436A (en) Method and apparatus for dehydrating organic sludge
JP2010264417A (en) Centrifugal separation apparatus
JP5256261B2 (en) Method and apparatus for dewatering organic sludge
JP2019217423A (en) System of treating effluent or sludge containing high-concentration suspended matter
EP3421430A1 (en) Wastewater treatment method and wastewater treatment system
CN111050933B (en) Method for desalting chlorine-containing powder and apparatus for desalting chlorine-containing powder
US10829397B2 (en) Method to optimise the chemical precipitations process in a water- or waste water treatment plants
WO2017014004A1 (en) Method for processing and device for processing organic matter
JP2016087584A (en) Phosphorus recovery facility, and phosphorus recovery method
JP2006035166A (en) Sludge treatment method and sludge treatment apparatus
US4981599A (en) Method of treating waste water
JP3168608B2 (en) Sludge treatment equipment
JP6633943B2 (en) Sludge treatment system and sludge treatment method
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP2008023417A (en) Water purifying apparatus and water purifying method
CN111712467A (en) Method for optimizing chemical precipitation processes in water and wastewater treatment plants
JP5963656B2 (en) Sludge treatment apparatus and phosphorus production method
JP5723916B2 (en) Method and apparatus for dewatering organic sludge
JP2005021733A (en) Method and system for treating human waste or the like
JP6406981B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP6164878B2 (en) Organic wastewater treatment method
JP2022153736A (en) Sludge treatment equipment and sludge treatment method
Revathi et al. Arduino Based Automation in Coagulation Process and Sludge Reduction in Dyeing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees