JP2022153736A - Sludge treatment equipment and sludge treatment method - Google Patents

Sludge treatment equipment and sludge treatment method Download PDF

Info

Publication number
JP2022153736A
JP2022153736A JP2021056414A JP2021056414A JP2022153736A JP 2022153736 A JP2022153736 A JP 2022153736A JP 2021056414 A JP2021056414 A JP 2021056414A JP 2021056414 A JP2021056414 A JP 2021056414A JP 2022153736 A JP2022153736 A JP 2022153736A
Authority
JP
Japan
Prior art keywords
sludge
thickened
thickening
dehydrated
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021056414A
Other languages
Japanese (ja)
Other versions
JP7471252B2 (en
Inventor
常郎 倭
Tsuneo Yamato
雄暉 富
Xionghui Fu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2021056414A priority Critical patent/JP7471252B2/en
Publication of JP2022153736A publication Critical patent/JP2022153736A/en
Application granted granted Critical
Publication of JP7471252B2 publication Critical patent/JP7471252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

To provide sludge treatment equipment and a sludge treatment method thereof, for heating a sludge for solubilization, followed by effectively removing generated phosphoric acid.SOLUTION: A problem is solved by sludge treatment equipment and a sludge treatment method thereof, including: concentration means 20 assembled with a concentration tank 21 where an organic sludge is concentrated and separated into a concentration sludge C and a concentration wastewater R; addition means 60 for adding a coagulant to the concentration sludge C; and dewatering means 40 for dewatering a coagulant-added concentration sludge and separating it into a dewatering filtrate and a dewatered sludge E at 50°C or over and 100°C or under. The concentration tank 21 is assembled with a sludge inflow part 22 to which the organic sludge flows in; the dewatering filtrate is supplied to the sludge inflow part 22 or upstream of the sludge inflow part 22, flows in the concentration tank, and is discharged to the outside of the system as a concentration wastewater R.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥処理設備及び汚泥処理方法に関するものである。 TECHNICAL FIELD The present invention relates to a sludge treatment facility and a sludge treatment method.

工場排水や家庭排水等は、その大部分が下水道施設によって処理され、河川や海域に放流される。放流される水には水質汚濁物質が含まれ、この水質汚濁物質に対して、水質汚濁防止法その他の法令等による排水基準が設けられている。水質汚濁物質の中でもリンは、富栄養化による赤潮等の発生原因となるので、近年その規制が強化されつつある状況にある。 Industrial wastewater, domestic wastewater, etc. are mostly treated by sewerage facilities and discharged into rivers and sea areas. The discharged water contains water pollutants, and effluent standards for these water pollutants are established according to the Water Pollution Control Law and other laws and regulations. Phosphorus, among water pollutants, causes red tide and the like due to eutrophication.

下水道施設の流入水に含まれるリン酸は溶解性成分であるため、通常の水処理では除去することができず、放流水として河川や海域に放流されてしまう。下水道施設において、リン酸の除去方法は、鉄塩やアルミニウム塩などの無機薬剤を添加し不溶性のリン化合物として除去する化学的処理、又は活性汚泥にリン酸を取り込ませて除去するAO法等の生物学的処理が一般的である。 Since the phosphoric acid contained in the inflow water of sewerage facilities is a soluble component, it cannot be removed by normal water treatment, and is discharged into rivers and sea areas as effluent. Phosphoric acid is removed in sewerage facilities by chemical treatment in which inorganic chemicals such as iron salts and aluminum salts are added to remove as insoluble phosphorus compounds, or the AO method in which phosphoric acid is taken into activated sludge and removed. Biological treatments are common.

不溶化したリン化合物又はリン酸が取り込まれた活性汚泥は、余剰汚泥として汚泥処理設備に送られ、濃縮及び脱水等の工程を経て、最終的には脱水汚泥と排水に固液分離される。リン酸のほとんどは脱水汚泥に取り込まれる形で系外に排出されるが、排水中に残存した一部のリン酸は、返流水として水処理設備に戻され、再度無機薬剤を添加するか、AO法により除去する必要がある。そのため、返流水中のリン酸濃度が高くなるほど、無機薬剤の使用量又はAO法に要する動力が増加するため、薬剤費や電力費等の維持管理費の増大を招くことになる。 Activated sludge containing insolubilized phosphorus compounds or phosphoric acid is sent as excess sludge to a sludge treatment facility, undergoes processes such as concentration and dehydration, and is finally solid-liquid separated into dehydrated sludge and waste water. Most of the phosphoric acid is taken into the dehydrated sludge and discharged outside the system, but some of the phosphoric acid remaining in the wastewater is returned to the water treatment facility as return water, where inorganic chemicals are added again, It must be removed by the AO method. Therefore, as the concentration of phosphoric acid in the returned water increases, the amount of inorganic chemicals used or the power required for the AO method increases, leading to an increase in maintenance costs such as chemical costs and power costs.

特許文献1は、汚泥処理設備に関する技術を開示しており、消化汚泥を加熱し、高い脱水効果を発揮する高分子凝集剤を用いて凝集させ、含水率の低い脱水汚泥を得ることを目的としている。脱水汚泥の含水率の低減化を図ることは、後段の焼却設備において補助燃料を削減させることが可能となり、焼却費用および温室効果ガス排出量を低減できることから、下水道施設において一般的に望まれることである。 Patent Document 1 discloses a technology related to sludge treatment equipment, and aims to obtain dehydrated sludge with a low water content by heating digested sludge and flocculating it using a polymer flocculant that exhibits a high dehydration effect. there is Reducing the moisture content of dehydrated sludge is generally desired in sewerage facilities because it makes it possible to reduce the amount of auxiliary fuel used in the subsequent incineration equipment, thereby reducing incineration costs and greenhouse gas emissions. is.

特開2019-103952号公報JP 2019-103952 A 特開2020-121253号公報JP 2020-121253 A

しかしながら、特許文献1では、脱水設備において汚泥を加熱した後に脱水していることから、加熱により溶出したリン酸が脱水ろ液とともに水処理設備に返流されるため、リンを除去するための動力および薬品を多く消費することとなる。なお、特許文献2には、温水を用いた有機性汚泥の処理設備に関する技術が開示されている。 However, in Patent Document 1, since the sludge is dehydrated after being heated in the dehydration equipment, the phosphoric acid eluted by heating is returned to the water treatment equipment together with the dehydrated filtrate. and consume more chemicals. Patent document 2 discloses a technique related to an organic sludge treatment facility using hot water.

そこで、本発明が解決する課題は、汚泥を加熱し、可溶化させて発生したリン酸を効率よく除去する汚泥処理設備及び汚泥処理方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a sludge treatment facility and a sludge treatment method for efficiently removing phosphoric acid generated by heating and solubilizing sludge.

本発明者は、鋭意研究を重ね、汚泥の加熱により溶出したリン酸、及び残留凝集剤を含む脱水ろ液を濃縮槽の前段に流入させることで、濃縮前の有機性汚泥と混合され、有機性汚泥中のリン酸及び加熱により溶出したリン酸と残留凝集剤が反応し、不溶性のリン化合物となり、固形物側(汚泥側)に取り込まれるため、結果として濃縮排水中に含まれるリン酸の濃度を低減できる知見を得た。この知見をもとに完成させた発明の態様が次に示すものである。 After extensive research, the present inventors have found that the phosphoric acid eluted by heating the sludge and the dehydrated filtrate containing the residual flocculant are allowed to flow into the front stage of the thickening tank, so that they are mixed with the organic sludge before thickening, and the organic The phosphoric acid in the sludge and the phosphoric acid eluted by heating react with the residual flocculant to become an insoluble phosphorous compound, which is taken into the solid matter side (sludge side). We obtained knowledge that the concentration can be reduced. The following aspects of the invention were completed based on this finding.

[第1の態様]
有機性汚泥が濃縮されて濃縮汚泥と濃縮排水に分離される濃縮槽を備えた濃縮手段と、
前記濃縮汚泥に凝集剤を添加する添加手段と、
凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液と50℃以上、かつ100℃未満の脱水汚泥に分離する脱水手段とを有し、
前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液は、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給され、濃縮槽内に流入して濃縮排水として系外に排出されるものである、
ことを特徴とする汚泥処理設備。
[First aspect]
thickening means having a thickening tank in which organic sludge is thickened and separated into thickened sludge and thickened wastewater;
An adding means for adding a flocculant to the thickened sludge;
Dewatering means for dewatering the thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.;
The thickening tank has a sludge inflow part into which the organic sludge flows,
The dewatered filtrate is supplied to the sludge inflow part or an upstream part from the sludge inflow part, flows into the thickening tank, and is discharged out of the system as concentrated wastewater.
A sludge treatment facility characterized by:

[第2の態様]
有機性汚泥が濃縮されて濃縮汚泥と濃縮排水に分離される濃縮槽によって、前記有機性汚泥を濃縮する濃縮工程と、
前記濃縮汚泥に凝集剤を添加する添加工程と、
凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液と50℃以上、かつ100℃未満の脱水汚泥に分離する脱水工程とを有し、
前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液を、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給し、濃縮槽内に流入して濃縮排水として系外に排出する、
ことを特徴とする汚泥処理方法。
[Second aspect]
a thickening step of thickening the organic sludge in a thickening tank in which the organic sludge is thickened and separated into thickened sludge and thickened wastewater;
An adding step of adding a flocculant to the thickened sludge;
A dehydration step of dewatering the thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.,
The thickening tank has a sludge inflow part into which the organic sludge flows,
The dehydrated filtrate is supplied to the sludge inflow portion or to a portion upstream of the sludge inflow portion, flows into the thickening tank, and is discharged out of the system as concentrated wastewater.
A sludge treatment method characterized by:

本態様では、凝集剤が添加された濃縮汚泥は脱水して、脱水ろ液と脱水汚泥に分離される。そして、当該脱水汚泥は、温度が上記の範囲にあるため、濃縮汚泥が可溶化されリン酸が溶出するとともに含水率が相対的に低いものとなる。脱水ろ液には、凝集剤が残留している場合があり、この脱水ろ液が濃縮槽に流入すると、濃縮前の有機性汚泥に含まれるリン酸と加熱により溶出したリン酸が残留凝集剤と反応して不溶性のリン化合物となるため、濃縮排水中のリン酸の濃度が低減される。 In this embodiment, the thickened sludge to which the flocculant has been added is dewatered and separated into dehydrated filtrate and dehydrated sludge. Since the temperature of the dehydrated sludge is within the above range, the thickened sludge is solubilized, phosphoric acid is eluted, and the water content is relatively low. Flocculant may remain in the dewatered filtrate, and when this dewatered filtrate flows into the thickening tank, the phosphoric acid contained in the organic sludge before concentration and the phosphoric acid eluted by heating become the residual flocculant. It reacts with and becomes an insoluble phosphorus compound, so the concentration of phosphoric acid in the concentrated waste water is reduced.

本発明によれば、汚泥を加熱し、可溶化させて発生したリン酸を効率よく除去する汚泥処理設備及び汚泥処理方法となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes the sludge treatment equipment and sludge treatment method which heats sludge, makes it solubilize, and removes efficiently the phosphoric acid which generate|occur|produced.

発明の実施形態の一例を表す図である。It is a figure showing an example of an embodiment of the invention. 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の別の例を表す図である。FIG. 4 is a diagram representing another example of an embodiment of the invention; 発明の実施形態の一例を表す図である。It is a figure showing an example of an embodiment of the invention. 実施例の結果を表す図である。It is a figure showing the result of an Example.

次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a mode for carrying out the invention will be described. Note that this embodiment is an example of the present invention. The scope of the present invention is not limited to the scope of this embodiment.

(第1の実施形態)
本発明に係る汚泥処理設備の第1の実施形態は、有機性汚泥Aが濃縮されて濃縮汚泥Cと濃縮排水Rに分離される濃縮槽21を備えた濃縮手段20と、前記濃縮汚泥Cに凝集剤を添加する添加手段60と、凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液Sと、50℃以上、かつ100℃未満の脱水汚泥Eに分離する脱水手段40とを有し、前記濃縮槽21は、前記有機性汚泥が流入する汚泥流入部22を備えるものであり、前記脱水ろ液Sは、前記汚泥流入部22又は当該汚泥流入部22よりも上流部に供給され、濃縮排水Rとして系外に排出されるものである、ことを特徴とする。なお、必要に応じ、有機性汚泥を濃縮する処理に先立って凝集する処理を行ってもよい。
(First embodiment)
The first embodiment of the sludge treatment facility according to the present invention includes a thickening means 20 having a thickening tank 21 in which organic sludge A is thickened and separated into thickened sludge C and thickened waste water R, and the thickened sludge C An adding means 60 for adding a flocculant, and a dewatering means 40 for dehydrating the thickened sludge to which the flocculant has been added and separating it into a dehydrated filtrate S and a dehydrated sludge E at 50 ° C. or more and less than 100 ° C. The thickening tank 21 has a sludge inflow portion 22 into which the organic sludge flows, and the dewatered filtrate S is supplied to the sludge inflow portion 22 or an upstream portion of the sludge inflow portion 22. , and discharged to the outside of the system as concentrated waste water R. In addition, if necessary, a process of flocculating the organic sludge may be performed prior to the process of concentrating the organic sludge.

(有機性汚泥)
汚泥処理設備は、下水を処理する設備を備える水処理設備で発生した有機性汚泥Aを受け入れて、濃縮、脱水して脱水汚泥とし、この脱水汚泥を焼却処理する設備である。有機性汚泥Aは、水処理設備で発生する生汚泥や活性汚泥を含むものであり、またポリリン酸蓄積細菌などの微生物が含まれ、これらの微生物は、下水中のリン酸(通常リン酸イオンの形態で下水中に溶解している。)を好気的な条件では菌体内に吸収し、嫌気的な条件では菌体外に放出している(取り込み、及び吐き出しする)。
有機性汚泥Aの汚泥濃度は、水処理設備の処理方式にもよるが、1~4%である。
(organic sludge)
The sludge treatment facility receives organic sludge A generated in a water treatment facility equipped with equipment for treating sewage, concentrates and dehydrates it into dehydrated sludge, and incinerates the dehydrated sludge. Organic sludge A includes raw sludge and activated sludge generated in water treatment facilities, and also includes microorganisms such as polyphosphate-accumulating bacteria. is dissolved in sewage in the form of ) is absorbed into the cells under aerobic conditions, and is released outside the cells under anaerobic conditions (intake and excretion).
The sludge concentration of the organic sludge A is 1 to 4%, depending on the treatment method of the water treatment facility.

(濃縮手段)
水処理設備から汚泥処理設備に圧送流路L1を通って圧送された有機性汚泥Aは、濃縮手段20によって濃縮される。濃縮手段20は、有機性汚泥Aを濃縮処理することによって、濃縮汚泥Cと濃縮排水Rに分離するものである。濃縮手段20は、有機性汚泥Aが流入する汚泥流入部22、流入した有機性汚泥Aを受け入れ濃縮を行う濃縮槽21、濃縮されて得られた濃縮汚泥Cを下流に流出する汚泥流出部23、濃縮処理で発生した濃縮排水Rを排出する排水部を有するものである。上記圧送流路L1の下流端が汚泥流入部22に接続されており、また、脱水手段40から排出された脱水ろ液Sが流れるろ液流路L4の下流端が、汚泥流入部22又は当該汚泥流入部22よりも上流部に接続されている。脱水ろ液Sは、ろ液流路L4を流れて導かれ、汚泥流入部22又は当該汚泥流入部22よりも上流部に供給され、濃縮槽21に流入される。ろ液流路L4には、脱水ろ液Sを送るためのポンプP3を設けておくとよい。ここで、汚泥流入部22よりも上流部とは、圧送流路L1でもよいし、濃縮手段20の上流側に凝集手段10が備わる場合には、凝集手段10の前段部や、水処理設備と当該凝集手段10を接続する圧送流路であってもよい。なお、凝集手段10が備わる場合は、有機性汚泥Aは、水処理設備から圧送流路を流れて、凝集手段10に流入し凝集されて凝集汚泥となり、この凝集汚泥が凝集手段10と濃縮手段20を接続する圧送流路を流れ、汚泥流入部22から濃縮槽21に流入する。
(Concentration means)
The organic sludge A pumped from the water treatment facility to the sludge treatment facility through the pumping passage L1 is thickened by the thickening means 20 . The thickening means 20 separates the organic sludge A into a thickened sludge C and a thickened waste water R by subjecting the organic sludge A to a thickening process. The thickening means 20 includes a sludge inflow part 22 into which the organic sludge A flows, a thickening tank 21 that receives and thickens the inflowed organic sludge A, and a sludge outflow part 23 that flows out the thickened sludge C obtained by thickening to the downstream. , a drainage unit for discharging concentrated waste water R generated in the concentration process. The downstream end of the pressure feed channel L1 is connected to the sludge inflow portion 22, and the downstream end of the filtrate channel L4 through which the dehydrated filtrate S discharged from the dehydration means 40 flows is connected to the sludge inflow portion 22 or the It is connected upstream of the sludge inflow part 22 . The dehydrated filtrate S is guided through the filtrate flow path L4, supplied to the sludge inflow portion 22 or a portion upstream of the sludge inflow portion 22, and flows into the thickening tank 21. A pump P3 for sending the dehydrated filtrate S is preferably provided in the filtrate flow path L4. Here, the upstream portion from the sludge inflow portion 22 may be the pumping flow path L1, and when the aggregation means 10 is provided upstream of the concentration means 20, the front stage portion of the aggregation means 10, and the water treatment equipment. It may be a pumping channel that connects the aggregation means 10 . In addition, when the flocculation means 10 is provided, the organic sludge A flows from the water treatment equipment through the pumped flow path, flows into the flocculation means 10, and is flocculated to become flocculated sludge. 20 and flows into the thickening tank 21 from the sludge inlet 22 .

濃縮手段20は、特に限定されず一般的なものを適用できるが、例えば、特開2020-199443号公報に開示されるろ過装置を適宜用いることができる。この装置は、流入された有機性汚泥A及び/又は脱水ろ液S、すなわち被処理物が保持される、縦方向に延びる軸線を中心とした有底円筒状の濃縮槽を備えており、被処理物は濃縮槽の上部から濃縮槽内に供給される。この濃縮槽の円筒状の胴部は、遮蔽部を除いてウェッジワイヤーやパンチングメタル等によって形成された濾過スクリーンとされるとともに、この濾過スクリーンの外周にはジャケット状の排水室が配設されている。濾過スクリーン内には、濃縮槽の軸線に沿って延びる軸線を中心として軸線を中心にして回転する円筒状の回転軸と、この回転軸に沿って螺旋状に配設されたスクリュー羽根とを備えた搬送手段が収容され、また、濃縮槽の上部には、回転軸を回転させるモーター等の回転駆動手段が配設されて回転軸と連結されている。 The concentrating means 20 is not particularly limited, and a general one can be applied. This apparatus is provided with a bottomed cylindrical thickening tank centered on a longitudinally extending axis in which the inflowed organic sludge A and/or dehydrated filtrate S, that is, the material to be treated, is held. The treated material is supplied into the thickening tank from the top of the thickening tank. The cylindrical body of the thickening tank is a filter screen made of wedge wire, punching metal, etc., except for the shielding part, and a jacket-like drainage chamber is arranged around the filter screen. there is Inside the filter screen, there is provided a cylindrical rotating shaft that rotates around the axis extending along the axis of the thickening tank, and screw blades spirally arranged along the rotating shaft. In addition, a rotary drive means such as a motor for rotating a rotary shaft is disposed in the upper part of the thickening tank and connected to the rotary shaft.

汚泥流入部22は濃縮槽21の上部に、汚泥流出部23は濃縮槽21の下部(底部)に設けることができる。脱水ろ液Sを濃縮槽21に流入させる場合に、脱水ろ液Sが流入される位置は適宜選択することができる。例えば、脱水ろ液Sが流入される位置を、汚泥流入部22や、有機性汚泥Aの濃縮処理が半分程度なされた位置、すなわち濃縮槽21の中段部、汚泥流出部23等とすることができる。しかしながら、脱水ろ液Sが流入される位置を、汚泥流入部22とするのが望ましい。脱水ろ液Sの流入位置が汚泥流入部22であれば、凝集剤が残留する脱水ろ液Sが、濃縮処理される前の有機性汚泥Aと混ざり、凝集剤が有機性汚泥Aに溶解するリン酸と反応して不溶性のリン化合物となるため、有機性汚泥中のリン酸を低減できる。この点について、仮に脱水ろ液Sを濃縮槽21の中段部に流入させた場合は、汚泥流入部22から中段部に至るまでに濃縮処理によって発生した濃縮排水に、リン酸が多く含まれた状態で既に排出されてしまっているため、結果として系外に排出される排水に多くのリン酸が含まれたものとなってしまう。この観点を考慮すると、脱水ろ液Sが流入される位置を、汚泥流入部22又は汚泥流入部22よりも上流部の圧送流路L1や凝集手段10としても、もちろんよい。 The sludge inflow part 22 can be provided in the upper part of the thickening tank 21 , and the sludge outflow part 23 can be provided in the lower part (bottom part) of the thickening tank 21 . When the dehydrated filtrate S is allowed to flow into the concentrating tank 21, the position into which the dehydrated filtrate S is introduced can be appropriately selected. For example, the position into which the dehydrated filtrate S is introduced may be the sludge inflow section 22 or a position where the organic sludge A has been concentrated about halfway, that is, the middle section of the thickening tank 21, the sludge outflow section 23, or the like. can. However, it is desirable that the position into which the dehydrated filtrate S is introduced is the sludge inflow section 22 . If the inflow position of the dehydrated filtrate S is the sludge inflow part 22, the dehydrated filtrate S in which the coagulant remains is mixed with the organic sludge A before being subjected to the concentration treatment, and the coagulant dissolves in the organic sludge A. Since it reacts with phosphoric acid to form an insoluble phosphorus compound, phosphoric acid in organic sludge can be reduced. Regarding this point, if the dehydrated filtrate S was allowed to flow into the middle part of the thickening tank 21, the concentrated wastewater generated by the concentration process from the sludge inflow part 22 to the middle part contained a large amount of phosphoric acid. As a result, the waste water discharged out of the system contains a large amount of phosphoric acid. Considering this point of view, the position into which the dehydrated filtrate S flows may of course be the sludge inflow portion 22 or the pumping passage L1 or the aggregation means 10 upstream of the sludge inflow portion 22 .

濃縮手段20によって濃縮された濃縮汚泥Cは、汚泥濃度が4~10%となる。 The thickened sludge C thickened by the thickening means 20 has a sludge concentration of 4 to 10%.

濃縮手段20から流出された濃縮汚泥Cは、濃縮手段20とその下流に設置される脱水手段40を接続する流路である汚泥流路L2を流れ、脱水手段40に送られる。汚泥流路L2における濃縮汚泥Cの圧送は、汚泥の摩擦抵抗を考慮して、汚泥流路L2に設けられるポンプP1を用いて圧力を加えて行うことができる。 The thickened sludge C discharged from the thickening means 20 flows through the sludge flow path L2, which is a flow path connecting the thickening means 20 and the dehydrating means 40 installed downstream thereof, and is sent to the dehydrating means 40 . The thickened sludge C can be force-fed in the sludge flow path L2 by applying pressure using a pump P1 provided in the sludge flow path L2 in consideration of the frictional resistance of the sludge.

脱水ろ液Sは、濃縮槽21に流入して、濃縮排水Rとして系外に排出される。ここで、水処理設備に流入した下水は、通常、上流側から下流側に向かって、着水井、最初沈殿池、反応タンク、最終沈殿池を通過して河川や海等に放流される。例えば、濃縮排水Rを、水処理設備の最初沈殿池の流入部又は最初沈殿池よりも上流部に供給することにより、流入した下水と一緒に処理され、最終的には河川や海等に放流されることとなる。 The dehydrated filtrate S flows into the concentration tank 21 and is discharged outside the system as concentrated waste water R. Here, the sewage that has flowed into the water treatment facility is generally discharged from upstream to downstream through a receiving well, a primary sedimentation tank, a reaction tank, and a final sedimentation tank into rivers, the sea, and the like. For example, by supplying the concentrated wastewater R to the inflow part of the primary sedimentation tank of the water treatment facility or to the upstream part of the primary sedimentation tank, it is treated together with the inflowing sewage, and finally discharged into rivers, the sea, etc. It will be done.

(添加手段)
濃縮汚泥Cを脱水手段40により脱水すると、リン酸が多く含まれた脱水ろ液が発生する。ここで、脱水手段40による脱水に先立って濃縮汚泥Cに凝集剤を添加させておくと、リン酸が凝集剤と反応して不溶性のリン化合物となり濃縮汚泥側(固形物側)に移行するため、脱水ろ液に含まれるリン酸の濃度を低減させることができる。凝集剤の添加手段60としては、例えば、凝集剤が入った容器と汚泥流路L2の任意の箇所とを凝集剤添加用の配管で接続し、当該任意の箇所に撹拌機等を備えたものを挙げることができる。濃縮汚泥Cの流量に応じて当該容器から凝集剤を適量汚泥流路L2に流させ、凝集剤が混ざった濃縮汚泥Cを攪拌した後、脱水手段40に流入させる等の手段を採るとよい。
(addition means)
When the thickened sludge C is dehydrated by the dewatering means 40, a dehydrated filtrate containing a large amount of phosphoric acid is generated. Here, if a flocculant is added to the thickened sludge C prior to dehydration by the dewatering means 40, the phosphoric acid reacts with the flocculant and becomes an insoluble phosphorus compound, which migrates to the thickened sludge side (solid matter side). , the concentration of phosphoric acid contained in the dewatered filtrate can be reduced. As the coagulant addition means 60, for example, a container containing the coagulant and an arbitrary point of the sludge flow path L2 are connected by a pipe for adding the coagulant, and a stirrer or the like is provided at the arbitrary point. can be mentioned. An appropriate amount of coagulant is allowed to flow from the container to the sludge flow path L2 according to the flow rate of the thickened sludge C, and after the thickened sludge C mixed with the coagulant is stirred, it is allowed to flow into the dehydration means 40.

凝集剤としては、ポリ塩化アルミニウム(PAC)、ポリ硫酸第二鉄等の無機系凝集剤、有機系凝集剤、アニオン性あるいはノニオン性高分子凝集剤、カチオン性高分子凝集剤を例示することができる。特にポリ硫酸第二鉄やポリ塩化アルミニウムは、脱水ろ液に残る残留分が有機性汚泥中のリン酸と反応することで、不溶性のリン化合物となるため、排水中のリン酸濃度を下げるように働くため好ましい。 Examples of flocculants include inorganic flocculants such as polyaluminum chloride (PAC) and polyferric sulfate, organic flocculants, anionic or nonionic polymer flocculants, and cationic polymer flocculants. can. In particular, ferric sulfate and polyaluminum chloride remain in the dewatering filtrate and react with phosphoric acid in the organic sludge to become insoluble phosphorous compounds. preferred because it works

従来より、汚泥の含水率を低減するため、濃縮汚泥に凝集剤を添加する処理が行われてきており、濃縮汚泥における凝集剤の添加率は、およそ10~35質量%としていた。一方で、本実施形態では、濃縮汚泥における凝集剤の添加率が1~15質量%、好ましくは2~10質量%となるように、添加することができる。本実施形態では、汚泥を加熱することにより、汚泥と凝集剤の反応性が高まることから、従来ほど凝集剤を添加しなくても、脱水汚泥の含水率を低減させることが可能となっている。 Conventionally, in order to reduce the water content of sludge, a process of adding a flocculant to thickened sludge has been performed, and the addition rate of the flocculant in the thickened sludge was about 10 to 35% by mass. On the other hand, in the present embodiment, the addition rate of the coagulant in the thickened sludge is 1 to 15% by mass, preferably 2 to 10% by mass. In this embodiment, by heating the sludge, the reactivity of the sludge and the flocculant increases, so it is possible to reduce the water content of the dewatered sludge without adding a flocculant as much as in the conventional case. .

(脱水手段)
脱水手段40は、濃縮汚泥Cが流入する汚泥流入部と、脱水処理された脱水汚泥が流出する汚泥流出部と、脱水ろ液が排出液Fとして排出される排出部と、脱水ろ液を循環水として汚泥処理設備の上流側に送る循環水流出部と、脱水機を有する。脱水手段40に流入した濃縮汚泥Cは、脱水処理され、脱水汚泥Eと脱水ろ液に分離される。脱水ろ液は、排出液Fとしてそのまま系外に排出してもよいが、排出液Fには通常、リン酸が含まれており、水処理設備に返流されると、水処理設備におけるリンの処理に負荷をかけてしまうことになる。
(Dehydration means)
The dehydration means 40 includes a sludge inflow portion into which thickened sludge C flows, a sludge outflow portion into which dewatered sludge that has undergone dewatering treatment flows out, a discharge portion into which dehydrated filtrate is discharged as discharged liquid F, and a dehydrated filtrate that circulates. It has a circulating water outlet for sending water to the upstream side of the sludge treatment facility, and a dehydrator. The thickened sludge C flowing into the dewatering means 40 is dewatered and separated into dehydrated sludge E and dehydrated filtrate. The dehydrated filtrate may be discharged outside the system as it is as the effluent F, but the effluent F usually contains phosphoric acid, and when it is returned to the water treatment equipment, the phosphoric acid in the water treatment equipment processing will be overloaded.

水処理設備において、リンを除去するための負荷を軽減するため、本実施形態では脱水ろ液の全量又は一部、好ましくは脱水ろ液の全量を濃縮手段20に流入させることによって、水処理設備の返流水に含まれるリン酸イオンの濃度の低減化を図っている。 In order to reduce the load for removing phosphorus in the water treatment facility, in the present embodiment, the entire amount or part of the dehydrated filtrate, preferably the entire amount of the dehydrated filtrate, is allowed to flow into the concentrating means 20, so that the water treatment facility We are trying to reduce the concentration of phosphate ions contained in the returned water.

脱水手段40としては、遠心脱水機、スクリュープレス、フィルタープレス及びベルトプレス等の脱水機を備えたものを用いることができる。 As the dewatering means 40, a device equipped with a dehydrator such as a centrifugal dehydrator, a screw press, a filter press and a belt press can be used.

脱水手段40によって脱水された脱水汚泥Eは、汚泥の可燃分にもよるが含水率を70%程度となるように調整すると、後工程の焼却設備において補助燃料を必要とすることなく処理を行うことができる。 The dehydrated sludge E dehydrated by the dewatering means 40 can be treated without the need for supplementary fuel in the post-process incineration equipment if the moisture content is adjusted to about 70%, depending on the combustible content of the sludge. be able to.

脱水汚泥Eの温度は、50℃以上、100℃未満であればよい。好ましくは、有機性汚泥Aの汚泥種により異なるが、混合生汚泥の場合は50℃以上80℃以下、中温消化汚泥の場合は60℃以上80℃以下、高温消化汚泥の場合は70℃以上90℃以下であればよい。50℃未満だと脱水汚泥Eの含水率が高くなるため、焼却設備において補助燃料が必要となるため、維持管理費の増大を招くおそれがある。100℃以上だと汚泥の温度が高すぎて設備の管理が困難になる。 The temperature of the dewatered sludge E should be 50°C or higher and lower than 100°C. Preferably, the temperature varies depending on the type of sludge of the organic sludge A, but in the case of mixed raw sludge, the temperature is 50°C to 80°C, in the case of medium temperature digested sludge, it is 60°C to 80°C, and in the case of high temperature digested sludge, it is 70°C to 90°C. °C or below. If the temperature is less than 50°C, the moisture content of the dehydrated sludge E will be high, requiring auxiliary fuel for the incineration facility, which may lead to an increase in maintenance and management costs. If the temperature is 100°C or higher, the temperature of the sludge is too high, making facility management difficult.

脱水汚泥Eの温度は、例えば、脱水手段40に備わる脱水機における脱水汚泥の汚泥流出部又は汚泥流出部近傍に設けられた温度センサーで測定することができる。温度センサーは脱水汚泥に対して接触式であっても非接触式であってもよい。 The temperature of the dehydrated sludge E can be measured, for example, by a temperature sensor provided at or near the sludge outlet of the dehydrated sludge in the dehydrator provided in the dewatering means 40 . The temperature sensor may be contact or non-contact with the dewatered sludge.

脱水ろ液の温度は、例えば、脱水手段40に備わる脱水機における脱水ろ液の排出部又は排出部近傍に設けられた温度センサーで測定することができる。温度センサーは脱水ろ液に対して接触式であっても非接触式であってもよい。 The temperature of the dehydrated filtrate can be measured, for example, by a temperature sensor provided at or near the discharge portion of the dehydrated filtrate in the dehydrator provided in the dehydrating means 40 . The temperature sensor may be contact or non-contact with the dewatered filtrate.

加熱された脱水ろ液が濃縮手段20に流入すると、濃縮槽21に入っている有機性汚泥が、脱水ろ液と混ざり加熱され、可溶化される。有機性汚泥に含まれるリン酸に加え、可溶化によってリン酸が溶出するが、脱水ろ液に残留する凝集剤の作用により、リン酸は不溶性のリン化合物となる、結果として濃縮排水中のリン酸濃度は低いものとなる。 When the heated dewatered filtrate flows into the concentrating means 20, the organic sludge in the thickening tank 21 is mixed with the dehydrated filtrate, heated, and solubilized. In addition to the phosphoric acid contained in the organic sludge, phosphoric acid is eluted by solubilization. The acid concentration will be low.

(加熱)
50℃以上100℃未満の脱水汚泥Eを得るためには、加熱手段50を汚泥処理設備に設けるとよい。加熱手段50を設ける位置は、加熱された脱水汚泥Eが得られる限り、限定されることはない。ここでは、凝集剤が添加された濃縮汚泥Cを直接に又は間接に加熱する加熱手段50を例示して説明する。
(heating)
In order to obtain the dewatered sludge E having a temperature of 50°C or more and less than 100°C, it is preferable to provide the heating means 50 in the sludge treatment facility. The position where the heating means 50 is provided is not limited as long as the dehydrated sludge E that is heated is obtained. Here, the heating means 50 for directly or indirectly heating the thickened sludge C to which the flocculant has been added will be described as an example.

加熱手段50としては、具体的には濃縮汚泥Cに温水や蒸気を直接に供給して加熱する手法、濃縮汚泥Cの流れの中に熱交換器を設けて、熱媒体を流して間接的に加熱する手法、濃縮汚泥Cの流れの中に投げ込みヒータを設置して加熱する手法等を例示できる。 As the heating means 50, specifically, a method of directly supplying hot water or steam to the thickened sludge C to heat it, a heat exchanger is provided in the flow of the thickened sludge C, and a heat medium is flowed to indirectly A method of heating, a method of installing a heater thrown into the flow of thickened sludge C for heating, and the like can be exemplified.

加熱手段50に温水を用いる場合は、汚泥処理設備に設けられる汚泥焼却設備の排煙処理塔排水や汚泥乾燥設備のスクラバー排水、消化ガス発電機から発生する温水を用いることができる。 When hot water is used for the heating means 50, it is possible to use hot water generated from flue gas treatment tower wastewater of sludge incineration equipment provided in the sludge treatment equipment, scrubber wastewater of sludge drying equipment, or digestion gas generators.

汚泥は、加熱されることで可溶化し、含水率が下がるので焼却しやすいものとなる。また、可溶化された汚泥は、粘性が低いので、摩擦抵抗が小さく輸送が容易となる。 Sludge is solubilized by heating, and the water content is lowered, making it easier to incinerate. In addition, since the solubilized sludge has a low viscosity, it has a low frictional resistance and can be easily transported.

本実施形態の汚泥の質量収支はおおよそ次のようになる。汚泥処理設備に流入する有機性汚泥を100質量%とした場合、脱水汚泥は22~24質量%、残りが濃縮排水として系外に排出される。この点、従来の、加熱手段を備えない汚泥処理設備では、脱水汚泥は25~27質量%である。 The mass balance of sludge in this embodiment is approximately as follows. Assuming that the organic sludge flowing into the sludge treatment facility is 100% by mass, dewatered sludge is 22-24% by mass, and the remainder is discharged outside the system as concentrated wastewater. In this respect, the dehydrated sludge is 25 to 27% by mass in conventional sludge treatment facilities without heating means.

また、加熱手段を備えた本実施形態によれば、濃縮手段20に流入される有機性汚泥の流量は5~60m3/hであるのに対して、濃縮手段20に流入される脱水ろ液の流量は0.2~35m3/hとなる。 Further, according to this embodiment having the heating means, the flow rate of the organic sludge flowing into the concentrating means 20 is 5 to 60 m 3 /h, whereas the dehydrated filtrate flowing into the concentrating means 20 flow rate is 0.2 to 35 m 3 /h.

(第2の実施形態)
第2の実施形態について図2を参照しつつ以下に説明する。第2の実施形態は、濃縮手段20の上流に凝集手段10を設けている点が第1の実施形態との違いである。凝集手段10としては、有機性汚泥Aと凝集剤が供給され、縦方向に延びる中心軸を有する有底円筒状の凝集槽を備えたものを例示できる。中心軸に沿った回転軸と、当該回転軸に沿って撹拌羽根が取り付けられて、凝集槽の上部に設けられたモーター等の回転駆動手段によって回転軸および撹拌羽根が回転することにより有機性汚泥Aと凝集剤を撹拌する撹拌手段が設けられている。この撹拌手段によって攪拌された有機性汚泥が、凝集手段10から流出し、濃縮手段20に供給される。凝集処理された有機性汚泥Bは、特に凝集汚泥ということができ、その汚泥濃度は1~4%となる。
(Second embodiment)
A second embodiment will be described below with reference to FIG. The second embodiment is different from the first embodiment in that aggregation means 10 is provided upstream of concentration means 20 . As the flocculation means 10, one having a bottomed cylindrical flocculation tank, which is supplied with the organic sludge A and the flocculant and has a center axis extending in the vertical direction, can be exemplified. A rotating shaft along the central axis and a stirring blade are attached along the rotating shaft, and the rotating shaft and the stirring blade are rotated by a rotary drive means such as a motor provided at the top of the flocculation tank to organic sludge. A stirring means for stirring A and the flocculant is provided. The organic sludge stirred by this stirring means flows out of the aggregation means 10 and is supplied to the concentration means 20 . The flocculated organic sludge B can be particularly called flocculated sludge, and its sludge concentration is 1 to 4%.

(第3の実施形態)
第3の実施形態について図3を参照しつつ説明する。第3の実施形態は、凝集手段10、濃縮手段20、脱水手段40を備え、かつ加熱手段50が2箇所に設けられた形態である。第3の実施形態と第2の実施形態とでは、加熱手段50の数が異なる。第1加熱手段50は、脱水手段40に流入した濃縮汚泥Cを加熱するものであり、第2加熱手段50は、濃縮手段20に流入した有機性汚泥を加熱するものである。
(Third Embodiment)
A third embodiment will be described with reference to FIG. 3rd Embodiment is a form provided with the aggregation means 10, the concentration means 20, and the dehydration means 40, and the heating means 50 was provided in two places. The number of heating means 50 differs between the third embodiment and the second embodiment. The first heating means 50 heats the thickened sludge C that has flowed into the dewatering means 40 , and the second heating means 50 heats the organic sludge that has flowed into the thickening means 20 .

濃縮手段20に加熱手段50を設けることで、濃縮手段20に流入した有機性汚泥が加熱手段50によって可溶化して濃縮されるので、濃縮手段20から流出される濃縮汚泥Cの汚泥濃度が高まる。そして、濃縮汚泥Cは、下流の脱水手段40に備わる加熱手段50によってさらに加熱されるので、脱水汚泥Eは、含水率がより低くなり、焼却処理に適したものとなる。 By providing the heating means 50 in the thickening means 20, the organic sludge flowing into the thickening means 20 is solubilized and concentrated by the heating means 50, so that the sludge concentration of the thickened sludge C discharged from the thickening means 20 is increased. . Since the thickened sludge C is further heated by the heating means 50 provided in the downstream dehydration means 40, the dehydrated sludge E has a lower moisture content and is suitable for incineration.

第2加熱手段50で加熱されて、濃縮手段から流出された濃縮汚泥Cは、50℃以上100℃未満となっている。 The thickened sludge C heated by the second heating means 50 and discharged from the thickening means has a temperature of 50°C or more and less than 100°C.

(第4の実施形態)
第4の実施形態について図4を参照しつつ説明する。第4の実施形態は、第2の実施形態において脱水手段40に設けられていた加熱手段50が、濃縮手段20に設けられている点で第2の実施形態と異なる。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. The fourth embodiment differs from the second embodiment in that the heating means 50 provided in the dehydrating means 40 in the second embodiment is provided in the concentrating means 20 .

(第5の実施形態)
第5の実施形態について図5を参照しつつ説明する。第5の実施形態は、第2の実施形態の汚泥流路L2に、さらに第2加熱手段50が設けられている形態である。汚泥流路L2を流れる濃縮汚泥Cは、濃縮されているので粘性が高く、摩擦抵抗があるのでポンプP1による動力を掛けて脱水手段40まで送ることになる。しかしながら、濃縮汚泥Cが加熱手段50によって加熱されて可溶化するので、粘性が下がり、脱水手段40まで送るのが容易になる。加熱手段50は汚泥流路L2のいずれの箇所にも設けることができる。特に添加手段60が設けられた箇所よりも上流側に設けておけば、可溶化された濃縮汚泥が、凝集剤と混ざることになり、容易に混和するので好ましい。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. The fifth embodiment is a form in which a second heating means 50 is further provided in the sludge flow path L2 of the second embodiment. Since the thickened sludge C flowing through the sludge flow path L2 is thickened, it has high viscosity and frictional resistance. However, since the thickened sludge C is heated by the heating means 50 and solubilized, its viscosity is lowered and it becomes easier to send it to the dewatering means 40 . The heating means 50 can be provided anywhere in the sludge flow path L2. In particular, if the addition means 60 is provided on the upstream side of the location where the addition means 60 is provided, the solubilized thickened sludge is mixed with the flocculant and is easily mixed, which is preferable.

(第6の実施形態)
第6の実施形態について図6を参照しつつ説明する。第6の実施形態は、第2の実施形態に、さらに濃縮手段30と、濃縮手段30の汚泥流出部と脱水手段40の汚泥流入部とが接続された汚泥流路L3と、濃縮手段30の排水部とろ液流路L4が接続された汚泥流路L5と、汚泥流路L3に設けられたポンプP2と、汚泥流路L5に設けられたポンプP4を備えたものである。濃縮手段30は濃縮手段20と同様のものを用いることができる。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. In the sixth embodiment, in addition to the second embodiment, the thickening means 30, the sludge flow path L3 in which the sludge outflow part of the thickening means 30 and the sludge inflow part of the dewatering means 40 are connected, and the thickening means 30 It comprises a sludge flow path L5 to which the drainage part and the filtrate flow path L4 are connected, a pump P2 provided in the sludge flow path L3, and a pump P4 provided in the sludge flow path L5. Concentration means 30 similar to concentration means 20 can be used.

上記の手段及び機器を備えることで、有機性汚泥が濃縮されて第1濃縮汚泥と第1濃縮排水に分離される濃縮槽を備えた第1濃縮手段と、前記第1濃縮汚泥を直接に又は間接に加熱する加熱手段と、加熱された前記第1濃縮汚泥を第2濃縮汚泥と第2濃縮排水に分離する第2濃縮手段と、前記第2濃縮汚泥に凝集剤を添加する添加手段と、凝集剤が添加された第2濃縮汚泥を脱水して、脱水ろ液と、50℃以上、かつ100℃未満の脱水汚泥に分離する脱水手段とを有し、前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、前記脱水ろ液及び第2濃縮排水は、前記汚泥流入部から濃縮槽内に流入して、第1濃縮排水として系外に排出されるものである、ことを特徴とする汚泥処理設備となる。 By providing the above means and equipment, the first thickening means having a thickening tank in which the organic sludge is thickened and separated into the first thickened sludge and the first thickened effluent, and the first thickened sludge directly or A heating means for indirectly heating, a second thickening means for separating the heated first thickened sludge into a second thickened sludge and a second thickened effluent, an adding means for adding a flocculant to the second thickened sludge, Dewatering means for dewatering the second thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C., wherein the thickening tank comprises the organic sludge. The dewatered filtrate and the second concentrated wastewater flow into the thickening tank from the sludge inflow portion and are discharged out of the system as the first concentrated wastewater. , It becomes a sludge treatment facility characterized by.

(第7の実施形態)
第7の実施形態について図7を参照しつつ説明する。第7の実施形態は、第2の実施形態において脱水手段40に設けられていた加熱手段50が、凝集手段10の前段又は上流側に設けられている点で第2の実施形態と異なる。加熱手段50により加熱された有機性汚泥Aを凝集手段10に供給することにより、汚泥と凝集剤の反応性が高まることから、凝集手段10で添加する凝集剤の添加量を低減することができる。なお、加熱手段50で加熱されて凝集手段10に供給される有機性汚泥は、50℃以上100℃未満となる。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIG. The seventh embodiment differs from the second embodiment in that the heating means 50 provided in the dehydrating means 40 in the second embodiment is provided upstream or upstream of the aggregation means 10 . By supplying the organic sludge A heated by the heating means 50 to the flocculating means 10, the reactivity between the sludge and the flocculant increases, so the amount of the flocculant added by the flocculating means 10 can be reduced. . The temperature of the organic sludge heated by the heating means 50 and supplied to the aggregation means 10 is 50°C or more and less than 100°C.

第2の実施形態で、添加手段60の凝集剤としてポリ硫酸第二鉄を用い、加熱手段50として温水による直接加熱の手法で濃縮汚泥を加熱して、有機性汚泥(原汚泥)の処理を行い、脱水汚泥の含水率を測定した。測定は、ポリ硫酸第二鉄の添加率と、脱水汚泥の温度を変化させて行った。脱水汚泥の含水率の結果を図9に示す。 In the second embodiment, polyferric sulfate is used as the flocculant of the adding means 60, and the thickened sludge is heated by a direct heating method with hot water as the heating means 50 to treat the organic sludge (original sludge). and measured the water content of the dewatered sludge. The measurement was performed by changing the addition rate of ferric polysulfate and the temperature of the dehydrated sludge. FIG. 9 shows the results of the moisture content of the dehydrated sludge.

結果から、ポリ硫酸第二鉄の添加量を一定とした場合、脱水汚泥の含水率は、温度が高いほど低くなっている。 From the results, when the added amount of ferric polysulfate is constant, the water content of the dewatered sludge decreases as the temperature increases.

また、同じ第2の実施形態を用いて有機性汚泥(原汚泥)の処理を行い、各処理工程におけるリン酸の濃度を測定した。処理条件として、温水による直接加熱の手法で濃縮汚泥を加熱する加熱手段50の有無、ポリ硫酸第二鉄による添加手段60の有無、脱水ろ液の汚泥流入部22への供給(脱水ろ液の循環)の有無を変えて行った。各処理工程の流量(m3/h)とリン酸の濃度(g/m3)から求めたリン酸の量(g/h)の算出結果を表1に示す。 Also, organic sludge (original sludge) was treated using the same second embodiment, and the concentration of phosphoric acid in each treatment step was measured. The treatment conditions include the presence or absence of the heating means 50 for heating the thickened sludge by a method of direct heating with hot water, the presence or absence of the addition means 60 using polyferric sulfate, the supply of the dehydrated filtrate to the sludge inflow part 22 (the dehydrated filtrate circulation) was changed. Table 1 shows the results of calculating the amount of phosphoric acid (g/h) obtained from the flow rate (m 3 /h) and the concentration of phosphoric acid (g/m 3 ) in each treatment step.

結果から、汚泥を加熱処理することによりリン酸が溶出するため、従来よりも返流水中のリン酸が増加していたが、ポリ硫酸第二鉄が添加された形態では、返流水等からリン酸が除去され、検出限界以下(ND)となっている。 As a result, since phosphoric acid is eluted by heat-treating the sludge, the amount of phosphoric acid in the returned water increased compared to the conventional method. The acid is removed and is below the limit of detection (ND).

Figure 2022153736000002
Figure 2022153736000002

本発明は、汚泥処理設備及び汚泥処理方法として利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used as a sludge treatment facility and a sludge treatment method.

Claims (9)

有機性汚泥が濃縮されて濃縮汚泥と濃縮排水に分離される濃縮槽を備えた濃縮手段と、
前記濃縮汚泥に凝集剤を添加する添加手段と、
凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液と50℃以上、かつ100℃未満の脱水汚泥に分離する脱水手段とを有し、
前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液は、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給され、濃縮槽内に流入して濃縮排水として系外に排出されるものである、
ことを特徴とする汚泥処理設備。
thickening means having a thickening tank in which organic sludge is thickened and separated into thickened sludge and thickened wastewater;
An adding means for adding a flocculant to the thickened sludge;
Dewatering means for dewatering the thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.;
The thickening tank has a sludge inflow part into which the organic sludge flows,
The dewatered filtrate is supplied to the sludge inflow part or an upstream part from the sludge inflow part, flows into the thickening tank, and is discharged out of the system as concentrated wastewater.
A sludge treatment facility characterized by:
前記脱水ろ液の全量が濃縮槽に流入される、
請求項1に記載の汚泥処理設備。
The entire amount of the dehydrated filtrate is flowed into the thickening tank,
The sludge treatment facility according to claim 1.
前記脱水ろ液の温度が50℃以上、かつ100℃未満である、
請求項1に記載の汚泥処理設備。
The dehydrated filtrate has a temperature of 50° C. or more and less than 100° C.
The sludge treatment facility according to claim 1.
凝集剤が添加された濃縮汚泥を直接に又は間接に加熱する加熱手段を有する、
請求項1に記載の汚泥処理設備。
Having a heating means for directly or indirectly heating the thickened sludge to which the flocculant has been added,
The sludge treatment facility according to claim 1.
前記添加手段は、凝集剤が濃縮汚泥に1~15質量%含まれるように添加されるものである、
請求項1に記載の汚泥処理設備。
The adding means is added so that the coagulant is contained in the concentrated sludge in an amount of 1 to 15% by mass.
The sludge treatment facility according to claim 1.
濃縮汚泥を直接に又は間接に加熱する加熱手段を有し、
前記添加手段は、前記加熱手段により加熱された濃縮汚泥に凝集剤を添加するものである、
請求項1に記載の汚泥処理設備。
Having a heating means for directly or indirectly heating the thickened sludge,
The adding means adds a flocculant to the thickened sludge heated by the heating means,
The sludge treatment facility according to claim 1.
温度が50℃以上、かつ100℃未満である有機性汚泥を凝集させて凝集汚泥を得る凝集手段と、
前記凝集汚泥が濃縮されて濃縮汚泥と濃縮排水に分離される濃縮槽を備えた濃縮手段と、
前記濃縮汚泥に凝集剤を添加する添加手段と、
凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液と50℃以上、かつ100℃未満の脱水汚泥に分離する脱水手段とを有し、
前記濃縮槽は、前記凝集汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液は、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給され、濃縮槽内に流入して濃縮排水として系外に排出されるものである、
ことを特徴とする汚泥処理設備。
a flocculating means for flocculating organic sludge having a temperature of 50° C. or more and less than 100° C. to obtain flocculated sludge;
thickening means having a thickening tank in which the flocculated sludge is thickened and separated into thickened sludge and thickened wastewater;
An adding means for adding a flocculant to the thickened sludge;
Dewatering means for dewatering the thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.;
The thickening tank includes a sludge inflow part into which the flocculated sludge flows,
The dewatered filtrate is supplied to the sludge inflow part or an upstream part from the sludge inflow part, flows into the thickening tank, and is discharged out of the system as concentrated wastewater.
A sludge treatment facility characterized by:
有機性汚泥が濃縮されて第1濃縮汚泥と第1濃縮排水に分離される濃縮槽を備えた第1濃縮手段と、
前記第1濃縮汚泥を直接に又は間接に加熱する加熱手段と、
加熱された前記第1濃縮汚泥を第2濃縮汚泥と第2濃縮排水に分離する第2濃縮手段と、
前記第2濃縮汚泥に凝集剤を添加する添加手段と、
凝集剤が添加された第2濃縮汚泥を脱水して、脱水ろ液と、50℃以上、かつ100℃未満の脱水汚泥に分離する脱水手段とを有し、
前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液及び第2濃縮排水は、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給され、濃縮槽内に流入して第1濃縮排水として系外に排出されるものである、
ことを特徴とする汚泥処理設備。
a first thickening means having a thickening tank in which organic sludge is thickened and separated into first thickened sludge and first thickened wastewater;
heating means for directly or indirectly heating the first thickened sludge;
a second thickening means for separating the heated first thickened sludge into a second thickened sludge and a second thickened effluent;
addition means for adding a flocculant to the second thickened sludge;
Dewatering means for dewatering the second thickened sludge to which the flocculant has been added to separate the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.;
The thickening tank has a sludge inflow part into which the organic sludge flows,
The dewatered filtrate and the second concentrated effluent are supplied to the sludge inflow part or to an upstream part of the sludge inflow part, flow into the thickening tank, and are discharged out of the system as the first concentrated effluent.
A sludge treatment facility characterized by:
有機性汚泥が濃縮されて濃縮汚泥と濃縮排水に分離される濃縮槽によって、前記有機性汚泥を濃縮する濃縮工程と、
前記濃縮汚泥に凝集剤を添加する添加工程と、
凝集剤が添加された濃縮汚泥を脱水して、脱水ろ液と50℃以上、かつ100℃未満の脱水汚泥に分離する脱水工程とを有し、
前記濃縮槽は、前記有機性汚泥が流入する汚泥流入部を備えるものであり、
前記脱水ろ液を、前記汚泥流入部又は当該汚泥流入部よりも上流部に供給し、濃縮槽内に流入して濃縮排水として系外に排出する、
ことを特徴とする汚泥処理方法。
a thickening step of thickening the organic sludge in a thickening tank in which the organic sludge is thickened and separated into thickened sludge and thickened wastewater;
An adding step of adding a flocculant to the thickened sludge;
A dehydration step of dewatering the thickened sludge to which the flocculant has been added and separating the dehydrated filtrate and the dehydrated sludge having a temperature of 50° C. or more and less than 100° C.,
The thickening tank has a sludge inflow part into which the organic sludge flows,
The dehydrated filtrate is supplied to the sludge inflow portion or to a portion upstream of the sludge inflow portion, flows into the thickening tank, and is discharged out of the system as concentrated wastewater.
A sludge treatment method characterized by:
JP2021056414A 2021-03-30 2021-03-30 Sludge treatment equipment and sludge treatment method Active JP7471252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021056414A JP7471252B2 (en) 2021-03-30 2021-03-30 Sludge treatment equipment and sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021056414A JP7471252B2 (en) 2021-03-30 2021-03-30 Sludge treatment equipment and sludge treatment method

Publications (2)

Publication Number Publication Date
JP2022153736A true JP2022153736A (en) 2022-10-13
JP7471252B2 JP7471252B2 (en) 2024-04-19

Family

ID=83556766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021056414A Active JP7471252B2 (en) 2021-03-30 2021-03-30 Sludge treatment equipment and sludge treatment method

Country Status (1)

Country Link
JP (1) JP7471252B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182324A (en) * 1992-12-21 1994-07-05 Akira Hotta Treatment of water-bloom in lake, swamp, pond and the like
JP2000301187A (en) * 1999-04-19 2000-10-31 Hisao Otake Sludge treatment method and organic waste water treatment method including the method
JP2013119081A (en) * 2011-12-09 2013-06-17 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2016087584A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method
JP2020121253A (en) * 2019-01-29 2020-08-13 月島機械株式会社 Treatment equipment and treatment method of organic sludge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182324A (en) * 1992-12-21 1994-07-05 Akira Hotta Treatment of water-bloom in lake, swamp, pond and the like
JP2000301187A (en) * 1999-04-19 2000-10-31 Hisao Otake Sludge treatment method and organic waste water treatment method including the method
JP2013119081A (en) * 2011-12-09 2013-06-17 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2016087584A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method
JP2020121253A (en) * 2019-01-29 2020-08-13 月島機械株式会社 Treatment equipment and treatment method of organic sludge

Also Published As

Publication number Publication date
JP7471252B2 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6639330B2 (en) Dehydration system and dehydration method
CN106007221A (en) Pharmaceutical wastewater treatment process
CN103086539A (en) Solid-liquid separating device and method of concentrated liquid waste from banknote printing wiping
US20170349470A1 (en) Method for dewatering sludge assisted by a flocculating reagent and facility for implementing such a method
CN105800909B (en) Sludge condensation and deep dehydration medicament and its sludge condensation and deep dehydration method
CN105016451B (en) Recycling method for iron-enriched sludge of pulping and papermaking factory wastewater
JP4173899B2 (en) Sludge dewatering device and sludge dewatering method
WO2017014004A1 (en) Method for processing and device for processing organic matter
KR102339124B1 (en) Improved method for dewatering sludge assisted by flocculants and equipment for implementing such method
Hansen et al. Operational experiences from a sludge recovery plant
JP7471252B2 (en) Sludge treatment equipment and sludge treatment method
JPS61257300A (en) Dehydrating method for sludge
JP6633943B2 (en) Sludge treatment system and sludge treatment method
CN214683482U (en) Pollute soil drip washing and sewage treatment system that integrates
SU994445A1 (en) Method for treating effluent precipitates
JP6657720B2 (en) Steam power plant wastewater recovery method and device
CN211226687U (en) Treatment system for oily wastewater
JP2023148171A (en) Organic sludge treatment facility, and organic sludge treatment method
KR20160098990A (en) Treatment System of Food Waste Leachate Capable of Highly Concentration with High Solubility
CN209567933U (en) A kind of coal chemical industrial waste water processing depth removal CODcr processing system
KR20150114157A (en) Treatment System of Food Waste Leachate
KR20150114152A (en) Treatment System of Food Waste Leachate Capable of Denitration and Highly Concentration with High Solubility
CN109052795A (en) A kind of coal chemical industrial waste water processing depth removal CODcr processing system and treatment process
CN214829516U (en) Comprehensive water-saving system for GCL method polycrystalline silicon production process
CN116354547A (en) Pretreatment method of kitchen wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7471252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150