JP5149469B2 - Method for dissolving yield improver for paper process made of water-soluble polymer - Google Patents
Method for dissolving yield improver for paper process made of water-soluble polymer Download PDFInfo
- Publication number
- JP5149469B2 JP5149469B2 JP2000025243A JP2000025243A JP5149469B2 JP 5149469 B2 JP5149469 B2 JP 5149469B2 JP 2000025243 A JP2000025243 A JP 2000025243A JP 2000025243 A JP2000025243 A JP 2000025243A JP 5149469 B2 JP5149469 B2 JP 5149469B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- solution
- soluble polymer
- primary
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Colloid Chemistry (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水溶性ポリマーの溶解方法及び溶解装置に関する。さらに詳しくは、本発明は、排水処理用高分子凝集剤、紙パプロセス用歩留り向上剤、ろ水性向上剤などとして用いられる水溶性ポリマーの油中水型エマルションを効率よく溶解して、水溶性ポリマーの有する凝集効果を最大限に発揮させることができる水溶性ポリマーの溶解方法及び溶解装置に関する。
【0002】
【従来の技術】
排水処理用高分子凝集剤、抄紙工程における歩留り向上剤、ろ水性向上剤などとして、水溶性ポリマーが用いられる。このような水溶性ポリマーは、高分子量であることが要求されるために、その高濃度水溶液は極めて高粘度である。従来は、このような水溶性ポリマーは、粉末の形態で商品化され、取り扱われていた。しかし、粉末状のポリマーは、取り扱いに際して粉塵が飛散するために作業の安全性に問題があり、また、使用形態である水溶液とするための溶解作業に時間と手間がかかっていた。
このために、水溶性ポリマーを油中水型エマルションとした製品が用いられるようになった。水溶性ポリマーの油中水型エマルションは、粉末状のポリマーに比べて、液状であるために自動化、省力化しやすく、溶解性にも優れている。しかし、油中水型エマルションの形態の水溶性ポリマーであっても、水に溶解する際には、部分的に非常に高粘度になるために、溶解にはなお長時間を要し、ときには配管に閉塞を生ずるなどの問題があった。また、溶解液が高粘度となることから、溶解濃度は0.1〜0.2重量%が一般的であり、溶解タンクが大型化するという問題があった。このために、油中水型エマルションの形態の水溶性ポリマーの溶解についても、さまざまな改良が試みられている。
例えば、特開平10−57790号公報には、配管内の閉塞を生ずることなく高分子のエマルションを連続的に溶解する方法として、希釈水が定量的に移送されている配管中に、逆止弁を通して高分子のエマルションを定量的に供給し、次いでこの混合液を混合装置で処理する方法が提案されている。この方法によれば、水溶性ポリマーの油中水型エマルションを一見安定して水に溶解することができるが、得られた水溶液が、水溶性ポリマーが本来有する凝集効果を十分に発揮しない場合があった。
【0003】
【発明が解決しようとする課題】
本発明は、排水処理用高分子凝集剤、紙パプロセス用歩留り向上剤、ろ水性向上剤などとして用いられる水溶性ポリマーの油中水型エマルションを効率よく溶解して、水溶性ポリマーの有する凝集効果を最大限に発揮させることができる水溶性ポリマーの溶解方法及び溶解装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、油中水型エマルションから調製される水溶性ポリマー水溶液の凝集効果の不足は、水溶性ポリマーが完全に水に溶解しきらないために生ずる現象であり、水溶性ポリマーの油中水型エマルションを2段階に分けて水に溶解することにより、水溶性ポリマーを完全な状態で水に溶解し、その凝集効果を最大限に発揮させ得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)水溶性ポリマーからなる紙パプロセス用歩留り向上剤を水に溶解する方法において、前記水溶性ポリマーがイオン性モノマー単位の量が30モル%以下のアニオン性ポリマー、カチオン性ポリマー又は両性ポリマーであり、該水溶性ポリマーの油中水型エマルションに希釈水のみを混合して、撹拌により均一化して、ポリマー濃度0.3〜1重量%の一次溶解液とし、次いで、該一次溶解液にさらに希釈水を混合して撹拌により均一化して、ポリマー濃度0.01〜0.2重量%の二次溶解液とすることを特徴とする水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、
(2)貯槽から配管に連続的に送り出された水溶性ポリマーの油中水型エマルションに、配管において一次希釈水が添加され、配管のラインポンプ又はラインミキサーを通過することによりインラインブレンディング方式で混合液を連続的に撹拌均一化して一次溶解液とし、該一次溶解液を撹拌機つきタンクに連続的に送り、二次希釈水を連続的に添加して撹拌により均一化した二次溶解液を前記撹拌機つきタンクから連続的に取り出す第1項記載の水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、
(3)一次溶解液の濃度が所定の濃度より高い場合は、二次希釈水の一部をラインポンプ又はラインミキサーの前に添加して、二次溶解液の均一化を促進する第2項記載の水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、
(4)貯槽から水溶性ポリマーの油中水型エマルションを第1の撹拌機つきタンクに連続的に送り、該タンクに一次希釈水を連続的に添加して、撹拌により均一化して一次溶解液とし、該一次溶解液を第2の撹拌機つきタンクに連続的に送りこみ、該タンクに二次希釈水を添加し、撹拌により均一化して二次溶解液として、第2の撹拌機つきタンクから均一化された二次溶解液を取り出す第1項記載の水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、
(5)貯槽から水溶性ポリマーの油中水型エマルションを第1の撹拌機つきタンクに送り、該タンクに一次希釈水を添加して撹拌により均一化して一次溶解液を一旦調製して、該一次溶解液は、溶解液貯槽に貯留されたのち、ポンプにより配管に送り出され、配管において二次希釈水が添加され、一次溶解液と二次希釈水の混合液をラインポンプ又はラインミキサーを通過することによりインラインブレンディング方式で撹拌して均一化された二次溶解液とする第1項記載の水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、及び、
(6)貯槽から配管に連続的に送り出された水溶性ポリマーの油中水型エマルションに、配管において一次希釈水が添加され、配管のラインポンプ又はラインミキサーを通過することによりインラインブレンディング方式で混合液を連続的に撹拌均一化して一次溶解液とし、該一次溶解液に配管において二次希釈水が添加され、一次溶解液と二次希釈水の混合液をラインポンプ又はラインミキサーを通過することによりインラインブレンディング方式で撹拌して均一化された二次溶解液とする第1項記載の水溶性ポリマーからなる紙パプロセス用歩留り向上剤の溶解方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の水溶性ポリマーの溶解方法は、水溶性ポリマーの油中水型エマルションに希釈水を混合して水溶性ポリマーを水に溶解する方法において、該エマルションに希釈水を混合して一次溶解液とし、該一次溶解液にさらに希釈水を混合して二次溶解液とするものである。
本発明方法において、水溶性ポリマーの油中水型エマルションに希釈水を混合して一次溶解液とする方法に特に制限はなく、例えば、撹拌機つきのタンクを用いてバッチ方式で混合することができ、撹拌機つきのタンクに油中水型エマルションと希釈水を連続的に供給してタンクブレンディングにより連続方式で混合することもでき、あるいは、ラインミキサー、ラインポンプなどを用いてインラインブレンディングにより連続方式で混合することもできる。なお、一次溶解液は完全に均一な溶液である必要はなく、一部の水溶性ポリマーが不完全溶解の状態で存在しても差し支えはない。
本発明方法において、一次溶解液に希釈水を混合して二次溶解液とする方法に特に制限はなく、例えば、撹拌機つきのタンクを用いてバッチ方式で混合することができ、撹拌機つきのタンクに一次溶解液と希釈水を連続的に供給してタンクブレンディングにより連続方式で混合することもでき、あるいは、ラインミキサー、ラインポンプなどを用いてインラインブレンディングにより連続方式で混合することもできる。
【0006】
本発明方法において、一次溶解液のポリマー濃度に特に制限はないが、0.3〜2重量%であることが好ましく、0.5〜1重量%であることがより好ましい。一次溶解液のポリマー濃度が0.3重量%未満であると、水溶性ポリマーの有する凝集効果が十分に発揮されないおそれがある。一次溶解液のポリマー濃度が2重量%を超えると、一次溶解液の粘度が高くなりすぎて、取り扱いが困難となるおそれがある。
本発明方法において、二次溶解液の濃度に特に制限はないが、0.01〜0.3重量%であることが好ましく、0.03〜0.2重量%であることがより好ましい。二次溶解液の濃度が0.01重量%未満であると、取り扱うべき二次溶解液の量が過大になるおそれがある。二次溶解液の濃度が0.3重量%を超えると、使用に際して均一な混合が困難となるおそれがある。
本発明方法を用いて溶解する水溶性ポリマーに特に制限はないが、排水処理用高分子凝集剤、紙パプロセス用歩留り向上剤、ろ水性向上剤などとして用いられるアニオン性ポリマー、カチオン性ポリマー又は両性ポリマーに特に好適に適用することができる。溶解するアニオン性ポリマー、カチオン性ポリマー又は両性ポリマーのイオン性モノマー単位の量は、30モル%以下であることが好ましく、15モル%以下であることがより好ましい。溶解するアニオン性ポリマー、カチオン性ポリマー又は両性ポリマーのイオン性モノマー単位の量が30モル%を超えると、本発明方法により得られる二次溶解液が有する凝集効果と、従来の方法により1段で溶解して得られる溶解液が有する凝集効果の差が小さくなる傾向にある。
【0007】
本発明の水溶性ポリマーの溶解装置は、水溶性ポリマーの油中水型エマルションに希釈水を混合する手段と、その混合液を均一化して一次溶解液とする第一の均一化手段と、一次溶解液に希釈水を混合する手段と、その混合液を均一化して二次溶解液とする第二の均一化手段とを備えてなるものである。
図1は、本発明装置の一態様の工程系統図である。本態様においては、貯槽1から送り出された水溶性ポリマーの油中水型エマルションに、配管において一次希釈水が添加され、3台のラインポンプ2を通過することにより均一化されて一次溶解液となる。一次溶解液は、撹拌機つきタンク3に送られて二次希釈水が添加され、撹拌により均一化されて二次溶解液となる。一次溶解液の濃度が高い場合は、必要に応じて、二次希釈水の一部を2台目のラインポンプと3台目のラインポンプの間に添加し、二次溶解液の均一化を容易にすることができる。
図2は、本発明装置の他の態様の工程系統図である。本態様においては、水溶性ポリマーの油中水型エマルションが貯槽4から第1の撹拌機つきタンク5に送られ、一次希釈水が同じ第1の撹拌機つきタンクに添加され、撹拌により均一化されて一次溶解液となる。一次溶解液は次いで第2の撹拌機つきタンク6に送られ、二次希釈水が同じ第2の撹拌機つきタンクに添加され、撹拌により均一化されて二次溶解液となる。本態様の装置は、各タンクにおける均一化をバッチ方式で行うことができ、あるいは、タンクブレンディングにより連続方式で行うこともできる。
【0008】
図3は、本発明装置の他の態様の工程系統図である。本態様においては、水溶性ポリマーの油中水型エマルションが貯槽7から撹拌機つきタンク8に送られ、一次希釈水が同じ撹拌機つきタンクに添加され、撹拌により均一化されて一次溶解液となる。一次溶解液は、いったん一次溶解液貯槽9に貯留されたのち、ポンプ10により送り出され、配管において二次希釈水が添加される。一次溶解液と二次希釈水の混合液は、ラインミキサー11を通過することにより均一化されて二次溶解液となる。
水溶性ポリマーの油中水型エマルションは、多量の希釈水と混合すると、エマルションが反転して水溶性ポリマーが希釈水に溶解する。しかし、イオン性モノマー単位の少ない水溶性ポリマーは、反転不足になりやすく、一部の油中水型エマルションが溶解しないで残留するために、水溶性ポリマーが有する凝集効果が十分に発揮されない場合がある。本発明方法及び装置を用いて、油中水型エマルションを2段に分けて希釈溶解することにより、油中水型エマルションを完全に反転させることができる。その結果、水溶性ポリマーは完全に希釈水に溶解するので、水溶性ポリマーが有する凝集効果を最大限に発揮させることができる。油中水型エマルションは、一次溶解液の濃度が高いほど反転しやすいので、取り扱いが可能な範囲であれば、一次溶解液の濃度は高いことが好ましい。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図1に示す工程により、ポリマー濃度40重量%の水溶性ポリマーの油中水型エマルションを溶解した。すなわち、貯槽1より油中水型エマルションを20〜50mL/分で送り出し、ポリマー濃度が0.13〜1.0重量%になるように一次希釈水1.5〜6L/分を連続して添加し、ラインポンプ2を通過させ、容量50Lの撹拌機つきタンク3に送り込んだ。一次溶解液のポリマー濃度が0.5重量%未満の場合は、2段のラインポンプを通過させてタンクに送り込み、ポリマー濃度が0.1重量%になるように二次希釈水をタンクに添加して撹拌混合した。一次溶解液の濃度が0.5重量%以上の場合は、3段のラインポンプを用い、一次溶解液に二次希釈水を加えて、3段目のラインポンプで混合希釈したのち、タンクに送り込んだ。タンク中の滞留時間は、3.4〜4.0分とした。
中性紙抄紙工場の白水と種箱原料を用い、インレット濃度に混合調整して試験スラリーとした。各原料と試験スラリーの水質を第1表に示す。なお、白水の濃度の測定はTAPPI T656hm−83に基づき、灰分はISO 1762に基づいておこなった。
【0010】
【表1】
【0011】
水溶性ポリマーとして用いたアクリルアミドのコポリマーの構造及び固有粘度を、第2表に示す。
【0012】
【表2】
【0013】
試験スラリー180mLを容量300mLのポリビーカーにとり、水溶性ポリマーの二次溶解液を添加し、タービン羽根を備えた撹拌機を用いて、250rpmで20秒間撹拌し、試験スラリーを凝集させた。次いで、プラスチックワイヤを敷いたろ過器に凝集させた試験スラリーを注ぎ込み、10秒後のろ水量を測定した。結果を第3表に示す。
【0014】
【表3】
【0015】
第3表に見られるように、二次溶解液の濃度はすべて0.1重量%であるが、水溶性ポリマーの一次溶解液を調製したのち希釈水を混合して二次溶解液を調製したとき、一次溶解液の濃度が低い場合よりも高い場合の方が10秒後のろ水量が多く、水溶性ポリマーの溶解を2段階に行うことにより、その凝集性能を十分に発揮させ得ることが分かる。この効果は、イオン性の高いポリマーよりも、イオン性の低いポリマーにおいて顕著である。また、一次溶解液の濃度は、0.3重量%以上であることが好ましい。
実施例2
図2に示す工程により、ポリマー濃度40重量%のアクリルアミド/アクリル酸ナトリウム(モル比90/10)コポリマーの油中水型エマルションを溶解した。すなわち、貯槽4より油中水型エマルションを30mL/分で容量100Lのタンク5に送り込み、ポリマー濃度が0.5重量%になるように一次希釈水2.37L/分を同時にタンク5に添加した。タンク5における平均滞留時間は、33分である。タンク5の一次溶解液を連続して容量100Lのタンク6に送り込み、二次希釈水を9.6L/分でタンク6に添加し、ポリマー濃度0.1重量%の二次溶解液を調製した。
新聞用紙抄紙工場の白水とリファイナー出口原料をインレット濃度に混合調整し、硫酸バンドと硫酸を添加してpHを4.9に調整し、試験スラリーとして使用した。各原料と試験スラリーの水質を第4表に示す。なお、pH調整前のスラリーのpHは5.2であり、ゼータ電位は−6.4mVであった。
【0016】
【表4】
【0017】
試験スラリー2Lをダイナミックリテンションテスターにとり、二次溶解液をポリマー濃度が0.01重量%になるように添加し、1,000rpmで20秒間撹拌したのちコックを開き、ワイヤを通って流出する液の最初の200mLを採取し、そのうちの100mLを計りとってそのSSを測定した。白水濃度は2,790mg/L、灰分は770mg/L、歩留り率は66.7重量%であった。二次溶解液をポリマー濃度が0.02重量%になるように添加したとき、白水濃度は2,470mg/L、灰分は650mg/L、歩留り率は70.5重量%であった。二次溶解液をポリマー濃度が0.03重量%になるように添加したとき、白水濃度は2,330mg/L、灰分は630mg/L、歩留り率は72.2重量%であった。
比較例1
実施例2で用いたポリマー濃度40重量%のアクリルアミド/アクリル酸ナトリウム(モル比90/10)コポリマーの油中水型エマルションを、1段で溶解してポリマー濃度0.1重量%の溶解液を調製した以外は、実施例2と同じ試験を行った。
溶解液をポリマー濃度が0.01重量%になるように添加したとき、白水濃度は2,920mg/L、灰分は870mg/L、歩留り率は65.2重量%であった。溶解液をポリマー濃度が0.02重量%になるように添加したとき、白水濃度は2,750mg/L、灰分は760mg/L、歩留り率は67.2重量%であった。溶解液をポリマー濃度が0.03重量%になるように添加したとき、白水濃度は2,530mg/L、灰分は700mg/L、歩留り率は69.8重量%であった。
比較例2
アクリルアミド/アクリル酸ナトリウムコポリマーを添加することなく、実施例2と同じ試験を行った。
白水濃度は3,330mg/L、灰分は1,010mg/L、歩留り率は60.3重量%であった。
実施例2及び比較例1〜2の結果を、第5表に示す。
【0018】
【表5】
【0019】
第5表に見られるように、ポリマーの添加率が同じ場合、アクリルアミド/アクリル酸ナトリウムコポリマーの油中水型エマルションを2段に希釈溶解した実施例2の方が、1段で希釈溶解した比較例1よりも、白水濃度が低く、灰分が少なく、歩留り率が高くなっている。
実施例3
図2に示す工程により、ポリマー濃度40重量%のアクリルアミド/アクリル酸ナトリウム(モル比90/10)コポリマーの油中水型エマルションを溶解した。すなわち、貯槽4より油中水型エマルションを30mL/分で容量80Lのタンク5に送り込み、ポリマー濃度が0.1〜1.5重量%になるように一次希釈水0.8〜12L/分を同時にタンク5に添加した。タンク5における平均滞留時間は、6.6〜100分である。タンク5の一次溶解液を連続して容量80Lのタンク6に送り込み、二次希釈水をタンク6に添加し、ポリマー濃度0.1重量%の二次溶解液を調製した。
実施例2と同じ試験スラリーを用い、実施例1と同様にしてろ水性試験を行って10秒後のろ水量を測定した。
比較例3
比較例1の1段で溶解して調製したポリマー濃度0.1重量%の溶解液を用いた以外は、実施例3と同様にしてろ水性試験を行った。
比較例4
アクリルアミド/アクリル酸ナトリウムコポリマーを添加することなく、実施例3と同様なろ水性試験を行った。
実施例3及び比較例3〜4の結果を、第6表に示す。
【0020】
【表6】
【0021】
第6表に見られるように、実施例3の二次溶解液及び比較例3の溶解液の濃度はすべて0.1重量%であるが、1段で溶解した比較例3よりも2段で溶解した実施例3の方が10秒後のろ水量が多く、また、実施例3の中でも、一次溶解液の濃度が低い場合よりも高い場合の方が10秒後のろ水量が多く、アクリルアミド/アクリル酸ナトリウムコポリマーの溶解を2段階に行い、かつ一次溶解液の濃度を高くすることにより、その凝集性能を十分に発揮させ得ることが分かる。
実施例4
図3に示す工程により、ポリマー濃度30重量%のアクリルアミド/ジメチルアミノエチルアクリレート・塩化メチル四級化物(モル比90/10)コポリマーの油中水型エマルションをバッチ連続方式により溶解した。すなわち、貯槽7より油中水型エマルションを容量1,000Lのタンク8に送り込み、ポリマー濃度が0.1重量%又は0.5重量%になるように一次希釈水をタンク5に添加し、撹拌機を用いて30分間溶解した。得れらた一次溶解液は容量2,000Lの貯槽9に貯留した。貯槽9の一次溶解液は、ポンプ10を用いて送り出し、ポリマー濃度が0.05重量%になるように二次希釈水を連続的に添加し、ラインミキサー11を用いて混合し、二次溶解液を調製した。
ライナー抄紙工場の余剰白水を試験液として、ジャーテスト(机上試験)を行い、さらに実機での回収工程に二次溶解液を添加しその効果を確認した。
試験に用いた余剰白水の水質を、第7表に示す。
【0022】
【表7】
【0023】
余剰白水500mLをビーカーにとり、150rpmで撹拌しながらポリ塩化アルミニウムを対SS300重量%添加した。さらに150rpmで2分間撹拌したのち、撹拌を停止し、前記二次溶解液を添加率が0.5mg/L又は1.0mg/Lになるように添加した。直ちに150rpmで急速撹拌を開始するとともに、ストップウォッチでフロック形成時間を測定し、1分間の急速撹拌ののち、50rpmの緩速撹拌を3分間行った。その間、緩速撹拌1分30秒経過時のフロック径を目視により決定した。緩速撹拌を停止するとともに、ストップウォッチでフロックが水面下4cmに沈降する時間を測定して沈降速度を求めた。
実機テストにおいては、板紙廃水(pH7.0、SS濃度5,160mg/L、ゼータ電位−13.2mV)を凝集加圧浮上する装置の原水に液体硫酸バンドを5mg/L配管注入するとともに、その下流に前記二次溶解液を添加率が0.5〜2.0mg/Lになるように添加し、処理水のSS濃度と濁度を測定した。
ジャーテストの結果を第8表に、実機テストの結果を第9表に示す。
【0024】
【表8】
【0025】
【表9】
【0026】
第8表及び第9表に見られるように、一次溶解液の濃度を0.5重量%とすると、一次溶解液の濃度を0.1重量%とした場合に比べて、ポリマーの添加率が1/2で同等以上の効果が得られている。フロック強度を要求される加圧浮上装置の白水回収においては、溶解濃度差による効果の差は顕著に現れる。
【0027】
【発明の効果】
本発明の水溶性ポリマーの溶解方法及び溶解装置によれば、水溶性ポリマーの油中水型エマルションをを効率よく溶解して、水溶性ポリマーの有する凝集効果を最大限に発揮させることができる。
【図面の簡単な説明】
【図1】図1は、本発明装置の一態様の工程系統図である。
【図2】図2は、本発明装置の他の態様の工程系統図である。
【図3】図3は、本発明装置の他の態様の工程系統図である。
【符号の説明】
1 貯槽
2 ラインポンプ
3 撹拌機つきタンク
4 貯槽
5 第1の撹拌機つきタンク
6 第2の撹拌機つきタンク
7 貯槽
8 撹拌機つきタンク
9 一次溶解液貯槽
10 ポンプ
11 ラインミキサー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for dissolving a water-soluble polymer. More specifically, the present invention efficiently dissolves a water-in-oil emulsion of a water-soluble polymer used as a polymer flocculant for wastewater treatment, a yield improver for paper processing, a freeness improver, etc. The present invention relates to a dissolution method and a dissolution apparatus for a water-soluble polymer capable of maximizing the cohesive effect possessed by.
[0002]
[Prior art]
A water-soluble polymer is used as a polymer flocculant for wastewater treatment, a yield improver in a papermaking process, a freeness improver, and the like. Since such a water-soluble polymer is required to have a high molecular weight, the high-concentration aqueous solution has an extremely high viscosity. Conventionally, such water-soluble polymers have been commercialized and handled in the form of powder. However, the powdered polymer has a problem in work safety because dust is scattered during handling, and it takes time and labor to dissolve the aqueous solution as a use form.
For this reason, products using water-soluble polymers as water-in-oil emulsions have been used. Water-in-oil emulsions of water-soluble polymers are more liquid and easier to automate and labor-saving than powdered polymers, and have excellent solubility. However, even a water-soluble polymer in the form of a water-in-oil emulsion, when dissolved in water, partially becomes very viscous, so it still takes a long time to dissolve, sometimes piping There were problems such as obstruction. In addition, since the dissolution liquid has a high viscosity, the dissolution concentration is generally 0.1 to 0.2% by weight, and there is a problem that the dissolution tank is enlarged. For this reason, various improvements have also been attempted for the dissolution of water-soluble polymers in the form of water-in-oil emulsions.
For example, Japanese Patent Laid-Open No. 10-57790 discloses a check valve as a method for continuously dissolving a polymer emulsion without causing blockage in a pipe, in a pipe where dilution water is quantitatively transferred. A method is proposed in which a polymer emulsion is quantitatively fed through the mixture, and then the mixture is processed with a mixing apparatus. According to this method, the water-in-oil emulsion of the water-soluble polymer can be dissolved in water at first glance, but the obtained aqueous solution may not sufficiently exhibit the aggregation effect inherent in the water-soluble polymer. there were.
[0003]
[Problems to be solved by the invention]
The present invention efficiently dissolves a water-in-oil emulsion of a water-soluble polymer used as a polymer flocculant for wastewater treatment, a yield improver for paper processing, a freeness improver, etc. The object of the present invention is to provide a method and apparatus for dissolving a water-soluble polymer capable of exhibiting the maximum effect.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors have found that the water-soluble polymer aqueous solution prepared from the water-in-oil emulsion lacks the aggregation effect because the water-soluble polymer is completely dissolved in water. This phenomenon occurs because the water-in-oil emulsion of a water-soluble polymer is dissolved in water in two stages, so that the water-soluble polymer is completely dissolved in water and the coagulation effect is maximized. Based on this finding, the present invention has been completed.
That is, the present invention
(1) In the method of dissolving a paper process yield improver comprising a water-soluble polymer in water, the water-soluble polymer is an anionic polymer, a cationic polymer or an amphoteric polymer having an ionic monomer unit content of 30 mol% or less. Yes, only water for dilution is mixed with the water-in-oil emulsion of the water-soluble polymer and homogenized by stirring to obtain a primary solution having a polymer concentration of 0.3 to 1% by weight, and then further added to the primary solution. A method for dissolving a yield improver for paper process comprising a water-soluble polymer, characterized in that it is mixed with dilution water and homogenized by stirring to obtain a secondary solution having a polymer concentration of 0.01 to 0.2% by weight,
(2) The primary dilution water is added to the water-in-oil emulsion of the water-soluble polymer continuously sent from the storage tank to the pipe, and mixed by an in-line blending method by passing through the line pump or line mixer of the pipe. The solution is continuously stirred and homogenized to obtain a primary solution, and the primary solution is continuously sent to a tank equipped with a stirrer, and secondary dilution water is continuously added to obtain a secondary solution that is homogenized by stirring. The method for dissolving a yield improver for paper process comprising the water-soluble polymer according to claim 1, which is continuously taken out from the tank with a stirrer,
(3) When the concentration of the primary solution is higher than the predetermined concentration, a part of the secondary dilution water is added before the line pump or line mixer to promote the homogenization of the secondary solution. A method for dissolving a yield improver for paper processing comprising the water-soluble polymer as described above,
(4) A water-in-oil emulsion of a water-soluble polymer is continuously sent from a storage tank to a tank with a first stirrer, and primary dilution water is continuously added to the tank, and the primary solution is homogenized by stirring. The primary solution is continuously fed to a tank with a second stirrer, secondary dilution water is added to the tank, and the mixture is homogenized by stirring to obtain a secondary solution, which is a tank with a second stirrer. A method for dissolving a yield improving agent for paper process comprising the water-soluble polymer according to claim 1, wherein a homogenized secondary solution is taken out from
(5) A water-in-oil emulsion of a water-soluble polymer from a storage tank is sent to a tank with a first stirrer, primary dilution water is added to the tank and homogenized by stirring to temporarily prepare a primary solution, After the primary solution is stored in the solution storage tank, it is sent out to the piping by the pump, and the secondary dilution water is added to the piping, and the mixed solution of the primary solution and the secondary dilution water passes through the line pump or line mixer. A method for dissolving a yield improver for paper process comprising the water-soluble polymer according to claim 1, which is made into a secondary solution that is homogenized by stirring in an in-line blending system, and
(6) The primary dilution water is added to the water-in-oil emulsion of the water-soluble polymer continuously sent from the storage tank to the pipe, and mixed by in-line blending by passing through the line pump or line mixer of the pipe. The solution is continuously stirred and homogenized to obtain a primary solution, secondary dilution water is added to the primary solution in a pipe, and the mixed solution of the primary solution and secondary dilution water passes through a line pump or a line mixer. A method for dissolving a yield improver for paper process comprising the water-soluble polymer according to claim 1, which is made into a secondary solution that is stirred and homogenized by an in-line blending method.
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The method for dissolving a water-soluble polymer of the present invention is a method of mixing a water-soluble polymer in a water-in-oil emulsion of a water-soluble polymer and dissolving the water-soluble polymer in water. And the primary solution is further mixed with dilution water to form a secondary solution.
In the method of the present invention, there is no particular limitation on the method of mixing a water-soluble polymer water-in-oil emulsion with a dilution water to obtain a primary solution. For example, it can be mixed in a batch system using a tank with a stirrer. In addition, a water-in-oil emulsion and dilution water can be continuously supplied to a tank equipped with a stirrer and mixed continuously by tank blending, or continuously by in-line blending using a line mixer, line pump, etc. It can also be mixed. The primary solution does not need to be a completely homogeneous solution, and some water-soluble polymers may exist in an incompletely dissolved state.
In the method of the present invention, there is no particular limitation on the method of mixing the dilution water with the primary solution to obtain the secondary solution. For example, it can be mixed in a batch system using a tank with a stirrer, The primary solution and the dilution water can be continuously supplied to and mixed in a continuous manner by tank blending, or can be mixed in a continuous manner by in-line blending using a line mixer, a line pump or the like.
[0006]
In the method of the present invention, the polymer concentration of the primary solution is not particularly limited, but is preferably 0.3 to 2% by weight, and more preferably 0.5 to 1% by weight. When the polymer concentration of the primary solution is less than 0.3% by weight, the aggregation effect of the water-soluble polymer may not be sufficiently exhibited. If the polymer concentration of the primary solution exceeds 2% by weight, the viscosity of the primary solution may become too high and handling may be difficult.
In the method of the present invention, the concentration of the secondary solution is not particularly limited, but is preferably 0.01 to 0.3% by weight, and more preferably 0.03 to 0.2% by weight. If the concentration of the secondary solution is less than 0.01% by weight, the amount of the secondary solution to be handled may be excessive. If the concentration of the secondary solution exceeds 0.3% by weight, uniform mixing may be difficult during use.
The water-soluble polymer dissolved using the method of the present invention is not particularly limited, but an anionic polymer, a cationic polymer, or an amphoteric polymer used as a wastewater treatment polymer flocculant, a paper process yield improver, a drainage improver, etc. It can be particularly suitably applied to polymers. The amount of the ionic monomer unit of the anionic polymer, cationic polymer or amphoteric polymer to be dissolved is preferably 30 mol% or less, and more preferably 15 mol% or less. When the amount of the ionic monomer unit of the anionic polymer, cationic polymer or amphoteric polymer to be dissolved exceeds 30 mol%, the aggregation effect of the secondary solution obtained by the method of the present invention can be reduced in one step by the conventional method. There is a tendency that the difference in the coagulation effect of the solution obtained by dissolution is reduced.
[0007]
The water-soluble polymer dissolving apparatus of the present invention includes a means for mixing dilution water into a water-in-oil emulsion of a water-soluble polymer, a first homogenizing means for homogenizing the mixed solution to form a primary solution, It comprises means for mixing diluted water with the solution and second homogenizing means for homogenizing the mixture to obtain a secondary solution.
FIG. 1 is a process flow diagram of one aspect of the apparatus of the present invention. In this embodiment, the primary dilution water is added to the water-in-oil emulsion of the water-soluble polymer sent out from the storage tank 1 in the pipe, and is made uniform by passing through the three line pumps 2 and the primary solution. Become. The primary solution is sent to the tank 3 with a stirrer, secondary dilution water is added, and the primary solution is homogenized by stirring to become a secondary solution. If the concentration of the primary solution is high, add a part of the secondary dilution water between the second line pump and the third line pump as necessary to homogenize the secondary solution. Can be easily.
FIG. 2 is a process flow diagram of another aspect of the apparatus of the present invention. In this embodiment, a water-in-oil emulsion of a water-soluble polymer is sent from the storage tank 4 to the
[0008]
FIG. 3 is a process flow diagram of another aspect of the apparatus of the present invention. In this embodiment, a water-in-oil emulsion of a water-soluble polymer is sent from the storage tank 7 to a tank 8 with a stirrer, and primary dilution water is added to the same tank with a stirrer, and is homogenized by stirring to obtain a primary solution. Become. The primary solution is once stored in the primary solution storage tank 9, and then sent out by the
When a water-in-oil emulsion of a water-soluble polymer is mixed with a large amount of dilution water, the emulsion is inverted and the water-soluble polymer is dissolved in the dilution water. However, water-soluble polymers with a small amount of ionic monomer units tend to be insufficiently inverted, and some water-in-oil emulsions remain undissolved, so the aggregation effect of water-soluble polymers may not be fully exhibited. is there. Using the method and apparatus of the present invention, the water-in-oil emulsion can be completely inverted by diluting and dissolving the water-in-oil emulsion in two stages. As a result, the water-soluble polymer is completely dissolved in the diluted water, so that the aggregation effect of the water-soluble polymer can be exhibited to the maximum. Since the water-in-oil emulsion is more easily reversed as the concentration of the primary solution is higher, the concentration of the primary solution is preferably higher as long as it can be handled.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
The water-in-oil emulsion of a water-soluble polymer having a polymer concentration of 40% by weight was dissolved by the process shown in FIG. That is, a water-in-oil emulsion is sent from the storage tank 1 at a rate of 20 to 50 mL / min, and primary dilution water of 1.5 to 6 L / min is continuously added so that the polymer concentration becomes 0.13 to 1.0% by weight. Then, the product was passed through the
Using white water and seed box raw materials from a neutral papermaking factory, mixing adjustment was made to the inlet concentration to obtain a test slurry. Table 1 shows the water quality of each raw material and test slurry. The white water concentration was measured based on TAPPI T656hm-83, and the ash content was measured based on ISO 1762.
[0010]
[Table 1]
[0011]
Table 2 shows the structure and intrinsic viscosity of the acrylamide copolymer used as the water-soluble polymer.
[0012]
[Table 2]
[0013]
A test slurry (180 mL) was placed in a 300 mL capacity poly beaker, a water-soluble polymer secondary solution was added, and the mixture was stirred at 250 rpm for 20 seconds using a stirrer equipped with a turbine blade to agglomerate the test slurry. Next, the agglomerated test slurry was poured into a filter laid with a plastic wire, and the amount of filtrate after 10 seconds was measured. The results are shown in Table 3.
[0014]
[Table 3]
[0015]
As can be seen in Table 3, the concentration of the secondary solution is 0.1% by weight. After preparing the primary solution of the water-soluble polymer, the secondary solution was prepared by mixing the dilution water. When the concentration of the primary solution is higher than when the concentration is low, the amount of drainage after 10 seconds is larger, and the water-soluble polymer can be dissolved in two stages to fully exhibit its aggregation performance. I understand. This effect is more pronounced in polymers that are less ionic than those that are more ionic. Moreover, it is preferable that the density | concentration of a primary solution is 0.3 weight% or more.
Example 2
The water-in-oil emulsion of acrylamide / sodium acrylate copolymer (molar ratio 90/10) copolymer having a polymer concentration of 40% by weight was dissolved by the process shown in FIG. That is, the water-in-oil emulsion was sent from the storage tank 4 to the
The white water and the refiner outlet raw material of the newsprint paper mill were mixed and adjusted to the inlet concentration, and the pH was adjusted to 4.9 by adding a sulfuric acid band and sulfuric acid, and used as a test slurry. Table 4 shows the water quality of each raw material and test slurry. The pH of the slurry before pH adjustment was 5.2, and the zeta potential was −6.4 mV.
[0016]
[Table 4]
[0017]
Take 2L of the test slurry in a dynamic retention tester, add the secondary solution so that the polymer concentration becomes 0.01% by weight, stir at 1,000 rpm for 20 seconds, open the cock and remove the liquid flowing out through the wire. The first 200 mL was taken and 100 mL of the sample was taken to measure its SS. The white water concentration was 2,790 mg / L, the ash content was 770 mg / L, and the yield was 66.7% by weight. When the secondary solution was added so that the polymer concentration was 0.02% by weight, the white water concentration was 2,470 mg / L, the ash content was 650 mg / L, and the yield was 70.5% by weight. When the secondary solution was added so that the polymer concentration was 0.03 wt%, the white water concentration was 2,330 mg / L, the ash content was 630 mg / L, and the yield was 72.2 wt%.
Comparative Example 1
The water-in-oil emulsion of acrylamide / sodium acrylate copolymer (molar ratio 90/10) copolymer having a polymer concentration of 40% by weight used in Example 2 was dissolved in one stage to obtain a solution having a polymer concentration of 0.1% by weight. The same test as in Example 2 was performed, except that it was prepared.
When the solution was added so that the polymer concentration was 0.01% by weight, the white water concentration was 2,920 mg / L, the ash content was 870 mg / L, and the yield was 65.2% by weight. When the solution was added so that the polymer concentration was 0.02% by weight, the white water concentration was 2,750 mg / L, the ash content was 760 mg / L, and the yield was 67.2% by weight. When the solution was added so that the polymer concentration was 0.03 wt%, the white water concentration was 2,530 mg / L, the ash content was 700 mg / L, and the yield was 69.8 wt%.
Comparative Example 2
The same test as in Example 2 was performed without the addition of an acrylamide / sodium acrylate copolymer.
The white water concentration was 3,330 mg / L, the ash content was 1,010 mg / L, and the yield was 60.3 wt%.
Table 5 shows the results of Example 2 and Comparative Examples 1 and 2.
[0018]
[Table 5]
[0019]
As can be seen from Table 5, when the addition ratio of the polymer is the same, Example 2 in which the water-in-oil emulsion of the acrylamide / sodium acrylate copolymer was diluted and dissolved in two stages was compared in the case where the dilution was dissolved in one stage. Compared to Example 1, the white water concentration is lower, the ash content is lower, and the yield rate is higher.
Example 3
The water-in-oil emulsion of acrylamide / sodium acrylate copolymer (molar ratio 90/10) copolymer having a polymer concentration of 40% by weight was dissolved by the process shown in FIG. That is, the water-in-oil emulsion is fed from the storage tank 4 to the
Using the same test slurry as in Example 2, a drainage test was conducted in the same manner as in Example 1 to measure the amount of filtrate after 10 seconds.
Comparative Example 3
A drainage test was conducted in the same manner as in Example 3 except that a solution having a polymer concentration of 0.1% by weight prepared by dissolving in one stage of Comparative Example 1 was used.
Comparative Example 4
A drainage test similar to Example 3 was performed without the addition of an acrylamide / sodium acrylate copolymer.
The results of Example 3 and Comparative Examples 3 to 4 are shown in Table 6.
[0020]
[Table 6]
[0021]
As can be seen in Table 6, the concentrations of the secondary solution of Example 3 and the solution of Comparative Example 3 are all 0.1% by weight, but in two stages than Comparative Example 3 dissolved in one stage. The dissolved Example 3 had a greater amount of filtrate after 10 seconds, and among Example 3, the amount of filtrate after 10 seconds was higher when the concentration of the primary dissolved solution was higher than when the concentration of the primary solution was low. It can be seen that the aggregation performance can be sufficiently exhibited by dissolving the sodium acrylate copolymer in two stages and increasing the concentration of the primary solution.
Example 4
The water-in-oil emulsion of an acrylamide / dimethylaminoethyl acrylate / methyl chloride quaternized compound (molar ratio 90/10) copolymer having a polymer concentration of 30% by weight was dissolved in a batch continuous manner by the process shown in FIG. That is, the water-in-oil emulsion is sent from the storage tank 7 to a tank 8 having a capacity of 1,000 L, and primary dilution water is added to the
A jar test (desk test) was performed using excess white water from the liner paper mill as a test solution, and a secondary solution was added to the recovery process using an actual machine to confirm the effect.
Table 7 shows the quality of excess white water used in the test.
[0022]
[Table 7]
[0023]
Excess white water (500 mL) was placed in a beaker, and polyaluminum chloride was added to SS by 300 wt% while stirring at 150 rpm. After further stirring for 2 minutes at 150 rpm, stirring was stopped, and the secondary solution was added so that the addition rate was 0.5 mg / L or 1.0 mg / L. Immediately after the rapid stirring was started at 150 rpm, the floc formation time was measured with a stopwatch. After rapid stirring for 1 minute, slow stirring at 50 rpm was performed for 3 minutes. Meanwhile, the floc diameter at the time of slow stirring 1 minute 30 seconds was determined visually. Slow stirring was stopped, and the settling speed was determined by measuring the time for the floc to settle 4 cm below the water surface with a stopwatch.
In the actual machine test, 5 mg / L of liquid sulfuric acid band was injected into the raw water of the apparatus that coagulates and pressurizes paperboard wastewater (pH 7.0, SS concentration 5,160 mg / L, zeta potential -13.2 mV). The secondary solution was added downstream so that the addition rate was 0.5 to 2.0 mg / L, and the SS concentration and turbidity of the treated water were measured.
Table 8 shows the results of the jar test, and Table 9 shows the results of the actual machine test.
[0024]
[Table 8]
[0025]
[Table 9]
[0026]
As can be seen in Tables 8 and 9, when the concentration of the primary solution is 0.5% by weight, the addition rate of the polymer is higher than when the concentration of the primary solution is 0.1% by weight. An effect equal to or greater than 1/2 is obtained. In the white water recovery of a pressurized flotation device that requires flock strength, the difference in effect due to the difference in dissolved concentration appears remarkably.
[0027]
【Effect of the invention】
According to the method and apparatus for dissolving a water-soluble polymer of the present invention, a water-in-oil emulsion of a water-soluble polymer can be efficiently dissolved to maximize the coagulation effect of the water-soluble polymer.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.
FIG. 2 is a process flow diagram of another aspect of the apparatus of the present invention.
FIG. 3 is a process flow diagram of another aspect of the apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025243A JP5149469B2 (en) | 2000-02-02 | 2000-02-02 | Method for dissolving yield improver for paper process made of water-soluble polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025243A JP5149469B2 (en) | 2000-02-02 | 2000-02-02 | Method for dissolving yield improver for paper process made of water-soluble polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001213968A JP2001213968A (en) | 2001-08-07 |
JP5149469B2 true JP5149469B2 (en) | 2013-02-20 |
Family
ID=18551132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000025243A Expired - Fee Related JP5149469B2 (en) | 2000-02-02 | 2000-02-02 | Method for dissolving yield improver for paper process made of water-soluble polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5149469B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200827309A (en) * | 2006-12-29 | 2008-07-01 | Ind Tech Res Inst | Hot spring water generating system |
JP4840995B2 (en) * | 2007-01-17 | 2011-12-21 | ハイモ株式会社 | Dilutions of water-in-oil dispersions, methods for their preparation and methods for their use |
JP4793997B2 (en) * | 2007-02-28 | 2011-10-12 | ハイモ株式会社 | Paper making method |
CN102176960B (en) * | 2008-10-31 | 2015-02-18 | Mt奥科高分子株式会社 | Method of dissolving water-soluble polymer |
JP5201632B2 (en) * | 2009-09-14 | 2013-06-05 | 株式会社イズミフードマシナリ | Melting equipment |
JP5826586B2 (en) * | 2011-10-20 | 2015-12-02 | オルガノ株式会社 | Solid drug supply apparatus and solid drug supply method |
JP5795235B2 (en) * | 2011-10-20 | 2015-10-14 | オルガノ株式会社 | Separation membrane slime prevention method and separation membrane slime prevention device |
JP6744589B2 (en) * | 2018-07-13 | 2020-08-19 | 荒川化学工業株式会社 | Method for producing diluted solution of retention agent for papermaking |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53117681A (en) * | 1977-03-24 | 1978-10-14 | Sanyo Chem Ind Ltd | Dispersing and dissolving method |
DE3228843C2 (en) * | 1982-08-02 | 1984-11-29 | Chemische Fabrik Stockhausen GmbH, 4150 Krefeld | Process for the rapid dissolution of water-soluble polymers |
DE3228812C2 (en) * | 1982-08-02 | 1984-11-22 | Chemische Fabrik Stockhausen GmbH, 4150 Krefeld | Process for the rapid dissolution of water-soluble polymers |
JP2951825B2 (en) * | 1993-07-16 | 1999-09-20 | 株式会社日本触媒 | Method and apparatus for preparing aqueous polymer electrolyte solution |
JPH1057790A (en) * | 1996-08-16 | 1998-03-03 | Mitsui Cytec Kk | Dissolving method and dissolving system |
JPH11268979A (en) * | 1998-03-25 | 1999-10-05 | Mitsubishi Chemical Corp | Operation stoppage of installation for producing triple superphosphate slurry |
-
2000
- 2000-02-02 JP JP2000025243A patent/JP5149469B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001213968A (en) | 2001-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5178774A (en) | Purification of aqueous liquor | |
CA1277785C (en) | Flocculation processes | |
US20080053916A1 (en) | Method For Coagulating And Dewatering Sludge With Use Of Polymer Coagulant And Method For Coagulating And Percipitating Waste Water With Use Of Polymer Coagulant | |
JP5878619B2 (en) | Sludge aggregation method and apparatus | |
JP4901756B2 (en) | Cationic polymer dispersion, method for preparing said dispersion and use thereof | |
CZ2002149A3 (en) | A process of flocculating and dewatering an aqueous suspension of suspended solids | |
JP5149469B2 (en) | Method for dissolving yield improver for paper process made of water-soluble polymer | |
JPS6118408A (en) | Flocculant and its production | |
JP2006175427A (en) | Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant | |
JP5837694B2 (en) | Sludge treatment method and treatment apparatus | |
KR20090005005A (en) | Method for treatment of sludge or wastewater | |
US5698109A (en) | Purification of aqueous liquor | |
WO2012094286A2 (en) | Phosphoric acid production gypsum filtration flocculant pre-dilution (make down) with post-filtration phosphoric acid | |
JP3693273B2 (en) | Construction aggregate cleaning waste mud dewatering method | |
JP3633726B2 (en) | Sludge treatment method | |
JP2668711B2 (en) | Paper and pulp wastewater coagulation treatment method | |
JP2004290823A (en) | Sludge dehydration method | |
KR102574261B1 (en) | Method for preparing the polymer solution | |
JP2004344748A (en) | Polymer coagulant | |
EP0366764A1 (en) | Processes for the production of paper and paper board. | |
JPH1057790A (en) | Dissolving method and dissolving system | |
JPS62279811A (en) | Flocculating and separating method by water-soluble polymer | |
JPH07214100A (en) | Method for dehydrating sewage digested sludge | |
JPH029500A (en) | Method for dehydrating sludge and sludge dehydrating agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100716 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101008 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110112 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110202 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5149469 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |